Torsten Zesch
Prof. Dr.-Ing. Torsten Zesch
Deputy Scientific Director, Member of the Executive Board, Head of the research professorship "Computational Linguistics"
Email: torsten.zesch
Phone: +49 2331 987-4863
FernUniversität in Hagen
Universitätsstr. 27 - PRG / Buliding 5 / Room A125
58097 Hagen
What is my role in CATALPA?
As a computer scientist, I lead the research professorship Computational Linguistics and investigate with my team how language technology can support the educational process. I am a member of the CATALPA executive board.
Why CATALPA?
The profitable integration of language technology methods in the educational process can only succeed in a joint research effort of different disciplines, which is realized in an ideal way in the research center.
-
- Head of the W3 research professorship "Computational Linguistics" at the FernUniversität in Hagen (since March 2022)
- Spokesperson of the advisory board of the German Society for Computational Linguistics and Language Technology (GSCL) (since 2024, before GSCL President 2018-2024)
- W2 Professor “Sprachtechnologie”, Universität Duisburg-Essen (2020-2022)
- W1 Professor “Sprachtechnologie”, Universität Duisburg-Essen (2014-2020)
- Visiting Researcher, Educational Testing Service, Princeton, USA (2014)
- Vertretungsprofessur (W2)“Knowledge Mining & Assessment”, Leibniz-Institut für Bildungsforschung und Bildungsinformation (DIPF), Frankfurt (2012)
- Visiting Researcher, Bar-Ilan University, Ramat Gan, Israel (2012)
- Dissertation (Dr.-Ing.), Computer Science, Technische Universität Darmstadt (2009)
-
- Robust and efficient systems for processing language
- Analysis of non-standard language and implicit structures
- Application of language processing systems in the field of education
-
-
2024
Journals
-
Alexandron, G., Klebanov, B. B., Komachi, M., & Zesch, T. (2024). Editor’s Note: Special Issue on Educational NLP for a Multilingual World. International Journal of Artificial Intelligence in Education, 34(4), 1293. https://doi.org/10.1007/s40593-024-00444-8
Bexte, M., Horbach, A., & Zesch, T. (2024). Strengths and weaknesses of automated scoring of free-text student answers. Informatik Spektrum. Advance online publication. https://doi.org/10.1007/s00287-024-01573-z
Conferences
-
Aggarwal, P., Mehrabanian, J., Huang, W., Alacam, Ö., & Zesch, T. (2024). Text or Image? What is More Important in Cross-Domain Generalization Capabilities of Hate Meme Detection Models? In Y. Graham & M. Purver (Eds.), 18th Conference of the European Chapter of Findings of the Association for Computational Linguistics (pp. 104–117). Association for Computational Linguistics. https://openreview.net/forum?id=RZYrUlRGv1
Benedetto, L., Taslimipoor, S., Caines, A., Galvan-Sosa, D., Dueñas, G., Loukina, A., & Zesch, T. (2024). Workshop on Automatic Evaluation of Learning and Assessment Content. In A. M. Olney, I.-A. Chounta, Z. Liu, O. C. Santos, & I. I. Bittencourt (Eds.), Communications in Computer and Information Science. Artificial Intelligence in Education. Posters and Late Breaking Results, Workshops and Tutorials, Industry and Innovation Tracks, Practitioners, Doctoral Consortium and Blue Sky (Vol. 2151, pp. 473–477). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-64312-5_60
Bexte, M., Horbach, A., Schützler, L., Christ, O., & Zesch, T. (2024). Scoring with Confidence? – Exploring High-confidence Scoring for Saving Manual Grading Effort. In E. Kochmar, M. Bexte, J. Burstein, A. Horbach, R. Laarmann-Quante, A. Tack, V. Yaneva, & Y. Zheng (Eds.), Proceedings of the 19th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2024) (pp. 119–124). Association for Computer Linguistics. https://aclanthology.org/2024.bea-1.11/
Bexte, M., Horbach, A., & Zesch, T. (2024). EVil-Probe - a Composite Benchmark for Extensive Visio-Linguistic Probing. In N. Calzolari, M.-Y. Kan, V. Hoste, A. Lenci, S. Sakti, & N. Xue (Eds.), Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) (pp. 6682–6700). ELRA and ICCL. https://aclanthology.org/2024.lrec-main.591
Bexte, M., Horbach, A., & Zesch, T. (2024). Rainbow ‐ A Benchmark for Systematic Testing of How Sensitive Visio-Linguistic Models are to Color Naming. In Y. Graham & M. Purver (Eds.), 18th Conference of the European Chapter of the Association for Computational Linguistics (pp. 1858–1875). Association for Computational Linguistics. https://aclanthology.org/2024.eacl-long.112/
Chamieh, I., Zesch, T., & Giebermann, K. (2024). LLMs in Short Answer Scoring: Limitations and Promise of Zero-Shot and Few-Shot Approaches. In E. Kochmar, M. Bexte, J. Burstein, A. Horbach, R. Laarmann-Quante, A. Tack, V. Yaneva, & Y. Zheng (Eds.), Proceedings of the 19th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2024) (pp. 309–315). Association for Computer Linguistics. https://aclanthology.org/2024.bea-1.25/
Ludwig, F., Dolos, K., Alves-Pinto, A., & Zesch, T. (2024). Unraveling the Dynamics of Semi-Supervised Hate Speech Detection: The Impact of Unlabeled Data Characteristics and Pseudo-Labeling Strategies. In Y. Graham & M. Purver (Eds.), Findings of the Association for Computational Linguistics: EACL 2024 (pp. 1974–1986). Association for Computational Linguistics. https://aclanthology.org/2024.findings-eacl.133/
Ruppenhofer, J., Schwendemann, M., Portmann, A., Wisniewski, K., & Zesch, T. (2024). Every Verb in Its Right Place? A Roadmap for Operationalizing Developmental Stages in the Acquisition of L2 German. In N. Calzolari, M.-Y. Kan, V. Hoste, A. Lenci, S. Sakti, & N. Xue (Eds.), Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024) (pp. 6655–6670). ELRA and ICCL. https://aclanthology.org/2024.lrec-main.589 -
Other Publications
-
Idrissi-Yaghir, A., Dada, A., Schäfer, H., Arzideh, K., Baldini, G., Trienes, J., Hasin, M., Bewersdorff, J., Schmidt, C. S., Bauer, M., Smith, K. E., Bian, J., Wu, Y., Schlötterer, J., Zesch, T., Horn, P. A., Seifert, C., Nensa, F., Kleesiek, J., & Friedrich, C. M. (2024, April 8). Comprehensive Study on German Language Models for Clinical and Biomedical Text Understanding. http://arxiv.org/pdf/2404.05694v2
Zesch, T., Hanses, M., Seidel, N., Aggarwal, P., Veiel, D., & Witt, C. de. (2024, June 27). FernUni LLM Experimental Infrastructure (FLEXI) -- Enabling Experimentation and Innovation in Higher Education Through Access to Open Large Language Models. http://arxiv.org/pdf/2407.13013
-
2023
Journals
- Wisniewski, K., Zesch, T., Schwendemann, M., Ruppenhofer, J., & Portmann, A. (2023). Automatische Analysen von Erwerbsstufen in einer großen Lernerkorpus-Datenbank für DaF/DaZ. Das Forschungsprojekt DAKODA. Korpora Deutsch Als Fremdsprache, 3(2). https://doi.org/10.48694/kordaf.3845
- Zesch, T., Horbach, A., & Zehner, F. (2023). To score or not to score: Factors influencing performance and feasibility of automatic content scoring of text responses. Educational Measurement: Issues and Practice, 42(1), 44–58. https://doi.org/10.1111/emip.12544
Conferences
- Aggarwal, P., Chawla, P., Das, M., Saha, P., Mathew, B., Zesch, T., & Mukherjee, A. (2023). HateProof: Are hateful meme detection systems really robust? Proceedings of the ACM Web Conference 2023, 3734–3743. https://doi.org/10.1145/3543507.3583356
- Bexte, M., Horbach, A., & Zesch, T. (2023). Similarity-based content scoring - a more classroom-suitable alternative to instance-based scoring? Findings of the Association for Computational Linguistics: ACL 2023, 1892–1903. https://aclanthology.org/2023.findings-acl.119
- Gold, C., Laarmann-Quante, R., & Zesch, T. (2023a). Preserving the authenticity of handwritten learner language: Annotation guidelines for creating transcripts retaining orthographic features. 1st Computation and Written Language (CAWL) Workshop at ACL.
- Gold, C., Laarmann-Quante, R., & Zesch, T. (2023b). Recognizing learner handwriting retaining orthographic errors for enabling fine-grained error feedback. Innovative Use of NLP for Building Educational Applications (BEA) Workshop at ACL.
Proceedings
- Kochmar, E., Burstein, J., Horbach, A., Laarmann-Quante, R., Madnani, N., Tack, A., Yaneva, V., Yuan, Z., & Zesch, T. (2023). Proceedings of the 18th workshop on innovative use of NLP for building educational applications (BEA 2023).
Talks and Poster Presentations
- Zehner, F., Zesch, T., & Horbach, A. (2023a, February 28–March 2). Mehr als nur Technologie- und Fairnessfrage: Ethische Prinzipien beim automatischen Bewerten von Textantworten aus Tests [Paper Presentation]. 10th GEBF Annual conference, Universität Duisburg-Essen.
- Zehner, F., Zesch, T., & Horbach, A. (2023b, February 28–March 2). To score or not to score? Machbarkeits- und performanzfaktoren für automatisches scoring von textantworten [Paper Presentation]. 10th GEBF annual conference, Universität Duisburg-Essen.
2022
Conferences
- Aggarwal, P., & Zesch, T. (2022a). Analyzing the real vulnerability of hate speech detection systems against targeted intentional noise. Proceedings of the Eighth Workshop on Noisy User-Generated Text (w-NUT 2022), 230–242. https://aclanthology.org/2022.wnut-1.25
- Aggarwal, P., & Zesch, T. (2022b). Bye, bye, maintenance work? Using model cloning to approximate the behavior of legacy tools. Proceedings of the 18th Conference on Natural Language Processing (KONVENS 2022), 175–180. https://aclanthology.org/2022.konvens-1.21
- Bexte, M., Horbach, A., & Zesch, T. (2022). Similarity-based content scoring - how to make S-BERT keep up with BERT. Proceedings of the 17th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2022), 118–123. https://aclanthology.org/2022.bea-1.16
- Bexte, M., Laarmann-Quante, R., Horbach, A., & Zesch, T. (2022). LeSpell - a multi-lingual benchmark corpus of spelling errors to develop spellchecking methods for learner language. Proceedings of the Language Resources and Evaluation Conference, 697–706. https://aclanthology.org/2022.lrec-1.73
- Gold, C., & Zesch, T. (2022, December). CNN-based ruled line removal in handwritten documents. Proceedings of the 18th International Conference on Frontiers of Handwriting Recognition (ICFHR 2022).
- Horbach, A., Laarmann-Quante, R., Liebenow, L., Jansen, T., Keller, S., Meyer, J., Zesch, T., & Fleckenstein, J. (2022). Bringing automatic scoring into the classroom–measuring the impact of automated analytic feedback on student writing performance. Swedish Language Technology Conference and NLP4CALL, 72–83. https://ecp.ep.liu.se/index.php/sltc/article/view/580/550
- Laarmann-Quante, R., Prepens, L., & Zesch, T. (2022). Evaluating automatic spelling correction tools on german primary school children’s misspellings. Swedish Language Technology Conference and NLP4CALL, 95–107. https://ecp.ep.liu.se/index.php/sltc/article/download/582/552
- Laarmann-Quante, R., Schwarz, L., Horbach, A., & Zesch, T. (2022). ‘Meet me at the ribary’ – acceptability of spelling variants in free-text answers to listening comprehension prompts. Proceedings of the 17th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2022), 173–182. https://aclanthology.org/2022.bea-1.22
- Ludwig, F., Dolos, K., Zesch, T., & Hobley, E. (2022). Improving generalization of hate speech detection systems to novel target groups via domain adaptation. Proceedings of the Sixth Workshop on Online Abuse and Harms (WOAH), 29–39. https://doi.org/10.18653/v1/2022.woah-1.4
- Zesch, T., & Bewersdorff, J. (2022). German medical natural language processing–a data-centric survey. In C. Reich & U. Mescheder (Eds.), The upper-rhine artificial intelligence symposium UR-AI 2022 : AI applications in medicine and manufacturing, 19 october 2022, villingen-schwenningen, germany (pp. 137–145). Furtwangen University.
- Zufall, F., Hamacher, M., Kloppenborg, K., & Zesch, T. (2022). A legal approach to hate speech – operationalizing the EU’s legal framework against the expression of hatred as an NLP task. Proceedings of the Natural Legal Language Processing Workshop 2022, 53–64. https://aclanthology.org/2022.nllp-1.5
Software
- Hamacher, M., & Zesch, T. (2022). INCEpTALYTICS - an easy-to-use API for analyzing INCEpTION annotation projects. [Computer software]. Zenodo. https://doi.org/10.5281/ZENODO.7095346
-
2021
Journals
Zesch, T., Horbach, A., & Laarmann-Quante, R. (2021). Künstliche Intelligenz in der Bildung. Unikate: Berichte aus Forschung und Lehre, 56: Junge Wilde - Die nächste Generation, 95–103. https://www.uni-due.de/unikate/pdf/UNIKATE_2021_056_10_Zesch.pdf -
Conferences
Aggarwal, P., Liman, M. E., Gold, D., & Zesch, T. (2021). VL-BERT+: Detecting Protected Groups in Hateful Multimodal Memes. Proceedings of the 5th Workshop on Online Abuse and Harms (WOAH 2021), 207–214. https://doi.org/10.18653/v1/2021.woah-1.22Bexte, M., Horbach, A., & Zesch, T. (2021). Implicit Phenomena in Short-answer Scoring Data. Proceedings of the First Workshop on Understanding Implicit and Underspecified Language.Gold, C., Boom, D. van den, & Zesch, T. (2021). Personalizing Handwriting Recognition Systems with Limited User-Specific Samples. Proceedings of the 16th International Conference on Document Analysis and Recognition (ICDAR 2021).Haring, C., Lehmann, R., Horbach, A., & Zesch, T. (2021). C-Test Collector: A Proficiency Testing Application to Collect Training Data for C-Tests. Proceedings of the 16th Workshop on Innovative Use of NLP for Building Educational Applications, 180–184. https://www.aclweb.org/anthology/2021.bea-1.19Pham, D. D., Müller, J., Aggarwal, P., Khatri, A., Sharma, M., Zesch, T., & Pauli, J. (2021, January). Fully vs. Weakly Supervised Caries Localization in Smartphone Images with CNNs. Artificial Intelligence for Healthcare Applications International Workshop - ICPR 2020 Workshop Proceedings.
-
-
-
2020
Journals
Wahlen, A., Kuhn, C., Zlatkin-Troitschanskaia, O., Gold, C., Zesch, T., & Horbach, A. (2020). Automated Scoring of Teachers’ Pedagogical Content Knowledge - A Comparison between Human and Machine Scoring. Frontiers in Education. https://www.frontiersin.org/articles/10.3389/feduc.2020.00149/pdf -
Conferences
Ding, Y., Horbach, A., Wang, H., Song, X., & Zesch, T. (2020). Chinese Content Scoring: Open-Access Datasets and Features on Different Segmentation Levels. Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing(AACL-IJCNLP 2020). https://www.aclweb.org/anthology/2020.aacl-main.37.pdfDing, Y., Riordan, B., Horbach, A., Cahill, A., & Zesch, T. (2020). Don’t take "nswvtnvakgxpm" for an answer - The surprising vulnerability of automatic content scoring systems to adversarial input. Proceedings of the 28th International Conference on Computational Linguistics(COLING 2020). https://www.aclweb.org/anthology/2020.coling-main.76.pdfGold, C., & Zesch, T. (2020). Exploring the Impact of Handwriting Recognition on the Automated Scoring of Handwritten Student Answers. Proceedings of the 17th International Conference on Frontiers in Handwriting Recognition (ICFHR 2020). https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9257760Kovatchev, V., Gold, D., Marti, M. A., Salamo, M., & Zesch, T. (2020). Decomposing and Comparing Meaning Relations: Paraphrasing, Textual Entailment, Contradiction, and Specificity. Proceedings of the 12th International Conference on Language Resources and Evaluation (LREC-2020). https://www.aclweb.org/anthology/2020.lrec-1.709.pdf -
2019
Journals
Horbach, A., & Zesch, T. (2019). The Influence of Variance in Learner Answers on Automatic Content Scoring. Frontiers in Education, 4, 28. https://duepublico2.uni-due.de/servlets/MCRFileNodeServlet/duepublico_derivate_00047459/Horbach_Zesch_Influence_Variance.pdfTaieb, M. A. H., Zesch, T., & Aouicha, M. B. (2019). A survey of semantic relatedness evaluation datasets and procedures. Artificial Intelligence Review, 1–42. https://link.springer.com/article/10.1007/s10462-019-09796-3 -
Conferences
Agarwal, A., & Zesch, T. (2019). German End-to-end Speech Recognition based on DeepSpeech. Proceedings of the 15th Conference on Natural Language Processing (KONVENS 2019): Long Papers, 111–119. https://corpora.linguistik.uni-erlangen.de/data/konvens/proceedings/papers/KONVENS2019_paper_23.pdfGold, D., Kovatchev, V., & Zesch, T. (2019). Annotating and analyzing the interactions between meaning relations. Proceedings of the 13th Linguistic Annotation Workshop, 26–36. https://www.aclweb.org/anthology/W19-4004.pdfHamed, O., & Zesch, T. (2019). Automatic Diacritization as Prerequisite Towards the Automatic Generation of Arabic Lexical Recognition Tests. Proceedings of the 3rd International Conference on Natural Language and Speech Processing, 100–106. https://www.aclweb.org/anthology/W19-7414.pdfKovatchev, V., Gold, D., & Zesch, T. (2019). RELATIONS-Workshop on meaning relations between phrases and sentences. RELATIONS-Workshop on Meaning Relations Between Phrases and Sentences. https://www.aclweb.org/anthology/W19-0800.pdfYannakoudakis, H., Kochmar, E., Leacock, C., Madnani, N., Pilán, I., & Zesch, T. (2019). Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications. Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications. https://www.aclweb.org/anthology/W19-4400.pdf -
2018
Conferences
Gold, D., Bexte, M., & Zesch, T. (2018). Corpus of Aspect-based Sentiment in Political Debates. KONVENS, 89–99.Hamed, O., & Zesch, T. (2018). The Role of Diacritics in Increasing the Difficulty of Arabic Lexical Recognition Tests. Proceedings of the 7th Workshop on NLP for Computer Assisted Language Learning at SLTC 2018 (NLP4CALL 2018), 23–31. http://www.ep.liu.se/ecp/152/003/ecp18152003.pdfHorbach, A., Stennmanns, S., & Zesch, T. (2018). Cross-lingual Content Scoring. Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications, 410–419. http://www.aclweb.org/anthology/W18-0550Horsmann, T., & Zesch, T. (2018). DeepTC–An Extension of DKPro Text Classification for Fostering Reproducibility of Deep Learning Experiments. Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC-2018). https://www.aclweb.org/anthology/L18-1403Wojatzki, M., Horsmann, T., Gold, D., & Zesch, T. (2018). Do Women Perceive Hate Differently: Examining the Relationship Between Hate Speech, Gender, and Agreement Judgments. Proceedings of the 14th Conference on Natural Language Processing (KONVENS 2018). https://konvens.org/proceedings/2018/PDF/konvens18_13.pdfWojatzki, M., Mohammad, S., Zesch, T., & Kiritchenko, S. (2018). Quantifying qualitative data for understanding controversial issues. Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC-2018). https://www.aclweb.org/anthology/L18-1224Zesch, T., & Horbach, A. (2018). ESCRITO - An NLP-Enhanced Educational Scoring Toolkit. Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC-2018). http://www.lrec-conf.org/proceedings/lrec2018/pdf/590.pdfZesch, T., Horbach, A., Goggin, M., & Wrede-Jackes, J. (2018). A flexible online system for curating reduced redundancy language exercises and tests. In P. Taalas, J. Jalkanen, L. Bradley, & S. Thouësny (Eds.), Future-proof CALL: Language learning as exploration and encounters - short papers from EUROCALL 2018 (pp. 319–324). https://doi.org/10.14705/rpnet.2018.26.857 -
2017
Journals
Hamed, O., & Zesch, T. (2017). A Survey and Comparative Study of Arabic Diacritization Tools. JLCL: Special Issue-NLP for Perso-Arabic Alphabets, 32(1), 27–47. https://jlcl.org/content/2-allissues/2-Heft1-2017/02-diacritics.pdf -
Conferences
Benikova, D., Wojatzki, M., & Zesch, T. (2017). What does this imply? Examining the Impact of Implicitness on the Perception of Hate Speech. Proceedings of the International Conference of the German Society for Computational Linguistics and Language Technology (GSCL-2017), 171–179. https://link.springer.com/content/pdf/10.1007%2F978-3-319-73706-5_14.pdfBenikova, D., & Zesch, T. (2017). Same same, but different: Compositionality of paraphrase granularity levels. Proceedings of the Recent Advances in Natural Language Processing (RANLP-2017), 90–96. http://acl-bg.org/proceedings/2017/RANLP 2017/pdf/RANLP014.pdfHamed, O., & Zesch, T. (2017). The Role of Diacritics in Designing Lexical Recognition Tests for Arabic. 3rd International Conference on Arabic Computational Linguistics (ACLing 2017). http://www.ltl.uni-due.de/wp-content/uploads/ACLing-2017.pdfHorbach, A., Ding, Y., & Zesch, T. (2017). The Influence of Spelling Error on Content Scoring Performance. Proceedings of the 4th Workshop on Natural Language Processing Techniques for Educational Applications, 45–53. http://www.aclweb.org/anthology/W17-5908Horbach, A., Scholten-Akoun, D., Ding, Y., & Zesch, T. (2017). Fine-grained essay scoring of a complex writing task for native speakers. Proceedings of the Building Educational Applications Workshop at EMNLP, 357–366. http://aclweb.org/anthology/W17-5040Horsmann, T., & Zesch, T. (2017). Do LSTMs really work so well for PoS tagging? – A replication study. Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), 738–747. https://www.aclweb.org/anthology/D17-1076Riordan, B., Horbach, A., Cahill, A., Zesch, T., & Lee, C. M. (2017). Investigating neural architectures for short answer scoring. Proceedings of the Building Educational Applications Workshop at EMNLP, 159–168. http://www.aclweb.org/anthology/W17-5017Wojatzki, M., Ruppert, E., Holschneider, S., Zesch, T., & Biemann, C. (2017). GermEval 2017: Shared Task on Aspect-based Sentiment in Social Media Customer Feedback. Proceedings of the GermEval 2017 Shared Task on Aspect-Based Sentiment in Social Media Customer Feedback, 1–12. https://www.ltl.uni-due.de/wp-content/uploads/germeval-2017.pdfWojatzki, M., & Zesch, T. (2017). Neural, Non-neural and Hybrid Stance Detection in Tweets on Catalan Independence. Stance and Gender Detection in Tweets on Catalan Independence at Ibereval 2017, 2. https://pdfs.semanticscholar.org/4682/101bd6c5a653f23c38726c5c046aed5c9e60.pdf -
2016
Journals
Benikova, D., & Zesch, T. (2016). Bridging the gap between computable and expressive event representations in social media. EMNLP 2016, 6.Nakov, P., & Zesch, T. (2016). Computational semantic analysis of language: SemEval-2014 and beyond. Language Resources and Evaluation, 50, 1–4.Wojatzki, M., & Zesch, T. (2016a). Ltl. Uni-due at SemEval-2016 task 6: Stance detection in social media using stacked classifiers. Proceedings of SemEval, 428–433.Wojatzki, M., & Zesch, T. (2016b). Stance-based argument mining–modeling implicit argumentation using stance. Bochumer Linguistische Arbeitsberichte, 313. -
Conferences
Beinborn, L., Zesch, T., & Gurevych, I. (2016). Predicting the spelling difficulty of words for language learners. Proceedings of the Building Educational Applications Workshop at NAACL.Bethard, S., Carpuat, M., Cer, D., Jurgens, D., Nakov, P., & Zesch, T. (2016). Proceedings of the 10th international workshop on semantic evaluation (SemEval-2016). Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016).Bethard, S., Cer, D., Carpuat, M., Jurgens, D., Nakov, P., & Zesch, T. (2016). Welcome to SemEval-2016. SemEval 2016-10th International Workshop on Semantic Evaluation, Proceedings, iii–iv.Horsmann, T., & Zesch, T. (2016a). Assigning fine-grained PoS tags based on high-precision coarse-grained tagging. Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, 328–336.Horsmann, T., & Zesch, T. (2016b). Building a social media adapted PoS tagger using FlexTag–a case study on italian tweets. Fifth Evaluation Campaign of Natural Language Processing and Speech Tools for Italian - EVALITA 2016, Naples, Italy.Horsmann, T., & Zesch, T. (2016c). LTLUDE@ EmpiriST 2015: Tokenization and PoS tagging of social media text. Proceedings of the 10th Web as Corpus Workshop (WAC-x) and the EmpiriST Shared Task. Association for Computational Linguistics, Berlin, 120–126.Meyer, N., Wojatzki, M., & Zesch, T. (2016). Validating bundled gap filling–empirical evidence for ambiguity reduction and language proficiency testing capabilities. Proceedings of the Joint Workshop on NLP for Computer Assisted Language Learning and NLP for Language Acquisition at SLTC, Umeå, 16th November 2016, 51–59.Pilán, I., Volodina, E., & Zesch, T. (2016). Predicting proficiency levels in learner writings by transferring a linguistic complexity model from expert-written coursebooks. Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, Osaka, Japan, pp–2101.Wojatzki, M., Melamud, O., & Zesch, T. (2016). Bundled gap filling: A new paradigm for unambiguous cloze exercises. Proceedings of the Building Educational Applications Workshop at NAACL.Zesch, T., & Horsmann, T. (2016). Flextag: A highly flexible pos tagging framework. Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016), 4259–4263. -
2015
Journals
Erbs, N., Santos, P. B., Zesch, T., & Gurevych, I. (2015). Counting what counts: Decompounding for keyphrase extraction. ACL-IJCNLP 2015, 10. -
Conferences
Beinborn, L., Zesch, T., & Gurevych, I. (2015a). Candidate evaluation strategies for improved difficulty prediction of language tests. Proceedings of the Tenth Workshop on Innovative Use of NLP for Building Educational Applications Held in Conjunction with NAACL 2015, 1–11.Beinborn, L., Zesch, T., & Gurevych, I. (2015b). Factors of difficulty in german language proficiency tests. Book of Abstracts: Language, Learning, Technology Conference.Hamed, O., & Zesch, T. (2015). Generating nonwords for vocabulary proficiency testing. Proceeding of the 7th Language and Technology Conference: Human Language Technologies as a Challenge for Computer Science and Linguistics, Poznań, Poland.Horsmann, T., Erbs, N., & Zesch, T. (2015). Fast or accurate?–a comparative evaluation of PoS tagging models. Proceedings of the International Conference of the German Society for Computational Linguistics and Language Technology (GSCL-2015).Horsmann, T., & Zesch, T. (2015). Effectiveness of domain adaptation approaches for social media PoS tagging. Proceedings of the Second Italian Conference on Computational Linguistics CLiC-It 2015, 166.Nakov, P., Zesch, T., Cer, D., & Jurgens, D. (2015). Proceedings of the 9th international workshop on semantic evaluation (SemEval 2015). Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015).Zesch, T., Heilman, M., & Cahill, A. (2015). Reducing annotation efforts in supervised short answer scoring. Proceedings of the Tenth Workshop on Innovative Use of NLP for Building Educational Applications, 124–132.Zesch, T., Wojatzki, M., & Scholten-Akoun, D. (2015). Task-independent features for automated essay grading. Proceedings of the Tenth Workshop on Innovative Use of NLP for Building Educational Applications, 224–232. -
Other Publications
Bär, D., Zesch, T., & Gurevych, I. (2015). Composing measures for computing text similarity. Universitäts-und Landesbibliothek Darmstadt. -
2014
Journals
Beinborn, L., Zesch, T., & Gurevych, I. (2014a). Predicting the difficulty of language proficiency tests. Transactions of the Association for Computational Linguistics, 2, 517–529.Beinborn, L., Zesch, T., & Gurevych, I. (2014b). Readability for foreign language learning: The importance of cognates. International Journal of Applied Linguistics, 165(2), 136–162.Erbs, N., Gurevych, I., & Zesch, T. (2014). Sense and similarity: A study of sense-level similarity measures. Lexical and Computational Semantics (* SEM 2014), 30.Horsmann, T., & Zesch, T. (2014). Towards automatic scoring of cloze items by selecting low-ambiguity contexts. NEALT Proceedings Series Vol. 22, 33–42. -
Conferences
Daxenberger, J., Ferschke, O., Gurevych, I., Zesch, T., et al. (2014). DKPro TC: A java-based framework for supervised learning experiments on textual data. ACL (System Demonstrations), 61–66.Erbs, N., Santos, P. B., Gurevych, I., & Zesch, T. (2014). DKPro keyphrases: Flexible and reusable keyphrase extraction experiments. ACL (System Demonstrations), 31–36.Zesch, T., & Melamud, O. (2014). Automatic generation of challenging distractors using context-sensitive inference rules. Proceedings of the Ninth Workshop on Innovative Use of NLP for Building Educational Applications, 143–148. -
2013
Journals
Biemann, C., Bildhauer, F., Evert, S., Goldhahn, D., Quasthoff, U., Schäfer, R., Simon, J., Swiezinski, L., & Zesch, T. (2013). Scalable construction of high-quality web corpora. Journal for Language Technology and Computational Linguistics, 28(2), 23–60.Gurevych, I., & Zesch, T. (2013). Collective intelligence and language resources: Introduction to the special issue on collaboratively constructed language resources. Language Resources and Evaluation, 47(1), 1.Zesch, T. (2013). Detecting malapropisms using measures of contextual fitness. Special Issue of the TAL Journal on “Managing Noise in the Signal: Error Handling in Natural Language Processing.” 53:3, 53(3), 11–31. -
Conferences
Bär, D., Zesch, T., & Gurevych, I. (2013). DKPro similarity: An open source framework for text similarity. Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics: System Demonstrations, 121–126.Beinborn, L., Zesch, T., & Gurevych, I. (2013). Cognate production using character-based machine translation. IJCNLP, 883–891.Erbs, N., Gurevych, I., & Zesch, T. (2013). Hierarchy identification for automatically generating table-of-contents. Proceedings of the International Conference Recent Advances in Natural Language Processing RANLP 2013, 252–260.Gurevych, I., Biemann, C., & Zesch, T. (2013). Language processing and knowledge in the web. LNCS/LNAI: 25th International Conference of the GSCL, 8105.Korkontzelos, I., Zesch, T., Zanzotto, F. M., & Biemann, C. (2013). SemEval-2013 task 5: Evaluating phrasal semantics. Proceedings of the 7th International Workshop on Semantic Evaluation (SemEval 2013).Levy, O., Zesch, T., Dagan, I., & Gurevych, I. (2013). Recognizing partial textual entailment. ACL (2), 451–455.Miller, T., Erbs, N., Zorn, H.-P., Zesch, T., & Gurevych, I. (2013). DKPro WSD: A generalized UIMA-based framework for word sense disambiguation. ACL (Conference System Demonstrations), 37–42.Zesch, T., Levy, O., Gurevych, I., & Dagan, I. (2013). UKP-BIU: Similarity and entailment metrics for student response analysis. Proceedings of the 17th International Workshop on Semantic Evaluation, 2, 285–289. -
2012
Conferences
Bär, D., Biemann, C., Gurevych, I., & Zesch, T. (2012). UKP: Computing semantic textual similarity by combining multiple content similarity measures. Proceedings of the 6th International Workshop on Semantic Evaluation, Held in Conjunction with the 1st Joint Conference on Lexical and Computational Semantics, 435–440.Bär, D., Zesch, T., & Gurevych, I. (2012). Text reuse detection using a composition of text similarity measures. Proceedings of COLING 2012, 167–184.Beinborn, L., Zesch, T., & Gurevych, I. (2012). Towards fine-grained readability measures for self-directed language learning. Proceedings of the SLTC 2012 Workshop on NLP for CALL, 80, 11–19.Erbs, N., Agirre, E., Soroa, A., Barrena, A., Etxebarria, U., Gurevych, I., & Zesch, T. (2012). UKP-UBC entity linking at TAC-KBP. Proceedings of the Fifth Text Analysis Conference (TAC).Miller, T., Biemann, C., Zesch, T., & Gurevych, I. (2012). Using distributional similarity for lexical expansion in knowledge-based word sense disambiguation. COLING, 1781–1796.Zesch, T. (2012). Measuring contextual fitness using error contexts extracted from the wikipedia revision history. Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics, 529–538.Zesch, T., & Haase, J. (2012). HOO 2012 shared task: UKP lab system description. Proceedings of the Seventh Workshop on Building Educational Applications Using NLP. -
2011
Conferences
Bär, D., Erbs, N., Zesch, T., & Gurevych, I. (2011). Wikulu: An extensible architecture for integrating natural language processing techniques with wikis. Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies: Systems Demonstrations, 74–79.Bär, D., Zesch, T., & Gurevych, I. (2011). A reflective view on text similarity. Proceedings of the International Conference on Recent Advances in Natural Language Processing, 515–520.Erbs, N., Bär, D., Gurevych, I., & Zesch, T. (2011). First aid for information chaos in wikis-collaborative information management enhanced through language technology. ISI, 501–502.Erbs, N., Zesch, T., & Gurevych, I. (2011). Link discovery: A comprehensive analysis. 2011 IEEE Fifth International Conference on Semantic Computing, 83–86.Ferschke, O., Zesch, T., & Gurevych, I. (2011). Wikipedia revision toolkit: Efficiently accessing wikipedia’s edit history. Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies: Systems Demonstrations, 97–102.Stille, W., Erbs, N., Zesch, T., & Weihe, K. (2011). Aufbereitung und strukturierung von information mittels automatischer sprachverarbeitung. Proceedings of KnowTech, p–199.Szarvas, G., Zesch, T., & Gurevych, I. (2011). Combining heterogeneous knowledge resources for improved distributional semantic models. International Conference on Intelligent Text Processing and Computational Linguistics, 289–303.Zesch, T. (2011). Helping our own 2011: UKP lab system description. Proceedings of the Generation Challenges Session at the 13th European Workshop on Natural Language Generation, 260–262. -
2010
Journals
Zesch, T., & Gurevych, I. (2010). Wisdom of crowds versus wisdom of linguists–measuring the semantic relatedness of words. Natural Language Engineering, 16(1), 25. -
Conferences
Gurevych, I., & Zesch, T. (2010). Proceedings of the 2nd workshop on the people’s web meets NLP: Collaboratively constructed semantic resources. Proceedings of the 2nd Workshop on the People’s Web Meets NLP: Collaboratively Constructed Semantic Resources.Zesch, T. (2010). What’s the difference?–comparing expert-built and collaboratively-built lexical semantic resources. FLaReNet Forum. Barcelona.Zesch, T., & Gurevych, I. (2010). The more the better? Assessing the influence of wikipedia’s growth on semantic relatedness measures. Proceedings of the Conference on Language Resources and Evaluation (LREC), Valletta, Malta. -
2009
Journals
Čulo, O., Kunz, K., & Zesch, T. (2009). Semantic relations in a bilingual corpus of different registers. -
Conferences
Gurevych, I., & Zesch, T. (2009). Proceedings of the 2009 workshop on the people’s web meets NLP: Collaboratively constructed semantic resources (people’s web). Proceedings of the 2009 Workshop on the People’s Web Meets NLP: Collaboratively Constructed Semantic Resources (People’s Web).Hoffart, J., Bär, D., Zesch, T., & Gurevych, I. (2009). Discovering links using semantic relatedness. Preproceedings of the INEX Workshop, 314–325.Hoffart, J., Zesch, T., & Gurevych, I. (2009). An architecture to support intelligent user interfaces for wikis by means of natural language processing. Proceedings of the 5th International Symposium on Wikis and Open Collaboration, 12.Zesch, T., & Gurevych, I. (2009). Approximate matching for evaluating keyphrase extraction. Proceedings of the 7th International Conference on Recent Advances in Natural Language Processing, 484–489. -
2008
Journals
Gurevych, I., Müller, C., Zesch, T., & Mühlhäuser, M. (2008). Semantic information retrieval. Journal of Semantic Computing, 2(2), 253–272. -
Conferences
Garoufi, K., Zesch, T., Gurevych, I., et al. (2008). Graph-theoretic analysis of collaborative knowledge bases in natural language processing. Poster and Demo Session Proceedings of the 7th International Semantic Web Conference.Garoufi, K., Zesch, T., & Gurevych, I. (2008). Representational interoperability of linguistic and collaborative knowledge bases. Proceedings of the KONVENS Workshop on Lexical-Semantic and Ontological Resources–Maintenance, Representation, and Standards, Berlin, Germany.Gurevych, I., & Zesch, T. (2008). Selbstorganisierende wikis. Proceedings of KnowTech, 317–324.Hartmann, M., Zesch, T., Muhlhauser, M., & Gurevych, I. (2008). Using similarity measures for context-aware user interfaces. Semantic Computing, 2008 IEEE International Conference on, 190–197.Müller, C., Zesch, T., Müller, M.-C., Bernhard, D., Ignatova, K., Gurevych, I., & Mühlhäuser, M. (2008). Flexible UIMA components for information retrieval research. Proceedings of the LREC 2008 Workshop’towards Enhanced Interoperability for Large HLT Systems: UIMA for NLP, 24–27.Zesch, T., Müller, C., & Gurevych, I. (2008a). Extracting lexical semantic knowledge from wikipedia and wiktionary. Proceedings of the Conference on Language Resources and Evaluation (LREC), 15, 60.Zesch, T., Müller, C., & Gurevych, I. (2008b). Using wiktionary for computing semantic relatedness. Proceedings of AAAI, 2008, 45. -
2007
Journals
Zesch, T., Gurevych, I., & Mühlhäuser, M. (2007). Analyzing and accessing wikipedia as a lexical semantic resource. Data Structures for Linguistic Resources and Applications, 197–205. -
Conferences
Gurevych, I., Mühlhäuser, M., Müller, C., Steimle, J., Weimer, M., & Zesch, T. (2007). Darmstadt knowledge processing repository based on UIMA. Proceedings of the First Workshop on Unstructured Information Management Architecture at Biannual Conference of the GSCL.Gurevych, I., Muler, C., & Zesch, T. (2007). What to be?-electronic career guidance based on semantic relatedness. ANNUAL MEETING-ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 45, 1032.Gurevych, I., Müller, C., & Zesch, T. (2007). Teaching “unstructured information management: Theory and applications” to computational linguistics students. Proceedings of the First Workshop on Unstructured Information Management Architecture at Biannual Conference of the Society for Computational Linguistics and Language Technology.Mohammad, S., Gurevych, I., Hirst, G., & Zesch, T. (2007). Cross-lingual distributional profiles of concepts for measuring semantic distance. Proceedings of the Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP/CoNLL-2007), 571–580.Zesch, T., & Gurevych, I. (2007). Analysis of the wikipedia category graph for NLP applications. Proceedings of the TextGraphs-2 Workshop (NAACL-HLT 2007), 1–8.Zesch, T., Gurevych, I., & Mühlhäuser, M. (2007). Comparing wikipedia and german wordnet by evaluating semantic relatedness on multiple datasets. Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics; Companion Volume, Short Papers, 205–208. -
2006
Conferences
Zesch, T., & Gurevych, I. (2006). Automatically creating datasets for measures of semantic relatedness. Proceedings of the Workshop on Linguistic Distances, 16–24.
-
-