

Diskussionsbeiträge der Fakultät für Wirtschaftswissenschaft
der FernUniversität in Hagen

Herausgegeben von der Dekanin der Fakultät

Alle Rechte liegen bei den Autoren

A Tree Search Algorithm for Solving the
Container Loading Problem

Tobias Fanslau, Andreas Bortfeldt

Diskussionsbeitrag Nr. 426
Mai 2008

 2

A Tree Sarch Algorithm for Solving the
Container Loading Problem
Tobias Fanslau, Andreas Bortfeldt

Abstract:

The paper presents a tree search algorithm for the three-dimensional container loading prob-
lem (3D-CLP). The 3D-CLP is the problem of loading a subset of a given set of rectangular
boxes into a rectangular container so that the packed volume is maximized. The method has
two variants: the packing variant guarantees full support from below for all packed boxes,
while this constraint is not taken into account by the cutting variant. The guillotine cut con-
straint is considered by both variants. The method is mainly based on two concepts. On the
one hand the block building approach is generalized. Not only blocks of identical boxes in the
same spatial orientation are applied but also blocks of different boxes with small inner gaps.
On the other hand the tree search is carried out in a special fashion called a partition-
controlled tree search (PCTRS). This makes the search both efficient and diverse, enabling a
sufficient search width as well as a suitable degree of foresight. The approach achieves excel-
lent results for the well-known 3D-CLP instances suggested by Bischoff and Ratcliff with
reasonable computing time.

Keywords:

Container loading; 3D packing; Single Large Object Placement Problem (SLOPP); Single
Knapsack Problem (SKP); heuristic; tree search.

Fakultät für Wirtschaftswissenschaft, FernUniversität in Hagen
Profilstr. 8, D-58084 Hagen, BRD

Tel.: 02331/987–4433
Fax: 02331/987–4447
E-Mail: andreas.bortfeldt@fernuni-hagen.de

 3

A Tree Search Algorithm for Solving the
Container Loading Problem

Tobias Fanslau, Andreas Bortfeldt

1. Introduction
Cutting and packing problems (C&P; cf. Dyckhoff and Finke 1992) represent problems of the
optimal use of resources. While cutting problems are concerned with the best possible use of
materials such as steel, glass or wood, packing problems involve the best possible capacity
utilisation of packaging space. The effective utilization of material and transport capacities is
of great economic importance in production and distribution processes. It also contributes to
using natural resources economically, limiting the growth in traffic and as a whole to treating
the environment with greater care. The development of even more effective cutting and pack-
ing methods remains an important task because, in view of the size of today's productions and
distribution processes, even relatively minor growth in the utilization of material and space
capacities can result in considerable material savings and reductions in costs.

The subject of the present paper is the three-dimensional container loading problem (3D-
CLP), which is formulated as follows: a large cuboid, the container, and a set of smaller cu-
boids, the boxes, are given. In general, the total volume of the boxes exceeds the container
volume. A permissible arrangement of subset of the given boxes is to be determined in such a
way that the packed box volume is maximized and, where applicable, additional constraints
are complied with. A box arrangement is deemed to be permissible if
- each box lies completely in the container, i.e. does not penetrate its boundary surfaces,
- no two boxes overlap and
- each box is parallel to the container's boundary surfaces.

A box type is defined in principle through the three side dimensions of a box. If there is
only one box type in a box set, it is described as homogeneous. If there are only a few box
types with a relatively large number of specimens per type, this is a weakly heterogeneous
box set; on the other hand, if there are many box types with only a few exemplars per type,
the box set is strongly heterogeneous. This paper presents a tree search method for the
3D-CLP which is just as suitable for weakly heterogeneous box sets as for strongly heteroge-
neous. Both variants are explicitly differentiated in the new typology of the C&P problems
(cf. Wäscher et al. 2007). Using this typology the method presented here can be applied to
both the Single Large Object Placement Problem (SLOPP, weakly heterogeneous) and to the
Single Knapsack Problem (SKP, strongly heterogeneous).

Cutting and packing problems are known to be dual: a ("pure") cutting problem can also
be formulated as a packing problem, and vice versa (cf. Dyckhoff and Finke 1992). However,
the duality of C&P problems should not make us lose sight of the fact that the two application
situations, cutting or packing items, are characterized by fundamentally different constraints.
Where items of desired dimensions are cut, on the basis of the most used cutting technology
the guillotine cutting constraint is of primary importance:
(C1) Guillotine cutting constraint

Only (guillotine) cuts are permitted where the cutting area lies parallel to a boundary
surface of the container and the cut piece is completely separated in two smaller parts.

 4

In contrast, when items are packed, stability requirements above all play a part (cf. e.g.
Bischoff et al. 1995). The following support constraint is of fundamental importance
here:

(C2) Support constraint
The area of each box of a packing plan that is not placed on the floor of the container
must be supported completely (i.e. 100%) by other boxes.
Finally, the following orientation constraint is included in the problem:

(C3) Orientation constraint
For certain box types, up to five of the maximal six possible orientations are prohibited.

While constraint (C1) is only important in a cutting context, and constraint (C2) only in a
packing context, it is known that constraint (C3) is found in both application situations. In
this paper a tree search method with two variants is introduced: while the packing version
observes the support constraint (C2), this is not the case with the cutting version; constraints
(C1) and (C3) are fulfilled by both variants. A comparison of the results of both variants re-
veals the considerable influence of the required full box support on the full use of space as
the primary optimization objective. In accordance with the duality of C&P problems, this pa-
per will use the terminology of the packing problem throughout, although both the packing
problem and the cutting problem are dealt with.

The rest of the paper is divided as follows: Section 2 provides an overview of the litera-
ture and Section 3 presents the tree search method. Section 4 is dedicated to the numerical
test of the method and Section 5 summarizes the paper.

2. Literature Overview
The 3D-CLP is NP-hard in the strict sense and is also regarded in practice as extremely diffi-
cult (cf. Pisinger 2002). Up to now, only a few exact methods were suggested. Fekete and
Schepers (1997) develop a general framework for the exact solution of multi-dimensional
packing problems. Martello et al. (2000) present an exact branch-and-bound method (B&B)
for the 3D-CLP. This is part of a method for the three-dimensional bin packing problem with
which instances with up to 90 boxes could be solved.

Heuristic methods without an optimality guarantee for the 3D-CLP can be divided into
three groups with regard to the method type:
(1) Conventional heuristics

These include construction methods (e.g. greedy algorithms) and improvement methods
(e.g. local search algorithms). Conventional heuristics for solving the 3D-CLP were sug-
gested, e.g., by Bischoff et al. (1995), Bischoff and Ratcliff (1995) and Lim et al. (2003).

(2) Metaheuristics
In the last ten years metaheuristic search strategies constituted the preferred method types
for the 3D-CLP. Genetic algorithms (GA) were suggested among others by Hemminki
(1994), Gehring and Bortfeldt (1997, 2002) and Bortfeldt and Gehring (2001). Tabu
search algorithms (TS) came from Sixt (1996) and Bortfeldt et al. (2003). Simulated
annealing methods (SA) were developed by Sixt (1996) and by Mack et al. (2004). A
method of local search based on the Nelder and Mead approach dates from Bischoff
(2004). Moura and Oliveira (2005) as well as Parreño et al. (2007) introduce a GRASP
method (Greedy Randomized Adaptive Search Procedure).

(3) Tree search methods
Incomplete tree search or graph search methods (in brief TRS) were applied successfully
to the 3D-CLP. Mention should be made of the method of the And/Or graph search by
Morabito and Arenales (1994), the tree search methods from Eley (2002) and Hifi (2002)

 5

and the B&B method from Terno et al. (2000) (the integrated CLP method is meant) and
Pisinger (2002).
The existing 3D-CLP methods are based on different heuristic packing approaches that

determine the structure of generated packing plans (cf. Pisinger 2002):
(1) Wall building approach

The container is filled by vertical cuboid layers ("walls") that mostly follow along the
longest side of the container. The approach is realized among others in Bortfeldt and
Gehring (2001) and in Pisinger (2002).

(2) Stack building approach
The boxes are packed in a suitable manner in stacks, which are themselves arranged on
the floor of the container in a way that saves the most space. Characteristic of this ap-
proach is that the stacks do not themselves form walls as defined before. Advocates of
this approach are, among others, the heuristic from Bischoff and Ratcliff (1995) and the
GA from Gehring and Bortfeldt (1997).

(3) Horizontal layer building approach
The container is filled from bottom to top through horizontal layers that are each intended
to cover the largest possible part of the (flat) load surface underneath. This approach is
realized in the methods from Bischoff et al. (1995) and Terno et al. (2000).

(4) Block building approach
The container is filled with cuboid blocks that mostly contain only boxes of a single type
with the same spatial orientation. The approach is related to approach (3), but the main
motive here is to fill the largest possible sub-spaces of the container without internal
losses; cf. as well the characterisation of this approach in Eley (2002). Representatives of
the approach are the TS method from Bortfeldt et al. (2003), the tree search method from
Eley (2002) and the SA/TS hybrid respectively from Mack et al. (2004).

(5) Guillotine cutting approach
This approach is based on a slicing tree representation of a packing plan. Each slicing tree
corresponds to a successive segmentation of the container into smaller pieces by means of
guillotine cuts, whereby the leaves correspond to the boxes to be packed. Morabito and
Arenales's graph search method (1994) is based on this approach.
In general it can be said that research on the 3D-CLP has up to now concentrated very

one-sidedly on the packing application context. The great majority of the methods mentioned
observe the support constraint (C2) and the orientation constraint (C3) as well, and are suit-
able for supporting 3D packing processes. A considerable part of the listed methods also in-
clude further constraints from the packing context in the problem, e.g. a weight constraint for
the freight; cf. among others Terno et al. (2000), Bortfeldt and Gehring (2001), Eley (2002),
Mack et al. (2004). The heuristic developed by Bischoff et al. (1995) for loading pallets and
the GRASP method from Moura and Oliveira (2005) prove to be particularly sensitive meth-
ods for the stability of the load. Bischoff (2004) considers a complicated overstacking con-
straint, which limits the pressure applied to the surface covering of boxes.

Only a few contributions refer explicitly up to now to the cutting application context of
the 3D-CLP (cf. Hifi 2002). Other contributions present methods that also comply with the
guillotine cut constraint (C1) and can therefore be used for cutting tasks; cf. among others
Morabito and Arenales (1994), Bortfeldt and Gehring (2001) and Pisinger (2002). Mack et al.
(2004) examine to an extent the influence of the support constraint (C2) on the achievable
volume utilisation.

 6

3. The Tree Search Algorithm
The proposed tree search method is referred to as CLTRS (Container Loading by Tree
Search). It is based in the main on two concepts:
- The block building approach is generalized. Along with the usual compact blocks from

identical boxes with the same spatial orientation, blocks with small inner gaps are now
used as well to construct packing plans.

- A special form of the tree search is used that tries to establish a suitable balance between
the search width and the foresight during the search.
Differences between the cutting and the packing variants of CLTRS will be discussed at

the appropriate points. In the same way, references will be made to method components that
are specially tailored to a weakly heterogeneous or strongly heterogeneous stock of boxes.

3.1. The method's data structures
The data structures used by CLTRS are introduced informally below and terminological
agreements made.

a) Container and box data
The cuboid container is given by its three internal dimensions and let it be embedded in the
first octant of a 3D coordinates system (3D-CS). This is shown in Figure 1, which also illus-
trates terms such as "left", "in front of", etc. The given box set is represented by a box type
vector. This contains for each type the three side dimensions that define the type and the
number of appropriate boxes. The indexing of the box types starts from the sorting of the vec-
tor in descending order in accordance with the volume of the boxes. The container dimen-
sions and the box type vector are global data. During the search, the set of the still free (i.e.
still not packed) boxes is mainly given by a vector Bres, which contains the number of free
boxes per type index. A cuboid (box, empty part space in the container, envelope cuboid of a
box arrangement) is referred to as oriented if it may no longer be turned with regard to the
3D-CS (but possibly may still be displaced). Let it be agreed that an oriented cuboid always
lies "somewhere" in the first octant of the 3D-CS and parallel to its axes. The reference cor-
ner of a oriented cuboid is then understood as the corner nearest to the origin of the 3D-CS.
The dimensions of an oriented cuboid in the three coordinate directions are generally desig-
nated with mx, my and mz respectively.

Figure 1: Container in a 3D coordinates system

b) Residual space and residual space stack
A residual space is an oriented cuboid space in the container. It is described through its three
side dimensions mx, my, mz and its reference corner rc with the coordinates x, y, z. The con-
tainer is itself a residual space with the coordinates' origin as the reference corner. During the

 7

search, residual spaces are constructed continuously and later processed, i.e. filled with boxes
or detected as not fillable. Residual spaces that are already constructed but have not yet been
processed are managed in a residual space stack Rs_stack.

c) Block and block list
A block is an arrangement made up of one or more oriented boxes (cf. Section 3.3). During
the search, a block is represented above all through the dimensions of the oriented envelope
cuboid of the arrangement and by the packed box set. However, the block data also clearly
stipulate the spatial orientation and position of all boxes relative to the reference corner of the
envelope cuboid. The block list Bll contains all blocks that can be used for the search, or
more precisely, for a stage of the search.

d) Placed block
The container is filled through the successive placing of blocks. To place a block bl means
that it is arranged in the reference corner rc of a residual space rs. A placed block pbl is there-
fore given by a pair (bl, rs.rc). The block data and the reference corner stipulate clearly the
position of all boxes of the block in the container. Figure 2 shows the placing of a block, rep-
resented by its envelope cuboid, in a residual space.

e) Packing plan
A packing plan is an incomplete or complete solution of the given problem instance. A solu-
tion is complete when all boxes are packed or the residual space stack is empty. A packing
plan has as components a vector Pbl(i), i = 1,...,|Pbl|, of placed blocks and the total stowed
box volume v. By means of the appropriate block list Bll the orientation and position of the
placed boxes of all blocks can be subsequently clearly determined. The better of two com-
plete packing plans is the one with the greater v value.

f) State
A variable of the type 'state' summarises the state of the search after some blocks have been
placed. A state variable s contains the following components:
- the (usually incomplete) packing plan p,
- the volume value vc (cf. Section 3.4),
- the vector of free boxes Bres and
- the residual space stack Rs_stack.

reference corner (nearest to origin 0)

0

residual space

env. cuboid
of placed block

Figure 2: A residual space with a placed block

The component notation familiar from the programming language C is used for struc-
tures, e.g. s.vc for the vc value of the state variable s and s.p.Pbl[i] for the i-th placed block of
the solution p of the state variable s. Vectors are in some cases noted only as sets, for the sake

 8

of simplicity. Along with the container and box dimensions, the method parameters (which
will be explained later) and other appropriately designed variables are available globally.

3.2. Overall algorithm
The overall algorithm of the method is shown in Figure 3. The total search is divided into

two large sections, known as stages. A specific block list is generated at the start for each
stage. In the first stage, only blocks from identical boxes with the same spatial orientation are
provided. In the second stage, blocks are generated whose box arrangements usually do not
completely fill up their envelope cuboid. While the block list for stage 1 is customized for
weakly heterogeneous box sets, the block list in stage 2 proves to be particularly suitable for
strongly heterogeneous box sets. However, this allocation does not apply without restriction:
for example, in many cases the best utilization for weakly heterogeneous instances as well is
achieved with the block list for the second stage. For this reason, a two-phase search ap-
proach that diversifies the search is selected.

algorithm CLTRS
input (container dimensions, boxes data, parameters);
// initialize (global) best packing plan
pbest.v := 0;
// carry out search in two stages
for i := 1 to 2 do
 generate special block list Bll for current stage;
 search_effort := 1; // internal parameter of the search efforts
 // generate successive packing plans with increasing search effort
 repeat
 init_state(s); // initialize state variable s
 // process successive residual spaces
 while (s.Rs_stack ≠ ø) do
 find_best_block(s, found, bl);
 update_state(s, found, bl, rs);
 endwhile;
 // update search effort for next iteration
 search_effort := search_effort * 2;
 until (time_limit(i) exceeded);
endfor;
// output best packing plan over both stages
output(pbest);
end.

Figure 3: Overall algorithm of method CLTRS

Within each stage one complete packing plan after the other is generated until the given
time limit specific for each stage is exceeded. Each packing plan consists exclusively of
blocks from the block list specific to the stage. Finally, the best packing plan generated over
both stages is output.

The generation of a packing plan in a stage is referred to as an iteration. At the start of an
iteration the state variable s is initialized. The appropriate residual space stack then contains
the container as the sole residual space, the current solution is empty and all boxes are still
free. Following this, the uppermost residual space of the stacks is processed until it is empty
and the next solution is thus complete. To fill a residual space rs a suitable block bl is speci-
fied where possible. If this is successful, following this the current solution s.p, the set of free
boxes s.Bres and the residual space stack s.Rs_stack are updated. In doing this, residual space

 9

rs is replaced by three daughter residual spaces of rs (cf. Section 3.5, c)). If no block fits into
the residual space rs, only rs is removed from s.Rs_stack. Updating of the best found packing
plan pbest is also carried out where applicable when specifying the best block for a residual
space (cf. Section 3.4).

The method find_best_block carries out a tree search for the specification of a block bl
whose effort is defined through the internal parameter search_effort. This is doubled from
solution to solution and thus better and better packing plans can be calculated.

In favour of the selected method is that it is hardly possible to assess a priori the scope
that the tree search should have to generate a solution with highest possible volume utilisation
with a moderate amount of time spent. In addition, very little time is spent generating the first
packing plans, i.e. for low values of search_effort.

To a certain extent, CLTRS behaves like a construction heuristic in each iteration: if a
block was specified, this decision is not revised when further blocks are determined.

3.3. The generalized block building approach
If excellent results for weakly heterogeneous instances were already achieved by means of
the block building approach, this has not been the case up to now for strongly heterogeneous
instances. As was said above, the motive of the block building approach consists in filling
relatively large part spaces of the container without loss. Its application is, however, linked to
the precondition that a relatively large number of exemplars are available per box type. This
is not given for strongly heterogeneous box stocks, so that no blocks can be formed, or only
very small ones. In order to make the approach fruitful for the strongly heterogeneous case as
well it has to be generalized: while on the one hand blocks are to fill relatively large volumes
without loss, or practically without loss, they may now consist as well of boxes of several
types. The generalization is brought about through the introduction of new block types, which
will be explained in detail below.

3.3.1. Block types of the generalized block building approach

a) "Simple" type blocks
Blocks in the traditional sense are referred to as "simple" type blocks or as simple blocks. A
simple block is therefore a cuboid arrangement from nx × ny × nz boxes of the same type in
the same spatial orientation, whereby nx boxes lie in the x direction, ny boxes in the y direc-
tion and nz boxes in the z direction (cf. Figure 4).

Figure 4: Block of type “Simple”

 10

b) "General" type blocks for the cutting variant
A block of the "general" type for the cutting variant of the CLTRS method is also referred to
as a general cutting block (GC block for short). It contains an arrangement of one or more
boxes and the appropriate oriented envelope cuboid Cenv. The envelope cuboid is defined as
usual, i.e. it is touched on each of its inner sides by the box arrangement.

General cutting blocks can be defined recursively (but rather informally) as follows:
(i) A single box of any type in any permissible spatial orientation is a GC block.
(ii) Let bl1 and bl2 be GC blocks. Let the box arrangements be observed that are obtained

if the envelope cuboids Cenv(bl1) and Cenv(bl2) of both GC blocks with the enclosed
boxes are arranged contiguous in x direction or contiguous in y direction or contiguous
in z direction, as sketched in Figure 5. Each of the three combined box arrangements blc
forms a GC block with the appropriate envelope cuboid Cenv(blc), if the following con-
ditions are fulfilled:

(ii.1) Box availability
The box set of the combined box arrangement blc, i.e. the merger of the box sets of the
GC blocks bl1 and bl2, is a subset of the given stock of boxes.

(ii.2) Space availability
The envelope cuboid Cenv(blc) can be arranged completely in the given container.

(ii.3) Contact surfaces comparison
If the GC blocks bl1 and bl2 are combined in x-direction bl1 may only lie to the left of
bl2 if the following applies for the contact surfaces:
 my(Cenv(bl1)) × mz(Cenv(bl1)) ≥ my(Cenv(bl2)) × mz(Cenv(bl2)).
On a combination in y-direction bl1 may only be in front of bl2 if:
 mx(Cenv(bl1)) × mz(Cenv(bl1)) ≥ mx(Cenv(bl2)) × mz(Cenv(bl2)).
On a combination in z-direction bl1 may only be underneath bl2 if:
 mx(Cenv(bl1)) × my(Cenv(bl1)) ≥ mx(Cenv(bl2)) × my(Cenv(bl2)).

(ii.4) Space utilization
The percentage space utilization of the envelope cuboid Cenv(blc), given by the quotient
fr := (volume of all boxes of blc) / (volume of Cenv(blc) × 100, does not fall below the
given minimal space utilization min_fr (in %), i.e. fr ≥ min_fr.

(iii) Only a box arrangement, which is identifiable in accordance with (i) and (ii) as a GC
block, represents a GC block. ⁪

Combination of GC-blocks in ...

x-direction
(bl left to bl)1 2

bl1 bl2

y-direction
(bl infront of bl)1 2

bl1

bl2

z-direction
(bl above bl)1 2

bl1

bl2

Figure 5: Combining GC blocks in x-, y- and z-direction

The definition of a GC block may be commented as follows. The blocks bl1 and bl2 are
referred to where applicable as the parent blocks of a combined block blc. The infringement

 11

of the conditions (ii.1) and (ii.2) would lead to blocks that are of no use for the search. The
contact surfaces condition (ii.3) stipulates which of the two parent blocks lies in the reference
corner of a combined block blc and helps to avoid redundant GC blocks. Condition (ii.4) is
decisive: if the parameter min_fr for block generation is selected large enough (for example
min_fr = 98%), only blocks that are practically without loss are generated, while at the same
time, the combination of boxes of different types in GC blocks is not ruled out. The definition
therefore conforms to the above-mentioned requirements for a generalization of the original
block definition. In addition, it is obvious that every simple block is at the same time a
general block. Figure 6 shows a GC block that is created through the combination of two
simple blocks in z-direction. At the same time, the example makes clear that GC blocks in
general do not comply with the support constraint (C2). This means that an additional block
type is required for the packing variant of the CLTRS, if the block building approach is to be
generalized in compliance with the support constraint (C2) as well.

view 1:

bl1

bl2

view 2:

bl1

bl2 overhanging boxes!

simple blocks bl , bl :
bl : nx = 3, ny = 2, nz = 1

1 2

1

2bl : nx = 2, ny = 3, nz = 2

Figure 6: GC block with overhanging boxes

c) "General" type blocks for the packing variant
A "general" type block for the packing variant is also referred to as a general packing block
(GP block for short). Together with a box arrangement and the appropriate envelope cuboid
Cenv it contains a packing area. This is part of the top area of the envelope cuboid with the fol-
lowing characteristic: if a box lies completely on the packing area, its area is supported com-
pletely by other boxes. GP blocks are now defined by stating that the packing area is always
rectangular and the front left-hand corner (i.e. the corner nearest to the origin of the 3D-CS)
is incidental to the front left-hand corner of the covering area of the envelope cuboid. Conse-
quently, the packing area of a GP block is clearly determined by the coordinates x2, y2 of its
rear right-hand corner relative to the reference corner of the envelope cuboid (cf. Figure 7).

env. cuboid of GP-block

x2

y2

packing area

Figure 7: GP block with packing area

General packing blocks are defined analogously to general cutting blocks. While parts (i)
and (iii) of the above definition can be taken over, part (ii) is to be extended by two condi-
tions. The packing area condition shown in Table 1 stipulates requirements for the packing
areas of two GP blocks to be combined. At the same time the packing area of the new com-
bined GP block is fixed. The height condition requires that on a combination of two GP

 12

blocks bl1 and bl2 in a horizontal direction (x or y) the heights of the envelope cuboids of bl1
and bl2 coincide.

Table 1: Packing area condition as part of the definition of GP blocks

Given combination direction, posi-
tion of parent blocks bl1 and bl2

Conditions for packing areas of
parent blocks bl1 and bl2

New packing area:
rear right-hand corner

x-direction
bl2 on right of bl1

x2 (bl1) = mx(bl1)

x2 (bl2) = mx(bl2)

y2 (bl1) ≥ y2(bl2)

x2 = mx(bl1) + mx(bl2)

y2 = y2(bl2)

y-direction
bl2 behind bl1

y2 (bl1) = my(bl1)

y2 (bl2) = my(bl2)

x2 (bl1) ≥ x2(bl2)

x2 = x2 (bl2)

y2 = my(bl1) + my(bl2)

z-direction
bl2 above bl1

x2 (bl1) ≥ mx(bl2)

y2 (bl1) ≥ my(bl2)

x2 = x2 (bl2)

y2 = y2 (bl2)

The packing area condition is made clear by means of the combination of two GP blocks
in x-direction in Figure 8.

y2

x2
0

pa

bl :2

y2

x2
0

pa

bl :1

0
pa

(bl)2

y2

x2

(bl)1

bl (x-dir.):C

Figure 8: Combining two GP blocks in x direction (pa: packing area)

According to part (i) of the definition, individual boxes in a defined spatial orientation are
special simple GP blocks whose packing area coincides with the top area of the box. The
conditions for the packing areas of GP blocks that are to be combined guarantee that the
packing area of a new, combined GP block is also rectangular and starts in the front left-hand
corner of the envelope cuboid's top area. It is also guaranteed that each box that lies fully on
the packing area is supported completely from below. This means that the requirement for the
inclusion of the support constraint (C2) in the generalization of the original block concept is
fulfilled. Note that each simple block is also a GP block.

3.3.2. Generating blocks and block data
Simple blocks are generated at the start of the first stage of the search and general blocks are
made available in the block list Bll at the start of the second stage. The cutting and the pack-
ing variant differ as explained with regard to general blocks (GC blocks versus GP blocks).

The block generation may be characterized in detail as follows:
- Starting from individual boxes, the blocks for the different method variants and stages of

the search are generated systematically on the basis of the recursive definitions shown
above (an algorithmic representation is waived for this reason).

- If the envelope cuboids and the packed box sets of two generated blocks coincide, only
one of the blocks is included in the block list. This reduces the size of the block list as
well as the redundancy of the whole search.

- The number of places in the block list is restricted by the parameter max_bl. Accordingly,
the block generation is interrupted once max_bl blocks have been included in the block

 13

list for a search stage. Experiments must be carried out to determine suitable values for
the parameters max_bl and the minimal block utilization min_fr.

- The filled block list Bll is sorted in descending order according to the block volume.
Data that are relevant during the search are recorded for each block. These include the

dimensions and the volume of the envelope cuboid, the arranged box set and, with the pack-
ing variant, the coordinates of the rear right-hand corner of the packing area. Other data are
only of interest for the concluding output of the calculated packing plan and fix the orienta-
tion and relative position of the individual boxes within the block. In order to determine the
final position of the individual placed boxes in the container, its generation process is, so to
speak "reversed". Accordingly, indices of its parent blocks and their relative position are re-
corded for each block.

3.4. Determining the best block for a residual space
The core of the method is determining the best block in the current block list for the next re-
sidual space to be loaded. Roughly speaking, the best block is determined as follows:
- Let a search state s = (p, vc, Bres, Rs_stack) be given with a solution from i (i ≥ 0) placed

blocks.
- In order to determine a block for the uppermost residual space rstop in s.Rs_stack, start-

ing from s, i.e. retaining the i blocks already placed, different complete solutions p’ with
i’ > i placed blocks are generated experimentally.

- Let ptmpbest be the best complete temporary solution with maximal packed volume. Of
course the (i+1)th block of all temporarily generated solutions fills the residual space
rstop. Finally, the (i+1)th block in ptmpbest is returned as the best block for rstop.
A multiple tree search is carried out to generate complete solutions starting each time

from search state s. This means that a differently configured tree search, a so-called partition
search, is started from s several times and ptmpbest is determined as the best solution over all
partition searches.

All partition searches starting at state s are based on a uniform additional search depth
total_add_blocks, which indicates the maximal number of additionally placed blocks (to the i
blocks in s). The additional search depth is stipulated in accordance with:

total_add_blocks = max{1, max{d | d ≥ 0 and min_ns ** d ≤ search_effort}} (1)
For min_ns = 2, search_effort = 4, e.g., the result is total_add_blocks = 2. The parameter

min_ns indicates the desired minimal number of successors of a partial solution (or node)
throughout the search.

Solutions generated during a partition search that already show the maximal number of
blocks (i + total_add_blocks) are generally still incomplete. Each solution of this type is
transformed by means of the so-called standard completion into exactly one complete solu-
tion: starting from the last achieved search state s’, the uppermost residual space (if possible)
is repeatedly filled with a block with the maximal volume until a complete solution is
achieved. These complete solutions are then used to determine ptmpbest.

An ordered partition π of a whole number n (n ≥ 1) is given by a (l+1)-tuple of integers:

π = (l, d1, …, dl), with l ≥ 1, dj > 0, j = 1,…,l and
1

l

j
j

d n
=

=∑ .

In the framework of the multiple tree search a partition search, i.e. a tree search controlled
by a partitionπ , is carried out for each partition π of the given additional search depth
total_add_blocks. The partition π = (l, d1, …, dl) stipulates that the appropriate search is bro-
ken down into l search phases and that on the j-th search phase maximal dj blocks are placed
in addition (j = 1,…,l).

 14

Let the first search phase of a partition search be considered first:
- Starting from the search state s with i placed blocks (cf. above), a best search state

stmpbest with maximal i + d1 blocks is determined.
- For this purpose, for each occurring partial solution p, starting with s.p, ns1 successor so-

lutions p’ including the appropriate search states s’ are generated. The number of succes-
sors ns1 is calculated in accordance with
 ns1 = max{min_ns, max{n | n ≥ 0 and n ** d1 ≤ search_effort}} (2)
For min_ns = 2, search_effort = 4 and d1 = 1 or d1 = 2 the result is ns1 = 4 or ns1 = 2.

- The ns1 successors of a solution are generated by filling the next residual space to be
loaded alternately with one of the largest volume ns1 matching blocks.

- The usual case is that a solution with i + d1 blocks is not yet complete and is then com-
pleted by means of the standard completion sketched above.

- The best phase solution ppbest is determined from among all the complete solutions
generated during the first search phase. Where applicable, the best solution of the current
partition search ptmpbest and the best solution of the complete search pbest are updated

- The best search state of the first phase stmpbest results as search state after the first i + d1
blocks of the best phase solution ppbest are placed. Put another way: stmpbest is the
search state with i + d1 blocks from which the best phase solution results by standard
completion.
The following search phases of a partition search run analogously to the first phase. The

best achieved search state of the j-th phase stmpbest serves as the initial state of the (j+1)th
phase and already contains i + d1 + … + dj blocks finally placed in the framework of the par-
tition. The number of successors results from equation (2), if d1 is replaced by dj+1.

An example may be considered to illustrate the partition search and its search phases. Let
min_ns = 2, search_effort = 8 (4th iteration), i.e. total_add_blocks = 3. Consequently, separate
tree searches must be carried out for the following partitions: (1) π 1 = (1, 3),
(2) π 2 = (2, 2, 1), (3) π 3 = (2, 1, 2) and (4) π 4 = (3, 1, 1, 1). The following figures 9a to 9d
illustrate the four partition searches.

Partition : l = 1, d = 3, ns = 21 1Π1 no. placed blocks

ppbest1 stmpbest1

initial state stmp1

incomplete sol.
completed sol.

Ai

Ai + 1

Ai + 2

Ai + 3 (= i + d)1

Figure 9a: Partition search for total_add_blocks = 3 (Partition π 1)

Some of the heuristic elements used in the serach for the best block are known. These in-
clude the restriction of the search per residual space to the blocks with the largest volumes
(cf. Bortfeldt et al. 2003). The restriction of the (additional) search depth saves effort on the
one hand, while the supplementing standard completion of solutions permits a certain as-
sessment of the quality of the previously achieved partial solution (cf. Eley 2002). However,
the heuristic core concept is the design of the search as a (multiple) partition-controlled tree
search (PCTRS) in the sense defined above.

 15

Partition : l = 2, d = 2 , ns = 21 1Π2 , d = 1 , ns = 82 2 no. placed blocks

ppbest1 stmpbest1

initial state stmp1

incomplete sol.
completed sol.

Ai

Ai + 1

Ai + 2 (= i + d)1

Ai + 3 (= i + d)1 + d2

ppbest2 stmpbest2

= initial state stmp2

incomplete sol.
completed sol.

Figure 9b: Partition search for total_add_blocks = 3 (Partition π 2)

The PCTRS may be characterized in greater detail by means of an example. Starting from
i already placed blocks, complete solutions are to be generated through a tree search with an
additional search depth total_add_blocks = 3 and subsequent standard completion. If a tree
search is now carried out with a constant number of successors ns = 8, then 83 = 512 com-
plete solutions are to be generated. In contrast, in the example under consideration, only
8+12+12+24 = 56 complete solutions are generated with PCTRS, this is only 11% of the so-
lutions generated with constant ns = 8 (cf. Figure 9a–9d).

This saving is achieved in two ways: firstly, through a reduction of the number of succes-
sors ns in the search phases for the different partitions. This applies in particular for partition
π 1, where ns = 2 is used throughout instead of ns = 8 (cf. Figure 9a). However, the described
partitioning of the search also leads in itself to a reduction on the number of complete solu-
tions. For example, in partition π 4 ns has the maximum value 8 throughout, while at the
same time only 24 complete solutions are generated (cf. Figure 9d). The reduction is formed
by a certain decision already being finally taken in each phase. For example, the first search
phase of the partition search for π 4 decides on the (i+1)th block, the second search phase de-
cides on the (i+2)th block of the best solution generated by this partition search.

Partition : l = 2, d = 1 , ns = 81 1Π3 , d = 2 , ns = 22 2 no. placed blocks

initial state stmp1

incomplete sol.
completed sol.

Ai

Ai + 1

Ai + 2

Ai + 3 (= i + d)1 + d2

= initial state stmp2

ppbest2 stmpbest2

ppbest1 stmpbest1

incomplete sol.
completed sol.

Figure 9c: Partition search for total_add_blocks = 3 (Partition π 3)

The number of successors of a search phase of a partition search determines the (local)
search width or diversity. The search depth dj stipulates at the same time the number of con-
secutive search levels that are included in the decision made by the search phase and in this
way determines its degree of foresight. This means that the only search phase of partition π 1
has a greater degree of foresight with the search depth 3 than the three phases of π 4 each
with the search depth 1.

 16

Partition : l = 3, d = 1 ns = 8j jΠ4 , , (j = 1, 2, 3) no. placed blocks

initial state stmp1

incomplete sol.
completed sol.

Ai

Ai + 1 (= i + d)1

Ai + 2 (= i + d + d)1 2

Ai + 3 (= i + d1 + d + d)2 3

= initial state stmp2ppbest1 stmpbest1

incomplete sol.
completed sol.

ppbest2 stmpbest2

ppbest3 stmpbest3

= initial state stmp3

incomplete sol.
completed sol.

Figure 9d: Partition search for total_add_blocks = 3 (Partition π 4)

With the PCTRS a separate partition search is carried out for each partition of a given to-
tal additional search depth (total_add_blocks), whereby the search widths and the degree of
foresight differ greatly for the individual search phases. In this way, a too one-sided stress of
one factor of success with is (hopefully) avoided, and a more balanced consideration of the
search width and the foresight is achieved.

Block determination for a residual space is now described formally. The procedure
find_best_block (cf. Figure 10) receives the initial state s as a (pure) input parameter.

procedure find_best_block(in: s, out: found, out: bl)
found := TRUE; // block found
// generate block list for top residual space to deal with special cases
generate_rs_blocklist(top(s.Rs_stack),s.Bres,2,nbl,Bll_rs);
if (nbl = 0) then found := FALSE; return; endif; // no suitable block
if (nbl = 1) then bl := Bll_rs(1); return; endif; // only one suitable block
total_add_blocks := max{1, max{d | d ≥ 0, min_ns**d ≤ search_effort}}; // total additional search depth
ptmpbest := s.p; // best temporary packing plan
s.vc := s.p.v;

// carry out multiple tree search
for each ordered partition (l,d1,…,dl) of total_add_blocks do
 // initialize global state variable stmpbest
 stmpbest := s;
 for j : =1 to l do
 // provide global initial state stmp for next search phase
 stmp := stmpbest;
 // determine maximal number of successors for j-th search phase
 ns := max{min_ns, max{n | n ≥ 0, n ** dj ≤ search_effort}};
 // carry out j-th search phase starting from state stmp with search depth dj
 extend_solution(dj, 0, ns);
 endfor;
endfor;
i := |s.p.Pbl|; // Index of the last old block
output(ptmpbest.Pbl(i+1)); // (i+1)th block of the best temporary complete solution
end.

Figure 10: Procedure find_best_block

 17

First of all, the special cases are dealt with, i.e. there is no block, or only one, for the cur-
rent residual space (nbl = 0, 1). If neither of these special cases is found, the multiple tree
search is carried out for all partitions π of the previously determined additional search depth
total_add_blocks. For each partition search the state variable stmp contains the respective
current state of a search phase and is initialized with the best state of the preliminary phase
stmpbest, at the start with the initial state s. After the multiple tree search, the block of the
best solution ptmpbest packed in the uppermost residual space of s is returned.

The recursive procedure extend_solution (s. Figure 11) serves to extend the solution
stmp.p by one block in each case. Whenever the procedure is called within a search phase the
parameters max_add_blocks (conforms to a dj) and no_succ (number of successors) are fixed,
while the current number of additional blocks no_add_blocks increases by 1 per call.

procedure extend_solution(in: max_add_blocks, in: no_add_blocks, in: no_succ)
// deal with special cases …
if (stmp.Rs_stack = ø or stmp.Bres = ø or // temporary solution already complete or…
 no_add_blocks = max_add_blocks) then // max. depth of search phase reached
 scompl := stmp;
 complete_solution(scompl); // perform standard completion
 stmp.vc := scompl.p.v;
 if (stmp.vc > stmpbest.vc) then stmpbest := stmp; endif; // best phase state
 if (scompl.p.v > ptmpbest.v) then ptmpbest := scompl.p; endif; // best compl. temp. solution
 if (scompl.p.v > pbest.v) then pbest := scompl.p; endif; // best global solution
 return;
endif;
// generate block list for top residual space
generate_rs_blocklist(top(stmp.Rs_stack), no_succ, stmp.Bres, nbl, Bll_rs);
// deal with special case of empty block list
if (nbl = 0) then
 update_state(stmp, FALSE, dummy_block, rs);
 extend_solution(max_add_blocks, no_add_blocks, no_succ);
 restore_state(stmp, FALSE, dummy_block, rs);
 return;
endif;

// extend current solution alternatively by one block of current block list
for i := 1 to nbl do
 update_state(stmp, TRUE, Bll_rs(i), rs);
 extend_solution(max_add_blocks, no_add_blocks + 1, no_succ);
 restore_state(stmp, TRUE, Bll_rs(i), rs);
endfor;
end.

Figure 11: Procedure extend_solution

At the beginning a test is made to see whether the solution stmp.p is still to be extended.
This is not the case if stmp.p is already complete or if no_add_blocks has already reached the
maximal value max_add_blocks. In the latter case the standard completion is applied to stm.p.
In both cases the best solutions (ptmpbest, pbest) and the best state stmpbest are updated
where necessary. The component state.vc of a state variable state with the generally incom-
plete solution state.p saves the volume value of the complete solution obtained by standard
completion from state.p and is required for comparison purposes.

 18

Another special case occurs when the block list for the current residual space of the phase
search is empty. Residual spaces that cannot be filled are simply by-passed, i.e. removed
from the stack.

If none of the special cases are found, the current solution is extended alternatively by one
of the first blocks of the block list and the method extend_solution is called again.

Figure 12 shows the procedure complete_solution for the standard completion of the solu-
tion sc.p integrated in a search state sc.

procedure complete_solution(inout: sc)
while (sc.Rs_stack ≠ ø and sc.Bres ≠ ø) do
 rs := pop(sc.Rs_stack);
 generate_rs_blocklist(rs, sc.Bres, 1, nbl, Bll_rs);
 if (nbl > 0) then update_state(sc, TRUE, Bll_rs(1), rs); endif; // pack largest block
endwhile;
end.

Figure 12: Procedure complete_solution.

3.5. Other procedures
The remaining procedures of the CLTRS method are specified below.

a) Procedures for the maintenance of the search state
Figure 13 shows procedures for the maintenance of the search state given by a state vari-

able s. The procedure init_state initializes the search state for generating a packing plan. The
procedure update_state updates the search state after a residual space processing, while the
procedure restore_state reverses this updating. With update_state and restore_state the cases
of the availability or not of a block bl for the relevant residual space are to be differentiated.

procedure init_state(inout: s)
s.p.Pbl := ø; s.p.v := 0; s.Bres := {all boxes}; s.Rs_stack := {container};
end.

procedure update_state(inout: s, in: block_available, in: bl, out: rs)
rs := pop(s.Rs_stack);
if (block_available) then
 s.p.Pbl := s.p.Pbl U {(bl, rs.rc)}; s.p.v := s.p.v + volume(bl);
 s.Bres := s.Bres \ {boxes in bl};
 generate_daughter_spaces(s, rs, bl);
endif;
end.

procedure restore_state(inout: s, in: block_available, in: bl, in: rs)
if (block_available) then
 s.p.Pbl := s.p.Pbl \ {(bl, rs.rc)}; s.p.v := s.p.v − volume(bl);
 s.Bres := s.Bres U {boxes in bl};
 for i := 1 to 3 do pop(s.Rs_stack) endfor;
endif;
push(s.Rs_stack, rs);
end.

Figure 13: Procedures init_state, update_state and restore_state

 19

b) Procedure generate_rs_blocklist
The procedure generate_rs_blocklist (in: rs, in: Bres, in: no_succ, out: nbl, out: Bll_rs) pro-
vides a residual space block list Bll_rs of nbl (nbl ≥ 0) admissible blocks for the residual
space rs and the set Bres of free boxes. For this purpose the block list Bll of the current search
stage is run through from the front to the rear and admissible blocks are taken over consecu-
tively in the list Bll_rs, i.e. in descending order of the volume of the envelope cuboid. In this
way, maximal no_succ blocks are provided for the residual space rs. A block is deemed to be
admissible if its oriented envelope cuboid fits in the residual space rs and all boxes of the
block are still free.

c) Procedure generate_daughter_spaces
The procedure generate_daughter_spaces (inout: s, in: rs, in: bl) presupposes that the block
bl was previously placed in the residual space rs and rs was removed from the residual space
stack s.Rs_stack. Three daughter residual spaces are now to be generated within rs and in-
serted in s.Rs_stack. The three new residual spaces are to completely fill the space remaining
after placing bl. The cutting variant will be considered first.

Figure 14 shows residual space rs and block bl each with their dimensions and the differ-
ences rmx = rsx – blx, rmy = rly – bly sowie rmz = rsz – blz called reduction measures.

rmz

blz

bly
blx rmyrmx

rsy
rsx

rsz

residual space rs

block bl

Figure 14: Residual space rs, block bl and reduction measures

If the free space in rs is cut into three new residual spaces, the following applies:
- A new residual space, referred to as drs_x, lies to the right next to the block bl and has the

x-dimension rmx. A further residual space, referred to as drs_y, lies behind bl and has the
y-dimension rmy. The third new residual space, referred to as drs_z, lies above bl and has
the z-dimension rmz.

- Exactly one of the new residual spaces coincides with the residual space rs in two dimen-
sions and is designated as maximal (max for short). Exactly one of the new residual
spaces coincides with the block bl in two dimensions and is designated as minimal (min).
The third residual space is then designated as medium (med).

- The three residual spaces are generated by three guillotine cuts, the first of which subdi-
vides the mother residual space rs.
The result is the following 6 possible partitioning variants shown in Table 2.

 20

Table 2: Partitioning variants for a residual space

No. Residual space definition To be used with
 drs_x drs_y drs_z ranking of the

reduction measures
1 max med min rmx, rmy, rmz

2 med max min rmy, rmx, rmz

3 max min med rmx, rmz, rmy

4 med min max rmz, rmx, rmy

5 min max med rmy, rmz, rmx

6 min med max rmz, rmy, rmx

In the case of partitioning variant 1 the residual spaces have the following dimensions (cf.
Figure 15):
- drs_x: mx = rmx, my = rsy, mz = rsz;
- drs_y: mx = blx, my = rmy, mz = rsz;
- drs_z: mx = blx, my = bly, mz = rmz.

drs_y (med)

drs_x (max)

drs_z (min)

Figure 15: Residual spaces of partitioning variant 1

The partitioning variant to be used is selected by means of the reduction measures for a
residual space rs and block bl. First of all it is stipulated: one reduction measure rm1 has a
higher rank than another reduction measure rm2, if:
- rm1 ≥ rm2 or
- rm2 is smaller than the minimal box measure placeable in rm2 direction.

Based on this definition a ranking of the reduction measures is determined for a given re-
sidual space rs and block bl; with several possible rankings, any one is selected. The selection
of the partitioning variant is then carried out in accordance with Table 2 (last column). If e.g.
rmx = 70, rmy = 50 and rmz = 60 and if none of the dimensions falls below the minimal box
dimension in the direction concerned, the result is the order of preference rmx, rmz, rmy and
partitioning variant 3 is to be applied. In contrast, if rmz (and only rmz) falls below the mini-
mal box dimension in z direction, the order of preference is rmx, rmy, rmz and partitioning
variant 1 is to be selected.

The reduction measures are the initially critical dimensions of the new residual spaces,
i.e. they can above all have the effect that new residual spaces can no longer be filled. The
described partitioning rule prevents relatively small reduction measures being paired with
relatively large other residual space measures and thus large volume losses being risked.

The still outstanding rule for inserting new residual spaces into the residual space stack is
to be introduced together with a further element of residual space management, namely the
transfer of unused packing volume.

Let, for example, residual space rs be partitioned in accordance with variant 1 (cf. Figure
15). If the maximal residual space drs_x now proves not to be fillable, the minimal residual
space drs_z can be enlarged by setting its x-dimension to rsx. Thus it may still be possible to

 21

use the cuboid with the dimensions mx = rmx, my = bly and mz = rmz that is transferred from
drs_x to drs_z.

In general, the procedure is as follows:
- Insertion rule: the new residual spaces are inserted into the residual space stack in the or-

der of preference "min – max – med", i.e. minimal residual space according to selected
partition variant first, etc.

- However, if a residual space cannot be filled from the start because the reduction measure
is too small, it is not inserted in the stack in the first place.

- If the medium or maximal residual space proves not to be fillable after being removed
from the stack, a suitable part cuboid is transferred subsequently to the minimal residual
space. This operation was not shown in the procedure update_state, and neither was the
reverse operation shown in the procedure restore_state. Packing space is not transferred
from the maximal to the medium residual space.
The insertion rule guarantees that packing space can be transferred subsequently to the

minimal new residual space. In addition, the maximal new residual space is placed on the
stack before the medium space because the maximal residual space can in general be filled
more easily.

The modifications that are required for the packing variant are very simple. Firstly, only
the first two partitioning variants are permissible in which the residual space drs_z above
block bl is minimal and therefore lies fully on the top area of bl. Secondly, the bottom area of
drs_z is reduced to the packing area of the block bl. In addition, only residual spaces drs_x
and drs_y are permissible as receivers of a space transfer.

3.6. Handling the selected constraints
Finally, handling the selected constraints (C1) to (C3) is dealt with briefly.

The guillotine cut constraint (C1) fulfils itself in both the cutting variant and in the pack-
ing variant of the CLTRS method. The boxes of any block can obviously be reproduced by
guillotine cuts. Each placed block lies fully in a residual space and finally, starting from the
container, additional residual spaces are created only through guillotine cuts.

The support constraint (C2) is fulfilled in the packing variant of CLTRS. On the one hand
with this variant only blocks are formed in which all boxes that do not lie on the floor of the
block are supported 100% from below (cf. Section 3.3.1); on the other hand, residual spaces
above blocks are constructed in such a way that no overhanging boxes can occur (cf. Section
3.5, c)).

The orientation constraint (C3) is complied in that impermissible box orientations are
avoided per block and box type.

4. Numerical test
The CLTRS method was implemented in C. The 1600 3D-CLP instances from Bischoff and
Ratcliff (1995) and from Davies and Bischoff (1998) respectively were included for the test;
they are referred to below as Bischoff-Ratcliff instances or BR instances.

The 1600 BR instances are subdivided into 16 test cases with 100 instances each that are
numbered BR0 to BR15. The 100 instances of each test case coincide in the number of box
types. The box sets of the different test cases vary from homogeneous, through weakly het-
erogeneous to strongly heterogeneous; details can be seen in Table 3. Each instance includes
the orientation constraint (C3), which prohibits the use of certain larger side dimension as
height dimension. With the test of the cutting variant of the CLTRS it is assumed that the

 22

guillotine cut constraint (C1) is to be complied with in addition. With the test of the packing
variant it is presupposed that the support constraint (C2) has to be complied with in addition.

A PC with a 2.6 GHz Intel processor was used for the test. The following set of parame-
ters was used uniformly for all tested instances and both CLTRS variants: maximal number
of blocks max_bl = 10000, minimal space utilization for blocks min_fr = 98%, minimal
search width min_ns = 3, time limits for stages 1 and 2: 60 and 180 seconds respectively.

Table 3 contains the test results for both CLTRS variants. For the 100 instances of each
test case the mean volume utilization is given as a percentage of the container volume and the
standard deviation (in %) is also given.

Table 3: Test results of method CLTRS for the Bischoff and Ratcliff test cases

Cutting variant Packing variant Test
case

No. of
box

types

Avg. no.
of boxes
per type

(rounded)

Volume
utilization

(%)

Std.
Deviation

(%)

Med-
Supp
(%)

Volume
utilization

(%)

Std.
Deviation

(%)

St1 St2

(%)
BR0 1 206 89.95 6.5 94.91 89.83 6.5 1.16 3.30

BR1 3 50 95.05 1.9 94.19 94.51 2.2 1.37 5.45

BR2 5 27 95.43 1.2 92.93 94.73 1.5 1.40 8.05

BR3 8 17 95.47 0.8 90.91 94.74 1.0 1.37 10.78

BR4 10 13 95.18 0.7 89.73 94.41 1.0 1.39 11.78

BR5 12 11 95.00 0.6 88.96 94.13 0.8 1.39 13.73

BR6 15 9 94.79 0.6 86.37 93.85 0.7 1.41 15.76

BR7 20 7 94.24 0.6 82.21 93.20 0.7 1.36 19.50

BR8 30 4 93.70 0.5 79.96 92.26 0.8 1.38 24.76

BR9 40 3 93.44 0.5 76.88 91.48 0.7 1.38 30.17

BR10 50 3 93.09 0.5 76.56 90.86 0.7 1.36 33.21

BR11 60 2 92.81 0.5 76.01 90.11 0.8 1.33 38.17

BR12 70 2 92.73 0.5 74.37 89.51 0.7 1.32 40.83

BR13 80 2 92.46 0.5 74.07 88.98 0.9 1.30 42.89

BR14 90 1 92.40 0.5 73.59 88.26 0.8 1.27 46.67

BR15 100 1 92.40 0.5 59.71 87.57 0.8 1.25 50.45

Avg. – – 93.6 1.1 – 91.8 1.3 1.3 24.7

In addition, the indices for stability St1 and St2 (cf. Bischoff and Ratcliff 1995) are

shown for the packing variant, and the mean box support Med-Supp for the cutting variant:
- The index St1 indicates the mean number of boxes that support a box that does not lie on

the floor of the container. St1 should be as large as possible.
- The index St2 indicates the percentage of boxes in relation to all placed boxes that are not

touched on at least three sides by another object (a box or container). St2 should be as
small as possible.

- The mean box support Med-Supp shows the mean share of the bottom area (in %) that is
supported from below for the boxes that do not lie on the floor of the container.
The test results are evaluated first of all with regard to the generalized block building ap-

proach. Averaged over all 1600 instances, 1395 simple blocks, but 4137 general packing
blocks and 9081 general cutting blocks, were generated per instance. The supply of GP and
GC blocks is therefore much more extensive in comparison with simple blocks. This pays off.
In both the cutting and the packing version the best solution is found for about 70% of all in-

 23

stances in stage 2, i.e. using general blocks as well. Without the second stage of the search
the mean volume utilization would worsen by about 0.8% points in the cutting variant and by
around 1.1% points in the packing variant.

However, the usefulness of the general blocks depends greatly on the heterogeneity of the
box sets. In the packing variant, for the first 8 test cases BR0 to BR7 the best solution is
achieved for good 44% of the instances in stage 1, that is with simple blocks only, while for
the following 8 test cases BR8 to BR15 the best solution is determined in stage 1 for just 9%
of the instances. Similar figures apply for the cutting variant. If the three test cases BR13 to
BR15 with the most heterogeneous box sets are taken, volume utilization there is increased
through the second search stage with the use of general blocks by around 2.7% points on av-
erage in the packing variant and by around 2.0% points on average in the cutting variant! All
in all it is found, on the one hand, that the general blocks prove to be a key concept for
achieving higher volume utilizations for strongly heterogeneous box sets; on the other hand,
the selected two-stage search approach conforms to the different suitability of simple or
general blocks for weakly and strongly heterogeneous instances.

For both CLTRS variants the mean volume utilizations increase to test case BR3, and
then decrease monotonically. An analogous dependence of the volume utilization on the
heterogeneity of the supply of boxes can also be ascertained for other methods (cf. e.g. Eley
2002, Mack et al. 2004). It therefore seems obvious to search for causes of this change in
trend (monotonic growth, following by monotonic decrease) that are independent of the
method applied. An approximate qualitative explanation can be outlined as follows:
- With a weakly heterogeneous box set large box arrangements, in particular with simple

blocks, can be formed with few internal losses. The internal loss of a box arrangement is
understood as the volume of its envelope cuboid that is not filled with boxes. On the other
hand, there are only a few boxes available and therefore only a few different box dimen-
sions. For this reason, the container dimensions can often not be represented to a suffi-
cient extent through a combination of box dimensions. Consequently, there are space
losses at the container walls (side walls, ceiling), that can be designated as boundary
losses. In short: in the weakly heterogeneous case boundary losses dominate. This occurs
to a particularly crass extent with homogeneous instances. For example, capacity utiliza-
tion of only 65.53% is achieved for instance 23 of the test case BR0. In spite of this, the
solution, as a manual test shows, is global-optimal. It consists of a single simple block,
the total loss is therefore a boundary loss.

- Strongly heterogeneous box sets lead to contrary effects. On the one hand, larger box ar-
rangements typically have considerable internal losses. On the other hand, there are many
variants, to combine the container dimensions by box dimensions (or dimensions of part
arrangements). In short: in the strongly heterogeneous case internal losses dominate.

- The trend change that was observed for many methods can now be understood as an
effect of the interaction of the two outlined influencing factors. One may expect a peak in
(average) volume utilization for instances of a certain degree of heterogeneity where the
internal losses tend to be "still small" while at the same time the boundary losses tend to
be "already small".
The achieved mean volume utilizations state that for the CLTRS method compliance with

the support constraint (C2) "costs" about 2% points volume utilization. Similar results were
already found for the method from Bortfeldt et al. (2003) and Mack et al. (2004). It is there-
fore suspected that, even independently of the power of a heuristic method, the support con-
straint (C2) ha a considerable effect on the (achievable) volume utilization. However, a de-
tailed comparison of the volume utilizations for both CLTRS variants shows immediately that
the negative influence of constraint (C2) on the volume utilization depends decisively on the
heterogeneity of the box set. As Table 4 teaches, the difference between the volume utiliza-

 24

tions for the cutting and packing variant in test case BR0 is only 0.12% points, while it is al-
most 5% points for BR15! The question arises here as well whether this phenomenon can be
understood independently of the method used. In fact, it can be argued as follows:
- If the stock of boxes is weakly heterogeneous, packing plans with high volume utilization

will consist of few part arrangements with low or no internal loss (simple blocks). How-
ever, the top surfaces of such part arrangements provide almost complete support for the
upper boxes. Compliance with the support constraint therefore collides only slightly with
the demand for greater volume utilization.

- If the stock of boxes is strongly heterogeneous, compliance with the support constraint
leads to it no longer being possible to a greater extent to fill parts of the space above
boxes. In contrast, without the constraint (C2) at every height the complete horizontal
container area is available for further box placings. Here the constraint (C2) and the de-
mand for greater volume utilization collide.

- The mean box support Med-Supp for the cutting variant shown in Table 3 achieves high
values above 90% for weakly heterogeneous test cases, decreases monotonically with in-
creasing heterogeneity and is less than 60% for the test case BR15. This speaks for the
given explanation: the optimization of the volume utilization appears for weakly hetero-
geneous box sets to be largely consistent with the support constraint (C2), but hardly con-
sistent in the strongly heterogeneous case.
Some additional test results can be addressed briefly:

- The standard deviations are in general comparatively low in both the cutting and the
packing variant (cf. e.g. Eley 2002). The CLTRS method behaves extremely stable in this
sense. The homogenous instances form an exception. With favourable combinations of
the dimensions of the containers or of the individual box types, the result there is quite
high capacity utilizations, and extremely poor capacity utilizations with unfavourable
combinations, which was already made clear in examples.

- With the block building approach, particularly good values are naturally not achieved for
stability criterion St1. This is not changed either by the use of general blocks, in particular
as these are put together from simple blocks.

- However, with regard to stability criterion St2 CLTRS achieves much better values for
the test cases BR1 to BR7 than many comparable methods including the heuristic from
Bischoff et al. (1995) (cf. Eley 2002).
Both CLTRS variants are compared with other methods from the literature in Table 4.

The only values taken into account are average values for volume utilization (as a percentage
of the container volume) or the computing time (in seconds) for the test cases BR1 to BR7
(700 BR instances) and (where present) for the test cases BR1 to BR15 (1500 BR instances).
Where known, the cycle frequency of each CPU used is also indicated. Test case BR0 is not
taken into account, because up to now there have hardly been any results for other methods.

A fair comparison of methods is only possible if it is also noted whether the methods ful-
fil constraints (C1) and (C2). This applies in particular for the support constraint (C2) and
thus column 2 of Table 4 indicates whether the different methods fulfil the constraint (C2) or
not ("y" or "n"). As a consequence, the cutting variant of the CLTRS is to be compared only
with the methods from Bortfeldt et al. (2003), Mack et al. (2004) and Parreño et al. (2007),
whereas the packing variant should be compared with the other methods listed in Table 4.

The CLTRS method achieves in both variants on the whole a considerably better volume
utilization for the Bischoff-Ratcliff instances, with acceptable computing times, than all the
respective relevant comparative methods. The CLTRS is apparently just as suitable as a cut-
ting method as it is as a packing method. The dominance with regard to the comparative
methods is just as clear with strongly heterogeneous as with weakly heterogeneous instances.
The CLTRS is therefore also equally suitable for the 3D-CLP variants SLOPP and SKP.

 25

Table 4: Comparison of the CLTRS method with other 3D-CLP methods

Test cases BR1 – BR7 Test cases BR1 – BR15 Source / authors / type
of method

Constr.
(C2)
resp.

CPU-
frequ.
(MHz)

Volume
util. (%)

CPU time
(Sec.)

Volume
util. (%)

CPU time
(Sec.)

Terno et al. (2000),
B&B y – 88.5 – – –

Bortfeldt/Gehring
(2001), GA y 400 90.1 316 88.6 316

Gehring/Bortfeldt
(2002), par. GA y 4 x 400 90.4 183 89.0 183

Eley (2002), TRS y 200 88.8 600 – –
Lim et al. (2003),
greedy heuristic n 600 87.6 – – –

Bortfeldt et al. (2003),
par. TS n 4 x 2000 92.7 121 – –

Bischoff (2004),
Nelder-Meat Proc. y 1700 90.5 210 – –

Mack et al. (2004),
par. SA/TS n 4 x 2000 93.2 222 – –

Moura/Oliveira
(2005), GRASP y 2400 89.7 34 86.7 69

Parreño et al. (2007),
GRASP n 1500 93.8 302 91.1 101

CLTRS,
Packing variant y 2600 94.2 320 91.9 320

CLTRS,
Cutting variant n 2600 95.0 319 93.9 320

Finally, the special variant of the heuristic tree search, PCTRS, used in the CLTRS is to
be evaluated. A comparison with the TS method from Bortfeldt et al. (2003) and with the
SA/TS hybrid from Mack et al. (2004) lends itself for this purpose. Both methods are based
on the traditional block building approach: generated packing plans consist of simple blocks.
For the test cases BR1 to BR7 the CLTRS now achieves a mean capacity utilization of 94.7%
(cutting variant) right away in the first search stage (simple blocks only); for the TS method
and the SA/TS hybrid respectively the corresponding values are 92.7% and 93.2%. The result
is that the CLTRS clearly dominates the above-mentioned comparative methods even with a
restriction to simple blocks, which, with correspondence of the block types used, is due above
all to the special approach of the tree search.

5. Summary
This paper presents the tree search method CLTRS for the three-dimensional container load-
ing problem (3D-CLP). The CLTRS packing variant guarantees the full support from below
of all packed boxes, while the cutting variant (and the packing variant as well) observes the
guillotine cut constraint that is indispensable for cutting applications. The CLTRS method is
based above all on two concepts. On the one hand, the traditional block building approach is
generalized, so that blocks with small gaps are now permissible as well as structural elements
of packing plans. On the other hand, an (as far as we know) innovative form of tree search,
called here partition-controlled tree search (PCTRS), is used to pack blocks. The PCTRS

 26

makes the search efficient and diverse, in that it generates solutions economically and at the
same time ensures both the required width and the necessary foresight for the tree search.

On the test of the 1600 3D-CLP instances from Bischoff and Ratcliff CLTRS achieves the
up to now best volume utilizations for both weakly and for strongly heterogeneous test cases
with acceptable computing times and proves to be equally suitable for the problem types
SLOPP and SKP. Results were presented as well for instances with homogeneous stocks of
boxes as well, i.e. for the up to now rather neglected problem type 3D identical item packing
problem (IIPP).

In the future, additional constraints (e.g. weight distribution) are to be implemented in
CLTRS. A 2D variant is also planned, as well as the application of CLTRS as a core module
of a bin packing method.

References
Bischoff, E.E., M.S.W. Ratcliff. 1995. Issues in the Development of Approaches to Container Loading. Omega

23 377–390.
Bischoff, E.E., F. Janetz, M.S.W. Ratcliff. 1995. Loading Pallets with Non-identical Items. Eur. J. of Oper. Res.

84 681–692.
Bischoff, E.E. 2004. Three dimensional packing of items with limited load bearing strength. Eur. J. of Oper.

Res., 168 952–966.
Bortfeldt, A., H. Gehring. 2001. A Hybrid Genetic Algorithm for the Container Loading Problem. Eur. J. of

Oper. Res. 131 143–161.
Bortfeldt, A., H. Gehring, D. Mack. 2003. A Parallel Tabu Search Algorithm for Solving the Container Loading

Problem. Parallel Computing 29 641–662.
Davies, A.P., E.E. Bischoff. 1998. Weight Distribution Considerations in Container Loading. European

Business Management School, University of Wales, Swansea, Statistics and OR Group, Technical Report.
Dyckhoff, H., U. Finke. 1992. Cutting and Packing in Production and Distribution. Heidelberg, Physica-Verlag.
Eley, M. 2002. Solving Container Loading Problems by Block Arrangements. Eur. J. of Oper. Res. 141

393–409.
Fekete, S.P., J. Schepers. 1997. On more-dimensional packing III: Exact algorithms. Technical Report

ZPR97-290, Mathematisches Institut, Universität zu Köln.
Gehring, H., A. Bortfeldt. 1997. A Genetic Algorithm for Solving the Container Loading Problem. Internat.

Trans. in Oper. Res. 4 401–418.
Gehring, H., A. Bortfeldt. 2002. A Parallel Genetic Algorithm for Solving the Container Loading Problem. In-

ternat. Trans. in Oper. Res. 9 497–511.
Hemminki, J. 1994. Container loading with variable strategies in each layer. Presented at ESI-X, EURO Sum-

mer institute, Jouy-En-Josas, France, July 2–15, 1994.
Hifi, M. 2002. Approximate Algorithms for the Container Loading Problem. Internat. Trans. in Oper. Res. 9

747–774.
Lim A., B. Rodrigues, Y. Wang. 2003. A multi-faced buildup algorithm for three-dimensional packing prob-

lems. Omega 31 471 – 481.
Mack, D., A. Bortfeldt, H. Gehring. 2004: A parallel hybrid local search algorithm for the container loading

problem. Internat. Trans. in Oper. Res. 11 511–533.
Martello, S., D. Pisinger, D. Vigo. 2000. The three-dimensional bin packing problem. Oper. Res. 48 256–267.
Morabito, R., M. Arenales. 1994. An AND/OR-graph Approach to the Container Loading Problem. Internat.

Trans. in Oper. Res. 1 59–73.
Moura, A., J.F. Oliveira. 2005. A GRASP approach to the Container-Loading Problem. IEEE Intelligent Sys-

tems 20 50–57.
Parreño, F., R. Alvarez-Valdes, J.F. Oliveira, J.M. Tamarit. 2007. A maximal-space algorithm for the container

loading problem. INFORMS J. on Computing, in press.
Pisinger, D. 2002. Heuristics for the Container Loading Problem. Eur. J. of Oper. Res. 141 143–153.
Sixt, M. 1996. Dreidimensionale Packprobleme. Lösungsverfahren basierend auf den Metaheuristiken Simula-

ted Annealing und Tabu-Suche. Frankfurt am Main, Peter Lang, Europäischer Verlag der Wissenschaften.
Terno, J., G. Scheithauer, U. Sommerweiß, J. Rieme. 2000. An efficient approach for the multi-pallet loading

problem. Eur. J. of Oper. Res. 123 372–381.
Wäscher, G., H. Haussner, H. Schumann. 2007. An Improved Typology of Cutting and Packing Problems. Eur.

J. of Oper. Res., 183 1109–1130.

