Projekte
Increased perception-action coupling through embodied cognition: How the human body improves the simultaneous performance of two tasks in basic and applied task contexts
PI: Roman Liepelt & Rico Fischer (Greifswald)
Institution: German Research Foundation (DFG)
Grant: LI 2115/6-1
Time: 2020-2023
This project aims at filling the gap between basic cognitive research on multiple task performance on the one hand and current developments of applied dual-tasking demands in technical environments on the other. Recent research in cognitive psychology has substantiated the assumption of a strong connection between action components directly affecting perception and attentional control. Such action-perception interactions are increasingly prevalent in high-demanding complex cognitive tasks, which require the simultaneous processing and coordination of multiple stimuli and responses. Especially in real-life and applied contexts, task control is often implemented via handheld devices or touch screens and thus, the visual-manual interaction focus is shifted into a shared visuo-spatial attentional region. This project builds on recent findings in our labs that stimulus-hand nearness indeed improves dual tasking performance. This near-hand benefit was expressed in improved shielding of the prioritized task against interference by additional task processing (i.e., reduced between-task interference) when hands were located close to the stimuli compared to when they were located far from the stimuli. This is a highly important step in this new research area, as it offers possibilities for optimizing dual tasking in conditions of stimulus-hand nearness. At the same time, however, the cognitive mechanisms underlying these findings of improved dual tasking are to date highly underspecified. We reason that traditional theoretical assumptions about mechanisms underlying the action-perception interactions cannot be easily transferred to situations of multiple task performance. Instead, we propose that in dual-task conditions, in which each task-specific stimulus is operated with the respective task-specific response hand, the nearness of the hand to the stimulus will facilitate perception-action coupling in each task and will thus, facilitate the conceptual separation of two tasks. As a consequence, we propose that presenting stimuli close to the hands will help to reduce unwanted information-transmission between tasks (between-task interference). The present project aims at testing and confirming this assumption in three work-packages that include the investigation of the type of interference that can be reduced, the identification of the underlying mechanisms, the modality-specificity and the transfer of the near-hand-benefit effect to applied and real-life dual-task scenarios using hand-held devices, tool-based and hand-movement responses. The present approach of addressing action-perception interactions in dual tasking will therefore not only provide important theoretical scientific information on how stimulus-hand proximity affects dual-task performance costs, but promises also important knowledge for transfer into applied cognitive sciences and technical developments.
The Limits of Action Emulation
PI: Sven Hoffmann & Christian Beste (Dresden) & Markus Raab (Cologne)
Institution: German Research Foundation (DFG)
Grant: HO 5054/8-1
Time: 2021-2024
Wayne Gretzky, one of the greatest hockey players of all time, once said, 'A good hockey player plays where the puck is. A great hockey player plays where the puck will be.' This quote highlights the importance of precise actions and movements, and their anticipation in situations with temporal and spatial constraints. To efficiently and successfully control and execute actions, one must be able to perform those actions at a high level and predict the outcomes of their actions. Furthermore, the result of interacting with the environment must be considered. In other words, to achieve a goal, external and internal factors must be aligned toward a future or desired state. The planning and execution of actions at their limits in elite athletes and people with autism will be neurophysiologically examined using MRI and EEG and tested with TMS regarding their causal mechanisms. The goal of the project is to test and develop an integrative model of action control and motor learning. It is supported by the German Research Foundation (DFG) from 2021 to 2024.
Embodied Cognition in Multitasking: Stimulus-Hand Proximity and Cognitive Control in Dual-Task Performance
PI: Roman Liepelt & Rico Fischer (Greifswald)
Institution: German Research Foundation (DFG)
Grant: LI 2115/2-1 (Priority Program "Multitasking" ,SPP 1771)
Time: 2015-2020
Multiple task performance has become an increasing prevalent phenomenon of the modern world, as we face a constantly growing demand on multitasking abilities in everyday and work life. For example, the development of modern technical devices more and more demand visual-manual interactions within a shared visuo-spatial region (e.g., hand-held devices, tablet control), which are continuously implemented in complex real life multitasking environments, such as in cockpits of trains and aircrafts. From research in embodied cognition, however, it is known, that cognitive processing is not independent of the body. Recent research demonstrated that the presence of hands close to a visual stimulus (e.g., within the visuo-spatial attentional focus) biases the allocation of attention to the area near the hand and enhances the engagement of cognitive control for stimuli in near hand space. In the special context of dual tasks, with multiple stimuli being presented in near hand space, we aim at specifying which control parameters are affected in proximal stimulus conditions. We therefore ask, whether altered visuo-spatial attention targets S1 and S2 equally within left- and right-hand space and how hand position determines cognitive control parameters relating to central switching operations, i.e., task set shifts at the bottleneck. A more thorough and in-depth processing of the currently relevant stimulus under proximal stimulus conditions might delay disengagement and shifts to secondary task component processing. Furthermore, we assess the impact of privileged stimulus processing in near hand space on priorization of task order and the flexibility of reconfiguration of task order switches. By measuring hand proximity effects on dual-task performance, we aim to provide a new research perspective on human multitasking behavior by emphasizing the role of action-perception interaction for determining cognitive control in dual-task situations. An embodied cognition approach to multitasking will, therefore, not only provide important theoretical scientific information concerning the flexibility of cognitive control for the coordination and scheduling of task sets in dual-task situations but might provide fertile grounds for transfer into applied cognitive sciences and technical developments. Finally, we think that this project will provide a valuable asset to the SPP 1772 in furthering the understanding of flexible priorization and shifting between component processing of multiple task sets.
Investigating the role of attention and actor similarity for joint action
PI: Roman Liepelt
Institution: German Research Foundation (DFG)
Grant: LI 2115/1-3
Time: 2014-2017
Human information processing often occurs when we act together with others to achieve common goals (joint action). One of the most prominent paradigms to test joint action is the social Simon paradigm in which two people share a Simon task. When two participants perform this version of the Simon task together, a (social) Simon effect occurs (i.e., performance is better with spatial stimulus-response S-R correspondence), but no Simon effect is usually observed when participants perform the task alone. Accordingly, joint action has been proposed to be fundamentally different to individual action where one person acts alone to achieve his/her own goals. During the first project phase we found evidence that Simon-like effects can be induced when an individual person interacts with a robot or an event-producing object. The aim of the second project phase is to answer the question if joint action is mediated by dedicated social mechanisms or by domain-general processes. Using behavioral methods this project aims to specify the role of attention for joint action. Further, this project is aimed to specify the role of actor similarity and spatial, body and agency information for joint action. By applying real joint action scenarios we plan to test and extend various aspects of the cognitive model of referential coding for joint action that we have developed during the first project phase. By specifying the cognitive mechanisms underlying joint action control, the planned work is aimed to provide important answers to one of the most central questions of our time: What are the cognitive mechanisms underlying joint action that may have paved the way for our cultural development and all modern societies?
Cognitive and neural mechanisms underlying the social Simon effect
PI: Roman Liepelt
Institution: German Research Foundation (DFG)
Grant: 2115/1-1
Time: 2011-2014
The ability to coordinate our actions with those of others is crucial for our success as individuals and in social interactions. One of the biggest mysteries in cognitive neuroscience of the current decade is how joint action differs from individual task processing. One of the most prominent examples of joint action is the social Simon effect. When two participants perform this version of the Simon task together, a Simon effect occurs (i.e., performance is better with spatial stimulus-response S-R correspondence), but no effect is observed when participants perform the task alone. The social Simon effect is typically considered as a good index for action co-representation. Based on recent experimental data we assume that dimensional overlap with respect to spatial and non-spatial task features plays an important role for the formation of the social Simon effect. The applied research is aimed to test and extend this assumption investigating the role of attention and dimensional overlap in mediating the social Simon effect. Further, we will test how participants can effectively separate events for self and other reducing dimensional overlap and how this is achieved in the human brain.