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Abstract: Pricing derivatives with Monte-Carlo simulations involves standard
errors that typically decrease at a rate proportional to N ~%5 where N is the sample
size. Several approaches have been discussed to reduce empirical variance for a
given sample size. This paper analyzes the joint application of the put-call-parity
approach and importance sampling to non-path-dependent and path-dependent op-
tions. Significant variance reduction is observed for in-the-money European and
Arithmetic Asian options. For put options, synergies are realized in the sense that
the total variance reduction effect achieved by the combined approach is higher than

the effect explained by the two standalone approaches.
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1 Introduction

A difficulty related to the pricing of options using Monte-Carlo simulations is the
fact that the empirical variance of estimators decreases slowly, typically at a rate o
1/N where N is the sample size. Several techniques have been discussed to reduce
the empirical variance for a given sample size /N [1]]. Importance sampling turns
out to be a particularly effective variance reduction technique. A transformation of
the probability measure serves to increase the number of trajectories contributing to
the Monte-Carlo estimator [2, 13, 4., [5]].

An alternative approach to variance reduction - at least for in-the-money options -
is the application of the put-call-parity. E.g., instead of simulating an in-the-money
put the corresponding out-of-the-money call can be simulated. The put price then
can be calculated from the put-call-parity yielding a variance reduced estimator
(64 7]

This paper will investigate how the joint application of the put-call-parity and
importance sampling can lead to synergies in the simulation of variance reduced

Monte-Carlo estimators.

2 Importance sampling

Foundations of importance sampling The method of importance sampling
was first introduced to efficiently simulate chain reactions in nuclear reactors [8]].
The fundamental idea is the transformation of the probability measure governing
the simulation.

The expectation value of a function 4 : R? — R, X — h(X) of a random
variable X with probability density p is calculated as

0 =B, [h(X) = [ 1) p(a) do. M)
An unbiased Monte-Carlo estimator for « with i.i.d. realizations X4, ..., X, of
the random variable X is
. IS
b, = ﬁglh(xi)' (2)
With any other probability density p’ the estimator can be rewritten as
p(x) , p(X)
a = hxpxdx:/hx pxdx:]E/[hX 3)
[ 1@ p@ (@) Dy (@) de = By [h(X) L2

The ratio p/p’ is called likelihood ratio or Radon-Nikodym derivative [1},9].



The unbiased Monte-Carlo estimator
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Importance sampling is based on the minimization of this variance term. In the
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special case of a non-negative function h, by choosing

p'(x) oc h(z) p(z) (6)

the variance term in equation (5) vanishes. The product h(x) p(x) can be trans-
formed into a new probability density by normalizing. The difficulty is to obtain the

normalization factor. For this purpose, the integral

a= /h(x) p(x) dz (7)

would have to be calculated. However, the calculation of this quantity was the orig-
inal problem to be solved in equation (). Nonetheless, already by approximating

the proportionality factor significant variance reduction can be achieved [1].

Importance sampling by adding an additional drift term The importance
sampling approach applied in this paper was introduced by Singer (2014) [S]] for the
multivariate cas Here, the univariate case is derived and the multivariate result is

given. The aim is to find a variance reduced estimator for the Feynman-Kac formula

O(Si,t) = E |l "Smmdr(5.)|S(t) = St] . ®)

Going forward, we will consider the case of a constant interest rate 7
C(Sy,t) = e "TVE[h (S7)|S(t) = 5] )

which solves the Black-Scholes differential equation [10]

oC oC 1 ,_,0°C _

%A similar approach has already been introduced by Melchior and Ottinger (1995) [2]).




For the purpose of numerical calculations, equation (9) can be expressed as

C(Si, ) ~ e~ T / B () P(Shs T So1s T1)

X ... X p(51,7'1|5t,t)d5n .. dSl

(1)

using a finite-dimensional approximatio ona grid 7; = t + jA7 with n discretiza-
tion steps. We set 7,, = 1" and consequently S,, = Sr.
The random process S(t), i.e. the stock price of the derivative’s underlying, is

supposed to follow an Ito differential equation of the form
aS(t) = F(S(1)) dt + g(S(t)) AW (12)

where f is a drift parameter, ¢ the time, g a diffusion coefficient and W a Wiener
process. Defining At = t, — t; and AS = Sy — 57, the transition density between
t; and t, for small At is approximately the density of the normal distribution with

expectation value f At and variance g At:

- 1 (AS — fAt)?
p(‘SQ?tQ | Sl7t1) - m eXp{ W (13)
L { 1 AS?2  ASf 1f2At}
= — X - = 5
oAl D\ 2gAE @2 g

This density function solves the Kolmogorov backward equatimﬂ with the differ-
ential operator L:

8p f— 1 0?
ot 99, 29 952
- Lp

(14)

For the optimal density p’ = p°™ in accordance with equation (6)) we define:
p*(8) =p(S) = 7o (15)

The resulting underlying is supposed to follow a stochastic differential equation

3For details see Appendix B in [3]
“4For details see [11], chapter 4



similar to equation (I2)) with modified drift term:
dsS = fPdt+ gdW (16)

The diffusion coefficients of equations (I2)) and (16)) coincide because otherwise
the Radon-Nikodym derivative would diverge.
Differentiating the optimal density p°®* with respect to ¢ and inserting the Kol-
mogorov backward equation (I4) after a lengthy calculation yields
g% oC

(Sf = fopt — = 5% (17)

In the multivariate case with a scalar C, vectors f and ¢ and a diffusion matrix

Q2 = gg” one obtains the following optimal drift term [3]:

vC

The (univariate) optimal stochastic differential equation follows:

dS = fPdt + gdW = f+g—28—0 dt + gdW (19)
- g = C 0S g
In the Black-Scholes model with f = S and g = 0.5 this equation can be written
as follows:
dS = (r+eo”) Sdt+o0SdW (20)

The following abbreviation for the option price elasticity was introduced:

S oC
€=57%39 21

In equations (19)-(21)), C' is the Feynman-Kac formula from equation (9). Again
the same problem as in equation (/) materializes: To describe the optimal stochastic
differential equation, knowledge of C'is required. Approaches how to cope with this
problem will be discussed in a subsequent paper. In this analysis, the Black-Scholes
formula for European options will be used [[12]]. In the case of simulating European
options in the Black-Scholes model, this is the best possible choice (as the Black-
Scholes formula yields the analytically exact value). But also for other options like
Arithmetic Asian options it represents a useful approximation.

In order to evaluate estimators of the form of equation (), the Radon-Nikodym



derivative must be calculated. Here the 2" row of equation (13]) is used:

AS opt 1 opt
pfpt :exp{—? (f* —f)+2—ngt <fp2—f2>}
—ep{-(mon 5 |as-gumena]f e

1

- exp{—(f"‘“ -1 B (" f) At+gAW]}

By inserting equation the Radon-Nikodym derivative simplifies to

p g 0C 1 (g 0C\?
popt—exp{ C@SAW 2(085) At 3. (23)

With sample size NV and n discretization steps for the Black-Scholes model one

obtains the variance reduced Monte-Carlo estimator

Sit OCig 1 ( Sik 5C¢k)2
o A

AW, — t
Cir, OSik W + 2 Cir, OSik }

e" (T*” h(S; (T)) (24)

N n—1
1 1
= E exp{— E {aeikAW;-k—i-éﬁekat}}

k=0
e (=0 1 (S, (T)) .

FESWE

Again, the abbreviation @ has been used. As mentioned, ¢ can be calculated

from the Black-Scholes formula [[12]. The result for call options is [13]

B Ke @0 & (dy(S(t), 1)\
(0.0 = (1= g g S0 ) @
An analog result follows for put options [[14]:
oy Ke T @ (—da(S0), 1)\
e 500 = (1= 555 Casn ) 0

Other importance sampling approaches are being discussed in literature [4, 15].



3 Variance reduction with put-call-parities for
European and Asian options

European options By simple non-arbitrage arguments it can be shown that for
a European put with pay-off function

Pr= (K- Sp)* 27)

the following put-call-parity holds true where P, is the put price at ¢ and C; the call
price [[16]]:
P() = OO + KG_TT - S[) (28)

Asian options Also for Arithmetic Asian put options with the pay-off function
_ _ ]
Pr= (K —S8;)" with Sp = =) 5 29
T ( T) w1 T= ; (29)

a put-call-parity holds. S,,, = St and equidistant S; are assumed.
With
_rT(m=1) _rT
u:(e‘mgrh”+ern+g (30)

it can be shown that the following relation is required to avoid arbitrage [7]]:
_ —rT H
Py=Cy+ Ke — =5 3D
m

Variance reduction Reider (1994) [6] suggested to apply put-call-parities to
variance reduced importance sampling. It can be shown that in-the-money (call/put)
options can be estimated more efficiently by first estimating the corresponding
(put/call) option with the same parameters and subsequently calculating the required

(call/put) value from the put-call-parity [7]].

4 Joint application of the put-call-parity and
importance sampling

In a previous paper it was suggested that a combined application of the put-call-
parity and importance sampling might be particularly attractive [7]. It was dis-
cussed that importance sampling in many cases is especially attractive for out-of-

the-money options. Therefore, the valuation of an in-the-money (call/put) option



could be conducted more efficiently by pricing the corresponding out-of-the-money
(put/call) option with importance sampling and then calculating the desired option

value from the put-call-parity. This approach will be analyzed and discussed in this

paper.

5 Numerical Results

Introductory remarks In the following, prices of a European and an Arithmetic
Asian option will be estimated by Monte-Carlo simulations. Variance reduction
will be achieved by applying the put-call-parity (PCP) and by importance sampling
(IS). The two approaches will also be combined, i.e. importance sampling will be
applied to call/put options and then the corresponding put/call option value will be
calculated from parities and (31).

In order to compare the combined variance reduction approach (PCP-IS) with the
standalone approaches (PCP and IS) a performance ratio will be calculated involv-
ing the variance reduction factors (VRF) as follows:

VRFpcpis mc

Performance ratio = (32)
VRFpcpmc X VRFisme

Here, the variance reduction factor is calculated as the ratio between the empirical
variance of a benchmark Monte-Carlo estimator and the empirical variance of a
variance-reduced Monte-Carlo estimator.

Obviously, whenever the performance ratio exceeds 1, synergies result from com-

bining the two approaches.

European options As shown in figure |1, Monte-Carlo simulations of a Euro-
pean put option in the Black-Scholes model were conducted and compared to the
analytical Black-Scholes formula [12]]. As expected in the case of a direct Monte-
Carlo simulation without application of variance reduction techniques, for the in-
the-money price regime the standard error was higher than for out-of-the-money
constellations. The same result holds when importance sampling is applied. How-
ever, when applying the put-call-parity approach the reverse is the case: in-the-
money prices were estimated more accurately both in simulations with and without
importance sampling.

More explicitly, the reduction of the empirical variance of the estimators is shown
in figure 2| As expected from previous research [7/], the put-call-parity approach

was most effective for deep-in-the-money put options. The importance sampling



European Put — Simulation Results
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Figure 1: (a) Direct MC: Black dots: direct Monte-Carlo simulation of European
put with pay-off function withr =0.05,0 =02,T =1, K =10, n = 100
discretization steps and N = 1,000 simulated trajectories. Red bars: Standard
error of simulated option value. Blue line: Analytic option price calculated from
the Black-Scholes formula [[12]]. (b) PCP MC: Black dots: Put prices calculated
employing the PCP (28)). Required call prices were estimated by Monte-Carlo
simulation with the same parameters as in (a). Red bars: as in (a). Blue line: as
in (a). (c) IS MC: Black dots: Put prices calculated employing the IS approach
described in section [2| For purposes of numerical stability the estimated e values
calculated from equation have been limited to the interval [—/3, 5] with § =
10,000. Red bars: as in (a). Blue line: as in (a). (d) PCP-IS MC: Black dots:
Put prices calculated in a combined approach of (b) and (c). First call prices were
estimated via importance sampling applying equation with 5 = 10, 000.
Then, put prices were calculated from equation (28). Red bars: as in (a). Blue
line: as in (a).



Variance reduction factor

Variance reduction factor

European Put — Variance Reduction
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Figure 2: (a) PCP MC: Black line: Variance reduction achieved by employing the

PCP (28). The variance reduction factor is calculated as the ratio between the
empirical variances of the two Monte-Carlo estimators presented in (a) and (b) in
figure|l} Red line: Line where variance reduction factor equals one. Green line:
Line where S(0) = Ke~"T. (b) IS MC: Black line: Variance reduction achieved
by employing the IS approach described in section [2] Red line: as in (a). Green
line: as in (a). (c) PCP-IS MC: Black line: Variance reduction achieved by
combining the approaches from (a) and (b). Red line: as in (a). Green line: as in
(a). (d) Performance Comparison: Black line: Performance calculated as the
ratio between the variance reduction factor of the combined approach as shown in
(c) and the product of the variance reduction factors of the standalone approaches
shown in (a) and (b), see equation (32)). Values > 1 indicate synergies resulting
from the combination of the PCP approach with the IS approach. Red line: Line
where the combined approach yields the same variance reduction factor as the
product of the two standalone approaches. Green line: as in (a).
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Arithmetic Asian Put — Simulation Results
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Figure 3: (a) Direct MC: Black dots: direct Monte-Carlo simulation of Arithmetic
Asian put with pay-off function (29) with r = 0.05, 0 = 0.2, T = 1, K = 10,
n = 100 discretization steps, N = 1,000 simulated trajectories and m = 10,
i.e. the course trajectory was divided in m equal parts and the final S' value of
each interval was taken to calculate S. Red bars: Standard error of simulated
option value. Blue line: Option price simulated with the same parameters as
before, but with increased number of trajectories Nieference = 100, 000. (b) PCP
MC: Black dots: Put prices calculated employing the PCP (31)). Required call
prices were estimated by Monte-Carlo simulation with the same parameters as
in (a). Red bars: as in (a). Blue line: as in (a). (¢) IS MC: Black dots: Put
prices calculated employing the IS approach described in section 2| For purposes
of numerical stability the estimated e values calculated from equation (26 have
been limited to the interval [— /3, §] with § = 10,000. Red bars: as in (a). Blue
line: as in (a). (d) PCP-IS MC: Black dots: Put prices calculated in a combined
approach of (b) and (c). First call prices were estimated via importance sampling
applying equation with 8 = 10, 000. Then, put prices were calculated from
equation . Red bars: as in (a). Blue line: as in (a).
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Arithmetic Asian Put — Variance Reduction
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Figure 4: (a) PCP MC: Black line: Variance reduction achieved by employing the

PCP (31). The variance reduction factor is calculated as the ratio between the
empirical variances of the two Monte-Carlo estimators presented in (a) and (b) in
figure 3| Red line: Line where the variance reduction factor equals one. Green
line: Line where S(0) = Ke "', (b) IS MC: Black line: Variance reduction
achieved by employing the IS approach described in section[2] Red line: as in (a).
Green line: as in (a). (c) PCP-IS MC: Black line: Variance reduction achieved
by combining the approaches from (a) and (b). Red line: as in (a). Green line: as
in (a). (d) Performance Comparison: Black line: Performance calculated as the
ratio between the variance reduction factor of the combined approach as shown in
(c) and the product of the variance reduction factors of the standalone approaches
shown in (a) and (b), see equation (32)). Values > 1 indicate synergies resulting
from the combination of the PCP approach with the IS approach. Red line: Line
where the combined approach yields the same variance reduction factor as the
product of the two standalone approaches. Green line: as in (a).
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approach was effective on a broad range of underlying values. The combined ap-
proach also turned out to work well on a broad range of underlying values, however
with decreasing effectiveness.

As described above, performance comparisons were conducted. For small Sj val-
ues, the combined approach of PCP and IS turned out to be particularly effective.
E.g., for Sy/Ke " ~ 0.618 by applying the PCP approach, a variance reduction
factor of 53.1 was achieved while the IS approach yielded a factor of 504. Con-
trastingly, the combined approach achieved a factor of 70, 100. Thus, the variance
reduction factor is 2.62 times higher than the product of the reduction factors of the
two standalone approaches. Similar synergies have been achieved for other in-the-
money underlying values. However, with increasing S, synergies decreased and
eventually disappeared. For increased S, values the IS approach turned out to be
more effective than the combined approach.

In the case of call options no synergies were realized (performance ratio < 1).
However, the combined approach for in-the-money options still yielded better vari-
ance reduction results than any of the two variance reduction approaches considered

individually.

Arithmetic Asian options Similar results have been achieved for Arithmetic
Asian put options (see figures [3]and d)). Again, the PCP approach worked very well
for in-the-money puts. However, the IS approach here partially delivered negative
variance reduction results, i.e. a variance increase. However, when combining the
approaches, for in-the-money puts again high variance reductions were achieved.
E.g., for So/Ke ™ =~ (0.618 a variance reduction factor of 745, 000 was achieved.
The PCP approach alone achieved a variance reduction factor of 337 and IS a vari-
ance increase involving a factor of 0.852. Thus, the performance measure yielded a
value of 2, 590.

6 Discussion

Variance reduction achieved by the PCP-IS approach The results clearly
indicate that combining importance sampling with the put-call-parity approach to
variance reduced option pricing is a powerful tool for the pricing of in-the-money
options. The presented approach has been applicable both to the non-path-depen-
dent case (European options) and to the path-dependent case (Arithmetic Asian
options). Furthermore, the approach is very general in the sense that neither the in-

volved importance sampling approach nor the involved put-call-parities are limited

13



to a specific underlying model (here the Black-Scholes case has been examined).

Further improvement of estimators for Asian options The IS variance re-
duction for Asian options might be further improved by applying a more accurate
estimate of the option price elasticity €. In this analysis, the Black-Scholes formula
for European options was applied as a rough estimate. Other approximations are

currently being researched and will be presented in a subsequent paper.

Combination of PCP with other importance sampling approaches Com-
bining other authors’ approaches to importance sampling with the put-call-parity
approach should be further researched as also here, synergies might be obtained,

possibly outperforming this paper’s approach.

7 Conclusion

Variance reduced Monte-Carlo simulations for European and Arithmetic Asian put
options have been conducted. For in-the-money options significant variance reduc-
tion by combining importance sampling with the put-call-parity approach has been

achieved.
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