Chapter 1

Detecting Common Elements
of Types

Manfred Widera and Christoph Beierfe

Abstract: We describe an algorithm approximating the following question: Given
two typest; andty, are there instances(t;) ando(tz) denoting a common el-
ement? By answering this question we solve a main problem towards a type
checking algorithm for non-disjoint types that raises an error just for function
calls that cannot be executed successfully. For dynamically typed functional lan-
guages such a type checker can extend actual soft typing systems in order to reject
provably ill-typed programs.

1.1 INTRODUCTION

When type inference and type checking for functional programs is done according
to the approach first presented in [Mil78] different types denote disjoint sets of
values. Type checking is done using the binary relatiome. for every function

call (f a) in the analyzed program the type inferred for the argunaesmd the

input type expected by have to be equal.

By introducing type languages with non-disjoint types equality of types be-
came a too strong restriction. Therefore, subtyping relatiomshere introduced
modeling the question whether a typelenotes a subset of the values denoted by
to. For a function cal(f a) a type checker based @n performs a test whether
the type inferred for the argumeats a subtype of the expected input typefof
The test fails for all the cases where the type inferrecafoontains at least one
valuef is not applicable to. This sound approach to type checking can be used in
the following ways:

LFachbereich Informatik, FernUniversitHagen, D-58084 Hagen, Germany. Email:
Manfred.Widera@Fernuni-Hagen.de

2Fachbereich Informatik, FernUniversitHagen, D-58084 Hagen, Germany. Email:
Christoph.Beierle@Fernuni-Hagen.de

e In a strictly typed language as e.g. Haskell [HPF97] the type checker prevents
ill-typed programs from execution. It is integrated in the language definition
excluding ill-typed programs from the set of valid programs.

e When using a sound static type checker for a dynamically typed functional
language the set of valid programs in the language is not affected by the type
checker. Since dynamically typed languages are not designed with a precise
static type checking in mind extensive use of the language’s expressiveness
can easily confuse the type checker. The output messages are therefore inter-
preted asvarningsinstead oferrors yielding the concept of soft-typing (see
e.g. [CF91)).

In this work we present another extension of [Mil78] to type languages with
non-disjoint types that addresses dynamically typed languages. We introduce a
binary relation on types that is defined by an algoritbE{t;,t,) and that approx-
imates the test whether there is a common element denoted by, kaoilt,. A
type checker based on this relation checks for every function €al) whether
the type inferred fom and the expected input type 6fhave common elements.
The test fails if no common elements are detected. In this case no evaluation of
the call can succeed. (We assume the usual situation that ad¢ypa expression
edenotes all valuescan be evaluated to, but may denote additional values.)

This is the basis of what we catlbmplete type checkirfyvVB00]: The type
checker is complete if it accepts every program in which all function calls can be
executed without raising a type error.

The best use for a type checker based on the relation on types indu€#tl by
is a combination with a soft typing system or a system with an output similar to a
soft typing system [Fla97, FF99]:

e The new type checker focuses on a set of proven errors (i.e. program parts that
cannot be executed without raising an error). Obviously, in any case such er-
rors must be corrected. If instead these errors were only indicated as warnings
within in a large number of type warnings given by the soft typing system they
could be overlooked quite easily.

e Errors that cannot be proven and thus are overlooked by the new type checker
are caught by the soft typing system and are presented as warnings.

Example 1.1Consider the function call = (vector-ref v) in the functional lan-
guage Scheme [KCE98] with a vector expressioand an index expressidn
Assume thak is an expression with inferred tygmsint (the type of all posi-
tive integers). Depending on the expressite type checkers behave as follows:

e If i = (+ k 3) then the typgosint can be inferred for. The function calc
is well-typed in every type checker.

e Fori = (— k 3) just the typeint (the type of all integers) can be inferred.
A soft typing system raises a warning becauseay be a negative integer
causing an error in. A complete type checker based G& accepts the cadl.

e If i = (x k —2) the most special type inferred fois negint (the type of all
negative integers). A soft typing system still just raises a warning. A complete
type checker based @E raises an error far because this call cannot succeed
with a negative number as vector index.

The rest of the paper introduces an algoritGifor checking types for com-
mon elements and is organized as follows: Section 1.2 gives a definition of the
type language used throughout the paper. In Sec. 1.3 the algdifor detect-
ing common elements is presented. Its main component calieiis given in
1.3.2. Section 1.4 gives some conclusions and points out further work.

1.2 THE TYPE LANGUAGE

The following definition Def. 1.1 introduces the set of all types for a given set of
variablesv. The definition of the type syntax is standard except for the function

types.

Definition 1.1 (standard types).Let V be a set of variables. The detV) of all
type terms overV is defined as the smallest set with:

1.B C T (V) whereB is a set of all base types containingand T defined as
usual.

2.VCT (V).

3.ceKep,....eq €T (V)= (cer... &y¢) €T (V) whereK is aset of type
constructors and &) is the arity of ¢3

4.e,...,80cT (V)= (Uer...&) eT (V).

5. TfungTfung, Tfung, € T (V) where Tfunc is called the type of all function
definitions (functions for short), Tfupés the type of all predefined functions
and Tfung the type of all user defined functions.

6.1f X eV isavariable and € T (V) contains X then pXe T (V).

The function types introduced in this definition differ from the usual approach:
We intend to build a type checker that just raises an error for function(dadlsif
the type inferred foa and the input type expected Bydo not have any common
elements. In order to perform this test we need information ahlbwalid input
values tof. The usual function type constructor that is anti-monotonic in its first
argument does not provide this.

The function types defined here do not carry much information. They can just
distinguish predefined and user defined function definitions. A more sophisticated
definition of function types is given in [WBO01].

3For instance, the binary “cons” operatot is in K with a(.) = 2.

Definition 1.2 (closed/ground types)The setTc(V) C T (V) of closed types
consists of all types not containing any variables not bound by p. Thesset
Tc(V) of ground typesonsists of all types without any variables.

Since the only variables occurring Te:(V) are bound by and can be renamed
the setv does not matter for closed types. We therefore often Weitenstead of
Te(V).

We define positions in terms as usual as lists of natural numbers (written as
P = p1.p2.... -Px) With € denoting the empty list. For every type tetrwe have
te :=t. Fork > 0 andp defined as above the subtermtoét p is defined as
usual byt, = t’, wheret’ is the pl" subterm oft andp’ = pz.....px. We write
tp = undefine if there is no subterm at positigmin t.

If the second subterm of a recursive type term is selected we introduce an
implicit unfolding step in the subterm selection denotedbyFort = pX.t’ we
define that, does not yield’ butt/[X[t], i.e.t” with every free occurrence of
replaced byt.

The notiont[p|t’] for type termg andt’ and a positiorp is introduced for the
typet with positionp changed ta'.

Definition 1.3 (unfolding recursive bindings).Lette T be type. We define the
functionunfold as unfoldt) =t’ where t differs from t at exactly those positions
p with:

o tp = uX.fis a recursive type.

e There is no proper prefix'mf p such thaty is a recursive type, i.eptis not
a subterm of any recursive type except of itself.

For each of these positions p the returned type térfulfills tg =tp2.

The semantics of the type language defined above is as usual.cForthe
semantics of is denoted by(t]). A detailed definition of[-]) is given in [WBO1].

1.3 CHECKING TYPES FOR COMMON ELEMENTS

The central question occurring in complete type checking is the following: Given
two typest; andty. Is there a substitutioa such thato(t1)]) N (o(t2)]) # {L}?

In this section an algorithrGE is introduced that approximates the answer in
the following sense: For every existing substitution with the given prop€gy,
returns a more general substitution. On the other HaRds really an approx-
imation and not a decision procedure. Thus, there may be situations ®kere
returns a substitution eventif andt, cannot have common elements, e.g. when
one of the types does not have any elements at all.

The description ofCE is done in the following subsections: Section 1.3.1
contains the preliminaries used to def@E. In Sec. 1.3.2 an algorithi8-CEis
introduced that calculates constraints on the variable instantiations. The remain-
ing part of CE sketched in Sec. 1.3.3 transforms the constraint sets to idempotent
substitutionss and returns a set of them.

1.3.1 Preliminaries

In this section we will define some structures forming the result or intermediate
values ofCE. The goal ofCE is to find a set of type substitutions more general
than the closed type substitutions transforming two typasdt, to closed types
with common elements. Type substitutions are defined as follows:

Definition 1.4 (type substitution).A type substitutioris a function mapping type
variables Xe V to typesy. A type substitutioo assigning the type to the type
variable X for all i € {1,... ,k} is denoted byX; < t1,..., Xk < ty]; its domain
is denoted by dofo) = {Xi,...,X}. A substitution is calleddempotentf all
assigned valuextdo not contain any variables ¥ donm(o) as subterms.

The return value o€E is an s-collection defined as follows:
Definition 1.5 (s-collection) Ans-collectionis a finite set of type substitutions.

During the calculation o€E, constraints on the possible instantiations of type
variables are collected in structures calteahstraint sets

Definition 1.6 (constraint sets) A variable constraint is a paifX,t) (often writ-

ten as X< t) where XeV and te T. A constraint seis a set of variable
constraints{ (Xa,t1),...,(Xn,tn)} with pairwise distinct variables X For such
a constraint set, dom(o) = {X1,..., Xy} anda(X;) =t;.

The intermediate values occurring @E are not constraint sets directly, but
sets of constraint sets calleecollections

Definition 1.7 (c-collection).A c-collectionis a finite set of constraint sets.

1.3.2 The Algorithm S-CE

The main task of calculating substitutions that cover all common elements of two
types is done by the algorith®-CE The wayS-CEdecomposes structures to
compare the elements is quite similar to term unification [Rob65]. There are,
however, several differences e.g. for the processing of unions and for the repeated
unfolding of recursive types.

S-CEis presented as a functi@CEty,tp,0,r) where

e t; andt; are the types that are checked.
e O is a constraint set.

or = ((ty1,t21),...,(tLmtam)) is a list of type pairs called recursion history.
r is just used when processing recursive types. It contains all pairs of types
with at least one recursive type that have already been processed in a previous
recursive call.

An initial call of S-CEof the formS-CHEts,t2,{},()) is initiated byCE. Its
arguments are two typésandt; to be checked for common elements, the empty
constraint set = {} and the empty recursion history= ().

As resultS-CEreturns a c-collection. For every common elemeihis c-
collection contains a constraint set that describes a restrictigraofit, to types
both containingv. The c-collection is empty if no common elements were de-
tected.

The behaviour 08-CEis determined by a case distinction on the the two first
parameters; andty. We will now describes-CEfor each of the possible cases.
Since the cases are not disjoint we will present them in the fixed order in which
they are checked.

T in one of the Arguments

T has common elements with every type (except 9f So if one of the types
is T and the other one is ndt thenS-CEdirectly returns with success. This is
formalized in the rulesTopl) (and (Top2 defined analogously):

S_CHT7t27 g, r)

To} tho#£ L (Topl)

Recursive Types

When one of the typels andt; is a recursive on&-CEessentially performs a
further test with the recursive type unfolded. But since types constructed by the
recursive type constructor correspond to infinite syntax trees we need a special
termination condition when working on recursive types. During descending an
infinite branch of the syntax tree there is just a finite number of different type pairs
t, andt; that are checked b8-CE The number of different type pairs containing
at least one recursive type is also finite, but there must be an infinite number of
recursive calls t&-CEto get an infinite execution. Thus, the only possibility to
get an infinite execution is that after a finite number of callS4GEthere is a call
with an argument pair already given in one of the calls before.

Consider a recursive call t8-CEwith typest; andt; with:

e One of the types is a recursive one.

e There is a call t&-CEin the recursive history with the same tygesndt,.

The new call toS-CEwill not yield any evidence against common elements not
already detected in processing the former call with the same arguments. Hence,
the actual call can return without introducing any restrictions. This if formalized

by rule RecT).

S-CEty,t2,0,r)

To} (t1,t2) €r (RecT)

Now we can explain the unfolding of recursive types in the first or second
argument done by the ruleR¢c) and Rec3, respectively:

S-CHt; = pXity,tr,0,r)
S-CHunfoldty),t, 0, ((t1,t2) . 1))

(Rec3 is defined analogously térec) for unfolding the second argument.

(Rec)

Type Variables

The following auxiliary functions are used I8¢CEfor type variables:

extend-constraiiiX,t,c) adds a ternt to the constraint of a variabl¢ in o.
If X was not constrained ia this is straightforward. Otherwis&; is constrained
to the union of the previous constraintXfandt:

Definition 1.8 (extend-constraint Let o be a constraint set, X V a variable
andt a term.g’ = extend-constraitiX,t, o) is the constraint set differing from
just in the binding of X as follows:

e If X is unconstrained i then X<t € @’.
o If X «—t' e othen X— (Ut't) e 0.

add-var-constrair(t,0) updates the constraints of all variables occurring in a
termt by adding the constraints to newly introduced variables:

Definition 1.9 (add-var-constrain}. Let t be a type term and a constraint set.
The call add-var-constraifit,0) constrains every variable occurring in t to a
fresh variable. The new constraints are addedtwithout destroying previous
constraints:

forall variables Y occurring in tlo
letY’ be a new variable.
o := extend-constrairf¥,Y’, o)
return .

We can now discuss the cases with at least one variable as argument. When
both types are type variables then their bindings both are extended by a new vari-
able:

S_Catlvt%cv r)
extend-constrailtty, X', extend-constraitity, X’), 0))

t1,t2 € V, X" new(BothVai)

When justt; is a type variable thely is united to the old binding ofy in
o. Furthermore, the variables occurringtjrare constrained to new variables to
allow arbitrary instantiations afterwards:

S_Catla t2,0, r)
{add-var-constrair(ty, extend-constraif¥X,tz,0)) }

t1eVito gV (Varl)

The case for jush € V is given by rule Yar2) defined analogously to/érl).

Union Types

When one of the types is a union type then a check has to be performed with the
individual union elements and the results must be united. This is formalized in
the rules (1) and (U2) for a union type; andty, respectively:

S-CE(Ut11 ... t1x),t2,0,r)
UF:l S_Catl,iatZaoa r)

(U2) is defined analogously tdJ{) for a union type in the second argument.

(U1)

Free Type Constructors

When both types are constructed by the same free type constathien the
argument pairs of each position have to be checked sequentially collecting the
restrictions. This is formalized in the following rule:

S-CH(Cty1 ... tik) (Cto1 ... t2k),0,r)
SCE-list-reduc&(t1,1,t21), . .. , (tix, t2k)), {0},1))

The functionSCE-list-reduceised by rule Consti) expects a list of type pairs
and an initial c-collection. Itinitiates sequential callsSaCEwith the types given
in the type pairs as arguments. This is done for all constraint sets in the actual c-
collection and the results are united. The actual c-collection is the initial one when
processing the first type pair and the result of processing the previous type pair
else. The recursion histonyis just passed through to the calls3eCE

Definition 1.10 (SCE-list-reducg. SCE-list-reduce expects a list L of tupléstz)
where § and b are types, a c-collectiol and a recursion history r.

The result of SCE-list-reduce is a c-collection. SCE-list-reduce is defined by
the following rules where (SCE-list-reducel) applies for empty L and (SCE-list-
reduce?2) for non-empty L:

(Constp

SCE-list-reducf), Z,r)

5 (SCE-list-reducell

SCE-list-reducf (i, t/), liy1,- .. ,1k),Z,r)
SCE-list-reducli+1,... ,lk),Uses S-CEY, t,0,1),T)

(SCE-list-reducep

Example 1.2 (SCE-list-reduc&}onsider the following call t&CE-list-reduce
SCE-list-reduc§(A,string), (numyint)),{{}},r)

This call is processed by rul&SCE-list-reduceR For every constraint set in the
given c-collection (jus{ } in this example5-CEis called with the first type pair
Aandstring as arguments, i.e.

3 :={0’} =S-CHA,string ,{},r) with o’ := {A«~string }

is calculated. The remaining list of type pairs is processed recursively by
SCE-list-reducg (numjint)),%’.r).

Again SCE-list-reducénitiates one calls t&-CEwith the first type pair as argu-
ments becaus¥ just contains one constraint set:

3" :=S-CHEnumint ,d’,r)

yielding " = 3. This is returned by the last recursive call3€E-list-reduced
which is processed bySCE-list-reducell

Function Types

Definition 1.11.The function CEfuncT x T — {tfrue ,false } expects two
types i and % and returns true if{ and % are both function types that are either
equal or at least one of them is Tfunc. In all other cases CEfunc retfa'as

If CEfundty,ty) = true , no further restrictions must be introduced.
S-CEty,t2,0,r)

CEfundts,tp) = true (Func
io}))

Base Types

Whent; andt; are both base types then the question whether they have common
elements is answered by a functiibasdulfilling Assumption 1.1:

S-CHtl,tz,O',r)
{o}

Assumption 1.1 CE on base typesCEbase B x B — {true ,false } approx-
imates the question whether two base types have common elements as follows:

(b1]) N ([b2)) # { L} = CEbasébs,by) = true .

There is an algorithm also callé@Ebasethat returns the value of the function
CEbas¢for every input by just checking a finite table of possible inputs.

CEbasét;,ty) = true (Base

Integrating the Cases

The following definition presents the algoritfBrCEby integrating the previously
introduced rules in a fixed order:

Definition 1.12 (algorithm S-CE). The algorithm S-CE tests the rules given above
for applicability in the following order and returns the result given by the first ap-
plicable rule:
(Topd), (Top2), (RecT), (Rec)), (Rec3, (BothVa, (Varl),
(Var2),(Ul),(U2), (Constn, (FunQ), (Base .

If none of the rules is applicable S-CE returns the empty c-colle@ion

Example 1.3 (S-CEXonsider the calb-CEts,tp,0,r) with:
ty:=pX(Unil (A.X)), tz:=(bool .(int .nil))),c:=0,r:=()
1. S-CHty,tp,0,r) is processed by ruldfec) resulting in the calll

S-CE(Unil (A.t1)),(bool .(int .nil),o,r") wherer’' = ((t1,t2)).

2. By rule U1) this call is splitted into two subcalls:
(@) S-CEnil ,(bool . (int .nil)),0,r')=0
(b) S-CE(A . t1),(bool . (int .nil)),o,r)
3. The second call is processed by ruofist) calling SCE-list-reduce The
result of call numberto S-CEis denoted by;:
(a) 21 = S-CEA,bool ,0,r') = {0’} whered’ := {A— bool }
(b) £, = S-CHty, (int . nil),0’,r")
4. The second call is processed by ruRe¢) and the resulting call bylUl)
producing the calls
(@) X1 =S-CEA,int ,o0,r') = {0”} whered” := {A«— (Uboolint)}
(b) Z = S-CHty,nil ,0”,r")
wherer” := ((tg, (int . nil ")), (t1,t2)).
5. %, is calculated by applyingRec) and (U1) as before yielding the calls

(@) S-CEnil ,nil ,¢”,r"")={d"} by rule Basg.
(b) S-CE(A . t1),nil ,a”,r"")=0

wherer” := ((t,nil), (tz,(int . nil), (t1,t2)).

The resul{c”} is returned through all the stages of recursive calS-OE When
finishing the processing of the union types it is united witlrom the other
branch, respectively, but remains unchanged by calculating these unions. Thus,
{0"} is the result of the initial call.

1.3.3 The Algorithm CE

The work of the algorithn€CE consists of callings-CEwith the empty constraint
set and empty recursion history and transforming the resulting c-collection into
an s-collection. Due to lack of space we do not present the transformation of c-
collections to s-collections performed IGE in detail, but give some examples
for the main tasks.

A c-collection is a set of constraint sets. Every constraint set in the c-collection
returned byS-CEis transformed into an idempotent substitution independently.
The resulting substitutions are collected into an s-collection.

10

The first task performed b@E is the replacement of variables by their con-
strains: When the right hand side of a variable constraint contains a variable con-
strained in the constraint set then the occurrences of this variable are essentially
replaced by their constraining type terms:

Example 1.4 (replacement of variableSpnsider a call t&€E with the typeg; :=
(X . (string . Z))andty:=((Y .num). (Y. (Y .nil))). The c-collection
returned byS-CEis

{{X—(Y.num), Y —string ,Z<(Y.nil)}}.

The only constraint set is transformed by inserting the valu& fmto the right
hand sides oK andZ:

{X«(string .num), Y «string ,Z« (string .nil)}.

An iterated insertion of constraining terms for variables is just possible for
constraint sets not containing cyclic dependencies. If cyclic dependencies occur
iterated insertion of constraining terms will lead to variables constrained to terms
containing themselves. For such variables recursive bindings are introduced.

Example 1.5 (introducing recursive binding§onsider a call taCE with t; =
(X. (Y. (Z.nil)))andtz=((Y.X).(Z. ((num.X) .nil))) as arguments.
The c-collection returned b$-CEis

{{X—=(Y.X),Y—2Z2Z— (num.X)}}

It is transformed byCE into the following s-collection:

{{X — uW.(uVz.(num. (Vz . Vx)) . Vx),
Y — UVz.(num. iV (Vz . Vx)), Z < pVz.(num. pvk.(Vz . Vx)) }H}

Theorem 1.2 (correctness ofCE). Let t,to € T. If there exists a value ¥ L
and a substitutiop such that e (p(t1)]) N (p(t2)]) then there exist substitutions
o € CE(tg,t2) andt with ve (Toa(t)]) N (Too(tz)).

A proof of this theorem in an extended framework and a termination proof for
CE can be found in [WBO01].

1.4 CONCLUSIONS AND FURTHER WORK

For a type language with non-disjoint types this paper introduced an algorithm
CE that approximates the test for common elements in two types. It gives a sound
answer to the question whether the value sets denoted by two types are disjoint.
It therefore gives a sound approximation for the question whether a function call
mustfail because of a type error.

The algorithm consists of two components: The first component (c&8led
CE) decomposes its argument types step by step and collects constraints on the

11

bindings of variables in order to provide certain common elements. The second
component transforms the resulting constraint sets into idempotent substitutions
for type variables.

Though this work shows how the question for common elements of two types
can be answered we do not have an efficient tool for solving sets of common
element constraints yet. A problem is the fact that the common element relation
is not transitive as e.g. subtype relations usually are. A type checker based on
CE therefore needs a different mechanism to solve sets of such constraints. In a
restricted framework prototypes of abstract interpreters solving every constraint
on the fly after generating it gave promising results.

REFERENCES

[CF91] Robert Cartwright and Mike Fagan. Soft typingFAroc. SIGPLAN '91 Confer-
ence on Programming Language Design and Implementatiages 278-292,
June 1991.

[FF99] Cormac Flanagan and Matthias Felleisen. Componential set-based analysis.
ACM Transactions on Programming Languages and Syat@i(®):370-416,
1999.

[FIa97] Cormac Flanagan.Effective Static Debugging via Componential Set-Based
Analysis PhD thesis, Rice University, Houston, Texas, May 1997.

[HPF97] Paul Hudak, John Peterson, and Joseph H. FaseBentle Introduction to
Haskell — Version 1.4 -March 1997.

[KCE98] Richard Kelsey, William Clinger, and Jonatan Rees (Editors). Re¥Vissgmbrt
on the algorithmic language schem@&CM SIGPLAN Notices33(9):26-76,
September 1998.

[MilI78] Robin Milner. A theory of type polymorphism in programminglournal of
Computer and System Scienc¥8(3):348—-375, December 1978.

[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution principle.
Journal of the ACM12(1):23-41, January 1965.

[WB00] Manfred Widera and Christoph Beierle. How to combine the benefits of strict
and soft typing. In Greg Michaelson, Phil Trinder, and Hans-Wolfgang Loidl,
editors,Trends in Functional Programmindntellect, 2000.

[WB01] Manfred Widera and Christoph Beierle. An approach to checking the non-
disjointness of types in functional programming. Informatik Berichte, FernUni-
versitit Hagen, 2001.

12

