Veröffentlichung
- Titel:
- Time Space Optimal Algorithm for Computing Separators in Bounded Genus Graphs
- AutorInnen:
-
Chetan Gupta
Rahul Jain
Raghunath Tewari - Kategorie:
- Konferenzbandbeiträge
- erschienen in:
- Leibniz International Proceedings in Informatics (LIPIcs) - 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021), Vol. 213, pp. 23:1-23:15, 2021
- Abstract:
A graph separator is a subset of vertices of a graph whose removal divides the graph into small components. Computing small graph separators for various classes of graphs is an important computational task. In this paper, we present a polynomial-time algorithm that uses O(g^{1/2} n^{1/2} log n)-space to find an O(g^{1/2} n^{1/2})-sized separator of a graph having n vertices and embedded on an orientable surface of genus g.
- Download:
- Dagstuhl
- BibTeX-Eintrag:
- @InProceedings{gupta_et_al:LIPIcs.FSTTCS.2021.23, author = {Gupta, Chetan and Jain, Rahul and Tewari, Raghunath}, title = {{Time Space Optimal Algorithm for Computing Separators in Bounded Genus Graphs}}, booktitle = {41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)}, pages = {23:1--23:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-215-0}, ISSN = {1868-8969}, year = {2021}, volume = {213}, editor = {Boja\'{n}czy, Miko{\l}aj and Chekuri, Chandra}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/opus/volltexte/2021/15534}, URN = {urn:nbn:de:0030-drops-155344}, doi = {10.4230/LIPIcs.FSTTCS.2021.23}, annote = {Keywords: Graph algorithms, space-bounded algorithms, surface embedded graphs, reachability, Euler genus, algorithmic graph theory, computational complexity theory} }
Christoph Doppelbauer
| 10.05.2024