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Abstract

A new method for pricing contingent claims, which is particularly well
suited for options with complex barrier and volatility structures, is in-
troduced. The approach is based on a high precision approximation of
the Feynman-Kac-equation with distributed approximating functionals
(DAFs). The method under consideration is most elegant from a com-
putational point of view, and it is shown to be faster and more accurate
than conventional solution schemes.
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1. Introduction

Since the CBOE started trading standardized call options in 1973, derivatives
evolved into a fundamental constituent of modern financial markets. Their role
as most sophisticated risk transfer instruments is reflected in the enormous va-
riety of standard and exotic contract types. Today most options are priced
numerically, because the Black-Scholes-equation does not provide analytical so-
lutions when more realistic models for the dynamics of the underlying are chosen.
This concerns primarily the Black-Scholes-assumption of constant volatilities,
which is falsified with overwhelming empirical proof. Thus, it is advisable to
use models with stochastic or deterministic volatility term structure, especially
when pricing vega-sensitive contracts1. A certain class of options, considered
particularly volatility sensitive by practitioners, are barrier options.
∗Thomas Mazzoni, Department for Applied Statistics, University of Hagen, Germany,

Tel.: 0049 2331 9872106, Email: Thomas.Mazzoni@FernUni-Hagen.de
1An excellent treatment of volatility term structure models is provided in Gatheral (2006).
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The trading volume of barrier options steadily increased over the last twenty
years and they are barely considered exotics nowadays. Their popularity is
partly due to their weak path dependency (cf. Wilmott, 2006, chap. 22 & 23),
resulting in a low dimensional partial differential equation problem with bound-
ary conditions. Even vanilla barrier options come in many flavors, making
them interesting contracts for a variety of hedging- or risk transfer require-
ments. Most basic types can be valuated analytically in the Black-Scholes-
framework (see for example Merton, 1973; Reiner and Rubinstein, 1991a; Haug,
2007, chap. 4.17–20). For complex barrier structures and more sophisticated
models for the underlying, the corresponding partial differential equation prob-
lem has to be solved numerically. Standard numerical methods are usually
preferred over Monte Carlo simulation, because the partial differential equa-
tion is low dimensional and thus numerical schemes are more efficient regarding
computational resources.

There are generally two types of numerical schemes available, tree based
schemes and finite differences. Tree structures (Cox et al., 1979; Boyle, 1986)
often suffer from poor accuracy because the barrier is not necessarily located on
the nodes. Refinements have been suggested by Kamrad and Ritchken (1991),
Derman et al. (1995) and Ahn et al. (1999). Alternatively, finite difference
schemes are available; especially the unconditionally stable scheme of Crank and
Nicolson (1996) is the working horse of modern derivative pricing. Recently,
finite element approaches, permitting variably dense polygon meshing, have
gained some popularity. For example Zhu and de Hoog (2010) suggested a fully
coupled scheme, based on the Galerkin method.

In this article a new method is introduced, based on so called distributed ap-
proximating functionals (DAFs). The DAF-formalism was originally applied to
quantum mechanical wave propagation problems as numerical solution method
for the time-dependent Schrödinger -equation (Hoffman et al., 1991; Hoffman
and Kouri, 1992). Later it was used to solve the Fokker-Planck -equation (Wei
et al., 1997; Zhang et al., 1997a,b). Interpolating properties of DAFs are ex-
plored in Hoffman et al. (1998). Recently, distributed approximating functionals
were successfully applied to nonlinear filtering problems (Mazzoni, 2011).

The remainder of the manuscript is organized as follows: Section 2 in-
troduces the DAF-formalism and illustrates the choice of an optimal band-
width. In section 3 the DAF-method is applied to the Feynman-Kac-equation.
It is also shown how to incorporate different boundary conditions. Section
4 provides a plain vanilla example and analyzes numerical properties of the
DAF-approximation. In section 5 several test scenarios are analyzed, includ-
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ing problems without explicit solutions and complex barrier and volatility term
structures. The results are benchmarked against the classical Crank-Nicolson-
method. Section 6 summarizes the findings, including a discussion of pros and
cons of the DAF-method.

2. Distributed Approximating Functionals

This section provides a brief introduction to the distributed approximating func-
tional formalism. A more rigorous treatment on this subject can be found in
Hoffman et al. (1991); Hoffman and Kouri (1992) and Zhang et al. (1997a,b).

2.1. Definition and Properties of DAFs

A distributed approximating functional or DAF is characterized as approximate
mapping of a particular subset of continuous functions in the Hilbert-space L2

to itself (Zhang et al., 1997a,b). Consider the definition of Diracs δ-function

f(x) =

∫
δ(x− x′)f(x′)dx′. (1)

A particular class of DAF-functions, the Hermite-DAFs, can be used to approx-
imate the δ-function in a very convenient way

f(x) ≈
∫
δM (x− x′;h)f(x′)dx′, (2a)

with

δM (x;h) =
1

h
φ
(x
h

) M/2∑
m=0

1

m!

(
−1

4

)m
H2m

(
x√
2h

)
. (2b)

In (2b), φ(x) denotes the standard normal probability density function and
Hm(x) is the m-th Hermite-polynomial, orthogonal with respect to the weight
function e−x2 . Notice that only even Hermite-polynomials are used because the
δ-function is symmetric in its argument. Furthermore, M is the highest degree
polynomial involved in the construction of the DAF and h is its bandwidth.
Both parameters control the accuracy of the approximation. By fixing one or
the other, one obtains

lim
M→∞

∫
δM (x− x′;h)f(x′)dx′ = lim

h→0

∫
δM (x− x′;h)f(x′)dx′ = f(x), (3)

which is an alternative way of defining the δ-function as limit of a sequence of
functions (Lighthill, 1966, chap. 2.2).
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The DAF mapping can be used to sample an arbitrary function at discrete
points. If these nodes form an equispaced grid, equation (2a) can be approxi-
mated by

f(x) ≈ ∆x

N∑
j=1

δM (x− xj ;h)f(xj), (4)

with ∆x = xj − xj−1. Equation (4) is a DAF-based interpolation formula (cf.
Hoffman et al., 1998). But there is another important implication of the DAF-
formalism. Consider the definition of the l-th derivative of Diracs δ-function

f (l)(x) =

∫
δ(l)(x− x′)f(x′)dx′. (5)

Usually, this is a purely formal expression because the derivative of the δ-
function is not defined and the operation has to be rolled over to the test func-
tion f(x) by partial integration. If the Hermite-DAF approximation is used,
the derivative can be evaluated immediately. Considering the usual relations
between Hermite-polynomials and their derivatives (see e.g. Abramowitz and
Stegun, 1970, p. 783), one obtains the differentiating Hermite-DAF

δ
(l)
M (x;h) =

(−1)l

2l/2hl+1
φ
(x
h

) M/2∑
m=0

1

m!

(
−1

4

)m
H2m+l

(
x√
2h

)
. (6)

Now the derivative (5) can be approximated by

f (l)(x) ≈ ∆x
N∑
j=1

δ
(l)
M (x− xj ;h)f(xj). (7)

Thus, the operation of differentiation has turned into an algebraic operation.
Furthermore, the derivative is approximated at the same level of approximation
as the function itself. This property of Hermite-DAFs is referred to as ‘well
tempered’.

By discretizing the left hand side of (7) on the same spatial grid, one obtains

f (l)(xi) ≈ ∆x
N∑
j=1

δ
(l)
M (xi − xj ;h)f(xj). (8)

Obviously (8) can be written most conveniently in matrix/vector form,
f (l) = Lf , by identifying the components of the operator matrix L(xi, xj) =
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∆xδ
(l)
M (xi − xj ;h). Thus, an arbitrary differential operator of the form

L(x) = f(x)
∂

∂x
+ g(x)

∂2

∂x2
(9a)

has the Hermite-DAF matrix representation

L(xi, xj) = ∆xf(xi)δ
(1)
M (xi − xj ;h) + ∆xg(xi)δ

(2)
M (xi − xj ;h), (9b)

which is exactly the structure of the Kolmogoroff -backward-operator. Notice
that the operator matrices (9b) can be computed most efficiently, because the
differentiating DAF matrices have Toeplitz -structure.

2.2. Choosing the Optimal Bandwidth

The limit relation (3) implies a connection between the number of expansion
terms M and the bandwidth h of the Hermite-DAF. It is natural to think of
the expansion order M as a measure of pre-defined accuracy so one might ask
how to choose h optimally with respect to a given M . One possible approach
is to make the approximation as accurate as possible on the discrete grid. For
l = 0 equation (8) is exact, if

δM (xi − xj ;h) =
1

∆x
δij (10)

holds, with the Kronecker -δ on the right-hand side of (10). To the first order this
implies δM (0, h) = 1/∆x and one obtains from the definition of the Hermite-
DAF (2b)

h =
∆x√

2π

M/2∑
m=0

1

m!

(
−1

4

)m
H2m(0). (11)

In the remainder of the article the bandwidth is chosen according to (11). There-
fore, the dependence on h is suppressed to simplify notation. Figure 1 illustrates
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Figure 1: Differentiating Hermite-DAFs with l = 0, 1, 2 (Left, Center, Right) and
∆x = 1 – Degrees of Approximation are M = 20 (Black) and M = 100 (Gray)
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the (differentiating) Hermite-DAFs for different degrees of approximation. No-
tice that δM (x) is approximately zero at all integer multiples of ∆x, except at
x = 0, where it is one, as required.

3. Backward-Operator and Time Evolution

This section details the approximation of the Feynman-Kac-equation by using
the DAF-formalism. Furthermore, it is shown how the appropriate boundary
conditions can be integrated into the DAF-representation of the corresponding
differential operator.

3.1. Backward Time Evolution

Assume that the stock price St is a P -measurable random variable on the prob-
ability space (Ω,F , P ), and that a natural filtration F0 ⊆ Ft ⊆ F is induced
by the time-evolution of St, with all null sets contained in F0. Further, assume
that the dynamics of St are governed most generally by the Itô-process

dSt = µ(St, t)dt+ σ(St, t)dWt, (12)

where dWt is the increment of the Wiener -process, and all regularity conditions
are fulfilled as required. Now, consider the Feynman-Kac-picture of the option
pricing problem

V (S, t) = EQ
[
e−

∫ T
t r(S,t′)dt′V (S, T )

∣∣∣Ft] , (13)

where the expectation is to be taken with respect to the risk-neutral probability
measure Q, conditioned on the information set Ft, available at time t. This can
be converted into

V (S, τ) =

∫ ∞
−∞

(←−
T e

∫ τ
0 L(S′,τ ′)dτ ′V (S′, 0)

)
δ(S − S′)dS′, (14a)

where the backward-operator is given by

L(S, τ) = q(S, τ)
∂

∂S
+

1

2
σ2(S, τ)

∂2

∂S2
− r(S, τ), (14b)

with time to maturity τ = T − t, and risk neutral drift q(S, τ). The Dyson-
operator

←−
T enforces the correct time order of operations, if the exponential is

expanded into a power series. Equation (14a) is usually of little practical use,
but considering its DAF-representation, this changes dramatically.
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Assume for the moment that the backward-operator is constant with respect
to time, then one obtains

V (S, τ) =

∫ ∞
−∞

(
eL(S′)τV (S′, 0)

)
δ(S − S′)dS′. (15)

Equation (15) is very appealing with respect to the DAF-approximation in two
ways. First, the DAF-formalism transforms the differential operator L(S) into
a matrix, which means, the terms in brackets translate to a matrix/vector mul-
tiplication involving a matrix exponential. This is a much simpler problem than
the original abstract operator exponential. Second, the integral involving Diracs
δ-function can be approximated by a DAF-functional, resulting in an interpo-
lation between the grid nodes, maintaining the same order of accuracy as the
approximation of the differential operator.

Define an equally spaced grid S1, . . . , SN , with ∆S = Si − Si−1. From the
terms in brackets in (15) and the DAF-formalism of section 2 one obtains

V (Si, τ) =

N∑
j=1

eL(Si,Sj)τV (Sj , 0), (16a)

with

L(Si, Sj) = ∆S

(
q(Si)δ

(1)
M (Si − Sj)

+
1

2
σ2(Si)δ

(2)
M (Si − Sj)− r(Si)δM (Si − Sj)

)
.

(16b)

For all practical purposes it can be assumed that the (N ×N) operator matrix
L is not defective, which means that it has linearly independent eigenvectors.
Then the eigenvalue decomposition of L is

eLτ = PeΛτP−1, (17)

where P−1 is the inverse matrix of P , and Λ is the diagonal matrix of eigenvalues
λi of L. Thus,

(
eΛτ
)
ij

= eλiτδij holds, which can be computed easily. In case of
a defective matrix L see for example Moler and van Loan (2003) for alternative
ways to calculate the matrix exponential. Summarizing these results, equation
(15) can be approximated by

V (S, τ) ≈ ∆S
N∑
i=1

N∑
j=1

eL(Si,Sj)τV (Sj , 0)δM (S − Si), (18)
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where the matrix exponential is computed according to (17). Notice that the
operator matrix and its eigenvalue decomposition has to be computed only once
to cover the complete time interval [0, τ ].

3.2. Integrating Boundary Conditions

For every approximation scheme, operating on a finite discrete grid, it is neces-
sary to impose conditions on the boundaries. In this sense barrier options are
optimal candidates for numerical schemes because their payoff structure includes
natural boundaries. This is not necessarily true for more complex contracts like
partial barrier options with intermittent barriers.

Whatever the boundary conditions are, they have to be absorbed into the
operator matrix L(Si, Sj). This can be done by injecting rows from another
operator matrix LB(Si, Sj), which governs the dynamics on and beyond a spe-
cific boundary. These dynamics are much simpler than those in the regular
region of the problem, because they are usually restricted by Dirichlet- or Neu-
mann-conditions, rendering the original PDE-problem to an ODE-problem on
the boundary. One result of this simplification is that the operator matrix LB
is at least diagonal and in most cases time-independent, which means that it is
commutative.

Let V (τ) be the vector containing all values V (Si, τ) at nodes i = 1, . . . , N .
Then for very small ∆τ

V (τ + ∆τ) ≈ exp

[
LB(τ)∆τ +

∫ τ

0
LB(s)ds

]
V (0)

= eLB(τ)∆τV (τ)

≈ (I + LB(τ)∆τ)V (τ)

(19)

holds on and beyond the boundary, with the (N ×N) identity matrix I. From
this expression the boundary operator can be constructed for a variety of bound-
ary conditions. To illustrate the procedure, lets assume that the risk neutral
Itô-diffusion is given by a geometrical Brownian motion

dSt = rStdt+ σStdWt. (20)

Then the DAF-Representation of the backward-operator is a matrix with entries

L(Si, Sj) = ∆S

(
rSiδ

(1)
M (Si − Sj) +

1

2
σ2S2

i δ
(2)
M (Si − Sj)− rδM (Si − Sj)

)
.

(21)
First consider the case of an upper knockout barrier Su when no rebate is
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granted. The necessary condition on and beyond the boundary is

0 = V (τ + ∆τ) ≈ (I + LB∆τ)V (τ), (22)

with V (τ) = 0. It follows immediately that LB(Si, Sj) = 0 is a trivial solution.
If a rebate R is granted immediately when the barrier is hit, the boundary
operator is also zero everywhere, only the initial value along the boundary is R.

If the rebate is payed at maturity, in case the underlying has hit the barrier
during its lifetime, then the (componentwise) relation

V (Si, τ + ∆τ) = e−r(τ+∆τ)R = e−r∆τV (Si, τ) ≈ (1− r∆τ)V (Si, τ) (23)

has to hold. Obviously, the boundary operator is LB(Si, Sj) = −rδij in this
case.

Now consider the case where no barrier is present. For example, a plain
vanilla call option with strike K has an approximate value of V (S, τ) = S −
e−rτK for S � K. By Taylor -expanding e−r(τ+∆τ) = e−rτ (1− r∆τ + . . .) and
neglecting terms of order (r∆τ)2, it follows that

V (S, τ + ∆τ) ≈ V (S, τ) + re−rτK∆τ =

(
1 +

re−rτK

S − e−rτK
∆τ

)
V (S, τ) (24)

has to hold. Equation (24) entails the inconvenient result that the elements
of the operator matrix are no longer time-independent. However, Taylor -
expanding the bracket around τ = 0 and collecting terms by orders of r∆τ
yields

1 +
re−rτK

S − e−rτK
∆τ = 1 +

rK

S −K
∆τ +O(r2∆τ). (25)

Because r can be assumed small, terms of orders higher than r∆τ can be ne-
glected without significant loss of accuracy, and thus the boundary operator is
approximately

LB(Si, Sj) ≈
rK

Si −K
δij . (26)

It turns out that (26) is also the correct boundary operator for a deep in-the-
money vanilla put option.

In general, the operator matrix L assembles rows of the regular operator
inside the real or artificially imposed boundaries, and rows of the boundary
operator on and beyond the boundary. Due to the interpolating properties of the
Hermite-DAFs, it is generally not sufficient to impose the boundary condition
only on the first or last row of the operator matrix, as illustrated in the next
section. This is a slight disadvantage over conventional methods like Crank-
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Nicolson.

4. Numerical Analysis

In this section a plain vanilla call option is valuated to demonstrate the proce-
dure. Because an analytical vanilla call price is available, accuracy and perfor-
mance of the method can be analyzed easily. Furthermore, because no barrier
is present, conditions on and outside an artificially imposed boundary can be
investigated.

4.1. Plain Vanilla Call Option

Because the artificially imposed boundary conditions for a plain vanilla option
are the most delicate ones, it is appropriate to check the properties of the DAF-
approximation under these conditions first. The test scenario is a European
plain vanilla call option with exercise price K = 100, time to maturity τ =

100 days, a fixed interest rate of 5% p.a. and a daily volatility of σ = 2%.
The model for the underlying is a geometrical Brownian motion, which implies
time-independence of the backward-operator. The discrete grid is chosen to
cover the range Smin = 30 to Smax = 180 with different spacings ∆S. The
resulting operator matrix is given by (21), with the last ten rows replaced by
the corresponding rows of the boundary operator (26).

Figure 2 illustrates the results for the particular choice ∆S = 1 andM = 30.
The DAF-approximation literally coincides with the analytical solution (figure 2
left). In the artificial boundary region, the DAF-approximation can no longer be
trusted unconditionally, even though it holds well at the discrete nodes (figure
2 right). This is due to the interpolating properties of the Hermite-DAFs as

60 80 100 120 140
S

10

20

30

40

50

VHS,TL

174 176 178 180
S

80

85

90

VHS,TL

Figure 2: DAF-Approximation of a European Plain Vanilla Call Option with Exercise
Price K = 100 (Left) and Illustration of Loss of Accuracy in the Boundary Region (Right)

– Numerical Settings: M = 30 and ∆S = 1
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DAF-Approximation Performance
M = 20 M = 30 M = 50

∆S Timing Rel. Error Timing Rel. Error Timing Rel. Error
5 0.0087 sec. 0.8621 % 0.0145 sec. 0.8609 % 0.0318 sec. 0.8650 %
2 0.0250 sec. 0.1078 % 0.0396 sec. 0.1073 % 0.0830 sec. 0.1096 %
1 0.0608 sec. 0.0278 % 0.0894 sec. 0.0269 % 0.1716 sec. 0.0263 %
0.5 0.2044 sec. 0.0170 % 0.2621 sec. 0.0090 % 0.4181 sec. 0.0076 %
0.2 1.8814 sec. 0.0771 % 1.9001 sec. 0.0040 % 2.1528 sec. 0.0025 %
0.1 12.574 sec. 0.3167 % 12.402 sec. 0.0032 % 12.418 sec. 0.0017 %

Table 1: Numerical Results for Different Grid Spacings ∆S and Expansion Orders M

suggested in the last paragraph of the previous section.
Table 1 reports computation times and average relative errors for different

combinations of grid spacing ∆S and expansion order M . The execution time
includes the calculation of the operator matrix and its eigenvalue decomposition.
Owing to the time-independence of the backward-operator, this calculation has
to be conducted only once to provide solutions for arbitrary tenors. Approxi-
mation errors are reported as average absolute relative errors, evaluated at the
discrete nodes,

Rel. Error =
1

N

N∑
i=1

∣∣∣∣V (Si, τ)− VBS(Si, τ)

VBS(Si, τ)

∣∣∣∣ , (27)

with VBS(Si, τ) indicating the Black-Scholes-value of the call option at Si. To
avoid numerical problems due to very small option prices, only nodes with
V (Si, τ) ≥ 0.05 are included in the average.

Obviously, the method is extremely accurate, even if the grid resolution is
rather coarse. A moderate choice of parameters, e.g. ∆S = 1 and M = 30,
already results in a negligible error and an execution time below 0.1 seconds.
All computations are conducted on an usual personal computer, equipped with
a 6-core AMD Phenom II X6 1090T processor, running at 3.6 GHz, and 4 Gb
RAM.

5. Barrier Option Test Scenarios

In this section several test problems are analyzed, including barrier options
with complex barrier structures. Barrier options are particularly well suited
objects because of their predetermined finite value along the barrier. Results
are compared with conventional numerical schemes and analytical solutions, as
far as available.
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5.1. Cash-or-Nothing Option

The first example is a European binary cash-or-nothing knockout call, with
exercise price K = 5 and upper barrier Su = 10. This particular contract
is valued for different times to maturity. The annualized volatility is set to
σ = 0.2 and the risk free interest rate is r = 0.1. This kind of barrier option is
particularly well suited for conventional numerical schemes like Crank-Nicolson,
because boundary conditions can be incorporated very efficiently. On the other
hand binary options have discontinuous payoffs and thus numerical schemes
require a fine-grained discrete grid in order to maintain accuracy. An analytical
solution to this problem is available, see Reiner and Rubinstein (1991b), and
also Haug (2007, pp. 176).

Table 2 summarizes the results of the benchmark. Because the Crank-
Nicolson-scheme is globally accurate to the orderO(∆t2,∆S2), a balanced space
and time discretization ∆ = ∆t = ∆S is used. The relative error is calculated
according to (27) and option prices smaller than 0.05 are excluded again to avoid
numerical problems. Obviously, the DAF-method is always more accurate than

Cash-or-Nothing Barrier Option
Computation Time Average Relative Error

∆ Maturity Crank-Nicolson DAF Crank-Nicolson DAF
0.1 2 years 0.0078 sec. 0.0530 sec. 0.8712 % 0.8178 %
0.05 2 years 0.0312 sec. 0.1373 sec. 0.4315 % 0.4081 %
0.02 2 years 0.6048 sec. 0.6864 sec. 0.1737 % 0.1635 %
0.01 2 years 8.7828 sec. 3.8376 sec. 0.0877 % 0.0817 %

Computation Time Average Relative Error
∆ Maturity Crank-Nicolson DAF Crank-Nicolson DAF
0.1 5 years 0.0109 sec. 0.0530 sec. 1.0447 % 0.8563 %
0.05 5 years 0.0608 sec. 0.1404 sec. 0.5241 % 0.4230 %
0.02 5 years 1.3104 sec. 0.6864 sec. 0.2095 % 0.1719 %
0.01 5 years 19.048 sec. 3.8532 sec. 0.1049 % 0.0860 %

Computation Time Average Relative Error
∆ Maturity Crank-Nicolson DAF Crank-Nicolson DAF
0.1 10 years 0.0171 sec. 0.0546 sec. 1.3648 % 1.1380 %
0.05 10 years 0.1201 sec. 0.1373 sec. 0.6768 % 0.5670 %
0.02 10 years 2.5896 sec. 0.6864 sec. 0.2702 % 0.2270 %
0.01 10 years 36.239 sec. 3.8828 sec. 0.1351 % 0.1135 %

Table 2: Numerical Results of Cash-or-Nothing Option Valuation for Different Grid
Spacings ∆
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Crank-Nicolson, although it is slightly more time consuming at coarse-grained
grid resolutions. Nevertheless, in high precision or long lifetime situations the
DAF-method is clearly preferable from the computational point of view. The
approximation order was chosen M = 30 uniformly.

5.2. American Binary Knock-out Option

The American binary knock-out call of Hui (1996) is a one-touch double barrier
binary option that pays a predetermined rebate R immediately when the lower
(upper) barrier is hit, and knocks out if the upper (lower) barrier is crossed. If
the option does not hit any barrier during its lifetime, it expires worthlessly. The
option is also known as double-barrier binary asymmetrical call option (Haug,
2007, pp. 181), and can be valued with the help of Fourier -series expansion. If
Su and Sl labels the upper and lower barrier, respectively, then the fair value of
the call option is

V (S, τ) = R

(
S

Sl

)α  ∞∑
k=1

2

kπ

β − (kπZ )2 e− 1
2

[
( kπZ )

2−β
]
σ2τ(

kπ
Z

)2 − β


× sin

[
kπ

Z
log[S/Sl]

]
+

(
1− log[S/Sl]

Z

)]
,

(28a)

where
Z = log[Su/Sl] , α =

1

2
− r

σ2
and β = −α2 − 2r

σ2
. (28b)

For short times to maturity, the value of the American knock-out call is ex-
tremely nonlinear and hence the following analysis focuses on the precision of
the numerical approximation.

In this scenario the barriers are chosen Su = 120 and Sl = 80. The annual
risk free interest rate is r = 0.1 and the volatility is σ = 0.2. The rebate is set
to R = 1 and the remaining lifetime of the option is three months, τ = 0.25.
The analytical reference price is calculated according to (28a) and (28b), with
the first 100 terms of the Fourier -series evaluated. In order to provide sufficient
accuracy within the barrier region, the DAF-operator matrix includes 10 rows of
the boundary operator at and beyond Su, respectively. The DAF-approximation
order is chosen M = 30.

Table 3 shows the results of the analysis for varying choices of ∆S and
∆t. Even though the conventional Crank-Nicolson-scheme is roughly ten times
faster than the DAF-method, it does not achieve its accuracy. The reported
average relative errors are again calculated according to (27), with reference to
the approximated analytical solution (28a) and (28b). The superior timing of

13



Double-Barrier Binary Asymmetrical Option
Computation Time Average Relative Error

∆S ∆t Crank-Nicolson DAF Crank-Nicolson DAF
1 0.1 0.0020 sec. 0.0234 sec. 6.3572 % 0.9499 %
1 0.05 0.0020 sec. 0.0234 sec. 1.1399 % 0.9499 %
0.5 0.05 0.0042 sec. 0.0468 sec. 1.9181 % 0.4358 %
0.5 0.02 0.0045 sec. 0.0468 sec. 0.8418 % 0.4358 %
0.2 0.02 0.0123 sec. 0.1482 sec. 1.3001 % 0.1674 %
0.2 0.01 0.0133 sec. 0.1482 sec. 0.1960 % 0.1674 %
0.1 0.01 0.0343 sec. 0.4649 sec. 0.3637 % 0.0829 %

Table 3: Numerical Results of Double-Barrier Binary Asymmetrical Option Valuation for
Different Grid Spacings ∆S and ∆t

the Crank-Nicolson-scheme in this scenario is due to several favorable conditions.
Owing to the short residual time to maturity, only a limited number of iterations
has to be conducted. Furthermore, there is no volatility- or interest rate term
structure involved. Thus, the corresponding matrices are time independent
and need not to be recomputed with every time step. The DAF-approach can
support such term structures without recomputation of the operator matrix, as
will be shown in the next example.

5.3. Partial Reverse Barrier Option with Volatility Term
Structure

This scenario investigates a more complex setup in order to emphasize the full
potential of the DAF-method. First, instead of the geometrical Brownian mo-
tion, the more general class of (risk-neutral) CEV-diffusions (Cox and Ross,
1976; Schroder, 1989), with time-dependent volatility (e.g. Lo et al., 2009) is
used,

dSt = rStdt+ σtS
β/2
t dWt , 0 ≤ β < 2, (29)

which is considered more appropriately from an empirical point of view (cf.
Campbell, 1987; Glosten et al., 1993; Brandt, 2004). Second, the term structure
of volatility is modeled by a deterministic mean reversion process

dσ2
t = λ(σ̄2 − σ2

t )dt, (30)

where λ > 0 is the mean reversion speed, and σ̄2 is the long term mean reversion
level. The respective parameters may be estimated from a local volatility surface
or from the expectation of a stochastic volatility model.

To see how this fits into the DAF-formalism, observe that the time-
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dependent operator matrix can be decomposed into

L(Si, Sj , t) = L1(Si, Sj) + L2(Si, Sj)σ
2(t), (31a)

with the operator sub-matrices

L1(Si, Sj) = ∆S
(
rSiδ

(1)
M (Si − Sj)− rδM (Si − Sj)

)
(31b)

and
L2(Si, Sj) =

∆S

2
Sβi δ

(2)
M (Si − Sj). (31c)

Thus, using the previous notation V (τ) for the vector of values at S1, . . . , SN

at time τ , one obtains

V (τ) = exp

[
L1τ + L2

∫ τ

0
σ̃2(s)ds

]
V (0), (32)

with the time reversed volatility σ̃2
s = σ2

T−s.The solution to the mean reversion
problem (30) is

σ2
T = e−λ(T−t)(σ2

t − σ̄2) + σ̄2, (33)

and thus one obtains for the volatility integral on the r.h.s. of (32) after changing
variables from t to τ∫ τ

0
σ̃2(s)ds = σ̄2τ +

σ̃2
0 − σ̄2

λ

(
eλτ − 1

)
. (34)

This situation is very similar to the previous examples. The operator sub-
matrices L1 and L2 have to be calculated only once to cover the interval [0, τ ].
Furthermore, the computation time still does not depend on the length of the
time step.

The following settings are used in this scenario: the elasticity of variance
is set to β − 2 = −1, resulting in the model of Cox and Ross (1976). Mean
reversion speed and level of variance are λ = 2.5 and σ̄2 = 0.04, respectively.
The initial values of stock price and (squared) volatility are chosen S0 = 5 and
σ2

0 = 0.1, and the annual risk free interest rate is 8 %. The partial up-and-out
barrier is located at Su = 10 and is active for the first year of the tenor. The
option expires at T = 2 years.

Notice that two different time-dependent operator matrices are involved in
the problem. During the first year the operator L̄ is used, which incorporates
the active barrier condition, and subsequently the operator L, equipped with
natural boundary conditions, is used until maturity of the contract. Therefore,
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Partial Reverse Barrier Option
Computation Time V (5, 2) σ-Deviation

∆S ∆t CN DAF CN DAF CN DAF
2.5 0.1 0.0073 sec. 0.0080 sec. 0.4780 $ 0.7274 $ 154.60 28.372
1 0.1 0.0181 sec. 0.0126 sec. 0.6761 $ 0.7614 $ 54.338 11.145
0.5 0.1 0.0357 sec. 0.0207 sec. 0.7616 $ 0.7792 $ 11.015 2.1069
0.2 0.1 0.0936 sec. 0.0452 sec. 0.7817 $ 0.7837 $ 0.8463 0.1571
0.1 0.1 0.1997 sec. 0.0952 sec. 0.7841 $ 0.7843 $ 0.3479 0.4792
0.05 0.05 0.8689 sec. 0.2512 sec. 0.7846 $ 0.7845 $ 0.6254 0.5597
0.02 0.02 7.6596 sec. 6.2868 sec. 0.7848 $ 0.7845 $ 0.7027 0.5822
0.01 0.01 56.846 sec. 52.806 sec. 0.7848 $ 0.7846 $ 0.7137 0.5854

Table 4: Numerical Results of Partial Reverse Barrier Option Valuation for Different
Grid Spacings ∆S and ∆t

the previously detailed procedure has to be applied twice and the compound
solution to the problem is

V (2) = exp

[∫ 2

1
L̄(s)ds+

∫ 1

0
L(s)ds

]
V (0)

= exp

[
L̄1 + L̄2

∫ 2

1
σ̃2(s)ds+ L1 + L2

∫ 1

0
σ̃2(s)ds

]
V (0).

(35)

Because there is no closed-form solution available to this problem, the option
value has to be simulated at a high level of precision in order to obtain a reliable
Monte Carlo reference value. To this end a Euler-Maruyama-scheme (Kloeden
and Platen, 1992, pp. 340) with time discretization ∆t = 10−4 and R = 100 000

replications is used. The resulting estimate and its standard deviation is

V̂MC = 0.7834 and
σ̂MC√
R

= 1.9753× 10−3.

The computation time for the Monte Carlo estimate is roughly 40 minutes,
including full parallelization.

Table 4 shows the results for different spatial and temporal resolutions.
Again the DAF-approximation order is M = 30 and there are 10 rows of the
respective boundary operator included in the operator matrix for 0 ≤ τ ≤ 1.
The upper boundary is set to SN = 15 for both numerical schemes. The last
column reports the absolute deviations from the Monte Carlo estimated value
in terms of standard deviations

σ-Deviation =
√
R

∣∣∣∣∣VNum. − V̂MC

σ̂MC

∣∣∣∣∣ , (36)
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where VNum. represents either the value for the DAF- or Crank-Nicolson-
method. Because the standard deviation of the Monte Carlo estimate is of
order O(10−3), a σ-deviation ≈ 2 can roughly be regarded as sufficiently ac-
curate with 95% confidence. As illustrated in table 4, this level of accuracy is
already reached by the DAF-method at a spacing of ∆S = 0.5. The computation
time is about 20 milliseconds.

6. Summary

A new method for pricing barrier options, based on distributed approximating
functionals was introduced. The advantage of the method is that an arbitrary
differential operator can be transformed into a matrix, provided an appropriate
equidistant spacial grid was chosen beforehand. Thus, the operation of differ-
entiation becomes an algebraic operation, a matrix/vector multiplication. The
operator matrix itself can be computed very efficiently because of its Toeplitz -
structure. Once the eigenvalue decomposition of the matrix exponential of the
operator matrix is computed, the solution can be calculated for arbitrary time
steps. This is particularly beneficial in situations involving contracts with long
maturities, because the computation times of conventional methods is related
to the tenor of the option.

Several test scenarios were analyzed, including situations where no closed-
form solution is available. The main results concern both, efficiency and accu-
racy. The long life cash-or-nothing option scenario clearly indicates that the
DAF-method is faster than a conventional Crank-Nicolson-scheme for long ma-
turities and/or high precision. The double-barrier binary asymmetrical scenario
suggests that the DAF-approach is considerably more accurate, if the same
spacial grid resolution is used. However, this can be compensated up to a
certain degree by choosing finer time discretizations for the Crank-Nicolson-
scheme. But this enhancement comes at the cost of computation time. By
construction, the DAF-method does not suffer from discretization errors in the
time domain. Finally, a partial reverse barrier option scenario was investigated,
where the model for the underlying belongs to the class of CEV-diffusions. Ad-
ditionally, the volatility was given a term structure. This situation is far more
complex than the previous examples, and the implementation of a standard
Crank-Nicolson-scheme becomes more cumbersome. In the DAF-framework,
constructing the operator matrix is still straight forward and the computation
time is still independent of the time step. The results of this scenario suggest
that the DAF-method is superior with respect to both, efficiency and accuracy.
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Even though DAF-based numerical approximation seems superior in all an-
alyzed scenarios, it shares some of the drawbacks of conventional methods. For
example, it is difficult to extend the method to higher dimensions in order to
price strongly path dependent or second order contracts like asians or parisian
options, or more generally basket options. Furthermore, the treatment of bound-
ary conditions is slightly more involved than in the classical framework. Never-
theless, it is an elegant method and the results are promising.
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