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Abstract

In this paper, the finite-sample properties of symmetric GARCH and asymmetric
GJR-GARCH models in the presence of time-varying long term variance are considered.
In particular, the deterministic spline-GARCH model is investigated by Monte-Carlo
simulation, where the true parameter values are taken from estimated real equity in-
dex data. As a proxy for the behaviour of equity indices of developed countries, the
S&P500 Index is estimated with the Quasi-Maximum-Likelihood (QML) method for
different conditional heteroscedastic models (GARCH, GJR-GARCH, spline-GARCH
and spline-GJR-GARCH). The estimated S&P500 parameter values are used to simu-
late a broad range of 6 different time-series lengths {100, 500, 1000, 5000, 10000, 25000}
and 4 different numbers of spline knots {1,4,9,14}, combining to a total amount of 60
different model setups. To the best of my knowledge, there exist only a few limited
simulation studies that focus on the spline-GARCH model. The main contribution
of this paper is therefore to highlight the behaviour of the QML estimates when the
long-term variance is implemented by the spline-GARCH model. Beside this, the pa-
per provides a least-square approach to get useful starting values for the numerical
estimation routine.
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variance; simulation study.
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1 Introduction

The ability to model important stylised-facts of financial returns series like volatility clus-
tering, first explored by Engle (1982) with the so-called Autoregressive Conditional Het-
eroscedastic (ARCH) model and later generalised by Bollerslev (1986) (GARCH), made
considerable progress in the description and forecasting of volatility, in particular for a
short period. So one key assumption of these models is the fluctuation of the short-term
conditional variance around a constant long-term unconditional variance in a mean-reverse-
process. Along with this assumption, many long empirical time series, especially financial
ones, reveal a high persistent volatility in a near unit-root state. This so-called integrated
GARCH (IGARCH) effect (Engle and Bollerslev, 1986) is based on the often violated as-
sumption of a constant unconditional variance over varying states of volatility. This specious
assumption is a consequence of neglected structural breaks and regime switches in GARCH
models as proved by Mikosch and Starica (2004) and Hillebrand (2005) beside others. A rem-
edy is to find change points or regimes in between the unconditional variance as well as the
estimated parameters are locally constant, but vary among these segments. Some prominent
representatives of this approach are Time-Varying models (Mercurio and Spokoiny, 2004;
Medeiros and Veiga, 2009; Čižek and Spokoiny, 2009), Smooth-Transition models (González-
Rivera, 1998) and Markov-Regime-Switching models (Hamilton, J.D., Susmel, R., 1994; Cai,
1994). Another approach is to mitigate the assumption of a constant and stationary uncon-
ditional variance for the whole sample and each possible segment within. This is done by
decomposing the variance in a short-term stationary part and in a multiplicative linked
long-term non-stationary part. Thereby smoothing the short-term volatility process for a
lower volatility persistence. Within this proposal, the parameters are estimated globally for
the whole sample. Beside some others, an early semi-parametric approach by Feng (2004)
modeled the unconditional variance as a scale function by kernel estimation and the param-
eters of the conditional variance by maximum-likelihood estimation. In this context, Engle
and Rangel (2008) proposed to model the long term variance as an exponential function
with a quadratic truncated power basis function, the so-called spline-GARCH-model. As
the knots of the spline basis functions are arranged equidistant over all sampled time points,
within the spline-GARCH framework there is no need to identify break points or segments
in advance. Beside smoothing the long-term volatility process, another issue of their paper
is to analyse the economic source of volatility. They analysed the in-sample properties by
means of a comprehensive study of the short-term volatility of various real equity indices
and their impact due to various exogenous economic determinants. In the spline-GARCH-
model, the high-frequent and the low-frequent volatility have the same time index. So if
low-frequent exogenous variables are included, the low-frequent component is averaged and
therefore constant over a fixed time span. Following the MIxed DAta Sampling approach
(Ghysels et al., 2007), Engle et al. (2013) addresses this issue with a fully parametric ap-
proach called GARCH-MIDAS. Within this framework, the long-term volatility component,
which included exogenous variables in a different frequency, could vary in the same fre-
quency as the short-term component by estimating a rolling window. The ability of models
to capture structural breaks in the volatility process in an immanent way is indicated by the
persistence of volatility. As mentioned by Engle et al. (2013), although they are conceived
to, the spline-GARCH, as well as the GARCH-MIDAS models do not capture all breaks, in
particular not fundamental ones.
The main contribution of this study is the examination of the finite-sample properties of
the parameters of univariate GARCH and GJR-GARCH models, when the innovation se-
ries is smoothed by a long-term component, in particular by a spline-GARCH-model (Engle
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and Rangel, 2008) and to explore under which circumstances, within the applied simulation
setup, the estimated parameters are consistent and the asymptotic theory for maximum-
likelihood-estimators holds. This paper offers, therefore, a comprehensive simulation study of
10 different Data-Generating-Processes (DGP) explored with 6 different time series lengths,
each with M = 1000 replications, resulting in 60000 simulated paths. The linkage between
the volatility of equity returns and its exogenous sources are not further illuminated. The
results of this study provide some evidence for empirical researchers, in particular, whether
some of the central assumptions of the spline-GARCH model are applicable in the same way
for different time series lengths and different numbers of knots. A desirable and important
side effect arises, as the standard GARCH and GJR-models are further illuminated under
the broad applied simulation setup within this study.
This paper is organized as follows. Section 2 gives a short recap of classic GARCH models
with the problems caused by and introduce the applied model specifications. Within this
section, the relationship between long-memory processes and structural breaks and their
impact to the assumptions of GARCH models are briefly discussed. Section 3 describes the
simulation setup, the origin of the Data Generating Processes and the simulation results.
Section 4 concludes.

2 Model Specifications

Let pt be the observed price, yt the resulting log-returns and εt the innovations of a financial
asset at time t ∈ Z. Here the time is measured in days. Ψt−1 = {pt−1, pt−2, ...} is the
information set the observer have up to t− 1. The log-returns series

yt = ln

(
pt
pt−1

)
· 100 (1)

yt = µt + εt (2)

µt = φ1yt−1 + φ2yt−2 (3)

is multiplied by 100 to get a percentage of returns. The conditional mean E[yt|Ψt−1] = µt is
a dynamic linear function of lagged values of the dependent variable and possibly exogenous
independent variables. Without theoretical reason, the mean process (3) will be assumed to
follow an AR(2)-process without a constant term, i.e. E[yt] = 0 by assumption. φ1 and φ2

are constant autoregressive parameters. εt is the deviation of a return to the expected return
at time t, with respect to Ψt−1. In time series literature this unexpected difference is often
called innovation. The variation around the mean of the return series is measured by the
variance respectively the standard deviation. This variation is called volatility, which is in-
dicated by the innovation series. Unlike the innovation series, the volatility is not observable
and has to be estimated by data. By the assumptions of an efficient market (Fama, 1970),
one key property of the innovation series is the independence of past values E[εt|Ψt−1] = 0,
i.e. εt is a martingale difference. From this orthogonality condition, it could be derived that
the innovations are uncorrelated Cov[εt, εs] = 0 for t 6= s. But the marginal distribution of
financial time series innovations often appear to be leptokurtic, i.e. κ(εt) ≥ κ(zt), whereby
κ(zt) is the kurtosis of the process generating variable and κ(εt) is the kurtosis of the inno-
vation series. So even if the observed innovations are uncorrelated, they are not necessarily
independent1, which will be illuminated later in this paper.
Figure 1 depicts the observed daily spot-prices pt from Standard & Poor’s 500 composite

1E[g(εt)f(εs)] 6= E[g(εt)]E[f(εs)] for t 6= s and arbitrary functions g, f
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stock market index (S&P 500) and the resulting log-returns yt for the period from January 2,
1980 to December 31, 2018. Table 1 summarises the drawn sample, which is used throughout
this paper for illustrative purposes and later as Data Generating Processes (DGP) for the
simulation study. The S&P 500 sample was chosen because it stands as a proxy for developed
countries’ stock market indices. The estimated innovation series from the AR(2)-process will
be used as an independent variable for modeling the different conditional variances. Table 2
presents the descriptive statistics and the AR(2) model.
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Figure 1: S&P 500 Index. Spot-prices pt (left), log-returns yt (right)

Definition Sample Period Observations Frequency Source
non-trading days adjusted

S&P500 equity Index 02.01.1980 - 31.12.2018 9835 daily Thomson-Reuters-Datastream

Table 1: Sample

yt ε̂t

Mean 0.0322 0.0343
Standard Deviation 1.1055 1.1040
Skewness -1.1429 -1.2496
Kurtosis 29.5017 30.0626
Minimum -22.8997 -23.1424
Maximum 10.9572 10.5913

ε̂t = yt − 0.0269yt−1 − 0.0422yt−2 AR(2)-model

Table 2: Descriptive Statistics and AR(2)-model

2.1 Short Term Volatility

2.1.1 symmetric GARCH model

Some well-known stylised facts about financial time series like volatility clustering, lep-
tokurtic unconditional distribution and no independent elements in the innovation series are
captured by symmetric models of the ARCH-family, like the famous GARCH(P,Q) model
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(Bollerslev, 1986). In GARCH models the innovation series

εt =
√
htzt (4)

is generated by a random variable zt rescaled by the conditional variance ht of the εt series.
If for the standardised innovations zt the assumptions E[zt] = 0 and E[z2

t ] = 1 hold, then
the innovation series is generated by a (semi-) strong GARCH process and if additionally zt
is assumed i.i.d., the innovation series is generated by a strong GARCH process, following
the definitions from Drost and Nijman (1993). Hence E[zt] = 0, E[εt] = 0. Hereby, zt could
be assumed to be Gaussian or differently distributed. Holding the assumption of a (semi)-
strong GARCH process with zt ∼ N (0, 1), the innovation series is conditional Gaussian
εt|Ψt−1 ∼ N (0, ht). Within this paper all simulated processes are generated by a strong -

GARCH process with zt
i.i.d.∼ N (0, 1) and with a kurtosis

κ(zt) = E[z4
t ]/(E[z2

t ])
2 = 3. (5)

The following equations (6a) and (6b)

E[ε2t |Ψt−1] = ht = α0 + (
P∑
p=1

αpz
2
t−p +

Q∑
q=1

βq)ht−q (6a)

E[ε2t |Ψt−1] = ht = α0 + (α1z
2
t−1 + β1)ht−1 (6b)

reveal the important property of volatility-clustering. As there is empirical evidence for the
superiority of GARCH models with order P = 1 and Q = 1 (Hansen and Lunde, 2001,
2005), hereafter and for the subsequent simulation study, only the GARCH(1,1) will be con-
sidered. To have a clear and concise notation of the kurtosis, the autocorrelation and the
volatility persistence later, this paper follows the account from He and Teräsvirta (1999),
where νS,t = α1z

2
t + β1 and ηe = E[νet ]. So for the GARCH(1,1) case ηS,1 = α1 + β1 and

ηS,2 = 3α2
1 + 2α1β1 + β2

1 apply to zt
i.i.d.∼ N (0, 1), where the subscript S denotes symmetric

GARCH models.
Since the conditional variance series ht cannot be negative by definition, Bollerslev (1986)
recommend to constrain the parameters α0 > 0, αp ≥ 0, p = 1, ..., P and βq ≥ 0, q = 1, ..., Q.

Applying the law of iterated expectation,

E[ε2t ] = E[E[ε2t |Ψt−1]] = E[ht]E[z2
t ] =

α0

1− ηS,1
= σ2 (7)

provides the second moment of the unconditional distribution of the innovation series. So
even if the observed innovation series is conditionally heteroscedastic, it is uncondition-
ally homoscedastic. The assumption of a time-invariant unconditional variance, provides
a stationary mean-reverse-process. As by the law of large numbers, the sample variance
approaches the unconditional variance as T → ∞, the unconditional variance can also be
assumed to be the long-term variance. To build a model for a weak stationary short term
GARCH (1,1) process,

E[ht] <∞⇔ ηS,1 < 1 (8)

the parameter constraints derive from (7). But a constant unconditional variance is rarely
observed, in particular not in long time series. To highlight this problem is one of the
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key features of the spline-GARCH model. To capture the stylised-fact of a leptokurtic
unconditional distribution, the fourth-moment conditions

κ(εt) =
E[ε4t ]

(E[ε2t ])
2

= κ(zt)
E[h2

t ]

(E[ht])2
(9)

of a GARCH(1,1) have to be taken into considerations. κ(εt) is the kurtosis of the innovation
series εt, with κ(zt) as defined in (5). It, therefore, follows that

E[ε4t ] = κ(zt)E[h2
t ] (10a)

E[h2
t ] = α2

0 + ηS,2E[h2
t−1] + 2α0ηS,1E[ht−1]

=
α2

0 + 2α0ηS,1E[ht−1]

1− ηS,2
=

α2
0(1 + ηS,1)

(1− ηS,2)(1− ηS,1)
(10b)

E[h2
t ] <∞⇔ ηS,2 < 1

with E[ht] like defined in (7). The kurtosis for a specific GARCH(1,1) model in (9) is
accordingly defined as

κ(εt) = κ(zt)
1− η2

1

1− ηS,2
≥ κ(zt). (11)

Here α1 is the decisive parameter. For α1 = 0, there is no autoregressive conditional het-
eroscedasticity and the process is distributed as the process generating series zt. For a large
α1 GARCH(1,1) models a large kurtosis. Closely associated with the kurtosis, is the decay-
ing pattern of the process. The general autocorrelation function of the univariate GARCH
family is given by

ρ1 =
η̄1(1− η2

1)− ηS,1(1− η2)

3(1− ηS,1)− (1− η2)
(12a)

ρj = (ηS,1)j−1ρ1 for j ≥ 1 (12b)

where η̄1 = 3α1 + β1 and ηS,1 = α1 + β1 is the exponential decay rate of the autocorrelation
function. Financial time series often display heavy tails and a slowly decaying pattern of its
autocorrelation function. So the chosen model has to be capable to capture these properties.
Within this study, no parameter constraints are imposed. The different conditional variance

models will be estimated by maximum-likelihood, with zt
i.i.d.∼ N (0, 1) and θ ∈ Rv,

LT (θ) =
T∑
t=1

lt(θ)

lt(θ) = −1

2
ln(2πht)−

1

2

(
ε2t
ht

)
θ̂ = arg max

θ
LT (θ) (13)

where θ = (α0, α1, β1)′ is a (v×1) unknown parameters vector, where v is the number of ele-
ments of the parameter vector. The initial values θ0 are chosen by empirical knowledge. Even
if the assumption of a normal distribution of the process generating variable zt is violated,
the maximum-likelihood approach yields consistent and approximately normal distributed
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estimators θ̂. This so-called quasi-maximum-likelihood approach requires the computation
of robust-standard errors se(θ̂), as described by Bollerslev and Wooldridge (1992)

J(θ̂) = GT (θ̂)G′T (θ̂)

Σ(θ̂) = H−1(θ̂) · J(θ̂) ·H−1(θ̂)

se(θ̂) =
[
diag

(
Σ(θ̂)

)] 1
2

(14)

where Σ(θ̂) is the (v × v) asymptotic covariance matrix, H(θ̂) is the (v × v) Hessian, a
consistent estimator of the Fisher information matrix, GT is a (v × T ) gradient matrix
and J(θ̂) is the (v × v) Outer Product of the Gradients (OPG) matrix. Every following
example and every DGP is estimated by a quasi-maximum-likelihood approach, with a BFGS
optimisation with line searching algorithms. Despite the findings by Fiorentini et al. (1996),
gradients and Hessians are computed using finite differencing for demonstrative purpose,
as commonly used in most software packages. The optimisation algorithm, gradients and
Hessians are adapted from Dennis and Schnabel (1983) pseudo-codes. The models and the
likelihood functions are implemented by self-written MATLAB code.

Example 1. S&P500 (cf. tables 1, 2) GARCH(1,1)

ĥt = 0.0154
(0.0005)

+ 0.0847
(0.0077)

ε2t−1 + 0.9032
(0.0060)

ĥt−1

η̂S,1 = 0.9879⇒ E[ht] <∞
η̂S,2 = 0.9903⇒ E[h2

t ] <∞
σ̂2 = 1.273 (ŝ2 = 1.219)

κ̂(εt) = 7.46 (k̂s = 30.06)

ρ̂1 = 0.29 (r̂1 = 0.12) ρ̂50 = 0.16 (r̂50 = 0.03) ρ̂100 = 0.09 (r̂100 = 0.03)

The robust standard-errors are presented in parentheses under the estimated parameter val-
ues. ŝ2 is the sample variance, k̂s is the sample kurtosis and r̂j are the sample autocorrelation
functions.

2.1.2 Asymmetric GJR-GARCH model

Another important stylised fact of financial time series first described by Black (1976): “[...]
A negative return will be tied to a rise in volatility, and a positive return will be tied to a
fall in volatility“. This so-called leverage effect is neglected in symmetric GARCH models
(6b). There only the size, but not the sign of each innovation affects the volatility process. A
remedy are asymmetric GARCH models like the Exponential GARCH model (Nelson, 1991),
the Power-GARCH model (Ding et al., 1993), the Threshold-GARCH model (Zakoian, 1994)
and the Glosten-Jagannathan-Runkel (Glosten et al., 1993) (GJR)-GARCH model. As its
volatility process is modeled in the same way as the GARCH(P,Q) model and its asymptotic
behaviour is well-known, the GJR-GARCH model

ht = α0 + (
P∑
p=1

(
αp + δp1εt−p<0

)
z2
t−p +

Q∑
q=1

βq)ht−q (15a)

ht = α0 +
(
(α1 + δ11εt−1<0)z2

t−1 + β1

)
ht−1 (15b)
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will be applied within this paper. Here the conditional variance ht depends also on the sign
of εt−p. The function 1εt−p<0 indicates the subset εt−p < 0 of the observed innovation series.
For values of εt within this subset, the additional parameter δp have to be estimated. If
δp > 0, then the leverage effect exists. For the sake of consistency, the GJR-GARCH model

will also be considered with order P = 1 and Q = 1 and generated by zt
i.i.d.∼ N (0, 1). For the

GJR-GARCH(1,1) model νA,t = (α1 + δ11εt<0)z2
t +β1 and consequently ηA,1 = α1 +β1 + 1

2
δ1,

η̄A,1 = 3(α1 + 1
2
δ1)+β1 and ηA,2 = 3α2

1 +2α1β1 +3α1δ1 +β1δ1 +β2
1 + 3

2
δ2

1, where the subscript
A denotes asymmetric GARCH models.
As in the symmetric case of the GARCH(1,1) model, the unconditional variance σ2 in the
asymmetric GJR-GARCH(1,1) case is also constant

E[ε2t ] = E[E[ε2t |Ψt−1]] = E[ht]E[z2
t ] =

α0

1− ηA,1
= σ2 (16)

and so the process is weakly stationary if

1− ηA,1 < 1. (17)

The fourth moment conditions, the kurtosis and the autocorrelation function given by equa-
tions (9) - (12b) are similar to the GARCH(1,1) model. As in the GARCH(1,1) case, opti-
mised parameter values θ̂ = (α̂0, α̂1, β̂1, δ̂1)′ are determined by maximum-likelihood estima-
tion, cf. (13).

Example 2. S&P500 (cf. tables 1, 2) GJR-GARCH(1,1)

ĥt = 0.0215
(0.0025)

+ (0.0216
(0.0018)

+ 0.1259
(0.0081)

1εt−1<0)ε2t−1 + 0.8980
(0.0018)

ĥt−1

η̂A,1 = 0.983⇒ E[ht] <∞
η̂A,2 = 0.9915⇒ E[h2

t ] <∞
σ̂2 = 1.233 (ŝ2 = 1.219)

κ̂ε = 12.25 (k̂s = 30.06)

ρ̂1 = 0.33 (r̂1 = 0.12) ρ̂50 = 0.14 (r̂50 = 0.03) ρ̂100 = 0.06 (r̂100 = 0.03)

The robust standard-errors are presented in parentheses under the estimated parameter val-
ues. ŝ2 is the sample variance, k̂s is the sample kurtosis and r̂j are the sample autocorrelation
functions.

2.1.3 Long-Range Dependence and Structural Breaks

The innovations εt are uncorrelated, the absolute and squared innovations are correlated,
i.e. the innovations are not independent, which is a well-known fact of financial time series
innovations, as noted above. Estimating the Sample Autocorrelation Function (SACF) of ε2t
for long periods mostly reveals a slowly decaying pattern in the first lags, approximating to
a positive constant for larger lags. This is called the long-memory or long-range-dependence
(LRD) property of a time series (Beran et al., 2013, p. 19ff). A common measure of LRD is

ρj ∼ cρ|j|2d−1 d ∈ (0, 0.5) (18a)
∞∑

j=−∞

ρj =∞ (18b)
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Figure 2: Sample autocorrelation function for the whole sample (black), first half (purple) and the second
half (yellow). The red curve is the ACF generated by the estimated GARCH(1,1) parameters, the blue curve
is the ACF generated by the estimated GJR-GARCH(1,1) parameters.

where cρ is a constant. For large j the autocorrelation converges to zero if d < 0.5. The
higher d is estimated, the longer the memory of the process is. This measure cannot dis-
tinguish between stationary long-memory processes and non-stationary time series (Mikosch
and Starica, 2004). The autocorrelation of ARCH type models has an exponential decaying
pattern as (12a) and (12b) reveal. Therefore, the persistence of the variance in GARCH(1,1)
models is characterised by the sum α1 + β1 = ηS,1 and in GJR-GARCH(1,1) models by the
sum α1 +0.5δ1 +β1 = ηA,1, the so-called volatility persistence (hereafter VP). The estimation
of the VP for long financial series with GARCH models often appear in a nearly unit-root
state, i.e. η̂S,1 ≈ 1 or η̂A,1 ≈ 1. Estimators of Example 1 and 2, where η̂S,1 = 0.9879 re-
spectively η̂A,1 = 0.983, are in line with this assumption. This undisputed stylised-fact of
long financial time series motivated Engle and Bollerslev (1986) to the so-called integrated
GARCH (IGARCH) model, where α1 + β1 are assumed to sum up to 1. Even though the
IGARCH model got some good in-sample and out-of-sample estimation results, there is a
lack in the theoretical reasoning of the random walk process of the variance. Diebold (1986)
firstly supposed that persistence in volatility is due to the failure in modeling regime switches
for the intercept α0. Later Lamoureux and Lastrapes (1990) proved, that in small samples,
the VP is considerably lower than in large samples and that for long periods there are disre-
garded changes in the structure of the process, which results in the appearance of a very high
persistence in a near non-stationary state. As the variance is not observable, it is not possible
to assess if a long-memory process generated the data, or if there are neglected structural
breaks (Hillebrand and Medeiros, 2008). Hillebrand (2005) stated, that before estimating a
GARCH model, a change point detection test is needed. If there are changes in the structure
of the process, which were ignored in the estimation of global parameters, the resulting high
persistence volatility is spurious, what he called “spurious-almost-integration“. Hillebrand
(2005) proved, that the reason for a VP almost one, are neglected parameter changes, i.e.
different regimes of the unconditional variance σ2 which are not accounted for. If there are
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Figure 3: GARCH(1,1) model with β̂1 = 0.9032 (left-hand side), GJR-Garch model with β̂1 = 0.898 (right-
hand side) and the identity curve (black). The red crosses identify σ2

1980−1999 and the yellow crosses identify
σ2
1999−2018. Both unconditional variances lie on the identity line. ht values greater than 2 are not displayed

for clarity.

one or more breaks in the structure of the time series process with different unconditional
means in each segment, global estimated parameters of a GARCH model capture these dif-
ferent means. In particular, β̂1 is picking up the slope of the identity line, which crosses
the different means of each segment, and α̂1 or (α̂1 + 1

2
δ̂1) are assumed to be α̂1 ≈ 1 − β̂1

or (α̂1 + 1
2
δ̂1) ≈ 1 − β̂1, as figure 3 shows (cf. Hillebrand, 2004). The process is getting

integrated. Hillebrand (2004, 2005) shows for the GARCH(1,1) case, that in the occurrence
of structural breaks β̂1 is globally overestimated and α̂1 is globally underestimated. Figure 2
reveals, that there are breaks in the structure of the process and that both GARCH-models
are more sensitive to the high-volatility period than to the low-volatility period.

In Example 1 and 2 the unconditional variances are estimated over the whole sample. In
figure 4 the estimated unconditional variances are displayed for the whole sample, as well
as for the first and the second half of the sample. There is evidence for the drawn sample,
that the unconditional variance is not constant, as well in the GARCH(1,1) model as in
the GJR-GARCH(1,1) model 2. These findings are in accordance with those of Hillebrand
(2004, 2005) and Mikosch and Starica (2004). So there is evidence, that the estimated high
VP in long financial time series is not trustworthy and the so-called IGARCH effect is more
due to neglected changes in the process than to a true LRD.

2For the GARCH(1,1) model, the unconditional variance is higher in the second segment and in the case
of the GJR-GARCH(1,1) model the other way around. This is due to the crash in October 1987, which is
illuminated by the spike around time point 2000. There were negative returns from about 23% in one day.
The GJR-GARCH framework weights these negative returns due to an extra parameter and therefore the
unconditional variance (c.f. (15b) is more sensitive for negative returns.
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Figure 4: Conditional and unconditional variances. GARCH(1,1) (left-hand side), GJR-GARCH(1,1)(right-
hand side)

2.2 Long Term Volatility

As underlined in the previous section, the assumption of a constant unconditional variance
could lead to spurious integrated processes. To face these problems, several approaches
like Markov-Regime-Switching (Hamilton, J.D., Susmel, R., 1994; Cai, 1994), Time-Varying
GARCH (Mercurio and Spokoiny, 2004; Medeiros and Veiga, 2009; Čižek and Spokoiny,
2009) or Smooth-Transition models (González-Rivera, 1998), just to mention the most in-
fluential models, have been established. More recent approaches, tend to decompose the
conditional variance process in a short term and a long term part. An early exploration in
this field has been done by Engle and Lee (1999). They decomposed the conditional vari-
ance by the two aforementioned components additively. More recent approaches, decompose
the conditional variance by multiplicative long- and short-run components. Two important
models are the so-called GARCH-MIDAS (Engle et al., 2013) and the Spline-GARCH model
(Engle and Rangel, 2008). A multivariate extension to the spline-GARCH model dealing
with a factor framework is the factor-spline-GARCH model by Rangel and Engle (2012).
Amado et al. (2018) give a good outline over further models with multiplicative decom-
posed conditional variances. Conrad and Kleen (2018) examined the statistical properties
of multiplicative GARCH models. To the best of my knowledge, there exists a few other
studies dealing with estimation conditional variance by splines. So, for example, Audrino
and Bühlmann (2009) build stochastic B-spline basis functions to model the logarithm of the
general conditional variance, Brownlees and Gallo (2010) modeled the long-term volatility
part as penalized B-spline. The use of the term “nonparametric“ for spline smoothing or
spline interpolation is widespread in literature, but somewhat misleading, as spline basis
functions are estimated by parameters. In that regard, Eilers and Marx (1996) recommend
to use the terms “overparametric techniques“ or “anonymous models“. From the statistical
point of view, the term “smoothing“ will be preferred within this paper.

2.2.1 Spline-GARCH model

The principal reasons for introducing the Spline-GARCH model by Engle and Rangel (2008)
3 were to explain the sources of financial time series volatility by exogenous macro-economic
variables. As these variables are typically measured in a different frequency, the spline-
GARCH model seems to be the first one capable to embedding those variables. Beside

3The original paper from Engle and Rangel (2008) will be referred to as “original framework“.
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this, it has been shown, that the problems with a VP in a near unit-root state could be
mitigated, which is a gratifying side effect that will be further illuminated within this paper.
The innovation series (19)

εt = ztσt (19)

σ2
t = htτt (20)

is also generated by a random variable zt assumed to be standard normal and i.i.d. and the
conditional variance (20) is decomposed into a short-term part ht and a long-term part

τ ot = c · exp

(
w0t+

K∑
i=1

wi((t− ti−1)+)2 + γxt

)
(21a)

τt = exp

(
c′ + w0

t

T
+

K∑
i=1

wi

(
(t− ti−1)+

T

)2
)

. (21b)

In the original framework in (21a) τ ot is constructed as an exponential spline for modeling
exogenous sources of volatility embedded by the variable xt. To the end of this paper, some
modifications to the spline-GARCH model has been made in (21b). As recommended by
Laurent (2013), the time is rescaled by T to keep the optimisation numerically stable. The
constant is modeled as c′ = exp(c) to ensure τt > 0. For purposes of this study, only the
deterministic part of the spline function, but no exogenous variables will be considered. The
spline bases are truncated power functions

(t− ti)2
+ =

{
(t− ti)2 if t > ti

0 otherwise

t0 = 0; t1, t2, ...., tK−1

with equidistant knots as illustrated in figure 5. Engle and Rangel (2008) recommend to
estimate different spline orders by models with a range of different numbers of knots and
choose the optimal model by the Bayesian Information Criterion (BIC). In the context of
the S&P500 sample, the GARCH(1,1)-spline(9) and the GJR-GARCH(1,1)-spline(9) models
(cf. tables 4 and 5) are the optimal choice and will be used for illustrative purposes within
this section. Spline smoothing with truncated power series basis functions has some serious
drawbacks. de Boor (2001, p. 84ff) shows that truncated spline functions tend to be linear
dependent, if the knots are very nonuniform and if the distance between two adjacent knots
are too close. Additionally, if the knots are too close to each other the estimators are
getting insignificant. Both problems are relevant for the spline-GARCH framework if the
knots/observation ratio is very high.
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T ,
(

(t−t0)+
T

)2
,...,
(

(t−t8)+
T

)2
(left-hand side) and

spline basis function scaled by estimated parameters ω̂0, ω̂i,...,ω̂9 (right-hand side)

As noted above, classic GARCH models, with the assumption of a constant unconditional
variance, are only capable to capture some of the most important stylised-facts for short
periods. So within the original framework, the short-term volatility ht is modeled as a
GARCH(1,1) model and within this study extended by the GJR-GARCH(1,1) model. Both
models are now smoothed by the long-term volatility τt. The definition of the conditional
variances in the spline-GARCH model

ht = α0 + α1

(
ε2t−1

τt−1

)
+ β1ht−1 = α0 +

(
α1z

2
t−1 + β1

)
ht−1 (22a)

ht = α0 + (α1 + δ11εt−1<0)

(
ε2t−1

τt−1

)
+ β1ht−1

= α0 +
(
(α1 + δ11εt−1<0)z2

t−1 + β1

)
ht−1 (22b)

shows the similarity to the standard GARCH models in (6a) and (6b), with the difference,
that the process of the innovations in (19) is now smoothed by τt. Multiplying both sides
with τt results in the well-known form of (20). As τt is deterministic it holds that E[τt] = τt
and E[τtzs] = 0 ∀t, s. To insulate the time-varying effect of τt and to avoid identification
problems within the model, the variance is targeted as described in Engle and Mezrich (1996)
resulting in a so-called unit-GARCH process. Hereafter α0 is modeled as

α0 = (1− ηS,1) (23a)

α0 = (1− ηA,1) (23b)

⇒ E[ht] = σ2 = 1

⇒ E[h2
t ] =

(1− η1)(1 + η1)

1− η2

This representation reveals the linkage between the unconditional variance σ2 and the long-
term volatility τt, as

E[ε2t ] = E[htτtz
2
t ] = τtE[ht] = τt. (24)

As intended, the spline-GARCH framework is capable to model the unconditional variance
time-varying. So even if the exogenous sources of volatility are hidden within this paper,
their impact on long-term patterns is to some extent picked up by the deterministic spline
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basis functions. In Conrad and Kleen (2018), the kurtosis for multiplicative GARCH models
is derived. But the assumptions made in their paper are not met by the spline-GARCH
model, because here the time-varying unconditional variance is represented by a deterministic
function (24).
The likelihood function contains the conditional variance σt as defined in (20) and a vector
of unknown parameters θ = (α1, β1, δ1, c

′, w0, w1, ..., wK)

lt(θ) = −1

2
ln(2πσt)−

1

2

(
ε2t
σt

)
θ̂ = arg max

θ
LT (θ) (25)

The optimisation of a spline-GARCH model is more demanding and more sensible to chosen
initial values than in a GARCH(1,1) or in a GJR-GARCH(1,1) model. So the choice of good
starting values is required. Therefore a two-step estimation procedure is recommended. In
the first step the GARCH(1,1) and the GJR-GARCH(1,1) parameters θ̂0G are estimated like
in (13). With these parameter values, the ĥ0t series is evaluated. In the second step, an
ordinary least squares (OLS) approach is applied. Before calculating the OLS estimator, τt
is approximated by τ0t, which is received by the following transformation

εt =

√
ĥ0tτ0tzt ⇒ ε2t = ĥ0tτ0tz

2
t ⇒ τ0t = ε2t/(ĥ0tz

2
t ),

where zt is a standard-normally distributed random number and εt is the observed innovation
series. After taking the logarithm of the computed τ0t values

lnτ0t = c0 + w00
t

T
+

K∑
i=1

w0i

(
(t− ti−1)+

T

)2

(26)

the initial parameter vector θ̂0τt is obtained by OLS estimation
lnτ01

lnτ02

.

.

.
lnτ0T


︸ ︷︷ ︸

Y

=



1 1
T

(
(1−t0)+

T

)2

. .
(

(1−tK−1)+

T

)2

1 2
T

(
(2−t0)+

T

)2

. .
(

(2−tK−1)+

T

)2

. . . . . .

. . . . . .

1 T
T

(
(T−t0)+

T

)2

. .
(

(T−tK−1)+

T

)2


︸ ︷︷ ︸

X


c0

w00

w01

.

.
w0K


︸ ︷︷ ︸
θ̂0τt

+


u1

u2

.

.

.
uT


︸ ︷︷ ︸
U

(27a)

θ̂0τt = (X
′
X)−1X

′
Y , (27b)

where θ̂0τt = (ĉ′0, ŵ0, ŵ1, ..., ŵK). To improve the initial values, the second step is repli-
cated and LT (θ̂0τt) is evaluated x = 1000 times. The parameter vector θ̂0τt with the largest
LT (θ̂0τt) was chosen. The resulting starting values are θ̂0 = (θ̂0G, θ̂0τt).

Example 3.

3.1. S&P500 (cf. tables 1, 2) Spline(9)-GARCH(1,1)

ĥt = 0.0319 + 0.0881
(0.00085)

(
ε2t−1

τ̂t−1

)
+ 0.88

(0.0009)
ĥt−1

θ̂τt = (0.276
(0.018)

,−4.08
(0.024)

, 15.39
(0.034)

, 16.41
(0.144)

,−152.92
(0.061)

, 345.81
(0.134)

,−455.28
(0.42)

, 369.37
(0.66)

,−185.18
(0.219)

, 7.98
(0.325)

, 148.69
(5.96)

)
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Figure 6: S&P500 (cf. tables 1, 2) GARCH(1,1) and spline(9)-GARCH(1,1) models. GARCH(1,1) model
with variance targeting and constant unconditional variance σ2 (left column) and spline(9)-GARCH(1,1)
model with time-varying unconditional variance τt (right column). In the top row, all estimated variance
values are plotted. To zoom in, in the bottom row only variance values in the range [0, 4] are displayed.

3.2. S&P500 (cf. tables 1, 2) Spline(9)-GJR-GARCH(1,1)

ĥt = 0.03695 + (0.0101
(0.004)

+ 0.1491
(0.007)

1εt−1<0)

(
ε2t−1

τ̂t−1

)
+ 0.8784

(0.001)
ĥt−1

θ̂τt = ( 0.357
(0.0012)

,−3.26
(0.034)

, 16.38
(0.04)

,−1.95
(0.023)

,−108.24
(0.058)

, 284.21
(0.072)

,−390.81
(0.135)

, 322.22
(0.233)

,−161.93
(0.02)

, 12.06
(0.19)

, 97.59
(1.46)

)

Regarding example 3, figures 6 and 7, corroborate some of the theoretical considerations
made. One intended consequence is the reduced VP, which declines from 0.988 to 0.968 for
the GARCH(1,1) case and from 0.983 to 0.963 for the GJR-GARCH(1,1) case4

3 Simulation Study

In this section, the finite-sample properties of the GARCH parameters (α1, β1, δ1) in the
presence of a time-varying unconditional variance τt will be stressed. To the best of my
knowledge there exist only a few limited simulation studies for the spline-GARCH-model so
far. Goldman and Wang (2015) compared their so-called spline-threshold-GARCH model
with the original spline-GARCH model by the means of a single simulation of T = 5000
datapoints with M = 200 replications and a fixed number of K = 9 knots. Goldman and
Shen (2017) conducted a similar simulation setup with M = 400 replications and a broader

4To keep in mind, that GARCH(1,1) and GJR-GARCH(1,1) models with constant unconditional variance
were estimated with intercept. But the estimation with variance targeting yield to nearly the same VP (0.984
or 0.978), cf. tables 4 and 5.
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Figure 7: S&P500 (cf. tables 1, 2) GJR-GARCH(1,1) and spline(9)-GJR-GARCH(1,1) models. GJR-
GARCH(1,1) model with variance targeting and constant unconditional variance σ2 (left column) and
spline(9)-GJR-GARCH(1,1) model with time-varying unconditional variance τt (right column). In the top
row, all estimated variance values are plotted. To zoom in, in the bottom row only variance values in the
range [0, 4] are displayed.

set of reference models. Within this paper, a more extensive simulation study is conducted,
based on the continuously used S&P500 sample.
With the initial sample of 9835 spot prices pt and the resulting log-returns yt, the innovation
series εt is obtained by an AR(2) model (cf. table 1). With the innovation series, 10 different
conditional variance models are estimated. The obtained estimates from each of the N = 10
models are used as DGP for the simulation study (cf. tables 4 and 5). Each DGP is then
applied to 6 different time series lengths T ∈ {100, 500, 1000, 5000, 10000, 25000}, leading
to N × 6 different model setups with M = 1000 replications each. So there were 60000
paths simulated and the related parameters estimated. Each simulation is generated by

zt
i.i.d.∼ N (0, 1). Table 3 summarises the simulation setup.

As aforementioned, to obtain finite second or higher-order moments, some equality, inequality
and positivity restrictions have to be imposed. These restrictions may lead to likelihood
optimisation problems near the imposed boundaries, in particular, if the actual optimisation
algorithm is built to solve unconstrained optimisation problems (Silvennoinen, 2006, p. 155-
167). Therefore the positivity constraint by the exponential form of τt in (21b) is the only
restriction imposed within this paper. For this reason, some of the proposed replications
didn’t converge, wherefore m = 1, ...,M ist indexed. After simulating M = 1000 replications
for N = 10 different DGP applied to six different time series lengths, each of the N ×M × 6
simulated time series are estimated with the quasi-maximum-likelihood approach described
in equations (13) and (25).
As mentioned in section 2.1.1, every DGP is estimated by the presented optimisation routine
and implemented in MATLAB by following Dennis and Schnabel (1983) pseudo-codes. For
computational purposes, the estimation of the 60000 simulated times series, is done by the
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Notation

t = 1, ..., T T ∈ {100, 500, 1000, 5000, 10000, 25000} Time Series Lengths

n = 1, ..., N N ∈ {1, ..., 10} DGP

m = 1, ...,M M ∈ {1000} Replications

i = 1, ..., K K ∈ {1, 4, 9, 14} Knots

N ×M × 6 time series generated by zt
i.i.d.∼ N (0, 1)

N Data Generating Processes (cf. tables 4 and 5)

θ̃n = arg maxθn LT (θn)

θ̃n = (α̃1n , β̃1n) GARCH(1,1)

θ̃n = (α̃1n , β̃1n , δ̃1n) GJR-GARCH(1,1)

θ̃n = (α̃1n , β̃1n , c̃
′
n, w̃n0, w̃in , ..., w̃Kn) SPLINE-GARCH(1,1)

θ̃n = (α̃1n , β̃1n , δ̃1n , c̃
′
n, w̃n0, w̃in , ..., w̃nK) spline-GJR-GARCH(1,1)

N × 6 Model Setups

¯̂
θ
nT

= (¯̂α1
nT
,

¯̂
β1

nT
) GARCH(1,1)

¯̂
θ
nT

= (¯̂α1
nT
,

¯̂
β1

nT
,
¯̂
δ1
nT

) GJR-GARCH(1,1)

¯̂
θ
nT

= (¯̂α1
nT
,

¯̂
β1

nT
, ¯̂c′

nT
, ¯̂w0

nT
, ¯̂wi

nT
, ..., ¯̂wK

nT
) spline-GARCH(1,1)

¯̂
θ
nT

= (¯̂α1
nT
,

¯̂
β1

nT
,
¯̂
δ1
nT
, ¯̂c′

nT
, ¯̂w0

nT
, ¯̂wi

nT
, ..., ¯̂wK

nT
) spline-GJR-GARCH(1,1)

≈ N ×M × 6 Replications

θ̂
mnT

= arg maxθ̃n LT (θ̃n)

θ̂
mnT

= (α̂1
mnT

, β̂1
mnT

) GARCH(1,1)

θ̂
mnT

= (α̂1
mnT

, β̂1
mnT

, δ̂1
mnT

) GJR-GARCH(1,1)

θ̂
mnT

= (α̂1
mnT

, β̂1
mnT

, ĉ′
mnT

, ŵ0
mnT

, ŵi
mnT

, ..., ŵK
mnT

) spline-GARCH(1,1)

θ̂
mnT

= (α̂1
mnT

, β̂1
mnT

, δ̂1
mnT

, ĉ′
mnT

, ŵ0
mnT

, ŵi
mnT

, ..., ŵK
mnT

) spline-GJR-GARCH(1,1)

Table 3: Simulation Setup

integrated MATLAB algorithm fminunc and the DGP parameters θ̃n are used as starting
values for accelerating convergence. Every other calculation is implemented by an own
MATLAB code.

3.1 Simulation Setup

The occurrence of a VP in a near-unit root state, may cause the spurious assumption of a
long-memory process and ignoring the existence of breaks in the structure of the process (c.f.
section 2.1.3). So one intention of the spline-GARCH model is to mitigate the integrated
GARCH effect, by allowing the unconditional variance to vary over time and so expose slow-
moving regime switches, which are covered by global parameter estimation. In tables 4 and
5 are the estimates of the 10 DGP listed. To be concise, GARCH(1,1) or GJR-GARCH(1,1)
models are displayed as zero knot spline-GARCH models. To emphasise that the DGP are
themselves estimates of an unknown process and to distinguish these parameters from the
estimators of the replications, the DGP parameters are specified by θ̃

nT
. Referring to the

deterministic character of the spline part of the model, no initial data points were elemi-
nated. The initial values h0 = 1 and ε20 = 1 are chosen arbitrarily for the simulations. The
initial values for the estimation procedure ĥ0 and ε̂20 are chosen by 1/T

∑T
t=1 ε

2
t , following

the suggestion from Bollerslev (1986).
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3.1.1 Sample Statistics

The subscripts m describe the mth replication of DGP n and the corresponding time series
length T . The vector of estimated parameters θ̂

mnT
contains v(n) elements of the mth

replication.
¯̂
θ
nT

is the related mean vector over M
nT

converged replications. θ̃n is the vector
of the particular DGP. Every parameter vector is a [v × 1] column vector. The resulting

[v ×M
nT

] matrix Θ̂
mnT

contains all of the converged estimates. Θ̂c
mnT

= Θ̂
mnT
− ¯̂
θ
nT

is a
centered matrix. The considered statistics

Ê[θ̂
nT

] =

∑M
nT

m=1 θ̂mnT
M

nT

=
¯̂
θ
nT

(28)

Ĉov[θ̂
nT
, θ̂
′

nT
] =

Θ̂c
mnT

Θ̂c′

mnT

M
nT
− 1

= ŝ(θ̂
nT
, θ̂
′

nT
) (29)

V̂ar[θ̂
nT

] = diag
(
ŝ(θ̂

nT
, θ̂
′

nT
)
)

= ŝ2(θ̂
nT

)

Ŝtd[θ̂
nT

] =

√
ŝ2(θ̂

nT
) = ŝ(θ̂

nT
)

b̂ias = |¯̂θ
nT
− θ̃n| (30)

Ê[
¯̂
θ
nT
− θ̃n]2 = M̂SE = ŝ2(θ̂

nT
) + b̂ias

2
(31)

R̂MSE =

√
M̂SE

in equations (28)-(31) are the sample statistics of the estimated M
nT
× N × 6 parameter

vectors. (28) is the arithmetic mean over all replications of each model set up. (29) describes
the estimations for the second moments of the distribution of the estimated parameters. The
estimator for the covariance ŝ(θ̂

nT
, θ̂
′

nT
) is a Gramian matrix. The bias (30) is expressed in

absolute values. The RMSE (31) measures the trade-off between variance and unbiasedness.
To evaluate the statistics of the VP, some adjustments have to be made,

bias = ‖η̂1
nT
− η̃1n‖2 (32)

Var[η̂S,1
nT

] = Var[α̂1nT ] + Var[β̂1nT ] + 2Cov[α̂1nT , β̂1nT ] = ŝ2(η̂S,1nT ) (33)

Var[η̂A,1nT ] = Var[α̂1nT ] + Var[β̂1nT ] +
1

4
Var[δ̂1nT ] + 2Cov[α̂1nT , β̂1nT ]+

1

2

(
2Cov[δ̂1nT , α̂1nT ] + 2Cov[δ̂1nT , β̂1nT ]

)
= ŝ2(η̂S,1nT ) (34)

as the VP is a sum of dependent variables. The bias (32) is measured as Euclidean norm.
For the variances of the VP (33) and (34), the covariance between each parameter has to
be taken into account. To assess the assumption of normality the one-sample Kolmogorov-
Smirnov-Test (KS)

d+
M
nT

= max

[
max

m=1,..,MnT

(
FM

nT
(θ̂

mnT
)− F0(θ̂

mnT
)
)

; 0

]
(35a)

d−M
nT

= max

[
max

m=1,..,MnT

(
F0(θ̂

mnT
)− FM

nT
(θ̂

mnT
)
)

; 0

]
(35b)

dM
nT

= max(d+
M
nT

; d−M
nT

) (35c)
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is conducted. Here F0(θ̂
mnT

) is the theoretical continuous distribution, in this case, the stan-

dard normal distribution. FM
nT

(θ̂
mnT

) is a step function of the ascending ordered normalised
parameter estimators with discontinuities at M

nT
points. So for each replication with the

particular estimator θ̂
mnT

, FM
nT

(θ̂
mnT

) gives the fraction of values smaller than θ̂
mnT

over all
replications. The maximum distance between the theoretical and the empirical distribution
function is measured by dM

nT
. The quantiles are approximated by

dM
nT ;1−α

≈

√
− 1

2M
nT

ln
α

2
(36)

in this case, α = 0.05 to be consistent with assumptions above. The mean and the standard
deviation for normalisation are received by (28), respectively (29). For further detailed
description see Rao (2002, p. 420ff).

3.1.2 Asymptotic Statistics

Although every time series is generated by a zt
i.i.d.∼ N (0, 1) standardised innovation process,

for each replication and each related converged estimator the robust asymptotic covariance
matrix Σ(θ̂

mnT
) and the resulting robust-standard error se(θ̂

mnT
) (14) were estimated, to

force Σ(θ̂
mnT

) beeing p.s.d. for the demanding estimation process with up to 19 parameters.

With the se(θ̂
mnT

) confidence intervals (CI) around each estimated parameter with a signif-

icance level of 95% was constructed. The fraction of θ̃n covered by each CI around θ̂
mnT

is
measured by the so-called coverage probability (pc)

95% CI: θ̂
mnT
± 1.96 · se(θ̂

mnT
) (37)

p̂c =
#{θ̃n ∈ CI}

M
nT

(38)

Bernoulli Standard Error:

√
p̂c(1− p̂c)
M

nT

, (39)

following Lumsdaine (1995). The bias (30) is applied to test consistency
¯̂
θ
nT

p→ θ̃n assump-

tion. To examine asymptotically normality
√
T (

¯̂
θ
nT
−θ̃n)

d→ N (θ̃n,Σ(θ̃n)) a Gaussian kernel

estimator of
¯̂
θ
nT

will be compared with related Gaussian distribution. The kernel bandwidth

is chosen by b = 1.06ŝ(θ̂
nT

)T−1/5 according to the proposals by Silverman (1998, Equation
(3.28)). To keep the presentation concise, only a few of the total amount of 150 different
parameter distributions will be depicted in figures 14, 15, 19, 20 and 21.

3.2 Results

Before considering the results of the simulation study, the DGP will be described. In the
original paper by Engle and Rangel (2008), 48 real equity return time series with realised
volatilities as exogenous variable xt in (21a) were examined. In the global view no appreciable
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difference between the standard GARCH and the spline-GARCH model for the ARCH effect
(α1) were apparent. For the GARCH effect (β1) a decrease from GARCH to spline-GARCH
was observed, but independent to the number of knots. This independence is due to the
global view over all 48 time series. For the purposes of this paper, just one real equity return
time series is considered. Just to keep in mind, every DGP process was originally estimated
for a T = 9835 time series. A look into the estimations of DGP in tables 4 and 5, reveals
some of the general patterns of the spline-GARCH model. In contrast to the gobal view
of the original paper, a dependence with the number of knots seem obvious, even if within
this study, the spline-GJR-GARCH model is also analysed. Referring to the GARCH case
includes the standard GARCH(1,1) model as well as the spline(K)-GARCH(1,1) model. The
same holds for the GJR-GARCH case. So unlike in the GARCH case, where initially a slight
increase between 1 and 4 knots appears, for the GJR-models the VP decline continuously.
As mentioned in section 2.1.3 , it is in particular β̃1 driving the VP. So regarding just the
β̃1 parameters, there is a continuous decline from approximately 0.9 to 0.87 observable for
both cases. So a lowering of the VP is an immanent pattern within the the spline-GARCH
and the spline-GJR-Garch model. Regarding the other single parameters some differences
appear. In line with the findings in the original paper, the α̃1 parameter increase slightly in
the GARCH case, but decrease substantially in the GJR-GARCH case from 0.02 to 0.007.
For the spline-GJR-GARCH models, the δ̃1 parameters increase from zero knot case to the
14 knots case from 0.12 to 0.16. So a time-varying pattern of the unconditional variances
seems to strengthen the leverage effect. The black curves in figure 8 represent the values of
the DGP.
In regard to the results of the simulation study, for T ∈ {100, 500, 1000}, referred to as the
small samples, the replications are very compressed compared to the original process. So
some of the M = 1000 ML optimisations didn’t converge. In particular, the small samples
with K = 14 had convergence rates only between 55%−80%. For T ∈ {5000, 10000, 25000},
referred to as the large samples, the convergence rates are on or just below 100%. Ad-
ditionally, as discussed above, there were only parameter constraints in the τt equation
imposed. Subsequently the time series lengths T ∈ {100, 500} had a considerable fraction of
explosive parameter constellations and negative estimators, in particular for α̂1

mnT
in GJR

models. Nevertheless, for all GARCH models, the condition ht > 0 ∀t holds. The GJR-
GARCH models, in contrast, had a significant number of negative ht for some t in different
model setups. So, in particular, all GJR-GARCH models with K = 9 over all time series
lengths occurred negative ht for some t. For GJR-GARCH models with K ∈ {0, 1, 4, 15} for
T ∈ {10000, 25000} no further negative values for ht occur. Within the time series lengths
T ∈ {1000, 5000, 10000, 25000}, every single estimation met the recommended covariance
stationary constraints (cf. (8) and (17)). In advance, it can be noted, that the results of
the large samples are more robust than the small samples. As some GJR-GARCH models
generated negative conditional variances, the results for the GJR-GARCH models have to
analysed selectively. As mentioned above, de Boor (2001, p. 84ff) recommended not using
truncated spline functions, when adjacent knots are very close. In the small samples with a
high knots/observation ratio, this problem occurs and could indicate some of the occurred
problems with related estimators. All estimators and related statistics can be found in tables
(6)-(9).
In figures 8 - 10 the behaviour of the the VP in presence of different spline models is de-
picted. In figure 8 the estimated VP are presented. As the black curve provides the VP of
the true values, it can be seen at the first glance, that bias declines with increasing time
series length, even if there is a rise with an increasing number of knots (figure 9). Also in
line with asymptotic maximum-likelihood-theory are the standard-deviations ŝ2(η̂1

nT
) of the
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VP. As figure 10 reveals, the variance also declines with increasing time series length, but
rises with an increasing number of knots, as one might expect. There are no noteworthy
differences between the values and the global pattern between the sample statistics of the
symmetric and asymmetric GARCH models, in the case of large samples.
The p̂c results are listed in table 10 and depicted in figures 11 - 13. For the zero knot case the
results are in line with those by Lumsdaine (1995) 5 and approach the determined significance
level with rising time series length for the α̃1 and β̃1 parameters. The advertised significance
level is clearly understated for all three parameters in the GJR-GARCH zero knot case. For
the spline-GJR-GARCH model the coverage probabilities for α̃1 and δ̃1 rise continuously
from 1 to 14 knots and matches the determined significance level for T ∈ {5000, 25000}.
For the β̃1 parameters, a decline between zero and 9 knots and an increase for 14 knots
to a fraction clearly below 95% is evident. Considering the spline-GARCH models another
picture emerges, as there is no stringent pattern throughout all parameters within all CI
apparent. With the occurrence of 1 knot, the p̂c of both parameters break down, for β̃1

even to nearly zero. With increasing number of knots, the coverage probability for the β̃1

parameters rise throughout, whereas for the α̃1 the coverage probability has no such clear
pattern. On the one hand, as the CI is computed with normality assumption, there is evi-
dence, that for some model orders, the normality assumption could be violated. As also for
the large samples, the advertised significance level is mostly understated, the assumption of
asymptotic normality could not be met by all parameters. On the other hand, the CI is also
computed with robust-standard-errors and here the same pattern as for the p̂c is apparent
for the se(θ̂

mnT
) 6. So in some cases, the CI is very narrow and accordingly the p̂c is low.

Comparing the results of the coverage probability with the KS-statistics, the picture dif-
fers considerably, as can be seen in tables 11 and 12. Throughout all zero-knot GARCH
and GJR-GARCH maximum-likelihood-estimators for T ∈ {1000, 5000, 10000, 25000} are
significantly normally distributed. For the spline-GARCH models, all ML-estimators for
T ∈ {5000, 10000, 25000} are significantly normally distributed. Regarding the depicted
distributions of the GARCH parameters in figures 14 and 15 and for the GJR-GARCH pa-
rameters in figures 19, 20 and 21 there is evidence, that the approximation to the normal
distribution decelerate with increasing number of knots. For the small samples the distribu-
tions of the β̂1

mnT
parameters are heavily skewed, whereas the α̂1

mnT
and δ̂1

mnT
parameters

are symmetrically distributed. In the GARCH case the distributions of the β̂1
mnT

parameters
are bimodal, with major mode around the mean. The minor mode rises with an increasing
number of knots. In the GJR-GARCH case, the minor knot is clearly smaller, than in the
GARCH case for all number of knots. In both zero knot cases, there is even in the small
samples no bimodal distribution for the β̂1

mnT
parameters. The same applies to all α̂1

mnT

and δ̂1
mnT

parameters throughout all models. The tails of the small samples are fatter than
normal, more pronounced in the GARCH case. When parameters are restricted, this issue
is often observed, also for large samples, and called pile-up effect. Within this study, no re-
strictions for short-term volatility parameters are imposed. The fat tails of the small sample
distributions are therefore the result of the data.

5even if Lumsdaine (1995) just examine CI for T ∈ {200, 500} and with different DGP.
6se(θ̂

mnT
) results on request.
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Figure 8: VP η̂1
nT

. GARCH(1,1)(top row) and GJR-GARCH(1,1) (bottom row). Small samples T ∈ {100, 500, 1000}
(left-hand side), large samples T ∈ {5000, 10000, 25000}(right-hand side). The black curve represents the true values η̃S,1nT

and η̃A,1nT
. Some GJR-GARCH replications and related ML estimators result to some negative ht
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Figure 9: Bias ‖η̂1nT
− η̃1n‖2. GARCH(1,1)(top row) and GJR-GARCH(1,1) (bottom row). Small samples T ∈

{100, 500, 1000} (left-hand side), large samples T ∈ {5000, 10000, 25000}(right-hand side). Some GJR-GARCH replications

and related ML estimators result to some negative ht.
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Figure 10: Standard deviation ŝ(η̂1nT
). GARCH(1,1)(top row) and GJR-GARCH(1,1) (bottom row). Small samples

T ∈ {100, 500, 1000} (left-hand side), large samples T ∈ {5000, 10000, 25000}(right-hand side). Some GJR-GARCH replications

and related ML estimators result to some negative ht.

0 1 4 9 14

Number of knots

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T = 100
T = 500
T = 1000

0 1 4 9 14

Number of knots

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T = 5000
T = 10000
T = 25000

0 1 4 9 14

Number of knots

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T = 100
T = 500
T = 1000

0 1 4 9 14

Number of knots

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T = 5000
T = 10000
T = 25000

Figure 11: Coverage Probability of α̃1.GARCH(1,1)(top row) and GJR-GARCH(1,1) (bottom row). Small samples
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Figure 14: Asymptotic Normality of α̂1 in GARCH(1,1) case. The black curves represent the kernel density

estimator for α̂, the red curve the related normal distribution. In the top row the spline(14)-GARCH(1,1) distribution for

T ∈ {100, 1000, 5000, 25000} is depicted. The subjacent rows are the spline(K)-GARCH(1,1) models with K ∈ {0, 1, 4, 9} and

the same time series lengths.
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Figure 15: Asymptotic Normality of β̂1 in GARCH(1,1) case. The black curves represent the kernel density

estimator for β̂, the red curve the related normal distribution. In the top row the spline(14)-GARCH(1,1) distribution for

T ∈ {100, 1000, 5000, 25000} is depicted. The subjacent rows are the spline(K)-GARCH(1,1) models with K ∈ {0, 1, 4, 9} and

the same time series lengths.
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4 Conclusion

The intention of the spline-GARCH model of Engle and Rangel (2008) was to relax the
assumption of constant long-term variance, on which standard GARCH models are based.
This is achieved by decomposing the variance into a short horizon component, the stan-
dard GARCH model and a long horizon component, the exponential spline function. One
objective of the latter is to smooth the innovation process and so lowering the geometric
decay rate of the VP. This may reduce the doubt on a spurious long-memory effect, but may
not detect every break in the structure of the process, as stated by Engle et al. (2013). In
this paper the Data Generating Processes (DGP) were estimated by real equity data and
confirmed some of the results within the original paper. With these DGP, 60000 different
time series were simulated and 60 different models were estimated to stress the finite-sample
properties of the related symmetric and asymmetric GARCH parameters (α1, β1, δ1) when
the unconditional variance is time-varying. The results for the parameters of the spline
function were not discussed within this paper. They are available on request.
For the spline-GARCH model more parameters have to be estimated, than in standard
GARCH models. Therefore the optimisation routine for the ML method is demanding and
very sensitive for good starting values. In this paper, an ordinary-least-squares approach to
receive appropriate starting values was introduced. The optimisation routine could easily
end up in a local maximum or a saddle point far away from the global maximum, starting
with bad values. For the simulation study, the estimated parameters of the DGP process
have been used as starting values.
First of all, the volatility persistence decreases with an increasing number of knots. This
behaviour could already be observed with the estimations of the DGP. For the replications,
a similar picture arises, but with a tremendous lowering of the volatility persistence for
the small samples. But these results have to be treated with caution, as there could occur
problems with parameter estimators of the truncated spline function. The estimations get
closer to the true values with longer time series. So for all large samples, the bias is in a
reasonable range of 1%. The same holds for the zero knot cases, but here also for the small
samples. On the whole, the bias of the single parameters shows the same behaviour. Also
in line with asymptotic ML theory are the variances of the volatility persistences and the
single parameters. Such a clear pattern is not apparent regarding the coverage probability.
Here some irregularities rise to doubts on the assumption of asymptotic normality for some
parameters in some model setups. This behaviour of the coverage probability could be ex-
plained by narrow confidence intervals due to small robust-standard-errors for some model
setups. Unlike the coverage probability, the Kolmogorov-Smirnov-statistics are based on the
sample statistics. For all large samples, the assumption of asymptotic normal distributed
parameters following the Kolmogorov-Smirnov-statistic holds. It can be emphasised that the
ML-estimators of the GARCH and GJR-GARCH parameters in the spline-GARCH model
are consistent and asymptotically normally distributed, even though some GJR-GARCH
replications had problematic parameter constellations. But empirical researchers should be
suspicious using the spline-GARCH model for short horizons, even if there is a vast reduction
of the VP apparent.
It should be stressed, that the applied model setups rely on only one arbitrarily chosen sam-
ple, the S&P500 equity index from 1980-1999. Some of the simulated time series are heavily
compressed or stretched, as the original sample contains T = 9835 data points. Whether the
events happened within the original sample period, are applicable to each and every simu-
lation is not evident. But as a typical developed market long time series, with the S&P500
sample, some of the intentions of the spline-GARCH model could be examined. Based on
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the results of this article, further studies should examine different parameter constellations.
Another issue is the omitted restrictions on the estimation of the short-term volatility. There
may be different results imposing parameter restriction, in particular in small samples and
for the most of the considered GJR-GARCH models.
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A Tables

GARCH(1,1) Spline(1) Spline(4) Spline(9) Spline(14)

α̃1 0.0804
(0.0142)

0.0856
(0.0006)

0.0866
(0.0010)

0.0881
(0.263)

0.0876
(0.0014)

β̃1 0.9036
(0.0183)

0.8999
(0.0001)

0.8977
(0.0041)

0.8800
(0.13)

0.869
(0.0077)

α̃1 + β̃1 0.9840 0.9855 0.9843 0.9681 0.9566

c̃′ 0.4054
(0.0342)

−0.0401
(0.0796)

0.276
(3.89)

−0.109
(0.0326)

w̃0 −0.6443
(0.0854)

7.31
(0.701)

−4.08
(0.364)

19.5
(0.0682)

w̃1 0.2259
(0.0876)

−23.7
(0.221)

15.4
(1.98)

−248.0
(0.0905)

w̃2 37.4
(2.47)

16.4
(1.69)

440.0
(0.0501)

w̃3 −20.7
(7.16)

−153.0
(1.31)

−257.0
(0.116)

w̃4 5.21
(1.83)

346.0
(0.204)

−35.7
(0.0893)

w̃5 −455.0
(0.66)

100.0
(1.19)

w̃6 369.0
(0.839)

282.0
(1.49)

w̃7 −185.0
(0.218)

−458.0
(0.604)

w̃8 7.98
(0.336)

84.5
(2.01)

w̃9 149.0
(6.36)

52.2
(0.201)

w̃10 409.0
(1.57)

w̃11 −851.0
(1.19)

w̃12 780.0
(17.3)

w̃13 −497.0
(55.2)

w̃14 599.0
(58.9)

BIC 2.6681 2.6700 2.6716 2.6675 2.6684

Table 4: GARCH(1,1): Estimated Parameter Values from S&P500 Sample and DGP
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GJR-GARCH(1,1) Spline(1) Spline(4) Spline(9) Spline(14)

α̃1 0.0203
(0.0008)

0.0155
(0.0019)

0.015
(0.00216)

0.0101
(0.00241)

0.00696
(0.00341)

β̃1 0.9
(0.00336)

0.894
(0.0002)

0.892
(0.0003)

0.878
(0.0009)

0.867
(0.0004)

δ̃1 0.116
(0.00106)

0.137
(0.0005)

0.14
(0.00343)

0.149
(0.00131)

0.155
(0.00521)

α̃1 + β̃1 + 1
2
δ̃1 0.9783 0.978 0.977 0.9626 0.9515

c̃′ 0.521
(0.00757)

0.18
(0.00937)

0.357
(0.0103)

−0.00339
(0.00879)

w̃0 −0.924
(0.0584)

5.29
(0.271)

−3.26
(0.0142)

19.4
(0.0365)

w̃1 0.197
(0.0645)

−18.8
(0.109)

16.4
(0.101)

−229.0
(0.0505)

w̃2 30.0
(0.783)

−1.95
(0.0217)

386.0
(0.0538)

w̃3 −16.1
(2.25)

−108.0
(0.12)

−214.0
(0.0288)

w̃4 0.0683
(0.147)

284.0
(0.115)

−25.0
(0.0242)

w̃5 −391.0
(0.252)

71.3
(0.0285)

w̃6 322.0
(0.519)

285.0
(0.3)

w̃7 −162.0
(0.0688)

−481.0
(0.211)

w̃8 12.1
(0.471)

190.0
(0.515)

w̃9 97.6
(3.74)

−80.4
(1.45)

w̃10 472.0
(1.34)

w̃11 −810.0
(4.24)

w̃12 664.0
(18.1)

w̃13 −331.0
(60.0)

w̃14 285.0
(45.1)

BIC 2.6544 2.6418 2.6429 2.6370 2.6375

Table 5: GJR-GARCH(1,1): Estimated Parameter Values from S&P500 Sample and DGP
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GARCH(1,1) GJR-GARCH (1,1)

T = 100 T = 100

knots ¯̂ηS,1 bias ŝ(η̂S,1) RMSE M
nT

¯̂ηA,1 bias ŝ(η̂A,1) RMSE M
nT

- 0.9081 0.0759 0.2073 0.2208 973 0.9314 0.0468 0.1682 0.1751 940
1 0.7242 0.2613 0.5190 0.5810 910 0.8511 0.1199 0.3279 0.3491 886
4 0.6099 0.3744 0.6757 0.7725 872 0.8155 0.1486 0.4346 0.4588 823
9 0.5199 0.4482 0.7286 0.8554 841 0.7954 0.1539 0.4731 0.4975 780
14 0.5371 0.4195 0.7153 0.8292 804 0.7836 0.1590 0.4482 0.4756 789

T = 500 T = 500

knots ¯̂ηS,1 bias ŝ(η̂S,1) RMSE M
nT

¯̂ηA,1 bias ŝ(η̂A,1) RMSE M
nT

- 0.9762 0.0077 0.0211 0.0225 950 0.9732 0.0064 0.0213 0.0222 948
1 0.9352 0.0502 0.0853 0.0990 944 0.9560 0.0260 0.0572 0.0628 937
4 0.7924 0.1919 0.3631 0.4107 898 0.9266 0.0534 0.1063 0.1190 898
9 0.4190 0.5492 0.6042 0.8165 895 0.8705 0.0865 0.2519 0.2663 762
14 0.2213 0.7354 0.6959 1.0125 660 0.9031 0.0370 0.1926 0.1961 648

T = 1000 T = 1000

knots ¯̂ηS,1 bias ŝ(η̂S,1) RMSE M
nT

¯̂ηA,1 bias ŝ(η̂A,1) RMSE M
nT

- 0.9800 0.0040 0.0105 0.0112 937 0.9752 0.0050 0.0098 0.0110 945
1 0.9680 0.0175 0.0272 0.0323 909 0.9692 0.0118 0.0153 0.0193 940
4 0.9439 0.0404 0.0413 0.0578 865 0.9610 0.0196 0.0195 0.0277 910
9 0.8495 0.1185 0.1449 0.1872 927 0.9267 0.0395 0.0559 0.0684 911
14 0.6780 0.2786 0.3730 0.4656 595 0.9168 0.0352 0.0788 0.0863 552

T = 5000 T = 5000

knots ¯̂ηS,1 bias ŝ(η̂S,1) RMSE M
nT

¯̂ηA,1 bias ŝ(η̂A,1) RMSE M
nT

- 0.9834 0.0005 0.0036 0.0037 977 0.9778 0.0005 0.0036 0.0036 985
1 0.9829 0.0027 0.0046 0.0054 983 0.9769 0.0019 0.0046 0.0049 984
4 0.9797 0.0046 0.0053 0.0070 975 0.9746 0.0034 0.0051 0.0061 989
9 0.9580 0.0100 0.0090 0.0135 974 0.9581 0.0069 0.0072 0.0100 983
14 0.9430 0.0135 0.0122 0.0182 938 0.9454 0.0082 0.0093 0.0123 888

T = 10000 T = 10000

knots ¯̂ηS,1 bias ŝ(η̂S,1) RMSE M
nT

¯̂ηA,1 bias ŝ(η̂A,1) RMSE M
nT

- 0.9837 0.0002 0.0026 0.0026 992 0.9781 0.0003 0.0024 0.0315 990
1 0.9842 0.0013 0.0032 0.0035 996 0.9776 0.0012 0.0035 0.0325 991
4 0.9820 0.0023 0.0036 0.0043 990 0.9756 0.0019 0.0038 0.0330 993
9 0.9634 0.0046 0.0055 0.0072 983 0.9607 0.0028 0.0053 0.0338 985
14 0.9513 0.0053 0.0074 0.0091 978 0.9493 0.0033 0.0055 0.0064 971

T = 25000 T = 25000

knots ¯̂ηS,1 bias ŝ(η̂S,1) RMSE M
nT

¯̂ηA,1 bias ŝ(η̂A,1) RMSE M
nT

- 0.9839 0.0001 0.0016 0.0016 995 0.9782 0.0000 0.0016 0.0016 1000
1 0.9851 0.0003 0.0019 0.0019 999 0.9782 0.0006 0.0020 0.0021 996
4 0.9834 0.0008 0.0020 0.0022 1000 0.9766 0.0006 0.0022 0.0023 997
9 0.9665 0.0016 0.0035 0.0038 995 0.9624 0.0009 0.0028 0.0030 994
14 0.9549 0.0017 0.0043 0.0046 990 0.9511 0.0011 0.0033 0.0035 996

Table 6: Volatility Persistence. The sample statistics are computed as given in equations (32)- (34). The red

highlighted numbers indicate, that some GJR-GARCH replications and related ML estimators result to some negative ht.
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GARCH(1,1) GJR-GARCH (1,1)

T = 100 T = 100

knots ¯̂α1 bias ŝ(α̂1) RMSE M
nT

¯̂α1 bias ŝ(α̂1) RMSE M
nT

- 0.0528 0.0276 0.1210 0.1241 973 -0.0269 0.0472 0.1222 0.1310 940
1 -0.0296 0.1153 0.1236 0.1690 910 -0.1009 0.1164 0.1405 0.1824 886
4 -0.0578 0.1444 0.1206 0.1881 872 -0.1209 0.1359 0.1314 0.1891 823
9 -0.0701 0.1581 0.1480 0.2166 841 -0.1439 0.1541 0.1321 0.2030 780
14 -0.0697 0.1573 0.1459 0.2145 804 -0.1421 0.1491 0.1411 0.2053 789

T = 500 T = 500

knots ¯̂α1 bias ŝ(α̂1) RMSE M
nT

¯̂α1 bias ŝ(α̂1) RMSE M
nT

- 0.0802 0.0001 0.0276 0.0276 950 0.0162 0.0041 0.0304 0.0306 948
1 0.0812 0.0044 0.0332 0.0335 944 -0.0027 0.0182 0.0377 0.0419 937
4 0.0649 0.0217 0.0454 0.0503 898 -0.0210 0.0360 0.0488 0.0607 898
9 0.0393 0.0488 0.0628 0.0796 895 -0.0611 0.0712 0.0508 0.0875 762
14 0.0217 0.0659 0.0651 0.0926 660 -0.0811 0.0880 0.0362 0.0952 648

T = 1000 T = 1000

knots ¯̂α1 bias ŝ(α̂1) RMSE M
nT

¯̂α1 bias ŝ(α̂1) RMSE M
nT

- 0.0811 0.0008 0.0174 0.0174 937 0.0175 0.0028 0.0190 0.0192 945
1 0.0839 0.0017 0.0195 0.0196 909 0.0083 0.0072 0.0207 0.0219 940
4 0.0805 0.0061 0.0209 0.0218 865 0.0012 0.0138 0.0220 0.0259 910
9 0.0752 0.0129 0.0274 0.0302 927 -0.0187 0.0289 0.0288 0.0408 911
14 0.0649 0.0227 0.0357 0.0423 595 -0.0381 0.0450 0.0312 0.0548 552

T = 5000 T = 5000

knots ¯̂α1 bias ŝ(α̂1) RMSE M
nT

¯̂α1 bias ŝ(α̂1) RMSE M
nT

- 0.0803 0.0001 0.0073 0.0073 977 0.0197 0.0006 0.0077 0.0077 985
1 0.0849 0.0008 0.0080 0.0080 983 0.0142 0.0013 0.0080 0.0081 984
4 0.0860 0.0006 0.0083 0.0083 975 0.0125 0.0025 0.0085 0.0088 989
9 0.0868 0.0012 0.0094 0.0094 974 0.0057 0.0044 0.0084 0.0095 983
14 0.0864 0.0012 0.0096 0.0097 938 0.0022 0.0048 0.0089 0.0101 888

T = 10000 T = 10000

knots ¯̂α1 bias ŝ(α̂1) RMSE M
nT

¯̂α1 bias ŝ(α̂1) RMSE M
nT

- 0.0802 0.0002 0.0054 0.0054 992 0.0000 0.0003 0.0055 0.0055 990
1 0.0851 0.0005 0.0059 0.0059 996 0.0006 0.0006 0.0055 0.0055 991
4 0.0866 0.0000 0.0059 0.0059 990 0.0012 0.0007 0.0057 0.0059 993
9 0.0882 0.0001 0.0062 0.0062 983 0.0018 0.0010 0.0059 0.0062 985
14 0.0871 0.0004 0.0067 0.0067 978 0.0048 0.0021 0.0062 0.0066 971

T = 25000 T = 25000

knots ¯̂α1 bias ŝ(α̂1) RMSE M
nT

¯̂α1 bias ŝ(α̂1) RMSE M
nT

- 0.0803 0.0001 0.0035 0.0035 995 0.0201 0.0002 0.0034 0.0034 1000
1 0.0856 0.0000 0.0037 0.0037 999 0.0152 0.0004 0.0035 0.0035 996
4 0.0864 0.0001 0.0037 0.0037 1000 0.0145 0.0005 0.0036 0.0037 997
9 0.0880 0.0001 0.0042 0.0042 995 0.0095 0.0007 0.0037 0.0037 994
14 0.0874 0.0002 0.0043 0.0043 990 0.0062 0.0007 0.0038 0.0038 996

Table 7: α1. The sample statistics are computed as given in equations (28)- (31). The red highlighted numbers indicate,

that some GJR-GARCH replications and related ML estimators result to some negative ht.

35



GARCH(1,1) GJR-GARCH (1,1)

T = 100 T = 100

knots
¯̂
β1 bias ŝ(β̂1) RMSE M

nT
¯̂
β1 bias ŝ(β̂1) RMSE M

nT

- 0.8553 0.0483 0.2608 0.2653 973 0.8983 0.0015 0.2306 0.2306 940
1 0.7538 0.1461 0.5807 0.5988 910 0.8908 0.0035 0.3951 0.3951 886
4 0.6677 0.2300 0.7451 0.7798 872 0.8810 0.0109 0.4917 0.4919 823
9 0.5900 0.2900 0.8174 0.8673 841 0.8786 0.0002 0.5440 0.5440 780
14 0.6068 0.2622 0.8047 0.8464 804 0.8575 0.0099 0.5207 0.5208 789

T = 500 T = 500

knots
¯̂
β1 bias ŝ(β̂1) RMSE M

nT
¯̂
β1 bias ŝ(β̂1) RMSE M

nT

- 0.8960 0.0076 0.0422 0.0428 950 0.8975 0.0023 0.0425 0.0425 948
1 0.8540 0.0458 0.0970 0.1073 944 0.8864 0.0078 0.0797 0.0801 937
4 0.7275 0.1703 0.3647 0.4025 898 0.8745 0.0174 0.1346 0.1357 898
9 0.3797 0.5003 0.6058 0.7857 895 0.8631 0.0153 0.2799 0.2804 762
14 0.1996 0.6695 0.7088 0.9750 660 0.9185 0.0511 0.2121 0.2182 648

T = 1000 T = 1000

knots
¯̂
β1 bias ŝ(β̂1) RMSE M

nT
¯̂
β1 bias ŝ(β̂1) RMSE M

nT

- 0.8988 0.0047 0.0240 0.0245 937 0.8976 0.0022 0.0244 0.0245 945
1 0.8841 0.0158 0.0351 0.0385 909 0.8896 0.0046 0.0269 0.0273 940
4 0.8634 0.0343 0.0474 0.0585 865 0.8861 0.0058 0.0336 0.0341 910
9 0.7743 0.1057 0.1505 0.1839 927 0.8678 0.0106 0.0744 0.0752 911
14 0.6131 0.2560 0.3694 0.4494 595 0.8772 0.0098 0.1067 0.1071 552

T = 5000 T = 5000

knots
¯̂
β1 bias ŝ(β̂1) RMSE M

nT
¯̂
β1 bias ŝ(β̂1) RMSE M

nT

- 0.9032 0.0004 0.0097 0.0098 977 0.8998 0.0000 0.0095 0.0095 985
1 0.8980 0.0019 0.0095 0.0097 983 0.8937 0.0006 0.0092 0.0093 984
4 0.8937 0.0040 0.0102 0.0110 975 0.8910 0.0009 0.0103 0.0103 989
9 0.8712 0.0088 0.0139 0.0165 974 0.8760 0.0024 0.0123 0.0125 983
14 0.8566 0.0124 0.0170 0.0210 938 0.8640 0.0034 0.0146 0.0150 888

T = 10000 T = 10000

knots
¯̂
β1 bias ŝ(β̂1) RMSE M

nT
¯̂
β1 bias ŝ(β̂1) RMSE M

nT

- 0.9035 0.0001 0.0070 0.0070 992 0.8995 0.0003 0.0067 0.0067 990
1 0.8991 0.0008 0.0069 0.0070 996 0.8937 0.0006 0.0065 0.0065 991
4 0.8954 0.0023 0.0073 0.0077 990 0.8913 0.0007 0.0069 0.0069 993
9 0.8752 0.0047 0.0089 0.0101 983 0.8774 0.0010 0.0082 0.0082 985
14 0.8642 0.0048 0.0111 0.0121 978 0.8662 0.0012 0.0094 0.0095 971

T = 25000 T = 25000

knots
¯̂
β1 bias ŝ(β̂1) RMSE M

nT
¯̂
β1 bias ŝ(β̂1) RMSE M

nT

- 0.9036 0.0000 0.0045 0.0045 995 0.8999 0.0001 0.0043 0.0043 1000
1 0.8995 0.0003 0.0042 0.0042 999 0.8940 0.0003 0.0044 0.0044 996
4 0.8970 0.0007 0.0043 0.0043 1000 0.8918 0.0001 0.0044 0.0044 997
9 0.8785 0.0015 0.0060 0.0062 995 0.8782 0.0003 0.0053 0.0054 994
14 0.8675 0.0015 0.0069 0.0071 990 0.8671 0.0003 0.0058 0.0059 996

Table 8: β1. The sample statistics are computed as given in equations (28)- (31). The red highlighted numbers indicate,

that some GJR-GARCH replications and related ML estimators result to some negative ht.
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GJR-GARCH (1,1)

T = 100

knots
¯̂
δ1 bias ŝ(δ̂1) RMSE M

nT

- 0.1163 0.0037 0.1738 0.1739 940
1 0.1224 0.0151 0.1979 0.1985 886
4 0.1109 0.0293 0.1924 0.1947 823
9 0.1214 0.0276 0.1820 0.1841 780
14 0.1365 0.0187 0.1986 0.1994 789

T = 500

knots
¯̂
δ1 bias ŝ(δ̂1) RMSE M

nT

- 0.1163 0.0026 0.0452 0.0453 948
1 0.1446 0.0072 0.0514 0.0519 937
4 0.1463 0.0061 0.0630 0.0633 898
9 0.1369 0.0122 0.0689 0.0699 762
14 0.1314 0.0237 0.0710 0.0749 648

T = 1000

knots
¯̂
δ1 bias ŝ(δ̂1) RMSE M

nT

- 0.1163 0.0039 0.0306 0.0308 945
1 0.1425 0.0051 0.0311 0.0315 940
4 0.1474 0.0072 0.0341 0.0348 910
9 0.1552 0.0061 0.0416 0.0420 911
14 0.1552 0.0001 0.0481 0.0481 552

T = 5000

knots
¯̂
δ1 bias ŝ(δ̂1) RMSE M

nT
- 0.1163 0.0002 0.0118 0.0118 985
1 0.1380 0.0006 0.0136 0.0136 984
4 0.1423 0.0021 0.0142 0.0144 989
9 0.1529 0.0038 0.0155 0.0160 983
14 0.1584 0.0033 0.0158 0.0161 888

T = 10000

knots
¯̂
δ1 bias ŝ(δ̂1) RMSE M

nT

- 0.1163 0.0004 0.0091 0.0091 990
1 0.1380 0.0006 0.0096 0.0096 991
4 0.1410 0.0008 0.0099 0.0099 993
9 0.1500 0.0009 0.0106 0.0106 985
14 0.1565 0.0014 0.0112 0.0619 971

T = 25000

knots
¯̂
δ1 bias ŝ(δ̂1) RMSE M

nT

- 0.1163 0.0000 0.0053 0.0053 1000
1 0.1380 0.0006 0.0060 0.0060 996
4 0.1407 0.0004 0.0060 0.0060 997
9 0.1495 0.0004 0.0067 0.0067 994
14 0.1555 0.0004 0.0071 0.0071 996

Table 9: δ1. The sample statistics are computed as given in equations (28)- (31). The red highlighted numbers indicate,

that some GJR-GARCH replications and related ML estimators result to some negative ht.
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GARCH(1,1) GJR-GARCH (1,1)

T = 100 T = 100

knots α̃1 β̃1 M
nT

α̃1 β̃1 δ̃1 M
nT

- 0.5827
(0.0158)

0.5786
(0.0158)

973 0.2436
(0.0140)

0.3798
(0.0158)

0.2660
(0.0144)

940

1 0.2374
(0.0141)

0.1319
(0.0112)

910 0.1682
(0.0126)

0.1354
(0.0115)

0.1479
(0.0119)

886

4 0.1170
(0.0109)

0.0229
(0.0051)

872 0.0486
(0.0075)

0.0231
(0.0052)

0.0437
(0.0071)

823

9 0.0345
(0.0063)

0.0024
(0.0017)

841 0.0397
(0.0070)

0.0359
(0.0067)

0.0333
(0.0064)

780

14 0.0162
(0.0044)

0.0037
(0.0022)

804 0.0748
(0.0094)

0.0811
(0.0097)

0.0875
(0.0101)

789

T = 500 T = 500

knots α̃1 β̃1 M
nT

α̃1 β̃1 δ̃1 M
nT

- 0.9179
(0.0089)

0.9284
(0.0084)

950 0.2605
(0.0143)

0.5359
(0.0162)

0.2848
(0.0147)

948

1 0.5657
(0.0161)

0.3739
(0.0157)

944 0.4877
(0.0163)

0.2497
(0.0141)

0.2615
(0.0144)

937

4 0.7617
(0.0142)

0.7494
(0.0145)

898 0.4766
(0.0167)

0.2973
(0.0153)

0.3808
(0.0162)

898

9 0.6335
(0.0161)

0.4235
(0.0165)

895 0.4344
(0.0180)

0.4121
(0.0178)

0.4475
(0.0180)

762

14 0.4576
(0.0194)

0.2561
(0.0170)

660 0.3642
(0.0189)

0.3596
(0.0189)

0.3719
(0.0190)

648

T = 1000 T = 1000

knots α̃1 β̃1 M
nT

α̃1 β̃1 δ̃1 M
nT

- 0.9136
(0.0092)

0.9157
(0.0091)

937 0.2148
(0.0134)

0.5365
(0.0162)

0.2042
(0.0131)

945

1 0.3597
(0.0159)

0.1694
(0.0124)

909 0.4585
(0.0163)

0.1053
(0.0100)

0.1372
(0.0112)

940

4 0.7792
(0.0141)

0.6913
(0.0157)

865 0.5143
(0.0166)

0.1253
(0.0110)

0.2813
(0.0149)

910

9 0.8188
(0.0127)

0.8328
(0.0123)

927 0.7859
(0.0136)

0.6279
(0.0160)

0.7717
(0.0139)

911

14 0.7412
(0.0180)

0.7462
(0.0178)

595 0.8487
(0.0157)

0.8180
(0.0169)

0.8352
(0.0162)

552

T = 5000 T = 5000

knots α̃1 β̃1 M
nT

α̃1 β̃1 δ̃1 M
nT

- 0.9529
(0.0068)

0.9478
(0.0071)

977 0.2041
(0.0128)

0.5411
(0.0159)

0.1736
(0.0121)

985

1 0.2909
(0.0145)

0.0773
(0.0085)

983 0.5386
(0.0159)

0.0996
(0.0095)

0.6189
(0.0155)

984

4 0.3908
(0.0156)

0.3467
(0.0152)

975 0.5683
(0.0158)

0.0758
(0.0084)

0.5319
(0.0159)

989

9 0.8142
(0.0125)

0.6858
(0.0149)

974 0.7599
(0.0136)

0.1801
(0.0123)

0.6989
(0.0146)

983

14 0.6151
(0.0159)

0.7708
(0.0137)

938 0.9696
(0.0058)

0.6182
(0.0163)

0.9414
(0.0079)

888

T = 10000 T = 10000

knots α̃1 β̃1 M
nT

α̃1 β̃1 δ̃1 M
nT

- 0.9395
(0.0076)

0.9466
(0.0071)

992 0.1051
(0.0097)

0.4838
(0.0159)

0.0828
(0.0088)

990

1 0.2189
(0.0131)

0.0432
(0.0064)

996 0.5510
(0.0158)

0.0757
(0.0084)

0.5923
(0.0156)

991

4 0.2929
(0.0145)

0.2566
(0.0139)

990 0.5730
(0.0157)

0.0896
(0.0091)

0.5378
(0.0158)

993

9 0.8769
(0.0105)

0.6745
(0.0149)

983 0.7888
(0.0130)

0.2030
(0.0128)

0.7208
(0.0143)

985

14 0.4693
(0.0160)

0.7566
(0.0137)

978 0.7374
(0.0141)

0.3069
(0.0148)

0.6952
(0.0148)

971

T = 25000 T = 25000

knots α̃1 β̃1 M
nT

α̃1 β̃1 δ̃1 M
nT

- 0.9367
(0.0077)

0.9317
(0.0080)

995 0.1630
(0.0117)

0.5260
(0.0158)

0.1750
(0.0120)

1000

1 0.1261
(0.0105)

0
(0)

999 0.5241
(0.0158)

0.0813
(0.0087)

0.5552
(0.0157)

996

4 0
(0)

0.1850
(0.0123)

1000 0.5938
(0.0156)

0.0772
(0.0085)

0.5707
(0.0157)

997

9 0.7347
(0.0140)

0.3920
(0.0155)

995 0.6911
(0.0147)

0.0543
(0.0072)

0.5654
(0.0157)

994

14 0.3828
(0.0154)

0.7384
(0.0140)

990 0.9970
(0.0017)

0.5482
(0.0158)

0.9528
(0.0067)

996

Table 10: Coverage Probability. Coverage probability and the bernoulli standard errors (in parentheses) are

computed as given in equations (37)- (39). The red highlighted numbers indicate, that some GJR-GARCH replications and

related ML estimators result to some negative ht.

38



knots T = 100 T = 500 T = 1000 T = 5000 T = 10000 T = 25000

α̂
nT

0 0.001 0.004 0.545 0.346 0.485 0.924
1 0.000 0.025 0.336 0.887 0.406 0.356
4 0.000 0.000 0.414 0.287 0.503 0.439
9 0.000 0.007 0.213 0.752 0.928 0.833
14 0.000 0.002 0.758 0.480 0.554 0.775

β̂
nT

0 0.000 0.000 0.228 0.557 0.949 0.356
1 0.000 0.000 0.000 0.920 0.840 0.892
4 0.000 0.000 0.000 0.174 0.295 0.998
9 0.000 0.000 0.000 0.171 0.766 0.403
14 0.000 0.000 0.000 0.117 0.168 0.763

Table 11: Kolmogorov-Smirnov-Test for GARCH (1,1). p-Values of two-tailed Kolmogorov-Smirnov-Test

with significance level α = 0.05

H0 : F0(θ̂) = FM
nT

(θ̂) H1 : F0(θ̂) 6= FM
nT

(θ̂)

knots T = 100 T = 500 T = 1000 T = 5000 T = 10000 T = 25000

α̂
nT

0 0.000 0.001 0.410 0.318 0.917 0.398
1 0.000 0.355 0.779 0.871 0.414 0.780
4 0.000 0.459 0.195 0.797 0.950 0.828
9 0.000 0.000 0.789 0.636 0.635 0.845
14 0.000 0.000 0.021 0.609 0.525 0.957

β̂
nT

0 0.000 0.000 0.131 0.195 0.805 0.832
1 0.000 0.000 0.177 0.345 0.566 0.843
4 0.000 0.000 0.009 0.625 0.839 0.885
9 0.000 0.000 0.000 0.436 0.952 0.974
14 0.000 0.000 0.000 0.378 0.747 0.620

δ̂
nT

0 0.000 0.022 0.108 0.551 0.119 0.693
1 0.000 0.193 0.928 0.901 0.803 0.907
4 0.000 0.561 0.612 0.651 0.940 0.955
9 0.000 0.002 0.956 0.841 0.954 0.952
14 0.000 0.000 0.276 0.546 0.634 0.460

Table 12: Kolmogorov-Smirnov-Test for GJR-GARCH (1,1). p-Values of two-tailed Kolmogorov-

Smirnov-Test with significance level α = 0.05

H0 : F0(θ̂) = FM
nT

(θ̂) H1 : F0(θ̂) 6= FM
nT

(θ̂)

The red highlighted numbers indicate, that some GJR-GARCH replications and related ML estimators result to some negative

ht.
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Figure 16: Bias | ¯̂α1 − α̃1|.Garch(1,1)(top row) and GJR-Garch(1,1) (bottom row). Small samples T ∈ {100, 500, 1000}
(left-hand side), large samples T ∈ {5000, 10000, 25000}(right-hand side). Some GJR-GARCH replications and related ML

estimators result to some negative ht.
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Figure 17: Bias | ¯̂β1 − β̃1|. Garch(1,1)(top row) and GJR-Garch(1,1) (bottom row). Small samples T ∈ {100, 500, 1000}
(left-hand side), large samples T ∈ {5000, 10000, 25000}(right-hand side). Some GJR-GARCH replications and related ML

estimators result to some negative ht.
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Figure 18: Bias |¯̂δ1 − δ̃1|. GJR-Garch(1,1). Small samples T ∈ {100, 500, 1000} (left-hand side), large samples T ∈
{5000, 10000, 25000}(right-hand side). Some GJR-GARCH replications and related ML estimators result to some negative ht.
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Figure 19: Asymptotic Normality of α̂1 in GJR-GARCH(1,1) case. The black curves represent the kernel density

estimator for α̂, the red curve the related normal distribution. In the top row the spline(14)-GARCH(1,1) distribution for

T ∈ {100, 1000, 5000, 25000} is depicted. The subjacent rows are the spline(K)-GARCH(1,1) models with K ∈ {0, 1, 4, 9} and

the same time series lengths.
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Figure 20: Asymptotic Normality of β̂1 in GJR-GARCH(1,1) case. The black curves represent the kernel density

estimator for β̂, the red curve the related normal distribution. In the top row the spline(14)-GARCH(1,1) distribution for

T ∈ {100, 1000, 5000, 25000} is depicted. The subjacent rows are the spline(K)-GARCH(1,1) models with K ∈ {0, 1, 4, 9} and

the same time series lengths.

43



-1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

C
ou

nt
s

Spline(14)-GJR-Garch(1,1) 100

Kernel
Gaussian

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
0

2

4

6

8

10

12

14
C

ou
nt

s

Spline(14)-GJR-Garch(1,1) 1000

Kernel
Gaussian

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05
0

5

10

15

20

25

30

35

40

45

C
ou

nt
s

Spline(14)-GJR-Garch(1,1) 5000

Kernel
Gaussian

-0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02 0.025 0.03
0

20

40

60

80

100

120

C
ou

nt
s

Spline(14)-GJR-Garch(1,1) 25000

Kernel
Gaussian

-1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

C
ou

nt
s

Spline(9)-GJR-Garch(1,1) 100

Kernel
Gaussian

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
0

2

4

6

8

10

12

14

C
ou

nt
s

Spline(9)-GJR-Garch(1,1) 1000

Kernel
Gaussian

-0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05
0

5

10

15

20

25

30

35

40

45

50

C
ou

nt
s

Spline(9)-GJR-Garch(1,1) 5000

Kernel
Gaussian

-0.005 0 0.005 0.01 0.015 0.02 0.025
0

20

40

60

80

100

120

C
ou

nt
s

Spline(9)-GJR-Garch(1,1) 25000

Kernel
Gaussian

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

C
ou

nt
s

Spline(4)-GJR-Garch(1,1) 100

Kernel
Gaussian

-0.15 -0.1 -0.05 0 0.05 0.1 0.15
0

2

4

6

8

10

12

14

16

18

20

C
ou

nt
s

Spline(4)-GJR-Garch(1,1) 1000

Kernel
Gaussian

-0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05
0

5

10

15

20

25

30

35

40

45

50

C
ou

nt
s

Spline(4)-GJR-Garch(1,1) 5000

Kernel
Gaussian

0 0.005 0.01 0.015 0.02 0.025 0.03
0

20

40

60

80

100

120

C
ou

nt
s

Spline(4)-GJR-Garch(1,1) 25000

Kernel
Gaussian

-1 -0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

C
ou

nt
s

Spline(1)-GJR-Garch(1,1) 100

Kernel
Gaussian

-0.1 -0.05 0 0.05 0.1 0.15
0

2

4

6

8

10

12

14

16

18

20

C
ou

nt
s

Spline(1)-GJR-Garch(1,1) 1000

Kernel
Gaussian

-0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05
0

5

10

15

20

25

30

35

40

45

50

C
ou

nt
s

Spline(1)-GJR-Garch(1,1) 5000

Kernel
Gaussian

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
0

20

40

60

80

100

120

C
ou

nt
s

Spline(1)-GJR-Garch(1,1) 25000

Kernel
Gaussian

-1 -0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

3.5

C
ou

nt
s

GJR-Garch(1,1) 100

Kernel
Gaussian

-0.1 -0.05 0 0.05 0.1 0.15
0

5

10

15

20

25

C
ou

nt
s

GJR-Garch(1,1) 1000

Kernel
Gaussian

-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06
0

10

20

30

40

50

60

C
ou

nt
s

GJR-Garch(1,1) 5000

Kernel
Gaussian

0.005 0.01 0.015 0.02 0.025 0.03 0.035
0

20

40

60

80

100

120

C
ou

nt
s

GJR-Garch(1,1) 25000

Kernel
Gaussian

Figure 21: Asymptotic Normality of δ̂1 in GJR-GARCH(1,1) case. The black curves represent the kernel density

estimator for δ̂, the red curve the related normal distribution. In the top row the spline(14)-GARCH(1,1) distribution for

T ∈ {100, 1000, 5000, 25000} is depicted. The subjacent rows are the spline(K)-GARCH(1,1) models with K ∈ {0, 1, 4, 9} and

the same time series lengths.
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