Dr. Matthias Täufer

Matthias Täufer Foto: Universität Bielefeld/P. Ottendörfer

E-Mail: matthias.taeufer

Telefon: +49 2331 987- 2168

Raum: 0C410, Geb. 3

I am a postdoc in the Analysis Group of Delio Mugnolo at FernUniversität in Hagen. Before that, I was at Queen Mary University of London, under the supervision of Alexander Sodin. I got my PhD from TU Dortmund in 2018 under the supervision of Ivan Veselić. My work is on Analysis, Control Theory, Mathematical Physics, and Spectral Theory.

Publications

You can also find my complete list of publications on Google Scholar and my Preprints on the arXiv.

see complete list of publications

Peer-reviewed contributions to scientific journals

  1. I. Nakic, M. Täufer, M. Tautenhahn, and I. Veselic. Scale-free uncertainty principles and Wegner estimates for random breather potentials. C. R. Math., 353(10):919–923, 2015.
  2. M. Täufer and I. Veselic. Conditional Wegner estimate for the standard random breather potential. J. Stat. Phys, 161(4):902–914, 2015.
  3. M. Täufer and I. Veselic. Wegner estimate for Landau-breather Hamiltonians. J. Math. Phys., 57(7):072102, 8, 2016.
  4. M. Täufer and M. Tautenhahn. Scale-free and quantitative unique continuation for infinite dimensional spectral subspaces of Schrödinger operators. Commun. Pure Appl. Anal., 16(5):1719–1730, 2017.
  5. N. Peyerimhoff, M. Täufer, and I. Veselic. Unique continuation principles and their absence for Schrödinger eigenfunctions on combinatorial and quantum graphs and in continuum space. Nanosystems: Physics, Chemistry, Mathematics, 8(2):216–230, 2017.
  6. D. I. Borisov, M. Täufer, and I. Veselic. Spectral localization for quantum hamiltonians with weak random delta interaction. C. R. Math., 356(6):686–691, June 2018.
  7. I. Nakic, M. Täufer, M. Tautenhahn, and I. Veselic. Scale-free unique continuation principle, eigenvalue lifting and Wegner estimates for random Schrödinger operators. Anal. PDE, 11(4):1049–1081, 2018.
  8. M. Täufer and M. Tautenhahn. Wegner estimate and disorder dependence for alloy-type Hamiltonians with bounded magnetic potential. Ann. Henri Poincaré, 19(4):1151–1165, 2018.
  9. M. Täufer. Rapid, large-scale, and effective detection of COVID-19 via non-adaptive testing. J. Theor. Biol., 506:110450, December 2020.
  10. I. Nakic, M. Täufer, M. Tautenhahn, and I. Veselic. Sharp estimates and homogenization of the control cost of the heat equation on large domains. ESAIM: COCV, 26:54, 2020.
  11. I. Nakic, M. Täufer, M. Tautenhahn, and I. Veselic. Unique continuation and lifting of spectral band edges of schrödinger operators on unbounded domains (With an Appendix by Albrecht Seelmann). J. Spectr. Theory, 10(3):843–885, 2020.
  12. A. Seelmann and M. Täufer. Band edge localization beyond regular Floquet eigenvalues. Ann. Henri Poincaré, 21(7):2151–2166, 2020.
  13. D. Borisov, M. Täufer, and I. Veselic. Quantum hamiltonians with weak random abstract perturbation. II. localization in the expanded spectrum. J. Stat. Phys., 182(1), January 2021.
  14. N. Peyerimhoff and M. Täufer. Eigenfunctions and the integrated density of states on Archimedean tilings. J. Spectr. Theory, 2021.
  15. M. Plümer and M. Täufer. On fully supported eigenfunctions of quantum graphs. Lett. Math. Phys., 111(6), 2021.
  16. A. Seelmann, M. Täufer, and K Veselic. Protecting points from operator pencils. J. Operat. Theor., 85(2):383–389, March 2021.
  17. M. Täufer. Controllability of the Schrödinger equation on unbounded domains without geometric control condition. ESAIM: COCV 29, 2023.
  18. J. Kerner and M. Täufer. On the spectral gap of higher-dimensional Schrödinger operators on large domains. Asymptot. Anal. 133, (1-2), 77–89, 2023.
  19. M. Täufer and I. Veselic. Wegner estimate and localisation for alloy type operators with minimal support assumptions on the single site potential. Accepted for publication in Random Oper. Stoch. Equ.
  20. J. Kerner, M. Täufer and J. Wintermayr. Robustness of flat bands on the perturbed Kagome and the perturbed Super-Kagome lattice. Ann. Henri Poincaré, 2023.

Conference proceedings

  1. M. Täufer, M. Tautenhahn, and I. Veselic. Harmonic analysis and random Schrödinger operators. In Operator Theory: Advances and Applications, pages 223–255. Springer International Publishing, 2016.
  2. M. Egidi, I. Nakic, A. Seelmann, M. Täufer, M. Tautenhahn, and I. Veselic. Null-controllability and control cost estimates for the heat equation on unbounded and large bounded domains. In Control Theory of Infinite-Dimensional Systems, pages 117–157. Springer International Publishing, 2020.

Preprints

  1. C. Schumacher and M. Täufer. The statistics of noisy one-stage group testing in outbreaks. arXiv:2012.02101 [stat.AP], 2020.
  2. J. Kerner and M. Täufer. On the spectral gap of one-dimensional Schrödinger operators on large intervals. arXiv:2012.09060 [math.SP], 2020.
  3. M. Düfel, J. B. Kennedy, D. Mugnolo, M. Plümer, and M. Täufer. Boundary condition matter: On the spectrum of infinite quantum graphs. arXiv:2207.04024 [math.SP], 2022.
  4. P. Pfeiffer and M. Täufer. Magnetic Bernstein inequalities and spectral inequality on thick sets for the Landau operator. arXiv:2309.14902 [math.AP], 2023.
  5. J. B. Kennedy, D. Mugnolo, and M. Täufer. Towards a theory of eigenvalue asymptotics on infinite metric graphs: the case of diagonal combs. arXiv:2403.10708 [math.SP], 2024.

Dissertation

Teaching

expand

Spring 2024: Topologische Räume and Seminar zur Analysis (joint w. Delio Mugnolo)

Fall 2023/24: Proseminar Mathematisches Problemlösen, Strategien, Rätsel

Spring 2023: Topologische Räume

Fall 2022/23: Proseminar Mathematisches Problemlösen, Strategien, Rätsel

Spring 2022: Topologische Räume

Fall 2021/22: Proseminar Mathematisches Problemlösen, Strategien, Rätsel

Spring 2021: Topologische Räume

Short CV

expand

Since 2020: Postdoc at FernUniversität in Hagen

2018-2020: Postdoc at Queen Mary University of London

2013-2018: PhD in Mathematics at Technische Universität Dortmund

2008-2013: B.Sc. und M.Sc. in Mathematics at Ludwigs-Maximilians-Universität Münschen

01.08.2024