
Chapter 1

Detecting Common Elements
of Types
Manfred Widera1 and Christoph Beierle2

Abstract: We describe an algorithm approximating the following question: Given
two typest1 andt2, are there instancesσ(t1) andσ(t2) denoting a common el-
ement? By answering this question we solve a main problem towards a type
checking algorithm for non-disjoint types that raises an error just for function
calls that cannot be executed successfully. For dynamically typed functional lan-
guages such a type checker can extend actual soft typing systems in order to reject
provably ill-typed programs.

1.1 INTRODUCTION

When type inference and type checking for functional programs is done according
to the approach first presented in [Mil78] different types denote disjoint sets of
values. Type checking is done using the binary relation=, i.e. for every function
call (f a) in the analyzed program the type inferred for the argumenta and the
input type expected byf have to be equal.

By introducing type languages with non-disjoint types equality of types be-
came a too strong restriction. Therefore, subtyping relationsv where introduced
modeling the question whether a typet1 denotes a subset of the values denoted by
t2. For a function call(f a) a type checker based onv performs a test whether
the type inferred for the argumenta is a subtype of the expected input type off .
The test fails for all the cases where the type inferred fora contains at least one
value f is not applicable to. This sound approach to type checking can be used in
the following ways:

1Fachbereich Informatik, FernUniversit¨at Hagen, D-58084 Hagen, Germany. Email:
Manfred.Widera@Fernuni-Hagen.de

2Fachbereich Informatik, FernUniversit¨at Hagen, D-58084 Hagen, Germany. Email:
Christoph.Beierle@Fernuni-Hagen.de

1

• In a strictly typed language as e.g. Haskell [HPF97] the type checker prevents
ill-typed programs from execution. It is integrated in the language definition
excluding ill-typed programs from the set of valid programs.

•When using a sound static type checker for a dynamically typed functional
language the set of valid programs in the language is not affected by the type
checker. Since dynamically typed languages are not designed with a precise
static type checking in mind extensive use of the language’s expressiveness
can easily confuse the type checker. The output messages are therefore inter-
preted aswarningsinstead oferrors yielding the concept of soft-typing (see
e.g. [CF91]).

In this work we present another extension of [Mil78] to type languages with
non-disjoint types that addresses dynamically typed languages. We introduce a
binary relation on types that is defined by an algorithmCE(t1,t2) and that approx-
imates the test whether there is a common element denoted by botht1 andt2. A
type checker based on this relation checks for every function call(f a) whether
the type inferred fora and the expected input type off have common elements.
The test fails if no common elements are detected. In this case no evaluation of
the call can succeed. (We assume the usual situation that a typet of an expression
edenotes all valuese can be evaluated to, but may denote additional values.)

This is the basis of what we callcomplete type checking[WB00]: The type
checker is complete if it accepts every program in which all function calls can be
executed without raising a type error.

The best use for a type checker based on the relation on types induced byCE
is a combination with a soft typing system or a system with an output similar to a
soft typing system [Fla97, FF99]:

• The new type checker focuses on a set of proven errors (i.e. program parts that
cannot be executed without raising an error). Obviously, in any case such er-
rors must be corrected. If instead these errors were only indicated as warnings
within in a large number of type warnings given by the soft typing system they
could be overlooked quite easily.

• Errors that cannot be proven and thus are overlooked by the new type checker
are caught by the soft typing system and are presented as warnings.

Example 1.1.Consider the function callc = (vector-ref v i) in the functional lan-
guage Scheme [KCE98] with a vector expressionv and an index expressioni.
Assume thatk is an expression with inferred typeposint (the type of all posi-
tive integers). Depending on the expressioni the type checkers behave as follows:

• If i = (+ k 3) then the typeposint can be inferred fori. The function callc
is well-typed in every type checker.

• For i = (− k 3) just the typeint (the type of all integers) can be inferred.
A soft typing system raises a warning becausei may be a negative integer
causing an error inc. A complete type checker based onCE accepts the callc.

2

• If i = (∗ k −2) the most special type inferred fori is negint (the type of all
negative integers). A soft typing system still just raises a warning. A complete
type checker based onCE raises an error forc because this call cannot succeed
with a negative number as vector index.

The rest of the paper introduces an algorithmCE for checking types for com-
mon elements and is organized as follows: Section 1.2 gives a definition of the
type language used throughout the paper. In Sec. 1.3 the algorithmCE for detect-
ing common elements is presented. Its main component calledS-CEis given in
1.3.2. Section 1.4 gives some conclusions and points out further work.

1.2 THE TYPE LANGUAGE

The following definition Def. 1.1 introduces the set of all types for a given set of
variablesV. The definition of the type syntax is standard except for the function
types.

Definition 1.1 (standard types).Let V be a set of variables. The setT (V) of all
type terms over V is defined as the smallest set with:

1. B ⊆ T (V) whereB is a set of all base types containing⊥ and> defined as
usual.

2. V⊆ T (V).

3. c∈K ,e1, . . . ,ea(c) ∈ T (V)⇒ (c e1 . . . ea(c))∈ T (V) whereK is a set of type
constructors and a(c) is the arity of c.3

4. e1, . . . ,ek≥0 ∈ T (V)⇒ (∪ e1 . . . ek) ∈ T (V).

5. Tfunc,TfuncP,TfuncU ∈ T (V) where Tfunc is called the type of all function
definitions (functions for short), TfuncP is the type of all predefined functions
and TfuncU the type of all user defined functions.

6. If X ∈V is a variable and t∈ T (V) contains X then µX.t ∈ T (V).

The function types introduced in this definition differ from the usual approach:
We intend to build a type checker that just raises an error for function calls(f a) if
the type inferred fora and the input type expected byf do not have any common
elements. In order to perform this test we need information aboutall valid input
values tof . The usual function type constructor that is anti-monotonic in its first
argument does not provide this.

The function types defined here do not carry much information. They can just
distinguish predefined and user defined function definitions. A more sophisticated
definition of function types is given in [WB01].

3For instance, the binary “cons” operator “.” is in K with a(.) = 2.

3

Definition 1.2 (closed/ground types).The setTC(V) ⊂ T (V) of closed types
consists of all types not containing any variables not bound by µ. The setTG ⊂
TC(V) of ground typesconsists of all types without any variables.

Since the only variables occurring inTC(V) are bound byµ and can be renamed
the setV does not matter for closed types. We therefore often writeTC instead of
TC(V).

We define positions in terms as usual as lists of natural numbers (written as
p = p1.p2.pk) with ε denoting the empty list. For every type termt we have
tε := t. For k > 0 and p defined as above the subterm oft at p is defined as
usual bytp = t ′p′ wheret ′ is the pth

1 subterm oft and p′ = p2.pk. We write
tp = undefined if there is no subterm at positionp in t.

If the second subterm of a recursive type term is selected we introduce an
implicit unfolding step in the subterm selection denoted bytp: For t = µX.t ′ we
define thatt2 does not yieldt ′ but t ′[X|t], i.e. t ′ with every free occurrence ofX
replaced byt.

The notiont[p|t ′] for type termst andt ′ and a positionp is introduced for the
typet with positionp changed tot ′.

Definition 1.3 (unfolding recursive bindings).Let t∈ T be type. We define the
functionunfoldas unfold(t) = t ′ where t′ differs from t at exactly those positions
p with:

• tp = µX.t̃ is a recursive type.

• There is no proper prefix p′ of p such that tp′ is a recursive type, i.e. tp is not
a subterm of any recursive type except of itself.

For each of these positions p the returned type term t′ fulfills t ′p = tp.2.

The semantics of the type language defined above is as usual. Fort ∈ T the
semantics oft is denoted by〈[t]〉. A detailed definition of〈[·]〉 is given in [WB01].

1.3 CHECKING TYPES FOR COMMON ELEMENTS

The central question occurring in complete type checking is the following: Given
two typest1 andt2. Is there a substitutionσ such that〈[σ(t1)]〉∩ 〈[σ(t2)]〉 6= {⊥}?

In this section an algorithmCE is introduced that approximates the answer in
the following sense: For every existing substitution with the given property,CE
returns a more general substitution. On the other handCE is really an approx-
imation and not a decision procedure. Thus, there may be situations whereCE
returns a substitution even ift1 andt2 cannot have common elements, e.g. when
one of the types does not have any elements at all.

The description ofCE is done in the following subsections: Section 1.3.1
contains the preliminaries used to defineCE. In Sec. 1.3.2 an algorithmS-CEis
introduced that calculates constraints on the variable instantiations. The remain-
ing part ofCE sketched in Sec. 1.3.3 transforms the constraint sets to idempotent
substitutionsσ and returns a set of them.

4

1.3.1 Preliminaries

In this section we will define some structures forming the result or intermediate
values ofCE. The goal ofCE is to find a set of type substitutions more general
than the closed type substitutions transforming two typest1 andt2 to closed types
with common elements. Type substitutions are defined as follows:

Definition 1.4 (type substitution).A type substitutionis a function mapping type
variables X∈V to types tX. A type substitutionσ assigning the type ti to the type
variable Xi for all i ∈ {1, . . . ,k} is denoted by[X1← t1, . . . ,Xk← tk]; its domain
is denoted by dom(σ) = {X1, . . . ,Xk}. A substitution is calledidempotentif all
assigned values tX do not contain any variables Y∈ dom(σ) as subterms.

The return value ofCE is an s-collection defined as follows:

Definition 1.5 (s-collection).Ans-collectionis a finite set of type substitutions.

During the calculation ofCE, constraints on the possible instantiations of type
variables are collected in structures calledconstraint sets:

Definition 1.6 (constraint sets).A variable constraint is a pair(X,t) (often writ-
ten as X← t) where X∈ V and t∈ T . A constraint setis a set of variable
constraints{(X1,t1), . . . ,(Xn,tn)} with pairwise distinct variables Xi. For such
a constraint setσ, dom(σ) = {X1, . . . ,Xn} andσ(Xi) = ti .

The intermediate values occurring inCE are not constraint sets directly, but
sets of constraint sets calledc-collections:

Definition 1.7 (c-collection).A c-collectionis a finite set of constraint sets.

1.3.2 The Algorithm S-CE

The main task of calculating substitutions that cover all common elements of two
types is done by the algorithmS-CE. The wayS-CEdecomposes structures to
compare the elements is quite similar to term unification [Rob65]. There are,
however, several differences e.g. for the processing of unions and for the repeated
unfolding of recursive types.

S-CEis presented as a functionS-CE(t1,t2,σ, r) where

• t1 andt2 are the types that are checked.

• σ is a constraint set.

• r = ((t1,1,t2,1), . . . ,(t1,m,t2,m)) is a list of type pairs called recursion history.
r is just used when processing recursive types. It contains all pairs of types
with at least one recursive type that have already been processed in a previous
recursive call.

5

An initial call of S-CEof the formS-CE(t1,t2,{},()) is initiated byCE. Its
arguments are two typest1 andt2 to be checked for common elements, the empty
constraint setσ = {} and the empty recursion historyr = ().

As resultS-CEreturns a c-collection. For every common elementv this c-
collection contains a constraint set that describes a restriction oft1 andt2 to types
both containingv. The c-collection is empty if no common elements were de-
tected.

The behaviour ofS-CEis determined by a case distinction on the the two first
parameterst1 andt2. We will now describeS-CEfor each of the possible cases.
Since the cases are not disjoint we will present them in the fixed order in which
they are checked.

> in one of the Arguments

> has common elements with every type (except of⊥). So if one of the types
is > and the other one is not⊥ thenS-CEdirectly returns with success. This is
formalized in the rules (Top1) (and (Top2) defined analogously):

S-CE(>,t2,σ, r)
{σ} t2 6=⊥ (Top1)

Recursive Types

When one of the typest1 andt2 is a recursive oneS-CEessentially performs a
further test with the recursive type unfolded. But since types constructed by the
recursive type constructor correspond to infinite syntax trees we need a special
termination condition when working on recursive types. During descending an
infinite branch of the syntax tree there is just a finite number of different type pairs
t1 andt2 that are checked byS-CE. The number of different type pairs containing
at least one recursive type is also finite, but there must be an infinite number of
recursive calls toS-CEto get an infinite execution. Thus, the only possibility to
get an infinite execution is that after a finite number of calls toS-CEthere is a call
with an argument pair already given in one of the calls before.

Consider a recursive call toS-CEwith typest1 andt2 with:

• One of the types is a recursive one.

• There is a call toS-CEin the recursive history with the same typest1 andt2.

The new call toS-CEwill not yield any evidence against common elements not
already detected in processing the former call with the same arguments. Hence,
the actual call can return without introducing any restrictions. This if formalized
by rule (RecT).

S-CE(t1,t2,σ, r)
{σ} (t1,t2) ∈ r (RecT)

6

Now we can explain the unfolding of recursive types in the first or second
argument done by the rules (Rec1) and (Rec2), respectively:

S-CE(t1 = µX.t ′1,t2,σ, r)
S-CE(unfold(t1),t2,σ,((t1,t2) . r))

(Rec1)

(Rec2) is defined analogously to (Rec1) for unfolding the second argument.

Type Variables

The following auxiliary functions are used byS-CEfor type variables:
extend-constraint(X,t,σ) adds a termt to the constraint of a variableX in σ.

If X was not constrained inσ this is straightforward. Otherwise,X is constrained
to the union of the previous constraint ofX andt:

Definition 1.8 (extend-constraint). Let σ be a constraint set, X∈ V a variable
and t a term.σ′ = extend-constraint(X,t,σ) is the constraint set differing fromσ
just in the binding of X as follows:

• If X is unconstrained inσ then X← t ∈ σ′.

• If X ← t ′ ∈ σ then X← (∪ t ′ t) ∈ σ′.

add-var-constraint(t,σ) updates the constraints of all variables occurring in a
termt by adding the constraints to newly introduced variables:

Definition 1.9 (add-var-constraint). Let t be a type term andσ a constraint set.
The call add-var-constraint(t,σ) constrains every variable occurring in t to a
fresh variable. The new constraints are added toσ without destroying previous
constraints:

forall variables Y occurring in tdo
letY′ be a new variable.
σ := extend-constraint(Y,Y′,σ)

return σ.

We can now discuss the cases with at least one variable as argument. When
both types are type variables then their bindings both are extended by a new vari-
able:

S-CE(t1,t2,σ, r)
extend-constraint(t1,X′,extend-constraint(t2,X′),σ))

t1,t2 ∈V,X′new(BothVar)

When justt1 is a type variable thent2 is united to the old binding oft1 in
σ. Furthermore, the variables occurring int2 are constrained to new variables to
allow arbitrary instantiations afterwards:

S-CE(t1,t2,σ, r)
{add-var-constraint(t2,extend-constraint(X,t2,σ))} t1 ∈V,t2 6∈V (Var1)

The case for justt2 ∈V is given by rule (Var2) defined analogously to (Var1).

7

Union Types

When one of the types is a union type then a check has to be performed with the
individual union elements and the results must be united. This is formalized in
the rules (U1) and (U2) for a union typet1 andt2, respectively:

S-CE((∪ t1,1 . . . t1,k),t2,σ, r)
Sk

i=1S-CE(t1,i ,t2,σ, r)
(U1)

(U2) is defined analogously to (U1) for a union type in the second argument.

Free Type Constructors

When both types are constructed by the same free type constructorc then the
argument pairs of each position have to be checked sequentially collecting the
restrictions. This is formalized in the following rule:

S-CE((c t1,1 . . . t1,k) (c t2,1 . . . t2,k),σ, r)
SCE-list-reduce(((t1,1,t2,1), . . . ,(t1,k,t2,k)),{σ}, r)) (Constr)

The functionSCE-list-reduceused by rule (Constr) expects a list of type pairs
and an initial c-collection. It initiates sequential calls toS-CEwith the types given
in the type pairs as arguments. This is done for all constraint sets in the actual c-
collection and the results are united. The actual c-collection is the initial one when
processing the first type pair and the result of processing the previous type pair
else. The recursion historyr is just passed through to the calls toS-CE.

Definition 1.10 (SCE-list-reduce). SCE-list-reduce expects a list L of tuples(t1,t2)
where t1 and t2 are types, a c-collectionΣ and a recursion history r.

The result of SCE-list-reduce is a c-collection. SCE-list-reduce is defined by
the following rules where (SCE-list-reduce1) applies for empty L and (SCE-list-
reduce2) for non-empty L:

SCE-list-reduce((),Σ, r)
Σ

(SCE-list-reduce1)

SCE-list-reduce(((ti ,t ′i), li+1, . . . , lk),Σ, r)
SCE-list-reduce((li+1, . . . , lk),

S
σ∈Σ S-CE(ti ,t ′i ,σ, r), r)

(SCE-list-reduce2)

Example 1.2 (SCE-list-reduce).Consider the following call toSCE-list-reduce:

SCE-list-reduce(((A,string),(num, int)),{{}}, r)
This call is processed by rule (SCE-list-reduce2). For every constraint set in the
given c-collection (just{} in this example)S-CEis called with the first type pair
A andstring as arguments, i.e.

Σ′ := {σ′}= S-CE(A,string ,{}, r) with σ′ := {A← string }

8

is calculated. The remaining list of type pairs is processed recursively by

SCE-list-reduce(((num, int)),Σ′, r) .

Again SCE-list-reduceinitiates one calls toS-CEwith the first type pair as argu-
ments becauseΣ′ just contains one constraint set:

Σ′′ := S-CE(num, int ,σ′, r)

yielding Σ′′ = Σ′. This is returned by the last recursive call toSCE-list-reduced
which is processed by (SCE-list-reduce1).

Function Types

Definition 1.11.The function CEfunc: T × T → {true , false } expects two
types t1 and t2 and returns true if t1 and t2 are both function types that are either
equal or at least one of them is Tfunc. In all other cases CEfunc returnsfalse .

If CEfunc(t1,t2) = true , no further restrictions must be introduced.

S-CE(t1,t2,σ, r)
{σ} CEfunc(t1,t2) = true (Func)

Base Types

Whent1 andt2 are both base types then the question whether they have common
elements is answered by a functionCEbasefulfilling Assumption 1.1:

S-CE(t1,t2,σ, r)
{σ} CEbase(t1,t2) = true (Base)

Assumption 1.1 (CE on base types)CEbase: B×B→{true , false } approx-
imates the question whether two base types have common elements as follows:

〈[b1]〉∩ 〈[b2]〉 6= {⊥}⇒CEbase(b1,b2) = true .

There is an algorithm also calledCEbasethat returns the value of the function
CEbasefor every input by just checking a finite table of possible inputs.

Integrating the Cases

The following definition presents the algorithmS-CEby integrating the previously
introduced rules in a fixed order:

Definition 1.12 (algorithmS-CE). The algorithm S-CE tests the rules given above
for applicability in the following order and returns the result given by the first ap-
plicable rule:

(Top1),(Top2),(RecT),(Rec1),(Rec2),(BothVar),(Var1),
(Var2),(U1),(U2),(Constr),(FunQ),(Base) .

If none of the rules is applicable S-CE returns the empty c-collection/0.

9

Example 1.3 (S-CE).Consider the callS-CE(t1,t2,σ, r) with:

t1 := µX.(∪ nil (A . X)), t2 := (bool . (int . nil))), σ := /0, r := ()

1. S-CE(t1,t2,σ, r) is processed by rule (Rec1) resulting in the call

S-CE((∪ nil (A . t1)),(bool . (int . nil),σ, r ′) wherer ′ = ((t1,t2)) .

2. By rule (U1) this call is splitted into two subcalls:

(a) S-CE(nil ,(bool . (int . nil)),σ, r ′) = /0
(b) S-CE((A . t1),(bool . (int . nil)),σ, r ′)

3. The second call is processed by rule (Constr) calling SCE-list-reduce. The
result of call numberi to S-CEis denoted byΣi :

(a) Σ1 = S-CE(A,bool ,σ, r ′) = {σ′} whereσ′ := {A← bool }
(b) Σ2 = S-CE(t1,(int . nil),σ′, r ′)

4. The second call is processed by rule (Rec1) and the resulting call by (U1)
producing the calls

(a) Σ1 = S-CE(A, int ,σ, r ′) = {σ′′} whereσ′′ := {A← (∪ bool int)}
(b) Σ2 = S-CE(t1,nil ,σ′′, r ′′)

wherer ′′ := ((t1,(int . nil)),(t1,t2)).

5. Σ2 is calculated by applying (Rec1) and (U1) as before yielding the calls

(a) S-CE(nil ,nil ,σ′′, r ′′′) = {σ′′} by rule (Base).

(b) S-CE((A . t1),nil ,σ′′, r ′′′) = /0

wherer ′′′ := ((t1,nil),(t1,(int . nil)),(t1,t2)).

The result{σ′′} is returned through all the stages of recursive calls toS-CE. When
finishing the processing of the union types it is united with/0 from the other
branch, respectively, but remains unchanged by calculating these unions. Thus,
{σ′′} is the result of the initial call.

1.3.3 The Algorithm CE

The work of the algorithmCE consists of callingS-CEwith the empty constraint
set and empty recursion history and transforming the resulting c-collection into
an s-collection. Due to lack of space we do not present the transformation of c-
collections to s-collections performed byCE in detail, but give some examples
for the main tasks.

A c-collection is a set of constraint sets. Every constraint set in the c-collection
returned byS-CEis transformed into an idempotent substitution independently.
The resulting substitutions are collected into an s-collection.

10

The first task performed byCE is the replacement of variables by their con-
strains: When the right hand side of a variable constraint contains a variable con-
strained in the constraint set then the occurrences of this variable are essentially
replaced by their constraining type terms:

Example 1.4 (replacement of variables).Consider a call toCEwith the typest1 :=
(X . (string . Z)) andt2 := ((Y . num) . (Y . (Y . nil))). The c-collection
returned byS-CEis

{{X← (Y . num), Y← string , Z← (Y . nil)}} .
The only constraint set is transformed by inserting the value forY into the right
hand sides ofX andZ:

{X← (string . num), Y← string , Z← (string . nil)} .
An iterated insertion of constraining terms for variables is just possible for

constraint sets not containing cyclic dependencies. If cyclic dependencies occur
iterated insertion of constraining terms will lead to variables constrained to terms
containing themselves. For such variables recursive bindings are introduced.

Example 1.5 (introducing recursive bindings).Consider a call toCE with t1 =
(X . (Y . (Z . nil))) andt2 = ((Y . X) . (Z . ((num . X) .nil))) as arguments.
The c-collection returned byS-CEis

{{X← (Y . X),Y← Z,Z← (num . X)}}
It is transformed byCE into the following s-collection:

{{X← µVX.(µVZ.(num . (VZ . VX)) . VX),
Y← µVZ.(num . µVX.(VZ . VX)), Z← µVZ.(num . µVX.(VZ . VX))}}

Theorem 1.2 (correctness ofCE). Let t1,t2 ∈ T . If there exists a value v6= ⊥
and a substitutionρ such that v∈ 〈[ρ(t1)]〉∩ 〈[ρ(t2)]〉 then there exist substitutions
σ ∈ CE(t1,t2) andτ with v∈ 〈[τ◦σ(t1)]〉∩ 〈[τ◦σ(t2)]〉.

A proof of this theorem in an extended framework and a termination proof for
CE can be found in [WB01].

1.4 CONCLUSIONS AND FURTHER WORK

For a type language with non-disjoint types this paper introduced an algorithm
CE that approximates the test for common elements in two types. It gives a sound
answer to the question whether the value sets denoted by two types are disjoint.
It therefore gives a sound approximation for the question whether a function call
mustfail because of a type error.

The algorithm consists of two components: The first component (calledS-
CE) decomposes its argument types step by step and collects constraints on the

11

bindings of variables in order to provide certain common elements. The second
component transforms the resulting constraint sets into idempotent substitutions
for type variables.

Though this work shows how the question for common elements of two types
can be answered we do not have an efficient tool for solving sets of common
element constraints yet. A problem is the fact that the common element relation
is not transitive as e.g. subtype relations usually are. A type checker based on
CE therefore needs a different mechanism to solve sets of such constraints. In a
restricted framework prototypes of abstract interpreters solving every constraint
on the fly after generating it gave promising results.

REFERENCES

[CF91] Robert Cartwright and Mike Fagan. Soft typing. InProc. SIGPLAN ’91 Confer-
ence on Programming Language Design and Implementation, pages 278–292,
June 1991.

[FF99] Cormac Flanagan and Matthias Felleisen. Componential set-based analysis.
ACM Transactions on Programming Languages and Syatems, 21(2):370–416,
1999.

[Fla97] Cormac Flanagan.Effective Static Debugging via Componential Set-Based
Analysis. PhD thesis, Rice University, Houston, Texas, May 1997.

[HPF97] Paul Hudak, John Peterson, and Joseph H. Fasel.A Gentle Introduction to
Haskell – Version 1.4 –, March 1997.

[KCE98] Richard Kelsey, William Clinger, and Jonatan Rees (Editors). Revised5 report
on the algorithmic language scheme.ACM SIGPLAN Notices, 33(9):26–76,
September 1998.

[Mil78] Robin Milner. A theory of type polymorphism in programming.Journal of
Computer and System Sciences, 17(3):348–375, December 1978.

[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution principle.
Journal of the ACM, 12(1):23–41, January 1965.

[WB00] Manfred Widera and Christoph Beierle. How to combine the benefits of strict
and soft typing. In Greg Michaelson, Phil Trinder, and Hans-Wolfgang Loidl,
editors,Trends in Functional Programming. Intellect, 2000.

[WB01] Manfred Widera and Christoph Beierle. An approach to checking the non-
disjointness of types in functional programming. Informatik Berichte, FernUni-
versität Hagen, 2001.

12

