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Abstract. Complete type inference for functional programming is an
approach to incorporate static type inference into dynamically typed
languages that is based on the following idea: For every program or pro-
gram expression that can be evaluated without a runtime type error,
types denoting all valid input values (in case of functions) and all cor-
responding output/result values are inferred. A type error is just raised
for program expressions that must provably fail for every input.
In this work we summarize the presentation of a complete type checker.
We motivate that complete type checking consists of a check for every
function call whether the input type expected by the function and the
type inferred for the argument have common elements. After sketching
an algorithm that tests two types for common elements the type inference
process is summarized in terms of an abstract interpretation.

1 Introduction

Type checking with a very exact and powerful type language could be
helpful in detecting errors, but unfortunately too powerful type languages
can cause problems for sound type systems. They tend to force the type
checker of a statically typed language to reject too many programs that
should indeed be accepted.

Soft typing for dynamically typed languages (e.g. [2]) employs static
type checking in order to identify function calls that might be ill-typed.
Runtime type checks for calls that can be statically proven to be well-
typed can be dropped. Soft typing does not reject any programs. The
type warnings, if ignored, may result in runtime errors. Furthermore, for
every warning the programmer has to decide whether it results from a
type error or from a weakness of the type checker.

In this paper we introduce the concept of complete type checking that
is guaranteed to accept every well-typed program. It extends soft typing



by rejecting programs that cannot be executed properly without generat-
ing a runtime error. Our type checker supports powerful type languages
including subtyping. In detail the existing definition of complete type
checking focuses on the language Scheme. It covers most of Scheme’s lan-
guage constructs as defined in [6]. However, the algorithms are designed
general enough to be adapted to other languages easily.

The rest of the paper is organized as follows: Section 2 gives a moti-
vation of complete type checking. In Sec. 3 we motivate and describe the
differences of our type definitions over the usual approach and sketch an
algorithm detecting common elements of two types. This algorithm turns
out to be a main component of the complete type checker presented in
Sec. 4 in terms of an abstract interpretation. Section 5 gives a conclusion.

2 Motivating Complete Type Checking

2.1 Disadvantages of Sound Type Checking

The usual type checkers are sound and are used either in strongly typed
languages or as soft type checkers in dynamically typed languages. Sound-
ness means to accept just programs that cannot cause runtime type errors.
I.e. sound type checkers follow Milner’s slogan [7] “Well-typed programs
cannot go wrong”.

No matter in which way sound type checking is used the expressiveness
of the type language must be restricted1 in order not to reject too many
correct programs:

Example 1. Consider the following function definition.

(define (with-div x y)

(/ x (f y)))

Suppose f is a function with result type num and 0 is not part of the
value set of f . Suppose further that there is a sound type checker using a
type language that can express the type of all numbers excluding 0. We
normally cannot prove that f does not yield zeros for all possible inputs
for y (cf. e.g. [11]). Thus, we cannot prove with-div free of type errors.2

The example shows a program that cannot go wrong, but is ill-typed
with respect to sound type checking. This can cause the following conse-
quences:
1 Alternatively, explicit type annotations must be provided which are not considered

here.
2 Because of this problem, the division by zero normally lies outside the scope of a

sound type checker.



– In a strongly typed language programs that cannot go wrong, but
are not well-typed with respect to the type checker are rejected. By
increasing the number of different subtypes in the type language the
number of correct but rejected programs might increase.

– A soft typing system raises a warning for a function call that is in-
deed well-typed. When the number of warnings on runtime-correct
calls increases the system provides less help in finding real type errors
quickly.

A further problem for soft typing is shown by the following example:

Example 2. Consider the following erroneous implementation of reverse
and its use:

1 (define (reverse l)

2 (if (null? l)

3 ’() ; reversed empty list is empty

4 (append (reverse (cdr l))

5 ; reverse rest

6 (car l)))) ; should be (list (car l))

7 ; first element to the end.

8 (define (generate n)

9 (if (= 0 n) ()

10 (cons n (generate (- n 1)))))

11 (define (f n)

12 (reverse (generate n)))

There is an error in the second argument (line 6) of the call to the
predefined function append (lines 4-7) because from the call to reverse in
f (line 12) it can be inferred that (car l) in line 6 is not a list in any case.
But although there is a call that must go wrong in the given context the
soft typing system does not reject the program.

As this example shows soft typing reacts “too soft” on provable type
errors, i.e. function calls that provably cannot succeed. Altogether, the
user would normally have to check several warnings of a soft typing system
with a powerful type language for every real type error (s)he detects.

2.2 Motivating the New Approach

Let f be a predefined function and dom(f) the set of input values f is
applicable to. A misapplication of f is a call (f a) where a 6∈ dom(f).

In principle by complete type checking we want to detect those func-
tion calls in a program that cannot succeed without going wrong: Let P



be a functional program and e an expression in P . e (always) goes wrong if
every evaluation of e causes a misapplication of some predefined function
f .3 P goes wrong if it contains an expression e that goes wrong.

An expression e in a program P conditionally goes wrong if there is
an execution path in P starting at e that leads to the misapplication of a
predefined function whenever followed. P conditionally goes wrong if an
expression e in P conditionally goes wrong. By the notion of conditionally
going wrong we take into account the fact that the context of a function
call can restrict its arguments in a way that enforces a failure. If a function
call conditionally goes wrong then there exists at least one such context
that must fail and therefore the program has to be rejected.

Example 3. In the program of Ex. 2 the call to reverse in f (line 12)
conditionally goes wrong because of the execution path to append in
reverse.

An example for a call that (always) goes wrong (with respect to the
program in Ex. 2) is (f 3) (i.e. if this program is extended by a function
containing the call (f 3) then this call goes wrong); please note that the
call (f 0) (when added to the program) does not cause a misapplica-
tion because the else-case in reverse containing the ill-typed append-call
is never reached. Another example for a call that goes wrong in every
program is (∗ ′a 3) because the first argument of ∗ is not a number.

By completeness of a type checker we mean that a program P that
does not (conditionally) go wrong is not rejected. A complete type checker
circumvents the problem of a strongly typed language to reject programs
that cannot go wrong, but it is not as weak as soft typing because it can
reject provably ill-typed programs.

The combination of soft and complete typing yields both errors that
cause the rejection of the program and warnings that mark calls which
could not be proven to be well-typed, but are not provably wrong. This
structure of messages has the following advantages:

When testing a program for type errors one can start correcting the
errors of the program before taking care of the warnings (i.e., either prov-
ing correctness of the calls or correcting them). By the structure of errors
and warnings the programmer is guided through the increased number
of calls that are not provably well-typed due to a more powerful type
language. In no case the program has to be changed just to satisfy the
type checker.
3 We assume the functional language to be strict and to use eager evaluation.



2.3 Realizing a Complete Type Checker

In powerful type languages type inference is often undecidable. When an
exact set of values of an expression cannot be inferred or cannot be ex-
pressed in the type language the usual approach is to infer a supertype,
i.e. a type that covers all values that are of the desired exact type. Con-
sider the function call (f a). Let t be the type inferred for the argument
a. A sound type checker with subtyping facility checks the call for an
approximation of 〈[t]〉 ⊆ dom(f).4 It accepts the program if all calls fulfill
this property and rejects it if one call does not. However, maybe just the
additional values that are covered by t but cannot occur as values of a
cause the test 〈[t]〉 ⊆ dom(f)5 to fail and the program to be rejected (c.f.
Ex. 1 with t = num and s the type of all numbers without 0).

In complete type checking a program should not be rejected just be-
cause of additional values in an inferred argument type. Since we can-
not distinguish the possible values of a from those additionally in t the
type checker rejects only calls that must go wrong for every value of t.
Therefore, the complete type checker tests every call in the program for
〈[t]〉 ∩ dom(f) 6= ∅ (or more precisely 〈[t]〉 ∩ 〈[s]〉 6= ∅ where s is a type
approximating dom(f)). Every call that does not fulfill this property is
caused by an expression that conditionally goes wrong.

3 Operations on Types

3.1 The Type Language

The type language that is used by our complete type inference system
is a quite powerful one that is generated as usual from base types, type
variables, and free type constructors. Furthermore, union types, type dif-
ference (usable for conditional expressions), and recursive type definitions
are considered.

In the following examples we will use the types nat and num for natural
or arbitrary numbers, string for strings, nil for the empty list, error
for the type denoting a type error, (· . ·) for cons pairs, > for the type of
all values, and t1 \ t2 for the difference type denoting all values of t1 that
are not denoted by t2.

The usual function type constructor → turns out to be inappropriate
for complete type inference for the following reason: As stated in Sec. 2.3
4 〈[t′]〉 is the set of all values denoted by a type t′.
5 More precisely, a test 〈[t]〉 ⊆ 〈[s]〉 where s is a type approximating dom(f) is performed.



complete type checking tries to approximate the test

〈[t]〉 ∩ dom(f) 6= ∅ (1)

by a test

〈[t]〉 ∩ 〈[s]〉 6= ∅ . (2)

In order not to reject well-typed programs the test (2) must succeed
whenever (1) succeeds. This is just the case if s denotes all values of
dom(f), i.e. if dom(f) ⊆ 〈[s]〉 holds. Since a type s′ → tout of f just
implies 〈[s′]〉 ⊆ dom(f), the input types given by the usual function types
of f are inappropriate for the intended test of complete type checking.

For complete type inference the function type constructor is replaced
as follows:
For output purposes a modified construction of function types, called
I/O-representation, is needed. Such an I/O-representation for a function
f is given by a set of I/O-representation pairs IN i 9 9 KOUT i with types
IN i and OUT i such that:

– dom(f) ⊆ ⋃
i 〈[IN i]〉

– ∀if(〈[IN i]〉) ⊆ 〈[OUT i]〉 ∪ {error} (where error denotes a type error
caused by applying a function to an inappropriate argument).

In contrast to the usual function type constructor every value in dom(f)
is denoted by at least one of the IN i.

During type inference most functions are given by either a predefined
function definition or a lambda closure. In both cases the abstract inter-
pretation implementing the type inference process can work on abstrac-
tions of these functions directly. When a higher order function f expects
a function f ′ as input, but f ′ is not known from a call to f then we can
infer a type for f ′ that is given by a modification of an I/O-representation
called PI/PO-representation.6 This is described in detail in [14].

3.2 Common Elements of Types

As stated in Sec. 2.3 complete type inference is based on checking con-
straints of the following form: Given two types t1 and t2. Is there a com-
mon element ⊥ 6= v ∈ 〈[t1]〉 ∩ 〈[t2]〉? More precisely, for types t1 and t2
6 The name PI/PO-representation expresses that the contained input and output types

are partial, i.e. do not cover all input and output values possible for the denoted
functions.



containing variables: is there a value v 6= ⊥ and a substitution ρ such that
v ∈ 〈[ρ(t1)]〉 ∩ 〈[ρ(t2)]〉? The answer to this question can be approximated
by an algorithm CE (common elements) that consists of two stages:

Stage 1 (called S-CE ) traverses the given types in a manner compa-
rable to term unification. It collects constraints of the form A ← tA for
a variable A and a type tA which express that A must be instantiated
to a type denoting at least all values denoted by tA. tA can be defined
by a term containing A itself and other variables A′. A specialty of S-CE
occurs if a variable A has to be constrained several times. In this case the
individual constraints have to be combined to a union type in order to
get a type that covers at least the values required by all the constraints.

Stage 2 (called GIS for generate idempotent substitution) takes the
result of S-CE and transforms it into an idempotent substitution σ.7 This
is done by iteratedly inserting tA for A in some tA′ in order to eliminate
A (and analogously the other restricted variables) from the substitution
result. If tA contains A itself, a recursive binding is introduced for a new
variable XA and A is replaced by XA in tA. A certain order of insertions
and recursive bindings after a finite number of steps yields a substitution σ
with no variable from dom(σ) occurring in one of the substitution results.

The result of CE is a set Σ of substitutions fulfilling the following
theorem:

Theorem 1 (correctness of CE). Let t1, t2 be types. Let there exist a
value v 6= ⊥ such that

∃ρ . v ∈ 〈[ρ(t1)]〉 ∩ 〈[ρ(t2)]〉 .

Then there exists a substitution σ ∈ CE(t1, t2) such that

∃τ . v ∈ 〈[τ ◦ σ(t1)]〉 ∩ 〈[τ ◦ σ(t2)]〉 .

Sketch of proof The proof consists of two steps: Step 1 shows that
for every common element v of t1 and t2 there is a substitution σ′ in the
result of S-CE and a number k0 ∈ N such that for every k ≥ k0:

∃τ . v ∈ 〈[τ ◦ σ′k(t1)]〉 ∩ 〈[τ ◦ σ′k(t2)]〉

where σ′k denotes applying σ′ k times. This proof is done by structural
induction on the types t1 and t2 and considering the different decompo-
sition and constraining rules of S-CE independently.
7 More precisely, S-CE returns several such constraint sets and each of them is trans-

formed into an idempotent substitution independently.



Step 2 of the proof shows that for every substitution σ′ GIS returns
a substitution σ with

σ ◦ σ′(t) = σ(t)

for every term t. With step 1 of the proof and induction on k0 as chosen
there this implies the theorem. 2

A definition of CE especially spotting on S-CE is given in [13]. [14]
gives a full definition of CE and a detailed proof of Theorem 1.

The following examples illustrate the behaviour of CE :

Example 4. Let

t1 = µX.(∪ nil (A . X)) and t2 = (nat . (string . nil)) .

CE iteratedly unfolds the recursive type t1 to the semantically equivalent
type

(∪ nil (A . (∪ nil (A . (∪ nil (A . µX.(∪ nil (A . X)))))))) .

Checking this type with t2 causes A to be instantiated with both nat and
string. The result instantiation of A is a union type containing both of
these instantiations:

CE(t1, t2) = {{A← (∪ string nat}} .

Example 5. Consider the types t1 and t2 defined by

t1 := (X . (Y . (Z . nil)))
t2 := ((Y . X) . (Z . ((num . X) .nil))) .

The return value of CE is

CE(t1, t2) = {{X ← µV.(µW.(num . (W . V )) . V ),
Y ← µW.(num . µV.(W . V )),
Z ← µW.(num . µV.(W . V ))}} .

While Ex. 5 is a rather artificial example showing the generation of
recursive binding for variables with mutually dependencies, Ex. 4 is quite
important. It shows the correct detection of common elements of a list t1
with variable element type and a list t2 with elements of several different
types.



4 Type Inference by Abstract Interpretation

The complete type inference process is presented in terms of an abstract
interpretation. This follows [3] where abstract interpretation was shown
to be appropriate to express different well known type inference systems.

To perform complete type inference, an abstract semantics for the
purely functional subset of e.g. Scheme is straightforward for most pro-
gram expressions (e.g. for generation and application of lambda-closures,
for if-expressions, constants, . . . ). Environments are also abstracted in a
natural manner.

The main difference to usual approaches used for sound type checkers
is the processing of calls to predefined functions. Using the algorithm CE
sketched in Sec. 3.2 the type inference system checks for every function
call (f a) with input type tin of f8 and type ta inferred for a whether

〈[ta]〉 ∩ 〈[tin]〉 6= ∅

holds. In the case of an empty intersection a type error is detected. Oth-
erwise, the output substitutions of CE are used to restrict type variables.
Special care has to be taken not to destroy the information which vari-
ables were restricted to certain types. This is necessary to enable further
restrictions:

Example 6. Consider the following piece of code:

(if (null? l)
1
(+ (car l) 42))

The condition (null? l) introduces the following restrictions for l:

– l← nil for the then-case.
– l← >\nil for the else-case. The expression (car l) further restricts

l to a pair. This is just possible if l was not replaced by >\nil during
the first restriction.

For recursive function definitions the problem of non-termination of
the abstract interpretation occurs. It can be solved in two stages:

1. Whenever recursion is detected in a function definition, the system
tries to find a fixpoint by an iterated process that is comparable to
the approach described in [5].

8 The input type is taken with respect to an I/O-representation of f , i.e. dom(f) ⊆ tin
holds.



2. If the fixpoint iteration fails to reach a fixpoint then the computation
is stopped after exceeding a threshold on the number of recursive
calls. The intermediate types generated so far are generalized to a
recursive type. If this generalization still is not a fixpoint then a further
generalization to > is performed.9

With the abstract interpreter working as sketched before we can per-
form type inference for a program P as follows: For every user defined
function f with arity k in P a call (f A1 . . . Ak) with new type vari-
ables Ai is generated and interpreted abstractly. The I/O-representation
denoting f is given by the restrictions of the Ai as input type and result
of the abstract interpretation as output type.

A theorem stating the completeness of the resulting type checker is
proven in [12]. Since due to lack of space this paper cannot present all
the needed formal tools to formulate the mentioned theorem, we can just
give an informal summary:

Let e be an expression and eA an abstraction of e, i.e. an abstract
expression that is generated from e by replacing some of the con-
stants occurring in e by corresponding types. Then abstractly in-
terpreting eA yields an abstract value vA that contains the result
v of interpreting e in the standard semantics.

The proof is done in several steps:

1. The statement is proven for expressions e not incorporating recursion.
This is done inductively by case distinction on the structure of e.

2. Using a fixpoint argument the correctness of the recursion handling
is proven. This is done without requiring termination.

3. The generalizations of types that are performed in the case of non-
termination do not change the properties proven of the step before
but enforce termination.

If the abstract interpretation of eA yields the type error (just denot-
ing type errors) as output result then by the statement sketched above
the evaluation of e cannot succeed without a type error. The type checker
is therefore complete in the sense that it accepts every program that can
be executed without a runtime type error.
9 Note that such generalizations cannot cause programs to be rejected as possible in

sound type inference. However, we sometimes cannot avoid to overlook errors because
of generalizations of types.



We finish the sketch of our complete type inference system by a well-
typed and an ill-typed example of a program for multiplying two vectors
given as lists of their elements.

Example 7 (well-typed example). Consider the following Scheme program
for the multiplication of two vectors:

(define (v-v-mult row column)
(cond ((and (null? row) (null? column)) 0)

;; non-recursive case
(else
(+ (* (car row) (car column))

;; multiply first elements and process
;; the vector rests recursively

(v-v-mult (cdr row) (cdr column))))))

The result of type inference for this program is an I/O-presentation with
a single input type

IN = µVR.(∪ nil (num . VR)) × µVC .(∪ nil (num . VC))

and the corresponding output type OUT = num.

Example 8 (ill-typed example). Now consider the following ill-typed mod-
ification of the program of Ex. 7:

(define (v-v-mult row column)
(cond ((and (null? row) (null? column)) 0)

;; non-recursive case
(else
(+ (* (car row) (car column))

;; multiply first elements and process
;; the vector rests recursively

(* row column))))) ; Ill-typed call to *

The result of type checking this program is a type error for the call to ∗ in
the last line because row and column are lists which cannot be multiplied.

A detailed definition of the complete type inference system together
with a step to step presentation of the examples above can be found in
[12].



5 Conclusions

This paper motivated a new approach to type checking with the focus
on completeness and sketched a complete type checker and a correspond-
ing type inference system. By accepting every well-typed program and
rejecting only provably ill-typed programs we can use more powerful type
languages without restricting the set of accepted programs due to inaccu-
racies of the type checker and without enforcing explicit type annotations.
E.g. subtyping as a step towards powerful type languages as found in e.g.
[1], [8] or partial types as presented in [9, 10] can be processed by our type
checker. Our type checker is described as an abstract interpretation and
yields detailed support in detecting type errors. Furthermore, warnings of
an additional sound soft typing system [2], [16] or a system with output
similar to soft typing [4] can be used additionally to spot on those parts
of the program that could not be proven to be well-typed.

A first approach to overcome the disadvantage of soft typing not to
reject any programs is given in [15], but it depends strongly on a certain
representation of a restricted type language. The work presented here is
applicable to a wide range of type languages as e.g. a powerful one for
Scheme (for which an example definition exists). It allows the building
of powerful type checkers with subtyping that benefit from both strongly
typed languages and soft typing.
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