Modul 63117 Data Mining

Modulinformationen

Das Thema dieses Kurses ist Data Mining, grob übersetzbar mit "Wissensentdeckung in Datenmengen/-banken". Die Bedeutung dieses Themengebiets ist in den letzten Jahren rasant gewachsen. Die Zielsetzung besteht darin, Strukturen, Zusammenhänge sowie Gruppen ähnlicher Objekte in sehr großen Datenmengen zu erkennen und zu bewerten. Der Kurs vermittelt zunächst Kenntnisse zur Vorbereitung von Data-Mining-Methoden hinsichtlich der Charakterisierung (z.B. Klassifizierung von Attributtypen, Visualisierung) und Vorverarbeitung der Daten (etwa durch Eliminierung von Ausreißern, Aggregation oder Normalisierung). Darauf aufbauend, werden verschiedene Techniken zur Mustersuche (z.B. Apriori-Algorithmus), Klassifikation (u.a. Entscheidungsbäume, Klassifikation nach Bayes) und Clusteranalyse (beispielsweise k-Means, DBSCAN) sowie passende Evaluationsmethoden vorgestellt. Zudem erläutert der Kurs, wie komplexere Strukturen, d.h. Datenströme, Textdokumente, Zeitreihen, diskrete Folgen, Graphen sowie Webdaten, analysiert werden können. Ein Kapitel mit praktischen Beispielen in Weka bildet den Abschluss des Kurses.

ECTS10
Arbeitsaufwand
Bearbeiten der Kurseinheiten: 160 Stunden
Bearbeitung der Einsendeaufgaben inkl. Verarbeitung des Korrektur-Feedbacks: 80 Stunden
Wiederholung und Prüfungsvorbereitung, Prüfung: 60 Stunden
Dauer des Modulsein Semester
Häufigkeit des Modulss. Anmerkung
Anmerkung
Das Modul Data Mining kann ausschließlich im WS 2020/21 belegt werden. Eine Prüfungsteilnahme ist nur noch bis einschließlich WS 2021/22 möglich.
Inhaltliche Voraussetzung
Keine

Aktuelles Angebot

Prüfungsinformation

M.Sc. Praktische Informatik
Art der Prüfungsleistungbestandene benotete Prüfungsklausur
Voraussetzungkeine
Stellenwert der Note1/8
Formale Voraussetzungenkeine
M.Sc. Informatik
Art der Prüfungsleistungbestandene benotete Prüfungsklausur
Voraussetzungkeine
Stellenwert der Note1/12
Formale Voraussetzungenkeine
B.Sc. Informatik
Art der Prüfungsleistungbestandene benotete Prüfungsklausur
Voraussetzungkeine
Stellenwert der Note1/16
Formale VoraussetzungenWahlmodul I: mindestens 30 von 60 ECTS der Studieneingangsphase sind bestanden; Wahlmodule II-IV: Studieneingangsphase ist abgeschlossen, die Module Grundpraktikum Programmierung, Grundlagen der Theoretischen Informatik und Softwaresysteme sind bestanden
B.Sc. Mathematisch-technische Softwareentwicklung
Art der Prüfungsleistungbestandene benotete Prüfungsklausur
Voraussetzungkeine
Stellenwert der Note1/17
Formale Voraussetzungenmindestens 45 von 90 ECTS der Studieneingangsphase sind bestanden

Download

Ansprechpersonen

mathinf.webteam | 19.05.2020