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1. Introduction 

The Poincaré-Bendixson theory, predicting the qualitative properties of the limit dynamics of 

smooth dynamic systems in the plane, is one of the fundaments of the dynamic systems 

theory. We discuss whether economic structural change is predictable by the Poincaré-

Bendixson theory. While there are different notions of economic structure, we focus on the 

three-sector framework, where structural change is indicated by the long-run dynamics of 

labor reallocation across the sectors ‘agriculture’, ‘manufacturing’, and ‘services’. The three-

sector framework is one of the main concepts for studying the long-run dynamics of the 

macroeconomic structure. The related structural change and, in particular, industrialization 

and tertiarization are regarded as major drivers of economic development and have been 

analyzed in numerous studies over the last 200 years.1  

The question whether the structural change in the three-sector framework can be represented 

by a dynamic system that is predictable by the Poincaré-Bendixson is the key to a system-

theoretical characterization of the three-sector framework and its long-run dynamics.2 Such a 

characterization is interesting for two reasons among others. 

First, a ‘proof’ of the applicability of the Poincaré-Bendixson theory in the three-sector 

framework would not only allow us to characterize the limit-dynamics of structural change 

(i.e., to state that structural change is either transitory or cyclical in the limit, as we will see) 

but could also open the door for the application of other topological concepts, which can be 

used to predict the transitional structural change dynamics among others, in (a system-

theoretical approach to) structural change analysis (see Stijepic (2015,2016,2017a) for an 

exploitation of the topological properties of structural change paths in structural change 

analysis). Such a characterization of transitional dynamics and limit-dynamics is usable for 

(long-run) structural change predictions, as demonstrated by Stijepic (2015,2017a). 

Second, system-theoretical structural change models seem to be good complements to the 

standard structural change models (cf. Footnote 1). The latter generate relatively specific 

quantitative predictions of structural change. Yet, they are ideological to a great extent, since 

                                                           
1 For an overview of the structural change literature, see, e.g., Schettkat and Yocarini (2006), Krüger (2008), 
Silva and Teixeira (2008), Stijepic (2011, Chapter IV), Herrendorf et al. (2014), and Neuss (2018). Recent 
papers modelling structural change in the three-sector framework are, e.g., Kongsamut et al. (2001), Ngai and 
Pissarides (2007), Foellmi and Zweimüller (2008), Uy et al. (2013), and Stijepic (2015,2017a). 
2 To our knowledge, the Poincaré-Bendixson theory has not been applied in a system-theoretical study of the 
three-sector framework by now. Yet, there are applications of the Poincaré-Bendixson theory in other fields of 
economics (see Coles and Wright (1998) for an example). 



3 
 

they rely on very specific assumptions,3 specific schools of thought (e.g., neoclassical, 

Keynesian, evolutionary, endogenous growth theory, etc.), and knife-edge parameter 

restrictions (cf. Stijepic (2011) and Temple (2003)), all of which are difficult to prove 

empirically and, thus, restrict the generality of models and the reliability of structural change 

predictions. In contrast, a system-theoretical modelling approach allows us to develop 

relatively general models generating relatively reliable predictions. Yet, such predictions are 

rather qualitative and encompass a relatively wide range of scenarios. 

Our analysis of the predictability of structural change by the Poincaré-Bendixson theory can 

be classified as a system-theoretical contribution to structural change modelling. We do not 

seek to develop a fully specified economic model based on relatively specific and ideological 

assumptions regarding individual behavior and market-functioning but rather analyze 

whether the assumptions of the Poincaré-Bendixson theory are supported by (a) the 

mathematical implications of the standard structural change definition and other 

mathematical structural change modelling conventions, (b) the empirical evidence on the 

topological properties of structural change trajectories, and (c) the methodological arguments 

relating to the representation of economic laws by economic models. This analysis allows us 

to assess whether the dynamic system representing the laws of structural change is of the 

Poincaré-Bendixson type (and, thus, structural change can be predicted by the Poincaré-

Bendixson theory). 

Owing to the geometrical/topological nature of the Poincaré-Bendixson theory (and its proof) 

our analytical approach is rather geometrical and topological. In particular, we exploit the 

fact that the Poincaré-Bendixson theory is applicable to a trajectory family that covers simply 

a bounded and connected subset of the plane. Such a covering has straight-forward 

geometrical characteristics (among others, the trajectories are non-(self-)intersecting), which 

can be used to study the applicability of the Poincaré-Bendixson theory in structural change 

modelling, as we demonstrate. 

Our results are in favor of the predictability of structural change by the Poincaré-Bendixson 

theory. Yet, some very interesting questions for further research, which are summarized in 

Section 9, remain open. 

The rest of the paper is structured as follows. In Section 2, we formulate a meta-model of 

structural change representing the standard axioms and definitions of structural change 

                                                           
3 For example, Kongsamut et al. (2001) focus on a demand-side explanation of structural change, Ngai and 
Pissarides (2007) rely on supply-side structural change drivers, and Uy et al. (2013) choose an open-economy 
framework. 
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modelling. Section 3 recapitulates briefly the relevant (primarily topological) concepts for 

dynamic systems analysis. In Section 4, we summarize the empirical evidence regarding the 

topological properties of structural change paths. Section 5 discusses the methodological 

aspects of structural change modelling. Section 6 recapitulates the assumptions (and their 

geometrical interpretation) and the results of the Poincaré-Bendixson theory. Section 7 is 

devoted to the comparison of the Poincaré-Bendixson assumptions (Section 6) with the 

empirics (Section 4) and the axiomatics (Section 2) of structural change modelling by relying 

on the topological notions introduced in Section 3 and the methodological arguments derived 

in Section 5. In Section 8, we discuss the interpretation of the (results of the) Poincaré-

Bendixson theory in the context of structural change and the structural change predictions 

resulting from this interpretation. A summary of the results and a discussion of the topics for 

further research is provided in Section 9. 

 

2. A mathematical meta-model of structural change (axiomatics of structural change) 

In this section, we recapitulate the mathematical meta-model of structural change that 

represents the modelling conventions of the structural change literature, as introduced by 

Stijepic (2015,2016,2017a). This model is fully specified by Definition 1 and Axioms 1-3. 

While Definition 1 relates model variables to the measures (in particular, employment shares) 

that are used to describe structural change in reality, Axioms 1-3 represent all the standard 

structural change modelling assumptions that cannot be proved by empirical evidence. Like 

all other empirical sciences, economics cannot work without relying on empirically 

improvable assumptions. 

While there are different mathematical notational conventions, we choose the following 

notation for reasons of simplicity: small letters (e.g., x), bold small letters (e.g., x), and capital 

letters (e.g., X) denote scalars, vectors/points, and sets, respectively. A dot indicates a 

derivative with respect to time (e.g., ẋ is the derivative of x with respect to time). 

 

Definition 1. The sectors 1, 2, and 3 represent the primary (or agricultural) sector, the 

secondary (or manufacturing) sector, and the tertiary (or services sector), respectively. y1c(t), 

y2c(t), and y3c(t) denote the employment in sector 1, 2, and 3 at time t∈D⊆R in country c∈C, 

respectively, where R is the set of real numbers. yc(t) is the aggregate employment at time t in 

country c. xic(t) ∶= yic(t)/yc(t) is the employment share of sector i at time t in country c. The 

vector xc(t) : = (x1c(t), x2c(t), x3c(t)) indicates the cross-sector labor allocation at time t in 
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country c. The term ‘structural change (over the period [a,b]) in country c’ refers to the long-

run dynamics of the labor allocation xc(t) (over the period [a,b]). The time point t = 0 

represents the initial time point, and xc(0) ≡ (x1c(0), x2c(0), x3c(0)) stands for the initial labor 

allocation in country c. If the initial labor allocation is given, we denote it by xc
0 ≡ (x1c

0, x2c
0, 

x3c
0). 

 

Consider the three-dimensional real space (R3) and the Cartesian coordinate system (x1, x2, 

x3). We define the following set of points in it: 

(1) S∶={x≡(x1, x2, x3)∈R3: x1+x2+x3=1 ∧ ∀i∈{1,2,3} 0 ≤ xi ≤ 1} 

It is well known that (a) S is a two-dimensional standard simplex (henceforth, 2-simplex), (b) 

the 2-simplex is a triangle, and (c) the Cartesian coordinates of its vertices are the following: 

(2) (1,0,0)=∶v1       (0,1,0)=∶v2        (0,0,1)=∶v3 

For an illustration, see Figure 1. Henceforth, we omit the coordinate axes, as depicted in the 

right panel of Figure 1. 

 

Figure 1. The 2-simplex in the Cartesian coordinate system (x1, x2, x3) with and without 

coordinate axes. 

 
 

Axiom 1. (Cf. (1) and Definition 1.) The labor allocation function xc(t): D×C→S⊂R3 maps 

time t∈D⊇[0,∞) and the country index c∈C to the 2-simplex S (which is located in the 

coordinate system (x1, x2, x3)). 

 

x3

v3

v2v1 x2x1

v3

v2v1
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In particular, for a given country index c∈C, the function xc(t) assigns a point (x1, x2, x3) on 

the 2-simplex S to each time point t∈D. Definition 1, Axiom 1, and (1) imply that the sectoral 

employment shares satisfy the following conditions: 

(3) ∀t ∀c ∀i∈{1,2,3} 0 ≤ xic(t) ≤ 1, 

(4) ∀t ∀c x1c(t)+x2c(t)+x3c(t)=1, 

and ∀t ∀c yc(t) = y1c(t)+y2c(t)+y3c(t). These conditions are reasonable (e.g., the employment 

shares cannot be negative) and represent standard assumptions in structural change modelling 

(see Stijepic (2015,2016,2017a) for a discussion). 

 

Axiom 2. ∀t∈D ∀c∈C, xc(t) is continuous in t. 

 

Axiom 3. ∀t∈D ∀c∈C, xc(t) is differentiable with respect to t. 

 

The assumption of continuous and differentiable functional forms is not only standard in 

structural change modelling but also in major parts of growth theory, development theory, 

and theories of long-run dynamics, in general. For example, the models presented by 

Kongsamut et al. (2001), Ngai and Pissarides (2007), Acemoglu and Guerrieri (2008), 

Foellmi and Zweimüller (2008), and Boppart (2014) are typical examples of multi-sector 

models satisfying Axioms 2 and 3 (cf. Stijepic (2015,2016,2017a)). 

Among others, we use the model specified in this section to compare the empirical evidence 

on structural change to the assumptions of the Poincaré-Bendixson theory. To do so, we have 

to introduce some concepts for describing the dynamics of the model of this section. We turn 

now to this topic. 

 

3. Topological concepts for describing structural change 

In this section, we recapitulate some topological concepts for analyzing structural change, as 

discussed by Stijepic (2015,2016,2017a). 

Axiom 1 and Definition 1 imply that we can study the structural change in country c by 

studying the properties of the function xc(t). In our paper, we choose a topological approach 

for the study of this function, which relies on the concept of the image of the labor allocation 

function, as stated in Definition 2.  
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Definition 2. The (image of the) structural trajectory (Tc) that depicts the structural change 

(cf. Definition 1) in country c∈C over the time interval G⊆D is defined as follows: 

(5) Tc(G)∶={xc(t)∈S: t∈G} 

 

Geometrically speaking, the economy c moves along Tc(G)⊂S over the time period G. Thus, 

S is the domain of Tc(G). 

Trajectories can be characterized by using the (topological) concepts of continuity, self-

intersection, and, in the case of two or more trajectories (where each trajectory represents the 

structural change in a different country), intersection. The intuitive/geometrical notion of 

continuity, self-intersection, and intersection is more or less obvious. For a continuous and 

non-self-intersecting trajectory, see Figure 2a; in contrast, Figures 2b and 2c depict examples 

of non-continuous and self-intersecting trajectories, respectively. Figure 2d depicts two 

intersecting trajectories, whereas Figure 2e depicts non-intersecting trajectories. 

 

Figure 2. Examples of (non-)continuous, (non-)self-intersecting, and (non-)intersecting 

trajectories on S. 

 
 

In our paper, we apply the following formal definitions of continuity, non-self-intersection, 

and non-intersection (cf. Stijepic (2015,2016,2017a)). 

 

Definition 3. The trajectory (5) is continuous on S (for a given c∈C) if the corresponding 

function xc(t) is continuous (in t) on the interval G (for the given c). 

 

a)

b)

c)
d)

e)
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Definition 4. The (continuous and non-closed) trajectory (5) is non-self-intersecting (for a 

given c∈C) if ∄(t1,t2,t3)∈G3: t1<t2<t3 ∧ xc(t1)=xc(t3)≠xc(t2). 

 

Definition 5. Two trajectories (Tp(A) and Tq(B), where p,q∈C and A,B⊆D) intersect if Tp(A)∩ 

Tq(B) ≠ ∅. Otherwise, if Tp(A)∩Tq(B) = ∅, the trajectories Tp(A) and Tq(B) do not intersect. 

 

The Poincaré-Bendixson theory deals with the limit dynamics. The term ‘limit dynamics’ 

refers to the dynamics for t→∞. The Poincaré-Bendixson theory relies on the concept of the 

‘omega limit set’ for describing the limit dynamics. 

 

Definition 6. (Stijepic (2017a)) Let the function xc(t) satisfy the Axioms 1-3. The point xc
* is 

an omega limit point of the trajectory Tc([0,∞)) (cf. (5)) if there exists a sequence of time 

points tk (where k=0,1,2,…) that satisfies two conditions: (a) tk converges to infinity (i.e., 

tk→∞ for k→∞), and (b) the corresponding sequence xc(tk) converges to xc
* (i.e., xc(tk)→xc

* 

as tk→∞). The omega limit set O(Tc([0,∞))) of the trajectory Tc([0,∞)) is the union of all 

omega limit points of the trajectory Tc([0,∞)). 

 

For a discussion and explanation of the omega limit set, see, e.g., Andronov et al. (1987, 

p.353ff.), Walter (1998, p.322), and Hale (2009, p.46f.). The (type of the) limit dynamics of 

an economy that moves along the trajectory image Tc is indicated by the omega limit set of 

the trajectory Tc, as we will see in Section 8. Finally, we introduce two (non-topological) 

concepts that help us to describe the empirical evidence discussed in Section 4. 

 

Definition 7. The set M is the minimal convex subset of S covering the trajectory family B⊆C 

(cf. Definition 2) if (a) M⊆S, (b) M is convex, (c) ⋃𝑐∈𝐵Tc([0,∞))⊆M, and (d) among all the 

sets satisfying the criteria (a)-(c), M covers the smallest area of S. 

 

Definition 8. Let M be a (convex) subset of S. Let L1 be the set of all line-segments that (a) 

connect two boundary points of M and (b) are parallel to the line-segment 𝐯2𝐯3������. Let l1 be the 

line-segment that has the greatest length among all the line-segments belonging to the set L1 

(cf. Figure 3). d1 is the length of l1. Analogously, let L2 (L3) be the set of all line-segments that 

(a) connect two boundary points of M and (b) are parallel to the line-segment 𝐯1𝐯3������ (𝐯1𝐯2������). 
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Let l2 (l3) be the line-segment that has the greatest length among all the line-segments 

belonging to the set L2 (L3). d2 (d3) is the length of l2 (l3). 

 

Figure 3. An example illustrating l1, l2, and l3. 

 
 

Definitions 7 and 8 allow us to measure the diameter of the minimal subset covering a family 

of trajectories in the three relevant directions on S. In fact, the diameter vector (d1, d2, d3) is a 

(crude) measure of the heterogeneity of a trajectory family on S. The greater the diameters d1-

d3, the greater the differences between the labor shares covered by the trajectories belonging 

to a trajectory family. 

 

4. Empirical regularities of structural change (empirics of structural change) 

While several stylized facts (or empirical regularities) of structural change are known (see 

Stijepic (2015,2016,2017a) for an overview), we focus on Regularities 1-3, which will prove 

useful for assessing the applicability of the Poincaré-Bendixson theory later. For empirical 

evidence on Regularities 1 and 3 and theoretical explanations, see Stijepic (2015,2016, 

2017a). Figure 4 presents evidence supporting Regularities 1-3. 

 

Regularity 1. (Stijepic (2015,2016,2017a)) The long-run dynamics of labor allocation in the 

three-sector framework can be represented by non-self-intersecting trajectories. 

 

Regularity 2. The labor-allocation trajectories differ significantly across countries. The 

minimal convex set M covering the trajectories representing the labor-allocation dynamics of 
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the OECD countries over the last 200 years is relatively large (cf. Definition 7). In 

particular, the diameters d1, d2, and d3 of the set M are relatively large (cf. Definition 8). 

 

Regularity 3. (Stijepic (2016)) The (long-run) labor allocation trajectories of different 

countries intersect. 

 

Figure 4. Labor allocation trajectories of USA, France, Germany, Netherlands, UK, Japan, 

China, and Russia. 

 

Notes: Data source: Maddison (1995). The black dot represents the barycenter of the simplex. Abbreviations: C 

– China, F – France, G –  Germany, J – Japan, N – Netherlands, R – Russia, US – United States, UK – United 

Kingdom. Data points (years in parentheses): USA (1820, 1870, 1913, 1950, 1992), France (1870, 1913, 1950, 

1992), Germany (1870, 1913, 1950, 1992), Netherlands (1870, 1913, 1950, 1992), UK (1820, 1870, 1913, 1950, 

1992), Japan (1913, 1950, 1992), China (1950, 1992), Russia (1950, 1992). 
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5. Some methodological aspects 

5.1 Topological properties of models representing laws 

Economic modelling and predicting, as modelling and predicting in other sciences, relies on 

the assumption that the concepts/variables being modelled obey some sort of laws that can be 

expressed by mathematical equations/relations and are valid for different states of the 

environment and across time to some extent (since, otherwise, modelling and predicting 

would be obsolete). In particular, it is preferable that a (structural change) model (cf. 

Footnote 1) generates a family of curves (e.g., x(t,x0,p): G×S×P→S; cf. Definition 1) that 

represent different initial states (x0) of the system and different parameter settings (p) of the 

model. Given a connected state space (S), a connected parameter space (P), and an 

empirically observed ‘typical’ trajectory that is representable by a generic model trajectory 

(x(t,x0,p): G→S, x0∈S, p∈P), a model (representing laws) should be able to generate a new 

generic trajectory for a marginal deviation of the initial state from the observed initial state 

x0∈S (and for a marginal deviation of model parameters from the assumed/observed 

parameter setting p∈P; cf., e.g., Andronov et al. (1987, p.374 and p.405)). In other words, the 

trajectory family generated by a model representing (economic) laws should not only contain 

a generic trajectory that is sufficiently similar to an empirically observed ‘typical’ trajectory 

but should also cover completely a connected subset (H) of the state space (S) containing the 

generic model trajectory that represents the typical empirical trajectory.4 Otherwise, the 

model would not be empirically relevant since initial states, parameters, and observed states 

(i.e., the typical trajectory) are not measurable exactly and we must assume that the ‘real’ 

initial states, parameters, and trajectories deviate from their observed/measured values and 

from the generic model trajectory representing them (cf. Andronov et al. (1987, p.374 and 

p.405)).5 As we will see in Section 6.1, the extendibility of model predictions to a connected 

subset of the state (and parameter) space is a characteristic of (smooth) differential equation 

systems and, in particular, of the differential equation systems to which the Poincaré-

Bendixson theory applies. For these reasons (among others) such systems are widespread in 

modelling of physical systems obeying physical laws. 

                                                           
4 The analogous is true for a parameter setting variation: the representative trajectory family should contain 
trajectories for all values of a connected subset (Q) of the parameter space (P) containing the parameter setting 
of the representative trajectory, to ensure ‘coarseness’. 
5 For example, a model that can explain the dynamics of country c if the initial agricultural share in country c is 
equal to 0.78, but not if it is equal to 0.781, is a knife-edge model. Such knife-edge models are criticized in 
economics (see, e.g., Temple (2003)). Not to mention that we are not able to exactly measure the agricultural 
employment share in any country. 
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This discussion has a major implication for the meta-model presented in Section 2, as 

discussed in Section 5.2. 

 

5.2 Implications for the meta-model of Section 2 

Empirical evidence implies that structural change seems to follow some ‘laws’ (or 

rules/regularities), which are quite persistent across countries and time (see Stijepic (2017a) 

for a summary and literature references). Economic laws can be understood as ceteris paribus 

laws (cf., e.g., Jackson and Smith (2005) and Reutlinger et al. (2015)). This is reflected by the 

fact that standard structural change models (cf. Footnote 1) are dependent on parameters 

(e.g., time-preference rate and technology parameters) that, in general, may vary across 

countries. A most obvious example of observable cross-country parameter variation are the 

technology differences between developed and underdeveloped economies. Moreover, as 

implied by Regularity 2, the structural trajectories of the OECD countries (covering the last 

200 years) differ significantly, such that we have to assume that the initial states xc
0 (cf. 

Definition 1) differ significantly across countries c (when choosing an initial time point 

within the last 200 years, which is a standard choice in structural change modelling). Thus, it 

makes sense to assume that the meta-model of Section 2 representing the dynamics of 

different countries (indexed by the index c and the index set C) represents different initial 

states and different parameter values of a structural change model. Then, the arguments 

elaborated in Section 5.1 imply that if the meta-model of Section 2 represents economic 

(structural change) laws and is of empirical relevance, we should assume that the trajectory 

family defined by Axioms 1-3 (and indexed by the set C) covers completely a connected 

subset H of the state space S, i.e., 

(6) ⋃𝑐∈𝐶Tc([0,∞))⊇H, 

where the index set C, the relevant state space H, and the trajectories Tc represent at least 

some countries that have typical structural change patterns. 

 

6. The Poincaré-Bendixson theory 

By now, we have described the empirics and the axiomatics of structural change analysis by 

using the topological concepts introduced in Section 3. Now, we turn to the Poincaré-

Bendixson theory. In particular, we describe the type of dynamic system to which the 

Poincaré-Bendixson theory applies (Poincaré-Bendixson assumptions), the geometrical 

characteristics that can be used to identify this type of system, and the limit-dynamics 

predictions of the Poincaré-Bendixson theory (Poincaré-Bendixson results). 
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6.1 The Poincaré-Bendixson assumptions and their topological interpretation 

First, we recapitulate some elementary differential equation theory. Consider an autonomous 

differential equation system in the plane associated with the following initial value problem: 

(7) ẏ(t) = Φ(y(t)), y(0) = y0∈H⊆R2, Φ: H→R2, t∈D⊇[0,∞), 

where Φ is a vector function, D an interval, and H an open and connected subset of R2. A 

solution of the initial value problem (7) on the interval D is a vector function y(t): D→H, 

satisfying y(0) = y0. 

If the function Φ is sufficiently smooth, then there exist unique solutions of the initial value 

problem (7) for all y0∈H (see, e.g., Walter (1998), p.108 and p.110f.). For example, if Φ is 

analytical, continuous and continuously differentiable, or Lipschitz-continuous, then the 

uniqueness of solutions of (7) is ensured (see, e.g., Stijepic (2015, p.84f.) for a list of (exact) 

conditions ensuring uniqueness of solutions and literature references). The Poincaré-

Bendixson theory applies to the differential equation systems in the plane (of the type (7)) 

that are sufficiently smooth to ensure the uniqueness of their solutions (see, e.g., Andronov et 

al. (1987, p.351ff.), Guckenheimer and Holmes (1990, p.43f.), Hale (2009, p.51ff.), and 

Teschl (2011, Chapter 7.3)). Henceforth, we name these systems ‘sufficiently smooth 

autonomous differential equation systems in the plane’ (abbreviated ‘SSADES’). 

Given the set H of initial values, a SSADES generates a family (F) of trajectories/curves that 

have the following (topological) characteristics (cf. Walter (1998, p.10, p.36, and p.110f.), 

Hale (2009, p.18f. and p.38f.), and Stijepic (2015, p.84f.)). 

 

Property 1. (Continuity.) Each trajectory belonging to the family F is continuous (cf. 

Definition 3). 

 

Property 2. (Non-self-intersection.) Each trajectory belonging to the family F is non-self-

intersecting (cf. Definition 4). 

 

Property 3. (Non-intersection.) The trajectories belonging to the family F are non-

intersecting (cf. Definition 5). 

 

Property 4. (Simple covering.) Let the (regular) point p∈H (cf. (7)) be located on the 

trajectory τ, which belongs to the family F. If we marginally deviate from the point p such 
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that we reach the (regular) point q∈H, then q is either on the trajectory τ or on another 

trajectory belonging to the trajectory family F (but not both). 

 

Finally, note that the Poincaré-Bendixson theory applies only to bounded trajectories (cf. 

Section 6.2). Thus, we postulate the following property. 

 

Property 5. (Boundedness.) The trajectory under consideration is bounded. 

 

Overall, Properties 1-5 characterize SSADES to which the Poincaré-Bendixson theory 

applies. Thus, we will use these properties to discuss/test whether the structural change 

axioms/empirics are consistent with the assumptions of the Poincaré-Bendixson theory. Note 

that even non-autonomous differential equation systems can generate trajectory families that 

have the Properties 1-5 and that are predictable by the Poincaré-Bendixson theory. Thus, 

Properties 1-5 constitute rather a test of the applicability of the Poincaré-Bendixson theory (in 

structural change modelling) than a test of the autonomy of the differential equation system 

(describing the dynamics of structural change). 

Note that the Poincaré-Bendixson theory is restricted to the dynamic systems or the subsets 

(H) of the state space that do not generate/contain an infinite number of fixed points (see, 

e.g., Andronov et al. (1987, p.351f.) and Hale (2009, p.55)). Since we cannot evaluate 

economically or empirically this requirement/assumption, we assume, henceforth, that it is 

satisfied (i.e., the number of fixed points is finite). Giving an intuitive economic meaning to 

this assumption is an interesting topic for further research. Moreover, there are 

generalizations of the Poincaré-Bendixson theory (e.g., Solntzev (1945)) allowing for 

infinitely many fixed points (see, e.g., Ciesielski (2012, p.2117f.) and Nikolaev and 

Zhuzhoma (1999, p.37)). Further research could use these generalizations as a starting point. 

 

6.2 The Poincaré-Bendixson results 

Let Y([0,∞)):={y(t)∈H: t∈[0,∞)} denote (the image of) a bounded (half-)trajectory on an open 

and connected subset (H) of the plane R2, where the function y(t): D→H represents the 

solution of a SSADES in the plane (for some given initial value y0∈H) and D⊇[0,∞) is an 

(open) interval (cf. Section 6.1).6 The Poincaré-Bendixson theory states that then, one of the 

following statements is true (cf. Definition 6, Andronov et al. (1987, p.362f.), Guckenheimer 
                                                           
6 Recall that we assume here that the SSADES is such that it does not generate an infinite number of fixed 
points on the domain H, as explained at the end of Section 6.1. 
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and Holmes (1990, p.45), Hale (2009, p.55 and, in particular, Theorem 1.3) and Teschl 

(2011, Chapter 7.3 and, in particular, Theorem 7.16)):  

(i) O(Y([0,∞))) is a fixed point (critical point). 

(ii) O(Y([0,∞))) is (the image of) a Jordan curve. 

(iii) O(Y([0,∞))) is (the image of) a homoclinic orbit (including its fixed point). 

(iv) O(Y([0,∞))) is a union of at least two fixed points and the (images of the) trajectories 

connecting them (‘heteroclinic union’). 

Note that (a) the term ‘heteroclinic union’ is not common in the literature and we use it here 

only as an abbreviation and (b) a ‘heteroclinic union’ must contain heteroclinic trajectories 

and can contain homoclinic trajectories. 

We interpret and discuss the cases (i)-(iv) in the context of structural change in Section 8. 

 

7. Comparison of the Poincaré-Bendixson assumptions to the axiomatics and empirics 

of structural change analysis via topology and methodology 

Now, we can turn to the question of the applicability of the Poincaré-Bendixson theory in 

structural change modelling. Due to the spadework of the previous sections, this comparison 

is relatively straight-forward. 

As discussed in Section 6.1, the Poincaré-Bendixson theory applies to a bounded trajectory 

generated by a dynamic system that generates a family of trajectories that are continuous, 

non-(self-)intersecting and simply cover a subset of the plane, i.e., the Poincaré-Bendixson 

theory applies to a family of trajectories characterized by the Properties 1-5. Our axiomatic 

model formulated in Section 2, the empirical evidence presented in Section 4, and the 

methodological arguments discussed in Section 5.2 are consistent with the assumption of 

such a system, as explained in the following. 

Obviously, Axioms 1-3 support Property 1. Property 2 is clearly supported by the empirical 

evidence (cf. Regularity 1).  

Property 3 and Regularity 3 seem to contradict each other at first sight. However, Property 3 

and Regularity 3 are not necessarily inconsistent. We have shown in Section 5.2 that (a) the 

structural change models represent ceteris paribus laws such that their predictions depend on 

parameters, which differ across countries, and (b) the countries differ by initial states xc
0 

given the standard horizon of structural change analysis (of ca. 200 years). If the parameters 

of a SSADES (cf. Section 6.1) differ across countries and countries are characterized by 

different initial states xc
0, intersections of the trajectories representing different countries may 

arise (see the Appendix for an example). Thus, in general, Regularity 3 cannot be interpreted 
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as evidence against Property 3, and the study of the causes of the observable intersections 

(i.e., the analysis of the question whether Regularity 3 represents cross-country differences in 

parameters of the dynamic system generating the structural dynamics) is an interesting and 

very extensive topic for further research that could help to establish the validity of Property 3 

(and the Poincaré-Bendixson theory) in structural change modelling. Moreover, there are 

theories/models (e.g., the Kongsamut et al. (2001) model and the Ngai and Pissarides (2007) 

model) that generate equilibriums7 that represent the long-run economic dynamics and are 

characterized by non-intersecting labor allocation trajectories (see Stijepic (2016)); these 

models can be regarded as ‘theoretical’ arguments for modelling (long-run) structural change 

in a framework of non-intersecting trajectories (cf. Property 3). 

The methodological arguments presented in Section 5.2 state that a structural change model 

should generate a family of trajectories that cover completely a bounded subset (H) of the 

state space. If we assume that a family (F) of trajectories satisfies this requirement and is 

characterized by Properties 1-3 (as discussed above), then obviously, this family (F) is 

characterized by Property 4 as well. In particular, if a family of trajectories is continuous (cf. 

Property 1), non-self-intersecting (cf. Property 2), non-intersecting (cf. Property 3), and 

covers completely the domain H (according to the arguments of Section 5.2), then obviously, 

this family covers simply the domain H (cf. Property 4). 

Finally, note that Property 5 is consistent with the structural change meta-model presented in 

Section 2, since structural change is defined on the bounded domain S (cf. Axiom 1 and 

Figure 1). 

 

8. On the interpretation/application of the Poincaré-Bendixson theory in the context of 

structural change 

Now, assume that we impose additional restrictions (cf. Sections 4-7) on the structural 

change meta-model of Section 2 such that it becomes predictable by the Poincaré-Bendixson 

theory. According to Axiom 1, the structural change in the country c∈C is given by the 

function xc(t): [0,∞)→S, and the Poincaré-Bendixson theory predicts that the omega limit-set 

of this function is characterized by one and only one of the following scenarios (cf. Section 

6.2 and Definition 2): 

(i) O(Tc([0,∞))) is a fixed point (critical point). 

(ii) O(Tc([0,∞))) is (the image of) a Jordan curve. 
                                                           
7 Kongsamut et al. (2001) (Ngai and Pissarides (2007)) name the long-run equilibrium arising in their model 
‘generalized balanced growth path’ (‘aggregate balanced growth path’). 
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(iii) O(Tc([0,∞))) is (the image of) a homoclinic orbit (including its fixed point). 

(iv) O(Tc([0,∞))) is a union of at least two fixed points and (the images of) the trajectories 

connecting them (‘heteroclinic union’). 

We can interpret the scenarios (i)-(iv) as follows: 

In case (i), the labor allocation in economy c converges along the trajectory image Tc to a 

fixed point (xc
*) for t→∞, i.e., O(Tc([0,∞)))={xc

*}. Thus, structural change is transitory, i.e., 

it comes to a halt in the limit. 

Case (ii) is known from the Poincaré-Bendixson theorem (see, e.g., Miller and Michel (2007, 

p.290ff.) or Hale (2009, p.51ff.)). O(Tc([0,∞))) is the image of a Jordan curve in case (ii). 

Thus, Tc represents either (a) a closed trajectory (i.e., a Jordan curve) or (b) a non-closed 

trajectory converging to a closed trajectory (i.e., the labor allocation in economy c converges 

to a limit cycle).  

In cases (iii) and (iv), for t→∞, the labor allocation in economy c converges along the 

trajectory image Tc to (all) the points of the homoclinic orbit or to (all) the points of the 

‘heteroclinic union’, per definition of the term omega limit set (cf. Definition 6). Therefore, 

structural change is cyclical in the limit (cf. Figures 5 and 6, which are based on Andronov et 

al. (1987, p.362)). 

Overall, the Poincaré-Bendixson theory allows us to reduce the number of potential structural 

change limit-scenarios to only two qualitative scenarios stating that structural change is either 

transitory or cyclical in the limit. The standard structural change literature (cf. Footnote 1) 

implies, in general, that structural change is transitory. Thus, our meta-model (i.e., the 

Poincaré-Bendixson theory) generalizes this result. The cyclicality of structural change is 

interesting since it implies, e.g., unemployment (associated with reallocation of labor across 

sectors) and fluctuations caused by structural change (e.g., productivity fluctuations). 

Moreover, cyclical structural change behavior seems to be ‘inefficient’ from the 

macroeconomic perspective since it causes structural change costs (see Stijepic 

(2016,2017b)). However, the empirical evidence shows that there are some short-run 

fluctuations with respect to structural change and, in particular, the structural change 

trajectories seem to have loops (on S) covering rather short periods of time (cf. Stijepic 

(2016,2017a)). Thus, cyclicality of structural change is not an irrelevant concept from the 

empirical point of view. 

The representability of structural change by a system that is predictable by the Poincaré-

Bendixson theory can have much more interesting implications if the statements on the 

geometrical properties of such a system (i.e., Properties 1-5) are combined with other laws or 
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empirical information on structural change. For example, Stijepic (2015) demonstrates by 

using an axiomatic/geometric approach that if the continuity and non-self-intersection 

properties (i.e., Properties 1 and 2) are combined with the fact that underdeveloped 

(advanced) economies are dominated by agriculture (services), the number of future 

structural change scenarios (in developed and emerging countries) can be reduced 

significantly, thus, yielding interesting meta-model predictions of structural change. Further 

research could focus on combining Properties 1-5 with empirical information on the 

geometrical properties of structural change trajectories and deriving predictions of structural 

change based on them (see Stijepic (2017a) for an overview of such empirically observable 

geometrical properties of structural change trajectories). 

 

Figure 5. Example: O(Tc([0,∞))) is the image of a homoclinic orbit. 

 
 

Figure 6. Example: O(Tc([0,∞))) is a ‘heteroclinic union’. 
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9. Concluding remarks 

The Poincaré-Bendixson theory is a prototype system theory. It is applicable to a wide range 

of real world physical systems. While economic systems (which are often describable by 

ceteris paribus laws and non-autonomous differential equations) are quite different in 

comparison to physical systems, the long-run structural change in the three-sector framework 

seems to be quite similar to physical phenomena, since it obeys economic laws that are quite 

robust across countries and time. Therefore, we devoted this paper to the analysis of the 

question whether structural change behaves like one of the typical physical phenomena that 

can be described by the Poincaré-Bendixson theory. 

We have chosen a rather innovative way of doing so. While it is possible to justify the 

applicability of the Poincaré-Bendixson theory in economics on the basis of theoretical 

assumptions (see, e.g., Coles and Wright (1998)), we have tried to rely on (a) the 

mathematical implications of standard structural change definitions and mathematical 

structural change modelling conventions, (b) empirical evidence, and (c) methodological 

arguments for establishing the validity of the Poincaré-Bendixson theory in structural change 

modelling aiming at a system-theoretical classification of the structural change phenomenon 

that is independent of specific economic assumption sets, schools of thought, and economic 

ideologies in general (cf. Section 1). 

As noted in Section 7, it can be shown that some standard structural change models generate 

dynamic equilibriums that are consistent with (some of) the Poincaré-Bendixson assumptions 

(cf. Stijepic (2016)). However, neither does the application of the Poincaré-Bendixson theory 

in these models makes sense (since the assumptions of these models are sufficiently specific 

to solve the differential equation systems generated by them), nor generate these models the 

wide range of potential limit-scenarios (cf. Section 8) predicted by the Poincaré-Bendixson 

theory. Moreover, as discussed in Section 1, standard structural change models are 

characterized by many rather ‘ideological’ assumptions, such that their support of the 

applicability of the Poincaré-Bendixson theory in structural change modelling may be 

regarded as not very robust and, thus, our system-theoretical complement of these models 

seems to make sense. 

The analysis of the applicability of the Poincaré-Bendixson theory in structural change 

modelling is in its core the search for an answer to the question whether structural change is 

representable by smooth autonomous differential equations (in the plane) or by simple 

coverings of a bounded and connected subset of a plane. The answer to this question is 

interesting, since (a) it allows us to classify one of the most persistent phenomena of 
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economic development from the system-theoretical perspective and, thus, elaborate relatively 

robust (cf. Section 1) predictions of limit-structural change dynamics on the basis of the 

Poincaré-Bendixson theory and (b) the fact that structural change is representable by simple 

coverings implies in conjunction with other (empirical) structural change facts some 

predictions/statements regarding the nature of transitional structural change dynamics, as 

demonstrated by Stijepic (2015) (cf. Stijepic (2017a)). Further research could deal with the 

continuation of the latter approach for elaborating further aspects of transitional structural 

change dynamics. 

Moreover, we have elaborated two relatively interesting topics for further research: (1.) the 

study of the case with infinitely many fixed points mentioned in Section 6.1 and (2.) the 

interpretation of the empirical evidence on the intersections of countries’ structural change 

trajectories and, in particular, the question whether these intersections can be explained by 

cross-country parameter variation (cf. Section 7). 
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Appendix 

As discussed in Section 6.1, SSADES are characterized by non-(self-)intersecting trajectory 

families. In this appendix, we show that such a non-(self-)intersecting trajectory family can 

give rise to intersections of trajectories representing different countries if the parameter 

setting differs across countries. 

Let (u,v) be a coordinate system that is parallel to S, such that all points on S can be identified 

by their coordinates (u,v). Assume, moreover, a family of lines representing the images of 

linear non-(self-)intersecting trajectories covering (a subset of) S and indicating a movement 

away from vertex v1. Let this family of lines be given by the family of functions u = fb(a,v) = 

a + bv, where fb(a,v): R2→R for a given b∈R. Assume that country 1 is characterized by b = 

1/3 and country 2 is characterized by b = 2/3. Figure A1 illustrates the family of functions 

fb(a,v), where the parameter setting b = 1/3 (b = 2/3) is represented by solid lines/arrows 

(dashed lines/arrows) and only a subset of the line-segments that intersect with S is depicted. 

Moreover, assume that the initial states xc
0 of the countries are not identical (i.e., x1

0 ≠ x2
0) 

and, thus, at t = 0, the countries are not located at the same place on S. As we can see in 

Figure A1, the images of the trajectories of countries 1 and 2 intersect (at the point z), 

although each of the countries is modelled by a system of non-(self-)intersecting trajectories 

and the countries differ only by the parameter b (and by the initial states xc
0). 

 

Figure A1. An example of trajectory intersection arising from cross-country differences 

regarding parameters and initial states. 
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