
Adapting Structural Testing to Functional
Programming

Manfred Widera

FernUniversität in Hagen,

58084 Hagen, Germany

Abstract—Structural testing is heavily used in the soft-

ware development process in the context of imperative pro-

gramming. In order to become applicable to functional pro-

gramming languages it needs, however, some adaption. We

investigate the definition and generation of interprocedural

flow graphs for functional programs and identify data flow

oriented testing as best choice for the application to func-

tional programming. Special data flow oriented coverage

criteria are defined for the use with functional programs.

Index Terms—testing, flow analysis, functional program-

ming

I. Introduction

In order to introduce a new programming language
or programming paradigm to industrial software develop-
ment, it is necessary to provide tool support for the typical
software engineering tasks in the new language.

Large software projects using functional languages have
already been completed successfully [1]. Especially, Erlang
[2] has been used in a number of very large applications.
Therefore, the functional programming paradigm can be
expected to get an increasing influence on industrial soft-
ware. Tool support for functional programming languages
offers, however, much room for improvement.

In imperative languages an important group of tools per-
forms the validation of program fragments by structure ori-
ented testing. This approach is based on the flow graph of
a tested code fragment and is usually applied during the
unit testing stage early in the software engineering pro-
cess. Up to now there only exist some add-hoc approaches
to structure oriented testing for functional programs, e.g.
the tool cover [3] that is distributed with the Erlang pro-
gramming language. This tool is, however, restricted to
expression coverage without considering correspondences
between distant program parts.

The work presented here aims at transferring the prin-
ciples of structure oriented testing [4], [5] from the imper-
ative to the functional programming paradigm. The main
investigations necessary for this transfer are located in the
area of flow graph generation and in the choice of the most
appropriate coverage criteria.

The flow graph generation for functional programs is
complicated by the fact that functions can be generated dy-
namically during the program execution, passed around in
the program as ordinary data and called at distant places.
Therefore, we must employ data flow analysis during the
flow graph generation in an iterated manner.

In choosing the best coverage criteria for functional pro-
grams two observations are important. Functional pro-

grams [2], [6] lack most of the control flow structures con-
trol flow oriented testing in imperative languages is based
on. Especially, when considering lazy functional program-
ming languages [6], the control flow of a program is no
longer easily predictable by the programmer. These two
arguments motivate the investigation of data flow oriented
coverage criteria, which apply to functional programs much
better.

Here, we report on a project in which a structure ori-
ented testing tool for the functional programming language
Erlang [2] has been developed. Some technical details of
our approach have been presented in our previous publi-
cations [7], [8], [9] and a prototype of this tool, covering
the whole Erlang standard, has been implemented. The
main contribution of this paper is to provide an extensive
summary of the concepts used in this tool and to compare
them with the structure oriented testing approaches known
from imperative programming [4], [5]. Erlang was chosen
from the set of modern functional languages because of its
already existing relevance in industrial projects [1].

The rest of this paper is organized as follows. Section II
describes the stages necessary to perform structural testing
and discusses issues that need to be addressed when focus-
ing on functional programming languages. These include
specialties in generating the flow graph and a discussion
why data flow oriented coverage criteria seem to be the
best choice for testing functional programs. In Sec. III
functional flow graphs are defined and their computation
(making use of an iterated data flow analysis) is described.
Section IV defines a number of data flow oriented coverage
criteria and briefly discusses their use. In Sec. V related
work is discussed and Sec. VI presents our conclusions.

II. Structure Oriented Testing of Functional

Programs

A tool for flow graph oriented component testing consists
of routines for the following subtasks.

1. The flow graph generator transforms a piece of code
into a flow graph.

2. The test execution stage expects a flow graph gener-
ated by Stage (1) and a set of test inputs. For each in-
put it computes the output and a corresponding path
through the graph.

3. The coverage stage expects a flow graph from Stage
(1) and a set of paths from Stage (2). It returns a set
of graph constructs (depending on the actual coverage
criterion) each of which is either marked as covered or
as uncovered.



Each of these stages needs special adaptions towards func-
tional programming languages and especially Erlang. The
special problems occurring when considering Erlang pro-
grams for testing are described in the rest of this section.

A. Flow Graph Generation

Functional programming usually does not make use of
the same control flow constructs as imperative program-
ming languages: looping constructs are replaced by recur-
sion, branching is not based on the results of predicates
but on pattern matching. This causes the following re-
quirements on functional flow graphs.

• Function calls must be represented in an efficient and
intuitive manner.

• Flow graph constructs for presenting pattern matching
are necessary. These constructs must represent the
pattern matching process in an intuitive manner to
the programmer/tester.

During flow graph generation, the capability of functional
programming languages to express higher order functions
causes additional problems.

Example 1: Consider the Erlang code fragment shown in
Fig. 1. The flow graph of this fragment consists of 4 func-

map(F, []) -> [];

map(F, [First | Rest]) ->

[F(First) | map(F, Rest)].

usemap(List) ->

% expects a list of numbers and returns two

% lists with each number incremented and

% decremented by one, respectively.

Inc = fun(X) -> X + 1 end, % increment func

Dec = fun(Y) -> Y - 1 end, % decrement func

IncList = map(Inc, List), % incremented list

DecList = map(Dec, List), % decremented list

{IncList, DecList}. % return both lists

Fig. 1. Example code for usemap

tions: map/2 (/2 denotes the arity 2) and usemap/1 are
given by their names, two further functions are generated
dynamically at runtime and bound to the variables Inc and
Dec. The call to F in line 2 of the function map/2 can call
both of the dynamically generated functions. Therefore,
two edges must be introduced for the presentation of the
possible calls.1 �

As Shivers states [10] the control flow in a functional pro-
gram can depend on the data flow during executing the
program. This makes data flow analysis during the flow
graph generation necessary. The iterative approach pro-
posed by Shivers forms the basis of the flow graph gener-
ation in our system. We have adapted Shivers’ approach
towards the original program source code without complex

1 Though the functions are dynamically generated at runtime their
source code is known at compile time. By identifying different func-
tions that are generated with the same source code (this is useful
when the functions differ in the variable values bound in the con-
text) we can nevertheless represent these functions in a flow graph
computed at compile time.

program transformations. More details on the flow graph
generation are described in Sec. III.

B. Test Case Execution

The test case execution has to be performed in a super-
vised manner with respect to the flow graph in order to
generate a path through the flow graph. Several alterna-
tives exist to implement such a supervision.

• The compiler/runtime system of Erlang can be modi-
fied to take into account a flow graph and to provide
a path together with the execution result.

• A preprocessing stage can instrument the source code
to collect a path.

• An interpreter for flow graphs can be implemented,
which evaluates the test calls and provides the needed
paths.

For a prototypical implementation of the testing tool we
have chosen the implementation of a flow graph interpreter.
This approach seemed to be the easiest to implement and
it offers the best extendibility towards schedule supervision
for concurrent Erlang code. A detailed discussion can be
found in [8].

C. Coverage Test

The most important adaption in the coverage stage is
the choice of coverage criteria that are well-suited for the
functional programming paradigm. In this subsection, we
review the traditional coverage criteria for imperative pro-
gramming and discuss their use in the context of functional
programming.

C.1 Control Flow Oriented Testing

Several structure oriented coverage criteria for imper-
ative programs are known in the literature [5]. Here, we
discuss the use of these criteria for the testing of functional
programs.

• With a given definition for functional flow graphs the
adaption of the node coverage criterion and the edge
coverage criterion are straightforward. Edge cover-
age is stronger in the context of higher order function
calls2 because a single call node can have several out-
going edges to called functions. If no higher order calls
occur in a program both criteria are equivalent.

• Methods for testing loops, like the boundary interior
test, are not very useful in functional programming: in
the absence of looping constructs it is more important
to handle function calls well in general. This is even
more the case as we have no updating of variable val-
ues in functional languages. The effects of loops are,
therefore, locally restricted to a higher degree because
just the parameters and the result value are accessible
outside a single iteration step.

From these criteria we only propose the node and edge cov-
erage criteria for functional programming languages. One
just has to note that, in contrast to imperative languages,
there can be functional programs and corresponding flow

2 I.e. the called function is given by a variable.



graphs that cannot be covered completely according to the
edge coverage criterion. (This is the case because call des-
tinations can only be computed approximately.)

C.2 Data Flow Oriented Testing

Data flow oriented testing is well-suited for the func-
tional programming paradigm: calling a function with ar-
gument values and the returning of result values by func-
tions describe the data flow within a program. When pro-
gramming in a lazy functional language like e.g. Haskell
[6] the control flow of the program is no longer easily pre-
dictable and the data flow is the only flow information the
programmer can rely upon.

Analyzing the data flow oriented coverage criteria known
in literature [5] yields the following situation.

• In the functional programming paradigm branching is
based on pattern matching, not on predicates. The
discrimination of uses into p-uses and c-uses [11]
therefore does not apply.

• The required k-tuples criterion [12] and the context
coverage criterion [13] check combinations of several
definition-use pairs to be covered. They can be trans-
fered to functional programming once there are ap-
propriate definitions for checking single definition-use
pairs (or du-chains as defined in Sec. IV) in functional
programs.

As stated in Sec. A, data flow analysis is already neces-
sary during the flow graph generation phase. In both, the
graph generation and the coverage test, our goal is not to
represent the flow of a variable from its definition to its
use but the flow of a value from its generation to its use
independent from the variables or structures that carry the
value.

For both, the data flow analysis during the flow graph
generation and the data flow oriented coverage test, we are
interested in definition-use pairs that are not only based on
the local definitions d, but also on the distant definitions d′

defining the same value. Details on the data flow oriented
coverage criteria for functional languages will be described
in Sec. IV.

III. Functional Flow Graphs

A. Preprocessing of Programs

The task of presenting the control and data flow in
a functional program is complicated by the presence of
nested expressions in the program.

Example 2: Consider the Erlang expression
f(g(h(0))). In a language with eager evaluation,
like Erlang, the subexpression h(0) is evaluated first. Its
result is passed to g as argument and the result of this call
is passed to f. The result of f is the result of the whole
expression. �

In order to provide a clear description of the control and
data flow by the flow graph a simple preprocessing stage
(whose results can be undone for the code presentation to
the programmer) enforces the named definition property.

Definition 1 (named definition property) An Erlang
program (or program fragment) P fulfills the named

definition property if every sub-expression of a program
expression consists of a variable,3 each function consists
of a single clause with just variables as arguments and the
return value of the function is bound to a return variable
(which is unique for each function) on each branch of the
function body. �

Example 3: Consider the following definition of the fac-
torial function.
fac(0) -> 1;

fac(N) -> N * fac(N-1).

Preprocessing this definition to enforce the named defini-
tion property yields
fac(~Arg1~) ->

case ~Arg1~ of

0 -> ~Ret~ = 1;

N -> ~Var1~ = N-1,

~Var2~ = fac(~Var1~),

~Ret~ = N * ~Var2~

end.

�

When choosing special names for the new variables that
can be distinguished from the variables occurring in the
original code it is easy to undo the preprocessing trans-
formation for presentation purposes. (E.g. in Ex. 3 each
introduced variable has the form ~Name~ which cannot oc-
cur in the original program.)

B. Definition of Flow Graphs

Before describing functional flow graphs, consider the
following example.

Example 4: Reconsider the preprocessed factorial func-
tion from Ex. 3. The flow graph of this function is pre-
sented in Fig. 2. In addition to the preprocessed code,
the flow graph contains three additional nodes: the im-
port node defines the formal parameters of the function,
the context node provides local definitions of the variables
taken from the function context (just applies to higher or-
der functions) and the return node represents the return
from the function call with the return value.

The dashed arrow denotes a call edge, i.e. it is a bidirec-
tional edge denoting the call to a function and the return
from the call. The case expression is represented by a com-
plex node with the test expression in the first row. Each
following row represents the pattern of one clause with an
outgoing edge to the clause body. �

A functional flow graph G = (V, E) for an Erlang code
fragment C fulfilling the named definition property consists
of a set V of nodes and a set E of directed edges with the
following properties.

The set V of nodes is defined as follows. Each ex-
pression in C is represented by a node. Several kinds of
nodes are defined to represent different expression types.
(We identify the program expressions with the flow graph
nodes they represent. I.e. a call node is a node represent-
ing a function call. A receive node represents a receive

3 There is a small number of exceptions of this rule, which are
difficult to describe without a precise description of the considered
language. A definition showing the exceptions can be found in [7].



import(~Arg1~) context()

~Arg1~
0
N

~Ret~ = 1

return(~Ret~)

~Var2~ = fac(~Var1~)~Var1~ = N−1 ~Ret~ = N * ~Var2~

Fig. 2. Flow graph of factorial

statement, etc. E.g. Fig. 2 contains exactly one call node
marked with ~Var2~ = fac(~Var1~).)

Additionally, there exist the following kinds of nodes for
each function: an import node expresses a local definition
for the values passed to the function as arguments during
a call, a context node provides a local definition for the
values taken from the context a (dynamically generated)
function was defined within and a return node expresses
the returning from the function call with a value bound to
the return variable of the function.

Dedicated start and end nodes for the whole flow graph
are not generated because there is no dedicated main func-
tion in Erlang programs. Each function that is exported
from a module can serve as the entry point to the program.

Different forms of control and/or data flow are repre-
sented by different kinds of edges. The set E of edges
consists of the following four edge types.

• Neighborhood edges represent the normal flow within
a function.

• Call edges represent function calls. A call node has
two kinds of outgoing edges (cf. recursive call to fac
in Fig. 2).

– Call edges lead from the call node to the possible des-
tinations of the call. A call node with no outgoing
call edge calls functions that are not part of the flow
graph. In case of one or several outgoing call edges
each execution of the call node at runtime chooses
one of them or calls a function not represented by
the flow graph.

– A neighborhood edge from the call node to its suc-
cessor in the intraprocedural flow graph represents
the flow after returning from the call.

In contrast to known definitions of interprocedural
control flow graphs [14], our call edges are bidirec-
tional and also represent the control and data flow
generated by the return from the denoted call. (Hav-
ing an individual edge for each possible return would
make the flow graph unnecessarily complex. Further-
more, correlations between call edges and the corre-
sponding returns would remain implicit.)

• Throw edges represent the non-local returns by the Er-
lang catch-throw mechanism. They lead from a node
representing a throw to a node representing a catch.
Though throw edges behave like ordinary neighbor-
hood edges in a complete flow graph their computa-

tion needs special care.
• Message edges represent the data flow generated by

the message passing mechanism of Erlang. They go
from a send node to a receive node. These edges are
special in the sense that they just present a data flow.
There is no control flow between different Erlang pro-
cesses.

Process generation is represented by a call edge. The
spawning of a new process returns immediately with a
dummy value. The new process executes independently,
afterwards.

Details on the definition and the generation of flow
graphs can be found in our previous work [7].

C. Generation of Flow Graphs

The generation of flow graphs for Erlang programs con-
sists of the following steps.

1. Generation of flow graphs for the individual functions
(including preprocessing of the source code).

2. Introduction of call edges, throw edges and message
edges.

Stage (1) just contains some straightforward transforma-
tions of the code. In Stage (2) we employ an iterated pro-
cess that loops over the following sub-tasks.

1. For each higher order function call4 f(v1, . . . , vk) in
the graph compute all definitions that reach the use of
f in this call. From these definitions extract the called
functions and insert a call edge from the call node to
each computed destination function if the destination
belongs to the flow graph.
The call edges for first order function calls (i.e. the
called function is given by its name) do not depend
on any data flow and can therefore be inserted before
starting the iteration.

2. For each node t describing a throw expression com-
pute all catch nodes c such that there exists a path
from c to t not containing another catch node besides
c in the current graph.

3. Insert all computable message edges. Computing the
message edges for a send expression s of the form p ! v
with a process p and a value v consists of determining

4 In contrast to other functional languages, Erlang distinguishes
first order calls of functions that are defined in a module with their
name and higher order calls of functions that are generated during
runtime (and are usually represented by a variable).



the possible destination processes, identification of all
receive statements in these destination processes and
restriction of the receive statements to those whose
patterns can match the sent values.

• The processes are abstracted by their initial function.
For each process a set of all receive nodes it can
reach is computed.

• Using data flow analysis of the variable p to the ex-
pression s identifies the possible destination pro-
cesses and, hence, an initial set of possible corre-
sponding receive statements r.

• For each possible corresponding receive statement r

the patterns occurring in r are matched against the
sent values. This is done by data flow analysis of
the variable v to its use by the expression s and
partial evaluation of the values defining v. If we
cannot prove that none of the patterns of r matches
any values defining v the conservative message edge
generation adds a message edge from s to r to the
flow graph.

The iteration over the whole sequence of sub-tasks is
necessary because the control and data flow examined in
one of the tasks can depend on the edges introduced during
the other ones. The iteration always terminates with a
fixed point, i.e. one iteration step does not change any of
the edge sets.

IV. Data Flow Oriented Coverage Criteria

As already discussed in Sec. II, data flow oriented cov-
erage criteria seem to be more appropriate for functional
languages than control flow oriented criteria. Therefore,
in this section we concentrate on the adaption of data flow
oriented coverage to functional programs.

The base notion for all data flow oriented coverage cri-
teria is the definition-use pair (du-pair). Its definition can
be taken from the well-known approaches for imperative
languages [11], [4].

Definition 2 (du-pair) Let G = (V, E) be a flow graph.
A definition-use pair (du-pair) in G is a triple (v, d, u)
where v is a variable, d ∈ V contains a definition of v,
u ∈ V contains a use of v, and there exists a path w from
d to u such that v is not redefined and the scope of v

defined in d is not left on w. �

Testing the coverage of du-pairs is more complicated than
testing node coverage: node coverage can be tested by
checking every program expression for coverage without
computing a flow graph. Therefore, we are interested in
the additional strength in testing provided by the du-pairs.
To measure this we define non-trivial du-pairs as follows.

Definition 3: Let G be a flow graph and P the set of
du-pairs in G. A du-pair (d, u) ∈ P 5 is non-trivial if there
exist du-pairs (d, u′), (d′, u) ∈ P with d 6= d′ and u 6= u′.

�

Informally, a du-pair is non-trivial if it is neither deter-
mined completely by its source node nor by its destination
node. Such a non-trivial du-pair p can be overlooked by a

5 We often omit the variable v of a du-pair if it is not of interest.

test set T even though T fulfills the node coverage crite-
rion for the graph containing p. Therefore, a large number
of non-trivial du-pairs implies the need for checking some
data flow oriented coverage criterion.

In measurements with our prototype [9], between 25%
and 40% of all du-pairs were non-trivial and carried infor-
mation not covered by the node coverage criterion. This
additional strength makes the effort of computing a flow
graph for testing valuable.

The data flow criteria are not comparable to the edge
covering criterion: a call edge whose destination function
does not expect an argument does not represent any data
flow (i.e. the data flow criteria do not subsume edge cov-
erage). Vice versa, single edges are not able to represent
every form of data flow (i.e. edge coverage does not sub-
sume data flow oriented coverage). Since both, edge cov-
erage and the data flow criteria need the computation of
the flow graph, a chosen data flow criterion should be com-
bined with the edge coverage criterion for maximum testing
strength.

Definition-use pairs of the form defined above just de-
scribe the flow of a data object as long as it is bound to
a certain variable. By considering sequences of du-pairs
(called du-chains) we are able to express several additional
ways of data flow that are also of high interest in functional
programs.

• A value can be passed from one variable to another.
This is possible explicitely by a copy expression A = B

or implicitly for the arguments of a function call and
the parameters of the called function. To express this,
we define aliasing aware du-chains in Def. 4.

• Functional programming languages provide standard
data constructors for constructing e.g. lists or tuples.
A value from a variable v can be stored in a struc-
ture at a node n1 and selected from the structure at
a distant node n2 defining a variable v′. With a data
flow of the structure from n1 to n2 given, we want to
represent the data flow from the definition of v to the
use of v′. This will be expressed by structure aware
du-chains.

• Many values are generated within calls to sub-
functions. We are interested in the flow of the data
objects within the called function to the return from
the call and further to the use within the calling func-
tion. To express this, we define result aware du-chains.

• Functions that are constructed dynamically during
runtime can make use of the variables that are acces-
sible when the function is constructed. The values of
these variables are stored in a lambda closure. When
such a lambda closure f is generated in a node n1 the
value of a variable v is frozen. It is available within
the function after f has been called at a distant node
n2. A local definition for v is provided by the con-
text node of f . With the data flow of f from n1 to
n2 given, we are interested in the data flow of v from
the definition outside of f to the use inside of f . We
express this by freeze aware du-chains.

Formally, a du-chain is a sequence of du-pairs such that its



first definition and its last use denote the same value.
Definition 4 (du-chains) Let G be a flow graph. A du-

chain is a sequence (with sequencing operator ;) of du-pairs
defined as follows.

• Each du-pair in G is a du-chain in G.
• Let e : v ′ = v be a copy expression in G with variables

v and v′. Let d1 be a du-chain in G ending with the
use of v in e and d2 a du-chain in G starting with the
definition of v′ in e. Then d1; d2 is an aliasing aware
du-chain in G.

• Let e1 : s = {v1 , . . . , vk} be a tuple construction and
e2 : v ′ = element(i , s ′) a tuple selection. Let d1 be a
du-chain in G ending with the use of vi in e1, d2 a du-
chain in G starting with the definition of s in e1 and
ending with the use of s′ in e2 and d3 a du-chain in G

starting with the definition of v′ in e2. Then d1; d2; d3

is a structure aware du-chain in G.6

• Let e1 be a function call and e2 the return node of
a function f reached by a call edge from e1. Let d1

be a du-chain in G ending with the use of the return
variable v of f in e2 and let d2 be a du-chain in G

beginning with the binding of a variable v′ to the call
result of e1. Then d1; d2 is a result aware du-chain in
G.

• Let e1 be the generation of a lambda closure f in G.
Let e2 : f ′(a1 , . . . , ak ) be a higher order function call
in G, and e3 the context node of f defined in e1. Let
d1 be a du-chain in G ending with the use of a variable
v in e1,

7 d2 a du-chain in G starting with the definition
of f in e1 and ending with the use of f ′ in e2 and d3

a du-chain in G starting with the definition of v in e3.
Then d1; d2; d3 is a freeze aware du-chain in G.

In all cases, pattern matching in branching constructs is
handled in analogy to the matching operator =. �

The presented awareness levels of du-chains can be com-
bined with each other: the awareness level of the du-chains
one wants to define determines the cases of Def. 4 to use
and restricts the sub-chains in these cases to the same
awareness level. Defining e.g. the set of all aliasing and re-
sult aware du-chains we choose the cases for aliasing aware
and for result aware du-chains and in both cases d1 and d2

can themselves be aliasing and result aware du-chains.
Aliasing awareness and result awareness reflect the im-

portance of function calls in functional programming: in
Fig. 2 the call edge implicitly expresses a copy expression
~Arg1~ = ~Var1~ between the argument of the call and
the parameter of the called function. This can be expressed
by an aliasing aware du-chain. After the recursive call fin-
ishes the result (bound to ~Ret~) is assigned to ~Var2~.
This data flow can represented by a result aware du-chain.

Especially the aliasing awareness is, furthermore, im-
portant to analyze loops. Loops are expressed by recursive
function calls, and the termination of the recursion usu-
ally depends on one or several of the functions arguments.

6 Analogously, structure aware du-chains can consider pairs instead
of tuples and selections by pattern matching instead of predefined
selection functions.

7 A lambda closure generation is a use of each variable reaching it.

Aliasing awareness is the only way to express the flow of
data from the computation of the argument for the next
recursion step (~Var1~ = N - 1 in Fig. 2) to its use for
the termination control (use of ~Arg1~ in the example).

The remaining levels of structure awareness and freeze
awareness are based on the special properties and con-
structs occurring in functional languages and have the goal
to deduce the values reaching a use as precisely as possible.

Our measurements for sequential Erlang modules [9]
showed that a combination of aliasing, structure and freeze
awareness is feasible in every case. Compared to checking
individual du-pairs only, it is not much more complicated
to check du-chains of this level. When adding result aware-
ness, the number of du-chains can become infeasible (espe-
cially for recursive functions which contain many different
clauses and which return structured values).

We came to the conclusion that testing the coverage of
all aliasing, structure and freeze aware du-chains is valu-
able in every case and to add result awareness whenever
this yields a feasible number of du-chains.

V. Related Work

The concept of generating flow graphs for higher order
programs is described by Shivers [10] proposing several dif-
ferent levels of precision for the needed data flow analy-
sis. These different precision levels are further analyzed by
Ashley/Dybvig [15]. Especially, the level 0CFA is similar
to our approach. Most of the CFA approaches, however, do
not focus on the presentation of the generated flow graphs
to the programmer.

Some approaches on testing and debugging functional
programs have been proposed. QuickCheck [16] aims at
automatically testing Haskell programs by generating in-
put data on a random basis and checking the results with
constraints on the expected output.

In the WYSIWYT framework [17], [18], [19] flow graphs
are used for testing spreadsheets, which are considered as
first order functional programs without recursion.

The module cover that comes with the tools library of
Erlang [3] implements a coverage test for Erlang source
code that analyzes the individual lines of the source code
for coverage. Cover does not need to employ data flow
analysis since it directly works on the program source code.
As a drawback, it is not able to distinguish several compu-
tations coded within a single line or to check non-local rela-
tionships, e.g. between calls and called functions, between
throws and corresponding catches or between definitions
and reached uses of values.

There are several works presenting data flow analysis
in an imperative framework (e.g. [20]). The presentation
given there is more general than needed by our approach
and describes several forms of data flow analysis. The tool
used by us is called reaching definitions analysis there.

Several works on data flow oriented testing for impera-
tive programming include those already discussed in Sec. II
([13], [12], [11]). The problem of infeasible paths in a flow
graph occurring in these (and our) approaches is addressed
by introducing new criteria just considering feasible paths



[21]. This, however, makes the question whether a test set
fulfills one of these criteria undecidable.

The combination of flow graphs of individual proce-
dures/functions to an interprocedural control flow graph
(ICFG) was developed by Landi and Ryder [14]. A call
corresponds to two nodes, one for the call and one for the
return from the call, respectively. Edges lead from the call
node to the start node of the called procedure and from
its end node to the return node in the calling procedure.
This leads to the problem of non-realizable paths, i.e. paths
whose call edge and return edge do not correspond to the
same call site.

Problems related to the analysis of higher order pro-
grams also arise when considering function pointers, e.g.
during a points-to analysis [22]. The approach of Emami
Ghiya and Hendren is comparable to our approach in us-
ing an incomplete data structure for iterating the necessary
analysis but it does not cover exception handling and mes-
sage passing as they occur in Erlang.

Program analysis in the presence of exception-handling
is discussed by Sinha and Harrold [23] for Java, i.e. not in
the context of higher order programming. Their approach
can be incorporated into our Erlang flow graphs for cover-
ing the most recent changes in the Erlang standard [24].

VI. Conclusion

We have shown that structure oriented coverage is ap-
plicable to functional programming languages. A number
of adaptions is, however, necessary. In defining flow graphs
the importance of function calls has to be reflected by a
simple representation. We have introduced call edges such
that on reaching a function call the control follows a call
edge first; when reaching the return node of the called
function it bounces back along the call edge and goes on
by following the outgoing neighborhood edge of the call.

Computing flow graphs for functional programs is more
complicated than it is the case for imperative programs:
since the possible control flow in a program depends on
the data flow in higher order programs, data flow analysis
is necessary for computing call edges. An iterated process
performs this data flow analysis.

Analyzing different coverage criteria known for impera-
tive languages, we have identified data flow oriented cri-
teria as the best choice for functional programs. Instead
of distinguishing p-uses and c-uses as known from litera-
ture [11] we have introduced the notion of du-chains, i.e.
sequences of du-pairs with their first definition and their
last use referencing the same value. Definition use chains,
hence, represent the flow of a value through different vari-
able and structure bindings.

Different levels of du-chains have been defined and mea-
surements comparing the individual levels have led to a
simple standard procedure choosing the right level for test-
ing a given program fragment.

References

[1] Blau, S., Rooth, J., Axell, J., Hellstrand, F., Buhrgard, M.,
Westin, T., Wicklund, G.: AXD 301: A new generation ATM

switching system. Computer Networks (Amsterdam, Nether-
lands: 1999) 31 (1999) 559–582

[2] Armstrong, J., Virding, R., Wikström, C., Williams, M.: Con-
current Programming in ERLANG. 2nd edn. Prentice Hall
(1996)

[3] NN: Tools version 2.3. (2003) Documentation of Erlang/OTP
R9C.

[4] Zhu, H., Hall, P., May, J.: Software unit test coverage and
adequacy. ACM Computing Surveys 29 (1997) 366–427

[5] Liggesmeyer, P.: Software-Qualität: Testen, Analysieren und
Verifizieren von Software. Spektrum Akademischer Verlag, Hei-
delberg, Berlin (2002)

[6] Jones, S.P., ed.: Haskell 98 Language and Libraries – The Re-
vised Report. Cambridge University Press (2003)

[7] Widera, M.: Flow graphs for testing sequential Erlang pro-
grams. In: Proceedings of the 3rd ACM SIGPLAN Erlang
Workshop, ACM Press (2004)

[8] Widera, M.: Flow graph interpretation for source code di-
rected testing of functional programs. In Grelck, C., Huch, F.,
eds.: Implementation an Application of Functional Languages,
16th International Workshop, IFL’04. Technischer Bericht 0408,
Institut für Informatik und Praktische Mathematik, Christian-
Albrechts-Universität zu Kiel (2004)

[9] Widera, M.: Data flow coverage for testing Erlang programs.
In van Eekelen, M., ed.: Proceedings of the Sixth Symposium
on Trends in Functional Programming (TFP’05). (2005)

[10] Shivers, O.: Control-flow analysis in Scheme. In: Proceedings
of the SIGPLAN ’88 Conference on Programming Language De-
sign and Implementation. (1988) 164–174

[11] Rapps, S., Weyuker, E.J.: Selecting software test data using
data flow information. IEEE Transactions on Software Engi-
neering 11 (1985) 367–375

[12] Ntafos, S.C.: On required element testing. IEEE Transactions
on Software Engineering 10 (1984) 795–803

[13] Laski, J.W., Korel, B.: A data flow oriented program testing
strategy. IEEE Transactions on Software Engineering 9 (1983)
347–354

[14] Landi, W., Ryder, B.G.: Pointer-induced aliasing: a problem
classification. In: POPL ’91: Proceedings of the 18th ACM
SIGPLAN-SIGACT symposium on Principles of programming
languages, New York, NY, USA, ACM Press (1991) 93–103

[15] Ashley, J.M., Dybvig, R.K.: A practical and flexible flow analy-
sis for higher-order languages. ACM Transactions on Program-
ming Languages and Systems 20 (1998) 845–868

[16] Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for
random testing of Haskell programs. In: Proceedings of the
ACM Sigplan International Conference on Functional Program-
ming (ICFP’00). Volume 35.9 of ACM Sigplan Notices., N.Y.,
ACM Press (2000) 268–279

[17] Rothermel, G., Burnett, M., Li, L., DuPuis, C., Sheretov, A.:
A methodology for testing spreadsheets. ACM Transactions on
Software Engineering and Methodology 10 (2001) 110–147

[18] Rothermel, G., Li, L., DuPuis, C., Burnett, M.: What you see
is what you test: A methodology for testing form-based visual
programs. In: Proceedings of the 1998 International Conference
on Software Engineering, IEEE Computer Society Press/ACM
Press (1998) 198–207

[19] Rothermel, K.J., Cook, C.R., Burnett, M.M., Schonfeld, J.,
Green, T.R.G., Rothermel, G.: WYSIWYT testing in the
spreadsheet paradigm. In: Proceedings of the 22nd Interna-
tional Conference on Software Engineering, ACM Press (2000)
230–239

[20] Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program
Analysis. Springer (1999)

[21] Frankl, P.G., Weyuker, E.J.: An applicable family of dataflow
testing criteria. IEEE Transactions on Software Engineering 14
(1988) 1483–1498

[22] Emami, M., Ghiya, R., Hendren, L.J.: Context-sensitive inter-
procedural points-to analysis in the presence of function point-
ers. In: PLDI ’94: Proceedings of the ACM SIGPLAN 1994
conference on Programming language design and implementa-
tion, New York, NY, USA, ACM Press (1994) 242–256

[23] Sinha, S., Harrold, M.J.: Analysis of programs with exception-
handling constructs. In: Proceedings of the International Con-
ference on Software Maintenance. (1998) 348–357

[24] Ericsson Utvecklings AB: Erlang Reference Manual, Version
5.4.9. (2005)


