Modul 61213 Funktionalanalysis
Modulinformationen
Die Funktionalanalysis hat sich zur Grundlagenwissenschaft von großen Bereichen der Mathematik entwickelt und findet Anwendung in vielen Gebieten innerhalb und außerhalb der Mathematik. Ziel dieser Lehrveranstaltung ist, eine Einführung in das große Gebiet der Funktionalanalysis zu geben. Folgende Stichworte, die gleichzeitig Titel der Lektionen sind, umreißen den Inhalt der Lehrveranstaltung:
- Metrische Räume
- Normierte Räume
- Lineare Operatoren
- Funktionale und schwache Konvergenz
- Lebesgue- und Sobolevräume
- Hilberträume
- Spektraltheorie
Vertiefungsrichtung
Analysis und Numerische Mathematik (AN)
ECTS | 10 |
---|---|
Arbeitsaufwand | Bearbeiten der Lektionen (7 mal 20 Stunden): 140 Stunden
Einüben des Stoffes (insbesondere durch Einsendeaufgaben (7 mal 15 Stunden): 105 Stunden
Wiederholung und Prüfungsvorbereitung (Studientag und Selbststudium): 55 Stunden |
Dauer des Moduls | ein Semester |
Häufigkeit des Moduls | in jedem Wintersemester |
Anmerkung | Lektionstext in englischer Sprache!
Früherer Titel: Funktionalanalysis I |
Inhaltliche Voraussetzung | Modul 61211 "Analysis" |
Aktuelles Angebot
Prüfungsinformation
M.Sc. Mathematik | |
---|---|
Art der Prüfungsleistung | benotete mündliche Prüfung (ca. 25 Minuten) |
Voraussetzung | keine |
Stellenwert der Note | 1/12 |
Formale Voraussetzungen | keine |
M.Sc. Data Science | |
Art der Prüfungsleistung | benotete mündliche Prüfung (ca. 25 Minuten) |
Voraussetzung | keine |
Stellenwert der Note | 1/12 |
Formale Voraussetzungen | keine |
B.Sc. Mathematisch-technische Softwareentwicklung | |
Art der Prüfungsleistung | benotete mündliche Prüfung (ca. 25 Minuten) |
Voraussetzung | keine |
Stellenwert der Note | 1/17 |
Formale Voraussetzungen | mindestens 45 von 90 ECTS der Studieneingangsphase sind bestanden |
B.Sc. Mathematik | |
Art der Prüfungsleistung | benotete mündliche Prüfung (ca. 25 Minuten) |
Voraussetzung | keine |
Stellenwert der Note | 1/15 |
Formale Voraussetzungen | mindestens 45 von 90 ECTS der Studieneingangsphase sind bestanden |
Download
- Seite Modulhandbuch M.Sc. Mathematik
- Seite Modulhandbuch M.Sc. Data Science
- Seite Modulhandbuch B.Sc. Mathematisch-technische Softwareentwicklung
- Seite Modulhandbuch B.Sc. Mathematik
- Leseprobe: Funktionalanalysis
Ansprechpersonen
Prof. Dr. Delio Mugnolo
mathinf.webteam
| 10.05.2024