Talk by Joachim Kerner
On June 2nd, 2021, Dr. Joachim Kerner (FernUniversität in Hagen) gave a talk about "Remarks on the spectral gap of one-dimensional Schrödinger operators" as part of the research seminar Analysis of the FernUniversität in Hagen. This lecture is partially supported by the COST action Mathematical models for interacting dynamics on networks.
Abstract
In this talk we discuss recent results on the spectral gap of one-dimensional Schrödinger operators in the limit of large intervals. The spectral gap, being defined as the difference between the first two eigenvalues, is a classical object in the spectral theory of \linebreak operators but it also appears frequently in more applied settings. As a main objective, we will derive upper and lower bounds on the spectral gap for certain (and quite general) classes of potentials. Doing this, we will also come across some relatively surprising findings (partially, this is based on joint work with M. Täufer (Hagen)).