Forschungsprojekte
-
Towards AI powered manufacturing services, processes, and products in an edge-to-cloud-knowlEdge continuum for humans [in-the-loop]
- Webseite: www.knowledge-project.eu
- Dauer: Januar 2021 bis Dezember 2023
- Gefördert: EC H2020 - Research and innovation actions
Beschreibung:
Künstliche Intelligenz (KI) ist der Software-Motor für die vierte industrielle Revolution, die die Art und Weise, wie wir leben und arbeiten, verändern wird. Die komplexen Technologien und der Mangel an qualifizierten Fachkräften sind jedoch ein Hindernis für die Weiterentwicklung von KI und damit für die Verbesserung der Produktqualität und die Nachhaltigkeit von Unternehmen. Das von der EU finanzierte knowlEdge-Projekt wird sich mit dem Bedarf an neuen KI-Lösungen befassen, die flexibel, wiederverwendbar, verteilt, skalierbar, verantwortungsvoll, sicher, standardisiert und kollaborativ sind. Das vorgeschlagene neue Framework wird die sichere Verwaltung von verteilten Daten gewährleisten und den Wissensaustausch erleichtern. Um sein Ziel zu erreichen, wird das Projekt innovative Technologien aus den Bereichen Datenmanagement, Datenanalyse und Wissensmanagement kombinieren.
-
Gaussian processes for automatic and interpretable anomaly detection
- Webseite: www.dataninja.nrw
- Dauer: April 2021 bis Dezember 2024
- Gefördert: Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen
Beschreibung:
Ziel dieses Forschungsprojekts ist die Erforschung von Gauß-Prozessen zur effizienten Erkennung und Interpretation von Anomalien in multivariaten Zeitreihendaten. Insbesondere sollen unüberwachte Gauß-Prozesse untersucht und weiterentwickelt werden, um zugrunde liegende Korrelationen und Anomalien zu erkennen, zu verstehen und aufzulösen. Um Gaußsche Prozessmodelle skalierbar und in Echtzeit zu erlernen, wollen wir neue Streaming-Algorithmen entwickeln, die quelloffen und unter Bezugnahme auf Industriestandards implementiert und in anwendungsorientierten Szenarien gemeinsam mit Partnern aus der Wirtschaft getestet werden.
-
Efficient Ptolemaic Indexing
- Dauer: 2023 bis 2025
- Gefördert: DFG
Beschreibung
Mit dem rasanten Wachstum heterogener Daten steigt die Nachfrage nach effizientem und skalierbarem Datenzugriff. Ptolemäische Zugriffsmethoden bieten einen domänenunabhängigen Ansatz zur Indizierung und zum Zugriff auf komplexe Datenräume auf der Basis metrischer Ähnlichkeitsmodelle. Während erste Studien bereits die Effizienz dieser vergleichsweise jungen Indizierungsmethode in verschiedenen datenintensiven Domänen nachgewiesen haben, sind die Grundlagen dieses Ansatzes noch weitgehend unerforscht. Fragen zur Approximation von Distanzen in metrischen und ptolemäischen Datenräumen, zur Geometrie ptolemäischer Abfragen sowie zum Zusammenspiel verschiedener Lower Bounding-Verfahren gelten derzeit als nicht ausreichend beantwortet. Ziel dieses Forschungsprojektes ist es, die Grundlagen ptolemäischer und metrischer Zugriffsverfahren zu untersuchen und die gewonnenen Erkenntnisse methodisch weiterzuentwickeln, um die Leistungsfähigkeit dieser Klasse von Zugriffsverfahren für die Indizierung großer, komplexer Datenräume nachzuweisen. Dieses Forschungsprojekt verfolgt damit das übergeordnete Ziel, die Entwicklung effizienter Datentechnologien zur Erschließung digitaler Datenbestände voranzutreiben.
-
Data Science Kompetenzen für den digitalen Wandel in Wissenschaft und Wirtschaft
- Webseite Projekt DS3W
- Dauer: April 2022 bis Dezember 2024
- Gefördert: Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen
Beschreibung:
Arbeit und Bildung erleben einen digitalen Wandel. Die digitale Transformation verändert unsere Arbeits- und Bildungswelt und ermöglicht neue und innovative Möglichkeiten, Kompetenzen unterschiedlichster Art gezielt und lebenslang zu vermitteln. Die für die digitale Arbeit der Zukunft notwendigen Kompetenzen erstrecken sich dabei von digitalen und sozialen Kompetenzen bis hin zu Führungskompetenzen. Grundlegend für viele Kompetenzen ist dabei der Umgang mit digitalen Technologien und insbesondere digitalen Daten. Data Science und Data Literacy sind dabei fach- und themenübergreifende Forschungsbereiche, deren Bedeutung für alle Berufsfelder mit industrieller und wirtschaftlicher Anwendung in den letzten Jahren stark zugenommen hat. Das Ziel dieses Projektes ist die Untersuchung von Data Science- und Data Literacy-Kompetenzen in wirtschaftlichen Anwendungen und wissenschaftlichen Domänen. Gemeinsam mit Kooperationspartnern aus Wirtschaft und Bildung möchten wir den Forschungsfragen nachgehen, welche Bedeutung diese beiden hochaktuellen Forschungsbereiche in der Wirtschaft und der Wissenschaft besitzen, wie die Fachkompetenzen (Data Science und Data Literacy) verstanden und strukturiert werden können sowie welche Kompetenzbedarfe vorhanden sind.