Modul 63117 Data Mining

Modulinformationen

Das Thema dieser Lehrveranstaltung ist Data Mining, grob übersetzbar mit "Wissensentdeckung in Datenmengen/-banken". Die Bedeutung dieses Themengebiets ist in den letzten Jahren rasant gewachsen. Die Zielsetzung besteht darin, Strukturen, Zusammenhänge sowie Gruppen ähnlicher Objekte in sehr großen Datenmengen zu erkennen und zu bewerten. Die Lehrveranstaltung vermittelt zunächst Kenntnisse zur Vorbereitung von Data-Mining-Methoden hinsichtlich der Charakterisierung (z.B. Klassifizierung von Attributtypen, Visualisierung) und Vorverarbeitung der Daten (etwa durch Eliminierung von Ausreißern, Aggregation oder Normalisierung). Darauf aufbauend, werden verschiedene Techniken zur Mustersuche (z.B. Apriori-Algorithmus), Klassifikation (u.a. Entscheidungsbäume, Klassifikation nach Bayes) und Clusteranalyse (beispielsweise k-Means, DBSCAN) sowie passende Evaluationsmethoden vorgestellt. Zudem erläutert die Lehrveranstaltung, wie komplexere Strukturen, d.h. Datenströme, Textdokumente, Zeitreihen, diskrete Folgen, Graphen sowie Webdaten, analysiert werden können. Ein Kapitel mit praktischen Beispielen in Weka bildet den Abschluss der Lehrveranstaltung.

ECTS10
Arbeitsaufwand
Bearbeiten der Lektionen: 160 Stunden
Bearbeitung der Einsendeaufgaben inkl. Verarbeitung des Korrektur-Feedbacks: 80 Stunden
Wiederholung und Prüfungsvorbereitung, Prüfung: 60 Stunden
Dauer des Modulsein Semester
Häufigkeit des Modulsin jedem Semester
Anmerkung
Inhaltliche Voraussetzung
Keine

Aktuelles Angebot

Prüfungsinformation

M.Sc. Data Science
Art der Prüfungsleistungbenotete zweistündige Prüfungsklausur
Voraussetzungkeine
Stellenwert der Note1/12
Formale Voraussetzungenkeine

Download

Ansprechpersonen

mathinf.webteam | 10.05.2024