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iple of 
onditional preservation in belief revisionGabriele Kern-Isberner(gabriele.kern-isberner�fernuni-hagen.de)FernUniversit�at Hagen, Department of Computer S
ien
e,58084 Hagen, GermanyAbstra
t. Although the 
ru
ial role of if-then-
onditionals for the dynami
s ofknowledge has been known for several de
ades, they do not seem to �t well inthe framework of 
lassi
al belief revision theory. In parti
ular, the propositionalparadigm of minimal 
hange guiding the AGM-postulates of belief revision provedto be inadequate for preserving 
onditional beliefs under revision.In this paper, we present a thorough axiomatization of a prin
iple of 
onditionalpreservation in a very general framework, 
onsidering the revision of epistemi
 statesby sets of 
onditionals. This axiomatization is based on a non-standard approa
h to
onditionals, whi
h fo
uses on their dynami
 aspe
ts, and uses the newly introdu
ednotion of 
onditional valuation fun
tions as representations of epistemi
 states. Inthis way, probabilisti
 revision as well as possibilisti
 revision and the revision ofranking fun
tions 
an all be dealt with within one framework. Moreover, we showthat our approa
h 
an also be applied in a merely qualitative environment, extendingAGM-style revision to properly handling 
onditional beliefs.1. Introdu
tionKnowledge is subje
t to 
hange, either due to 
hanges in the real world,or by obtaining new �ndings about the domain under 
onsideration.New information may simply extend the prior knowledge base, or be in
on
i
t with it, in whi
h 
ase its in
orporation makes 
omplex revisionpro
esses ne
essary. In any 
ase, the modi�
ation of knowledge basesbrought about by learning new information may drasti
ally alter theresponse behavior of knowledge systems to queries; e.g. answers thatwere meaningful in the 
ontext of the prior knowledge base, mightbe
ome irrelevant or even false in the light of new information.Belief revision, the theory of dynami
s of knowledge, has been mainly
on
erned with propositional beliefs for a long time. The most ba-si
 approa
h here is the AGM-theory presented in the seminal paper(Al
hourr�on et al., 1985) as a set of postulates outlining appropriaterevision me
hanisms in a propositional logi
al environment. Condition-als (BjA), to be read as \If A then B", seem to play an ambiva-lent role in belief revision: Although their dynami
 power as revisionpoli
ies has been appre
iated (see e.g. (Ramsey, 1950; Boutilier andGoldszmidt, 1993)), G�ardenfors' triviality result (G�ardenfors, 1988)
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2 G. Kern-Isbernerdes
ribes an obvious in
ompatibility between 
onditionals and 
lassi
alAGM-approa
hes. This in
ompatibility, however, 
an be resolved byleaving the narrow framework of 
lassi
al logi
 { �rst, 
onditional be-liefs must be understood as fundamentally di�erent from propositionalbeliefs (
f. (Levi, 1988)) and hen
e be treated di�erently, and se
ond,instead of fo
using on belief sets (i.e. dedu
tively 
losed propositionaltheories) 
ontaining all 
ertain beliefs, one should 
onsider belief statesor epistemi
 states, respe
tively, as 
omplex representations of 
ognitivestates of intelligent agents. Although the 
lose 
onne
tions betweenbelief revision and 
onditionals, on the one side, and between beliefrevision and epistemi
 orderings, on the other side, has been apparentfor many years (
f. (Ramsey, 1950; Katsuno and Mendelzon, 1991b)), itwas only quite re
ently that �rst approa
hes extending the AGM-theoryto that broader framework have been brought forth: Darwi
he andPearl (Darwi
he and Pearl, 1997) reformulated the AGM-postulatesfor revising epistemi
 states by propositional beliefs and, moreover,they formulated four new postulates dealing expli
itly with 
onditionalbeliefs. Instead of following the minimal 
hange paradigm whi
h guidespropositional AGM-revision, Darwi
he and Pearl's postulates vaguelyoutline how to preserve 
onditional beliefs under propositional revi-sion. In (Kern-Isberner, 1999a), we then presented a 
omplete set ofaxioms for revising epistemi
 states by 
onditional beliefs, extendingpropositional AGM-revision and 
overing the postulates of Darwi
heand Pearl.Instead of only regarding the results of belief 
hange, as in AGM-theory, studying belief revision in the framework of epistemi
 statesand 
onditionals means to observe the very pro
ess of belief dynami
s.Perhaps the most important 
onsequen
e of this is that, in over
oming
lassi
al borders and pe
uliarities, it opens up the view to a most gen-eral framework whi
h uni�es belief revision, nonmonotoni
 reasoningand indu
tive representation of 
omplex, 
onditional knowledge. Tobe more pre
ise, belief revision and nonmonotoni
 reasoning 
an belinked via 
onditionals in epistemi
 states in the following way: Anonmonotoni
ally implies B, based on the knowledge given by theepistemi
 state 	 (A j�	B), i� the 
onditional (BjA) is a

epted in	 (	 j= (BjA)), i� revising 	 by A yields belief in B (	 � A j= B).Note that here ba
kground knowledge represented by 	 
an be takenexpli
itly into a

ount, in 
ontrast to the purely propositional view in(Makinson and G�ardenfors, 1991). Furthermore, indu
tive knowledgerepresentation 
an be understood as revising a uniform belief state,expressing 
omplete ignoran
e, by the (
onditional) knowledge to berepresented.
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The prin
iple of 
onditional preservation in belief revision 3For these reasons, revising epistemi
 states by 
onditional beliefsshould not be 
onsidered as an artifa
t, but rather be understood asone of the most fundamental and powerful pro
esses in formal knowl-edge management. A thorough axiomatization of an appropriate prin-
iple of 
onditional preservation in the sense of (Darwi
he and Pearl,1997) and (Kern-Isberner, 1999a) will be able to serve as an importantguideline for handling those revisions. To this end, we even go onestep further: We leave the purely qualitative framework and enter intosemi-quantitative (i.e. ordinal) and quantitative (i.e. probabilisti
) en-vironments, �nding on
e again that more 
omplex surroundings provide
learer, unifying views. In this paper, 
onditional valuation fun
tionsare introdu
ed as quite general representation of epistemi
 states. Or-dinal 
onditional fun
tions, possibility distributions and probabilityfun
tions are spe
ial instan
es of 
onditional valuation fun
tions. Wethen formalize a most general prin
iple of 
onditional preservation,dealing with the revision of 
onditional valuation fun
tions by sets of(quanti�ed) 
onditional beliefs. This in
ludes any type of belief revision
onsidered to date and generalizes the 
lassi
al AGM-framework inthree respe
ts:� observing 
onditional beliefs in the prior epistemi
 state� handling revision by 
onditional beliefs� handling simultaneous revision by a set of 
onditional beliefsThis prin
iple to be developed here is inspired by properties of optimalinformation-theoreti
al methods, and hen
e 
an be regarded as a mostappropriate paradigm to deal with 
onditional information. As ordinalepistemi
 states (su
h as ordinal 
onditional fun
tions and possibilitydistributions) also allow a purely qualitative view, we investigate the
onsequen
es of this quantitative prin
iple of 
onditional preservationin a qualitative setting. We show that our quantitative prin
iple of 
on-ditional preservation implies the validity of the axioms for 
onditionalbelief revision of (Kern-Isberner, 1999a) and hen
e also provides a high-level formalization of Darwi
he and Pearl's ideas (Darwi
he and Pearl,1997).The prin
iple of 
onditional preservation to be axiomatized in thispaper is based on a non-standard theory of 
onditionals whi
h 
apturesthe dynami
 e�e
ts of establishing 
onditional relationships within epis-temi
 states. Although the non-
lassi
al nature of 
onditionals hasbeen widely re
ognized and emphasized, 
lassi
al logi
al views havein
uen
ed (and limited) the handling of 
onditionals: Intera
tions of
onditionals have been redu
ed to logi
al intera
tions, 
he
king for
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4 G. Kern-Isbernerlogi
al in
onsisten
ies (
f. e.g. (Goldszmidt and Pearl, 1996)), and oneof the prin
ipal assumptions for 
onditional events is that their logi
should extend 
lassi
al logi
 (
f. e.g. (Dubois and Prade, 1991; Walker,1994)). One of the main reasons for basing 
onditional and revisiontheories on 
lassi
al logi
al approa
hes is to use the 
lear stru
ture of
lassi
al logi
 as a guideline, in order not to get lost under revision.Indeed, the intera
tions of 
onditionals 
an be
ome very 
omplex, andan adequate stru
tural means for handling sets of 
onditionals is ur-gently needed. Here we use the algebrai
 means of 
onditional stru
turesto make intera
tions of 
onditionals transparent and 
omputable { a
ru
ial problem when revising by sets of 
onditionals.This framework we 
onsider 
onditionals in not only 
on
erns beliefrevision, nonmonotoni
 reasoning and indu
tive knowledge representa-tion, but also helps unifying qualitative and quantitative approa
hes.We 
learly di�erentiate between numeri
al and stru
tural aspe
ts of
onditionals, by �rst building up a formal, algebrai
 frame for 
ondi-tionals and then linking this frame to numeri
al values by using the ideaof 
onditional indi�eren
e. Conditional indi�eren
e proves to be morefundamental than the notion of 
onditional independen
e and is formal-ized in terms of 
onditionals. It is just this idea of separating stru
turesfrom numbers that provides a solid basi
 theory of 
onditionals withappli
ations in (apparently) very di�erent domains.This paper is organized as follows: Se
tion 2 
ontains some formalpreliminaries, and here we brie
y explain the di�erent types of epis-temi
 states we are going to 
onsider. In Se
tion 3, 
onditional valuationfun
tions are introdu
ed as basi
 representations of (semi-)quantitativeepistemi
 states. In Se
tion 4, we present a new, dynami
 view on
onditionals; in parti
ular, we de�ne the notions of sub
onditional andof perpendi
ular 
onditionals, whi
h are 
ru
ial for formalizing a qual-itative prin
iple of 
onditional preservation in Se
tion 5. Se
tion 6prepares the axiomatization of the quantitative prin
iple of 
onditionalpreservation in Se
tion 7 by explaining 
onditional stru
tures and 
on-ditional indi�eren
e. Finally, Se
tion 8 shows that both prin
iples are
ompatible. Se
tion 9 
on
ludes with highlighting the main results ofthis paper and pointing out further appli
ations and ongoing work.This paper is an elaboration and extension of ideas presented in(Kern-Isberner, 2001
) and (Kern-Isberner, 2002a). All proofs 
an befound in the Appendix.
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The prin
iple of 
onditional preservation in belief revision 52. Conditionals, epistemi
 states and belief revisionWe start with a �nitely generated propositional language L, with atomsa; b; 
; : : :, and with formulas A;B;C; : : :. For 
on
iseness of notation,we will omit the logi
al and-
onne
tor, writing AB instead of A ^ B,and barring formulas will indi
ate negation, i.e. A means :A. Let 
denote the set of possible worlds over L; 
 will be taken here simply asthe set of all propositional interpretations over L. ! j= A means thatthe propositional formula A 2 L holds in the possible world ! 2 
.By introdu
ing a new binary operator j, we obtain the set (L j L) =f(BjA) j A;B 2 Lg of 
onditionals over L. (BjA) formalizes \if Athen B" and establishes a plausible, probable, possible et
 
onne
tionbetween the ante
edent A and the 
onsequent B. Here, 
onditionalsare supposed not to be nested, that is, ante
edent and 
onsequent of a
onditional will be propositional formulas.Conditionals are usually 
onsidered within ri
her stru
tures su
has epistemi
 states. Besides 
ertain knowledge, epistemi
 states alsoallow the representation of preferen
es, beliefs, assumptions et
 of anintelligent agent. In a purely qualitative setting, preferen
es are as-sumed to be given by a pre-ordering on L (re
exive and transitive,but not symmetri
al, and mostly indu
ed by pre-orderings on worlds).In a (semi-)quantitative setting, also degrees of plausibility, probabil-ity, possibility, ne
essity et
 
an be expressed. Here, most widely usedrepresentations of epistemi
 states are� probability fun
tions (or probability distributions) P : 
 ! [0; 1℄withP!2
 P (!) = 1. The probability of a formula A 2 L is givenby P (A) =P!j=A P (!). Note that, sin
e L is �nitely generated, 
is �nite, too, and we only need additivity instead of �-additivity.Conditionals are interpreted via 
onditional probability, so we haveP (BjA) = P (AB)P (A) for P (A) > 0, and P j= (BjA) [x℄ i� P (BjA) = x(x 2 [0; 1℄).� ordinal 
onditional fun
tions, OCFs, (also 
alled ranking fun
-tions) � : 
 ! N [ f1g with ��1(0) 6= ;, expressing degreesof plausibility of propositional formulas A by spe
ifying degreesof disbeliefs of their negations A (
f. (Spohn, 1988)). More for-mally, we have �(A) := minf�(!) j ! j= Ag, so that �(A _B) = minf�(A); �(B)g. Hen
e, due to ��1(0) 6= ;, at least oneof �(A); �(A) must be 0. A proposition A is believed if �(A) > 0(whi
h implies parti
ularly �(A) = 0). Degrees of plausibility 
analso be assigned to 
onditionals by setting �(BjA) = �(AB)��(A).A 
onditional (BjA) is a

epted in the epistemi
 state represented
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6 G. Kern-Isbernerby �, or � satis�es (BjA), written as � j= (BjA), i� �(AB) <�(AB), i.e. i� AB is more plausible than AB. We 
an also spe
ifya numeri
al degree of plausibility of a 
onditional by de�ning � j=(BjA) [n℄ i� �(AB)+n < �(AB) (n 2 N). Note that � j= (BjA) i�� j= (BjA) [0℄. OCF's are the qualitative 
ounterpart of probabilitydistributions. Their plausibility degrees may be taken as order-of-magnitude abstra
tions of probabilities (
f. (Goldszmidt et al.,1993; Goldszmidt and Pearl, 1996)).� possibility distributions � : 
 ! [0; 1℄ with max!2
 �(!) = 1.Ea
h possibility distribution indu
es a possibility measure on Lvia �(A) := max!j=A �(!). Sin
e the 
orresponden
e between pos-sibility distributions and possibility measures is straightforwardand one-to-one, we will not distinguish between them. A ne
essitymeasure N� 
an also be based on � by setting N�(A) := 1��(A).Possibility measures and ne
essity measures are dual, so it is suÆ-
ient to know only one of them. Furthermore, a possibility degree
an also be assigned to a 
onditional (BjA) by setting �(BjA) =�(AB)�(A) , in full analogy to Bayesian 
onditioning in probability the-ory. Note that we also make use of the produ
t operation in [0; 1℄.That means, that our approa
h is not only based upon 
omparingnumbers, but also takes relations between numbers into a

ount.These numeri
al relationships en
ode important information aboutthe (relative) strength of 
onditionals whi
h proves to be parti
u-larly 
ru
ial for representation and revision tasks. This amounts to
arrying over Spohn's argumentation in (Spohn, 1988) to a possi-bilisti
 framework (see also (Kern-Isberner, 1999b) and (Benferhatet al., 1997)).A 
onditional (BjA) is a

epted in �, � j= (BjA), i� �(AB) >�(AB) (whi
h is equivalent to �(BjA) < 1 and N�(BjA) = 1 ��(BjA) > 0) (
f. (Dubois and Prade, 1994)). So, in a

ordan
ewith intuition, a 
onditional (BjA) is a

epted in the epistemi
state modeled by a possibility distribution, if its 
on�rmation (AB)is 
onsidered to be more possible (or plausible) than its refutation(AB). This de�nition 
an be generalized by saying that � a

epts(BjA) with degree x 2 (0; 1℄, � j= (BjA) [x℄, i� N�(BjA) > x i��(AB) 6 (1� x)�(AB).Possibility distributions are similar to ordinal 
onditional fun
tions(
f. (Benferhat et al., 1992)), but realize degrees of possibility (orplausibility) in a non-dis
rete, 
ompa
t domain. They 
an be takenas fuzzy representations of epistemi
 states (
f. (Kruse et al., 1991;
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The prin
iple of 
onditional preservation in belief revision 7Dubois et al., 1994)), and are 
losely related to belief fun
tions (
f.(Benferhat et al., 2000)).With ea
h epistemi
 state 	 (either qualitative or (semi-)quantita-tive) one 
an asso
iate the set Bel (	) = fA 2 L j 	 j= Ag of thosepropositional beliefs the agent a

epts as most plausible. Bel(	) issupposed to 
onsist of formulas (or to be a formula, respe
tively) of Land hen
e is subje
t to 
lassi
al belief revision theory whi
h investigatesthe 
hanging of propositional beliefs when new information be
omesevident. Here, most important work has been done by Al
hourron,G�ardenfors and Makinson in presenting in (Al
hourr�on et al., 1985) a
atalogue of postulates (the so-
alled AGM-postulates) whi
h a well-behaved revision operator � should obey. The revision of epistemi
states, however, 
annot be redu
ed to propositional revision, for tworeasons: First, two di�erent epistemi
 states 	1;	2 may have equiv-alent belief sets Bel(	1) � Bel(	2). Thus an epistemi
 state is notdes
ribed uniquely by its belief set, and revising 	1 and 	2 by new(propositional) information A may result in di�erent revised belief setsBel(	1 � A) 6� Bel(	2 � A). Se
ond, epistemi
 states may representdi�erent kinds of beliefs, and beliefs on di�erent levels of a

eptan
e.So \information" in the 
ontext of epistemi
 states must be understoodas a mu
h more 
omplex 
on
ept than provided by the propositionalframework. In
orporating new information in an epistemi
 state means,for instan
e, to 
hange degrees of plausibility, or to establish a new
onditional relationship. Nevertheless, the revision of 	 by A 2 Lalso yields a revised belief set Bel(	 � A) � L, and of 
ourse, thisrevision should obey the standards of the AGM theory. So, Darwi
heand Pearl have reformulated the AGM-postulates for belief revision soas to 
omply with the framework of epistemi
 states (
f. (Darwi
he andPearl, 1997)):Suppose 	;	1;	2 to be epistemi
 states and A;A1; A2; B 2 L;(R�1) A is believed in 	 �A: Bel (	 �A) j= A.(R�2) If Bel (	) ^A is satis�able, then Bel (	 � A) � Bel (	) ^A.(R�3) If A is satis�able, then Bel (	 �A) is also satis�able.(R�4) If 	1 = 	2 and A1 � A2, then Bel (	1 � A1) � Bel (	2 � A2).(R�5) Bel (	 � A) ^B implies Bel (	 � (A ^B)).(R�6) If Bel (	 � A) ^ B is satis�able then Bel (	 � (A ^ B)) impliesBel (	 �A) ^B.
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8 G. Kern-IsbernerEpistemi
 states, 
onditionals and revision are related by the so-
alled Ramsey test, a

ording to whi
h a 
onditional (BjA) is a

eptedin an epistemi
 state 	, i� revising 	 by A yields belief in B:	 j= (BjA) i� 	 � A j= B: (1)In this paper, we will 
onsider quanti�ed as well as unquanti�ed(stru
tural) 
onditionals, where the quanti�
ations are taken from theproper domain ([0; 1℄ or N [ f1g, respe
tively). If R� = f(B1jA1) [x1℄;: : : ; (BnjAn) [xn℄g is a set of quanti�ed 
onditionals, thenR = f(B1jA1);: : : ; (BnjAn)g will be its stru
tural 
ounterpart.3. Conditional valuation fun
tionsWhat is 
ommon to probability fun
tions, ordinal 
onditional fun
-tions, and possibility measures is, that they make use of two di�erentoperations to handle both purely propositional information and 
ondi-tionals adequately. Therefore, we will introdu
e the abstra
t notion ofa 
onditional valuation fun
tion to reveal more 
learly and uniformlythe way in whi
h (
onditional) knowledge may be represented andtreated within epistemi
 states. As an adequate stru
ture, we assumean algebra A = (A;6A;�;�; 0A; 1A) of real numbers to be equippedwith two operations, � and �, su
h that� (A;�) is an asso
iative and 
ommutative stru
ture with neutralelement 0A;� (A� f0Ag;�) is a 
ommutative group with neutral element 1A;� the rule of distributivity holds, i.e. x� (y� z) = (x� y)� (x� z)for x; y; z 2 A;� A is totally ordered by 6A with minimum 0A and maximum 1A,su
h that 6A is 
ompatible with � and � in that x 6A y impliesboth x� z 6A y � z and x� z 6A y � z for all x; y; z 2 A.So A is 
lose to be an ordered �eld, ex
ept that the elements of A neednot be invertible with respe
t to �.De�nition 1. (
onditional valuation fun
tion) A 
onditional valuationfun
tion is a (partial) fun
tion V : L [ (L j L) ! A from the sets offormulas and 
onditionals into the algebra A satisfying the following
onditions:1. V jL is total su
h that V (?) = 0A; V (>) = 1A, and for ex
lusiveformulasA;B (i.e. AB � ?), it holds that V (A_B) = V (A)�V (B);
foiks02_gki_ext_final.tex; 4/05/2003; 23:42; p.8



The prin
iple of 
onditional preservation in belief revision 92. for ea
h 
onditional (BjA) 2 (L j L) with V (A) 6= 0A,V (BjA) = V (AB)� V (A)�1where V (A)�1 is the �-inverse element of V (A) in A; for V (A) =0A, V (BjA) is unde�ned.Conditional valuation fun
tions assign degrees of 
ertainty, plau-sibility, possibility et
 to propositional formulas and to 
onditionals.Making use of two operations, they provide a framework for 
onsideringand treating 
onditional knowledge as fundamentally di�erent frompropositional knowledge, a point that is stressed by various authorsand that seems to be indispensable for representing epistemi
 statesadequately (
f. (Darwi
he and Pearl, 1997)). There is, however, a 
loserelationship between propositions and 
onditionals { propositions maybe 
onsidered as 
onditionals of a degenerate form by identifyingA with(Aj>): Indeed, we have V (Aj>) = V (A) � (1V )�1 = V (A). Therefore,
onditionals should be regarded as extending propositional knowledgeby a new dimension.For ea
h 
onditional valuation fun
tion V , we haveV (A) = X!j=A�V (!)so V is determined uniquely by its values on interpretations or onpossible worlds, respe
tively, and we will also write V : 
 ! A. Notethat, due to 1A = V (>) = P!2
�V (!), all V (!) must \sum up"to 1A. In general, for all A 2 A, we have 0A 6A V (A) 6A 1A. Itis easy to see that any 
onditional valuation fun
tion V : L ! A is aplausibility measure, in the sense of Friedman and Halpern, ((Friedmanand Halpern, 1996; Freund, 1998)), that is, it ful�lls V (?) 6A V (A)for all A 2 L, and A j= B implies V (A) 6A V (B).A notion whi
h is well-known from probability theory may be gen-eralized for 
onditional valuation fun
tions: A 
onditional valuationfun
tion V is said to be uniform if V (!) = V (!0) for all worlds !; !0,i.e. if it assigns the same degree of plausibility to ea
h world. Let Vudenote the uniform 
onditional valuation fun
tion.The following examples show that the newly introdu
ed notion ofa 
onditional valuation fun
tion indeed 
overs probability fun
tions,ordinal 
onditional fun
tions and possibility distributions:Example 1. Ea
h probability fun
tion P may be seen as a 
ondi-tional valuation fun
tion P : 
! (R+ ;6;+; �; 0; 1), where R+ denotesthe set of all non-negative real numbers and 6 is its usual order-ing. Conversely, ea
h 
onditional valuation fun
tion V : 
 ! (R+ ;6
foiks02_gki_ext_final.tex; 4/05/2003; 23:42; p.9



10 G. Kern-Isberner;+; �; 0; 1) is a probability fun
tion. The uniform probability fun
tion isPu(!) = 1j
j .Similarly, ea
h ordinal 
onditional fun
tion � is a 
onditional val-uation fun
tion � : 
 ! (Z [ f1g;>;min;+;1; 0), where Z denotesthe set of all integers, and any possibility measure � 
an be regardedas a 
onditional valuation fun
tion � : 
 ! (R+ ;6;max; �; 0; 1). Theuniform ordinal 
onditional and possibility fun
tions are �u(!) = 0 and�u(!) = 1, all ! 2 
, respe
tively.Conditional valuation fun
tions not only provide an abstra
t meansto quantify epistemologi
al attitudes. Their extended ranges allow usto 
al
ulate and 
ompare arbitrary proportions of values atta
hed tosingle worlds. This will prove quite useful to handle 
omplex 
onditionalinterrelationships.By means of a 
onditional valuation fun
tion V : L ! A, we are ableto validate propositional as well as 
onditional beliefs. We may say, forinstan
e, that proposition A is believed in V , V j= A, i� V (A) = 1A,or that the 
onditional (BjA) is valid or a

epted in V , V j= (BjA),i� V (A) 6= 0A and V (AB) <A V (AB), i.e. i� AB is more plausible(probable, possible et
.) than AB. In this way, 
onditional valuationfun
tions are apt to represent epistemi
 states.Note that there is a di�eren
e between taking a proposition A forgranted or to be true, whi
h would be properly expressed by V (A) =1A, and 
onsideringA to be plausible, whi
h amounts to stating V (A) >AV (A). It is only from the se
ond point of view, that propositions,A, 
anbe 
onsistently identi�ed with degenerate 
onditionals, (Aj>). Sin
ebelief revision is mostly 
on
erned with revising plausible beliefs bynew plausible beliefs, 
onditionals o�er a most adequate framework tostudy revision methods in, and 
onditional valuation fun
tions allowus to distinguish between truth and plausibility.4. A dynami
 view on 
onditionalsAs it is well-known, a 
onditional (BjA) is an obje
t of a three-valuednature, partitioning the set of worlds 
 in three parts: those worldssatisfying AB and thus verifying the 
onditional, those worlds satisfy-ing AB, thus falsifying the 
onditional, and those worlds not ful�llingthe premise A and so whi
h the 
onditional may not be applied to atall. The following representation of (BjA) as a generalized indi
ator
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The prin
iple of 
onditional preservation in belief revision 11fun
tion goes ba
k to de Finetti (DeFinetti, 1974):(BjA)(!) = 8<: 1 : ! j= AB0 : ! j= ABu : ! j= A (2)where u stands for unknown or indeterminate. Two 
onditionals are
onsidered equivalent i� the 
orresponding indi
ator fun
tions are iden-ti
al, i.e. (BjA) � (DjC) i� A � C and AB � CD (see e.g. (Calabrese,1991)). Usually, equation (2) is applied in a stati
 way, namely, to 
he
kif possible worlds verify, or falsify a 
onditional, or are simply neutralwith respe
t to it. In the 
ontext of indu
tive knowledge representationor belief revision, however, when 
onditionals are to be learned, it alsoprovides a dynami
 view on how to in
orporate 
onditional dependen-
ies adequately in a belief state (whi
h might be the uniform one): The
onditional (BjA) distinguishes 
learly between verifying, falsifying andneutral worlds, but it does not distinguish between worlds within oneand the same of these partitioning sets. So, in order to establish (BjA),if demanded with a suitable degree of 
ertainty, the plausibilities orprobabilities of worlds have to be shifted uniformly, depending on towhi
h of the partitioning sets the worlds belong. In this sense, 
on-ditionals have e�e
ts on possible worlds, taking an a
tive role (likeagents) in the revision (or representation) pro
ess.To make things more pre
ise, we de�ne the verifying set (BjA)+ :=Mod (AB), and the falsifying set (BjA)� := Mod (AB) of a 
onditional(BjA).Mod (A) is 
alled the neutral set of (BjA). Ea
h of these sets maybe empty. If (BjA)+ = ;, (BjA) is 
alled 
ontradi
tory , if (BjA)� = ;,(BjA) is 
alled tautologi
al , and if Mod (A) = ;, i.e. A is tautologi
al,(BjA) is 
alled a fa
t . Verifying and falsifying set 
learly identify a
onditional up to equivalen
e. Note that, although (BjA) and (BjA)indu
e the same partitioning on 
, their verifying and falsifying setsare di�erent, in that (BjA)+ = (BjA)� and (BjA)� = (BjA)+.Example 2. (AjA) is a 
ontradi
tory 
onditional, (AjA) is tautologi-
al and (Aj>) is a fa
t.As usual, propositional formulas A 2 L may be identi�ed withfa
tual 
onditionals (Aj>). Hen
e, the results to be presented 
an berelated to the theory of propositional revision, as will be done in Se
tion5. It should be emphasized, however, that in our framework, (Aj>)should be understood as \A is plausible" or \A is believed", whereas Aa
tually means \A is true". Hen
e a 
lear distin
tion between proposi-tions as logi
al statements and propositions as epistemi
 statements ispossible, and is indeed respe
ted in our framework (see (Kern-Isberner,2001b)).
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12 G. Kern-IsbernerNext, we introdu
e the notion of a sub
onditional:De�nition 2. (sub
onditional, v) A 
onditional (DjC) is 
alled a sub-
onditional of (BjA), (DjC) v (BjA), i� (DjC)+ � (BjA)+ and (DjC)�� (BjA)�.The v-relation may be expressed using the standard ordering 6between propositional formulas: A 6 B i� A j= B, i.e. i� Mod (A) �Mod (B):Lemma 1. Let (BjA); (DjC) 2 (L j L). Then (DjC) is a sub
ondi-tional of (BjA), (DjC) v (BjA), i� CD 6 AB and CD 6 AB; inparti
ular, if (DjC) v (BjA) then C 6 A.Thus (DjC) v (BjA) if the e�e
t of the former 
onditional on worldsis in line with the latter one, but (DjC) possibly applies to fewer worlds.Furthermore, the equivalen
e relation for 
onditionals 
an also be takenas to be indu
ed by v:Lemma 2. Two 
onditionals (BjA) and (DjC) are equivalent, (BjA) �(DjC), i� (BjA) v (DjC) and (DjC) v (BjA).We will now introdu
e another relation between 
onditionals that isquite opposite to the sub
onditional relation and so des
ribes anotherextreme of possible 
onditional intera
tion:De�nition 3. (perpendi
ular 
onditionals, j= ) Let (BjA); (DjC) 2(L j L) be two 
onditionals. (DjC) is 
alled perpendi
ular to (BjA),(DjC) j= (BjA), i� either Mod (C) � (BjA)+, or Mod (C) � (BjA)�,or Mod (C) � Mod (A), i.e. i� either C 6 AB, or C 6 AB, or C 6 A.The perpendi
ularity relation symbolizes a kind of irrelevan
e ofone 
onditional for another one. We have (DjC) j= (BjA) if Mod (C),i.e. the range of appli
ation of the 
onditional (DjC), is 
ompletely
ontained in exa
tly one of the sets (BjA)+; (BjA)� or Mod (A). So forall worlds whi
h (DjC) may be applied to, (BjA) has the same e�e
tand yields no further partitioning. Note, that j= is not a symmetri
relation; (DjC) j= (BjA) rather expresses that (DjC) is not a�e
ted by(BjA), or, that (BjA) is irrelevant for (DjC).Example 3. Suppose a; b; 
 are atoms of the language L. Sub
ondi-tionals of (bja) are typi
ally obtained by strengthening the ante
edent:(bja
) and (bja
) are both sub
onditionals of (bja), (bja
); (bja
) v(bja). As an example for perpendi
ularity, 
onsider the 
onditionals(
jab); (
jab) and (
ja) whi
h are all perpendi
ular to (bja): (
jab); (
jab);(
ja) j= (bja).
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The prin
iple of 
onditional preservation in belief revision 13It should be remarked that neither v nor j= provide new insightsfor (
at) propositions, when identifying propositions with fa
tual 
on-ditionals. It is easily seen that (Bj>) v (Aj>) if and only if A andB are logi
ally equivalent, and (Bj>) j= (Aj>) 
an only hold if A istautologi
al or 
ontradi
tory. Both relations need the ri
her epistemi
framework of 
onditionals to show their usefulness. For a more thoroughdis
ussion of the relations v and j= , see (Kern-Isberner, 2001
).5. A prin
iple of 
onditional preservation in a qualitativeframeworkIn (Darwi
he and Pearl, 1997), Darwi
he and Pearl dis
ussed the prob-lem of preserving 
onditional beliefs under (propositional) belief revi-sion in an AGM-environment. They emphasized that 
onditional beliefsare di�erent in nature from propositional beliefs, and that the mini-mal 
hange paradigm whi
h is 
ru
ial for the AGM-theory (Al
hourr�onet al., 1985) should not be blindly applied when 
onsidering 
ondition-als. They reformulated the AGM-postulates in the ri
her framework ofepistemi
 states (
f. Se
tion 2) and extended this approa
h by phrasingfour new postulates expli
itly dealing with the a

eptan
e of 
ondi-tionals in epistemi
 states, in the following denoted as DP-postulates:DP-postulates for 
onditional preservation:(C1) If C j= B then 	 j= (D j C) i� 	 � B j= (D j C).(C2) If C j= B then 	 j= (D j C) i� 	 � B j= (D j C).(C3) If 	 j= (B j A) then 	 � B j= (B j A).(C4) If 	 �B j= (B j A) then 	 j= (B j A).The DP-postulates were supported by plausible arguments and manyexamples (for a further dis
ussion, see the original paper (Darwi
heand Pearl, 1997)). They are 
ru
ial for handling iterated revisionsvia the Ramsey test (1). For instan
e, by applying (1), (C2) 
an bereformulated to guide iterated revisions, as follows:If C j= B then 	 � C j= D i� 	 � B � C j= D.The DP-postulates are not indisputable. An obje
tion often madeis the following: Let C = p and B = pq (p; q atoms), su
h thatC j= B. Then (C2) yields 	 � p j= D i� 	 � pq � p j= D, whi
himplies Bel (	 � p) = Bel (	 � pq � p) { the information 
onveyed bylearning (p and) q has apparently been extinguished when p be
omes
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14 G. Kern-Isbernerevident. As atoms are assumed to be independent, this seems to be
ounterintuitive. A
tually, this example does not really 
ast doubt onthe DP-postulates, rather it proves the inappropriateness of a stri
tlypropositional framework for belief revision. In su
h a framework, it isimpossible to distinguish between revising by p and q, on the one hand,and p ^ q � pq, on the other hand, sin
e sets of formulas are identi-�ed with the 
onjun
tion of the 
orresponding formulas. pq, however,suggests an intensional 
onne
tion between p and q, whereas fp; qgdoes not. Furthermore, (C2) does not demand the equivalen
e of theinvolved epistemi
 states 	 � p and 	 � pq � p, but only the identityof the 
orresponding belief sets (
f. Se
tion 2). Again, this distin
tiongets lost when fo
using on propositional beliefs.In (Kern-Isberner, 1999a), we 
onsidered 
onditionals under revi-sion in an even broader framework, setting up postulates for revisingepistemi
 states by 
onditional beliefs:Postulates for 
onditional revision:Suppose 	 is an epistemi
 state and (BjA); (DjC) are 
onditionals.Let 	 � (BjA) denote the result of revising 	 by a non-
ontradi
tory
onditional (BjA).(CR0) 	 � (BjA) is an epistemi
 state.(CR1) 	 � (BjA) j= (BjA) (su

ess).(CR2) 	 � (BjA) = 	 i� 	 j= (BjA) (stability).(CR3) 	 � B := 	 � (Bj>) indu
es a propositional AGM-revisionoperator.(CR4) 	 � (BjA) = 	 � (DjC) whenever (BjA) � (DjC).(CR5) If (DjC) j= (BjA) then 	 j= (DjC) i� 	 � (BjA) j= (DjC).(CR6) If (DjC) v (BjA) and 	 j= (DjC) then 	 � (BjA) j= (DjC).(CR7) If (DjC) v (BjA) and 	 � (BjA) j= (DjC) then 	 j= (DjC).The postulates (CR0)-(CR2) and (CR4) realize basi
 ideas of AGM-revision in this more general framework, and (CR3) links 
onditionalbelief revision to propositional AGM-revision. (CR5)-(CR7) are theproper axioms to formalize a qualitative prin
iple of 
onditional preser-vation. They realize the idea of preserving 
onditional beliefs by use ofthe two relations v and j= , whi
h re
e
t possible intera
tions be-tween 
onditionals. In detail, (CR5) 
laims that revising by a 
on-ditional should preserve all 
onditionals to whi
h that 
onditional is
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The prin
iple of 
onditional preservation in belief revision 15irrelevant, in the sense des
ribed by the relation j= . The rationalebehind this postulate is the following: The validity of a 
onditional(BjA) in an epistemi
 state 	 depends on the relation between (some)worlds in Mod (AB) and (some) worlds in Mod (AB). So in
orporating(BjA) into 	 may require a shift between Mod (AB) on one side andMod (AB) on the other side, but should leave inta
t any relations be-tween worlds withinMod (AB), Mod (AB), or Mod (A). These relationsmay be 
aptured by 
onditionals (DjC) not a�e
ted by (BjA), that is,by 
onditionals (DjC) j= (BjA).(CR6) states that 
onditional revision should bring about no 
hangefor 
onditionals that are already in line with the revising 
onditional,and (CR7) guarantees that no 
onditional 
hange 
ontrary to the re-vising 
onditional is 
aused by 
onditional revision.In parti
ular, by 
onsidering a propositional formula as a degener-ated 
onditional with tautologi
al ante
edent, ea
h 
onditional revisionoperator indu
es a propositional revision operator, as des
ribed by(CR3). For this propositional revision operator, the postulates (CR0)-(CR2) and (CR4)-(CR6) above are trivially ful�lled within an AGM-framework. Postulate (CR7) then reads(CR7)prop If 	 � A j= A, then 	 j= AAn AGM-revision operator, obeying the postulate of su

ess and yield-ing a 
onsistent belief state, would never ful�ll the pre
ondition 	�A j=A, as long as the revising proposition A is not in
onsistent. Hen
e(CR7) is va
uous in an AGM-framework. If we only presuppose that� satis�es the AGM-postulate of su

ess, then 	 � A j= A implies thein
onsisten
y of 	 �A, although A is assumed to be non-
ontradi
tory.A reasonable explanation for this would be that 	 itself is in
onsistent,in whi
h 
ase it would entail anything, parti
ularly 	 j= A would beful�lled. The handling of an in
onsistent prior belief state is one ofthe 
ru
ial di�eren
es between revision and update, as 
hara
terized in(Katsuno and Mendelzon, 1991a) by the so-
alled KM-postulates. AnAGM-revision demands 	 � A to be 
onsistent, regardless if the priorstate 	 is in
onsistent or not, whereas update does not remedy thein
onsisten
e of a prior state, even if the new information is 
onsistent.So (CR7) would be trivially ful�lled for KM-updates. If we also give upthe postulate of su

ess, then (CR7) des
ribes a reasonable behavior ofa revision pro
ess in an extreme 
ase: A revision should not establishthe negation of the revising proposition if this negated proposition isnot already implied by the prior belief state.The following theorem shows that the postulates (CR0)-(CR7) 
overthe DP-postulates (C1)-(C4):
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16 G. Kern-IsbernerTheorem 1. Suppose � is a 
onditional revision operator obeying thepostulates (CR0)-(CR7). Then for the indu
ed propositional revisionoperator, postulates (C1)-(C4) are satis�ed, too.Therefore, the idea of 
onditional preservation inherent to the postu-lates (C1)-(C4) of Darwi
he and Pearl ((Darwi
he and Pearl, 1997)) isindeed 
aptured by our postulates. While (CR0) - (CR4) only serve asbasi
, unspe
i�
 postulates, the last three postulates (CR5)-(CR7) 
anbe taken as properly axiomatizing a prin
iple of 
onditional preserva-tion in a qualitative framework. Moreover, our framework provides fur-ther, formal justi�
ations for the DP-postulates by making intera
tionsof 
onditionals more pre
ise.6. Conditional stru
tures and 
onditional indi�eren
eThe notion of 
onditional stru
tures has been presented and exempli-�ed in several papers (see, e.g., (Kern-Isberner, 2001a; Kern-Isberner,2000; Kern-Isberner, 2001d)). Sin
e they are basi
 to the results to beobtained in this paper, we will summarize the main ideas and de�nitionshere. The 
on
ept of 
onditional indi�eren
e has also been a majortopi
 in (Kern-Isberner, 2001a); in the present paper, however, it isdeveloped in the general framework of 
onditional valuation fun
tions.In Se
tion 4, we presented a dynami
 approa
h to 
onditionals,fo
using on the e�e
ts of only one 
onditional in the revision pro-
ess. When 
onsidering sets R = f(B1jA1); : : : ; (BnjAn)g � (L j L)of 
onditionals, the e�e
ts ea
h of these 
onditionals exerts on worldsmust be 
learly identi�ed. To this end, we repla
e the numbers 0and 1 in (2) by formal symbols, one pair of symbols a+i ;a�i for ea
h
onditional (BijAi) in R; a+i symbolizes a positive e�e
t for worldsverifying the respe
tive 
onditional, whereas a�i symbolizes a negativee�e
t for worlds falsifying it. Furthermore, in order to make these
onditional e�e
ts 
omputable, we make use of a group stru
ture, in-trodu
ing the free abelian group FR = ha+1 ;a�1 ; : : : ;a+n ;a�n i with gen-erators a+1 ;a�1 ; : : : ;a+n ;a�n , i.e. FR 
onsists of all elements of the form(a+1 )r1(a�1 )s1 : : : (a+n )rn(a�n )sn with integers ri; si 2 Z (the ring of in-tegers). Ea
h element of FR 
an be identi�ed by its exponents, sothat FR is isomorphi
 to Z2n (
f. (Lyndon and S
hupp, 1977; Fineand Rosenberger, 1999)). The 
ommutativity of FR 
orresponds to asimultaneous appli
ation of the 
onditionals in R, without assumingany order of appli
ation. Then the fun
tions �i = �(BijAi), 1 6 i 6 n,
foiks02_gki_ext_final.tex; 4/05/2003; 23:42; p.16



The prin
iple of 
onditional preservation in belief revision 17de�ned by �i(!) = 8<: a+i if (BijAi)(!) = 1a�i if (BijAi)(!) = 01 if (BijAi)(!) = u (3)represent the e�e
ts ea
h 
onditional (BijAi) has on possible worlds !.Note that the neutral element 1 of FR is assigned to possible worlds inthe neutral sets of the 
onditionals.The fun
tion �R = Q16i6n �i : 
! FR, given by�R(!) = Y16i6n�i(!) = Y16i6n!j=AiBi a+i Y16i6n!j=AiBi a�i (4)des
ribes the all-over e�e
t of R on !. �R(!) is 
alled (a representationof) the 
onditional stru
ture of ! with respe
t to R. For ea
h world !,�R(!) 
ontains at most one of ea
h a+i or a�i , but never both of thembe
ause ea
h 
onditional applies to ! in a well-de�ned way. The groupstru
ture on FR allows us to form produ
ts and in this way, to makeeven 
omplex intera
tions between the 
onditionals in R transparent.The following simple example illustrates the notion of 
onditionalstru
tures and shows how to 
al
ulate in this framework:Example 4. Let R = f(
ja); (
jb)g, where a; b; 
 are atoms, and letFR = ha+1 ;a�1 ;a+2 ;a�2 i. We asso
iate a�1 with the �rst 
onditional,(
ja), and a�2 with the se
ond one, (
jb). For instan
e, the world ab
veri�es both 
onditionals, so we have �R(ab
) = a+1 a+2 . The followingtable shows the values of the fun
tion �R on arbitrary worlds ! 2 
:! �R(!) ! �R(!) ! �R(!) ! �R(!)ab
 a+1 a+2 ab
 a+2 ab
 a�1 a�2 ab
 a�2ab
 a+1 ab
 1 ab
 a�1 ab
 1We �nd that �R(ab
) � �R(ab
) � �R(ab
)�1 � �R(ab
)�1 = a+1 a+2 � 1 �(a+1 )�1 � (a+2 )�1 = 1, whi
h may be interpreted by saying that the setsof worlds fab
; ab
g and fab
; ab
g show identi
al 
onditional e�e
ts {they are balan
ed with respe
t to the e�e
ts of the 
onditionals in R.Although ab
; ab
; ab
; ab
 all have di�erent 
onditional stru
tures, therelationships between them with respe
t to R are 
learly revealed.To 
omply with the group stru
ture of FR, we also impose a mul-tipli
ation on 
, introdu
ing the free abelian group b
 := h! j ! 2 
igenerated by all ! 2 
, and 
onsisting of all words b! = !1r1 : : : !mrm
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18 G. Kern-Isbernerwith !1; : : : ; !m 2 
, and integers r1; : : : rm. Now �R may be extendedto b
 in a straightforward manner by setting�R(!1r1 : : : !mrm) = �R(!1)r1 : : : �R(!m)rmY16i6n(a+i )Pk:�i(!k)=a+i rk � Y16i6n(a�i )Pk:�i(!k)=a�i rk (5)yielding a homomorphism of groups �R : b
! FR. As for the elementsof FR, we will often use fra
tional representations for the elements ofb
, that is, for instan
e, we will write !1!2 instead of !1!�12 .Having the same 
onditional stru
ture de�nes an equivalen
e rela-tion �R on b
:b!1 �R b!2 i� �R(b!1) = �R(b!2) i� �R(b!1b!�12 ) = 1The equivalen
e 
lasses are in one-to-one 
orresponden
e to the ele-ments of the quotient group b
=ker �R = fb! � (ker �R) j b! 2 b
g,where ker �R := fb! 2 b
 j �R(b!) = 1gdenotes the kernel of the homomorphism �R. Therefore, the kernelplays an important role in identifying 
onditional stru
tures. It 
ontainsexa
tly all group elements b! 2 b
 with a balan
ed 
onditional stru
ture,that means, where all e�e
ts of 
onditionals in R on worlds o

urringin b! are 
ompletely 
an
elled. For instan
e, in Example 4 above, theelement ab
 � ab
ab
 � ab
 is an element of the kernel of �R.Besides the 
onditional information in R (or R�, if one is 
on
ernedwith quanti�ed 
onditionals), one usually has to take normalization
onstraints su
h as P (>) = 1 for probability distributions P , or �(>) =0 for ordinal 
onditional fun
tions �, or �(>) = 1 for possibility dis-tributions �, into regard. This is done by fo
using on the subgroupb
0 = ker �(>j>) of b
. Sin
e (>j>)(!) = 1 for all ! 2 
, we have�(>j>)(!r11 : : : !rmm ) = (a+)r1 : : : (a+)rm = (a+)Pmj=1 rjwith some symbol (a+) representing the positive e�e
t of (>j>) onpossible worlds. Hen
eb
0 = fb! = !1r1 � : : : � !mrm 2 b
 j mXj=1 rj = 0g (6)Two elements b!1 = !r11 : : : !rmm ; b!2 = �s11 : : : �spp 2 b
 are equivalentmodulo b
0,b!1 �> b!2 i� b!1 b
0 = b!2 b
0 i� X16j6m rj = X16k6p sk
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The prin
iple of 
onditional preservation in belief revision 19This means that b!1 �> b!2 i� they both are a (
an
elled) produ
t ofthe same number of generators !, ea
h generator being 
ounted withits 
orresponding exponent. Letker0 �R := ker �R \ b
0be the part of ker �R whi
h is in
luded in b
0.Example 5. In Example 4, we have ab
�ab
 �> ab
�ab
, so ab
 � ab
ab
 � ab
 isnot only an element of ker �R, but also of ker0 �R. Note that, althoughalso �R( ab
ab
 � ab
 ) = 1, ab
ab
 � ab
 62 ker0 �R be
ause �(>j>)(ab
) =(a+) 6= (a+)2 = �(>j>)(ab
 � ab
)Finally, we will show how to des
ribe the relations v and j= be-tween 
onditionals, introdu
ed in De�nitions 2 and 3, respe
tively, by
onsidering the kernels of the 
orresponding �-homomorphisms. As a
onvenient notation, for ea
h proposition A 2 L, we de�nebA := fb! = !r11 : : : !rmm 2 b
 j !i j= A for all i; 1 6 i 6 mgProposition 1. Let (BjA); (DjC) 2 (L j L) be 
onditionals.1. (DjC) is either a sub
onditional of (BjA) or of (BjA) i� C 6 Aand ker �(DjC) \ bC = ker �(BjA) \ bC.2. (DjC) j= (BjA) i� bC \ b
0 � ker �(BjA).To study 
onditional intera
tions, we now fo
us on the behaviorof 
onditional valuation fun
tions V : L ! A with respe
t to the\multipli
ation" � in A (see De�nition 1). Ea
h su
h fun
tion may beextended to a homomorphism V : b
+ ! (A;�) by setting V (!1r1 �: : : �!mrm) = V (!1)r1 � : : :� V (!m)rm , where b
+ is the subgroup of b
generated by the set 
+ := f! 2 
 j V (!) 6= 0Ag. This allows us to an-alyze numeri
al relationships holding between di�erent V (!). Thereby,it will be possible to elaborate the 
onditionals whose stru
tures Vfollows, that means, to determine sets of 
onditionals R � (L j L) withrespe
t to whi
h V is indi�erent :De�nition 4. (indi�eren
e wrt R) Suppose V : L ! A is a 
ondi-tional valuation fun
tion and R � (L j L) is a set of 
onditionals su
hthat V (A) 6= 0A for all (BjA) 2 R.V is indi�erent with respe
t to R i� the following two 
onditionshold:
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20 G. Kern-Isberner(i) If V (!) = 0A then there is (BjA) 2 R su
h that �(BjA)(!) 6= 1 andV (!0) = 0A for all !0 with �(BjA)(!0) = �(BjA)(!).(ii) V (b!1) = V (b!2) whenever �R(b!1) = �R(b!2) for b!1 �> b!2 2 b
+.If V is indi�erent with respe
t toR � (L j L), then it does not distin-guish between di�erent elements b!1; b!2 whi
h are equivalent modulo b
0and have the same 
onditional stru
ture with respe
t to R. Conversely,for ea
h b! 2 b
0, any deviation V (b!) 6= 1A 
an be explained by the
onditionals in R a
ting on b! in a non-balan
ed way. Condition (i)in De�nition 4 is ne
essary to deal with worlds ! =2 
+. It says that0A-values in an indi�erent valuation fun
tion V are established only ina

ording with the partitionings indu
ed by the 
onditionals in R.A �rst simple, but important property of R-indi�erent valuationfun
tions V is that �R-equivalent worlds are mapped onto the samevalues under V :Lemma 3. If the 
onditional valuation fun
tion V is indi�erent withrespe
t to R, then �R(!1) = �R(!2) implies V (!1) = V (!2) for allworlds !1; !2 2 
.The following proposition rephrases 
onditional indi�eren
e by es-tablishing a relationship between the kernels of �R and V :Proposition 2. Let R � (L j L) be a set of 
onditionals, and let V :L ! A be a 
onditional valuation fun
tion with V (A) 6= 0A for all(BjA) 2 R.V is indi�erent with respe
t to R i� 
ondition (i) of De�nition 4holds, and ker0 �R \ b
+ � ker0 V .The next theorem provides a 
lear 
hara
terization of probabilityfun
tions, ordinal 
onditional fun
tions and possibility distributionswith indi�eren
e properties:Theorem 2. Let R = f(B1jA1); : : : ; (BnjAn)g � (L j L) be a (�nite)set of 
onditionals.1. A probability fun
tion P is indi�erent with respe
t toR i� P (Ai) 6=0 for all i; 1 6 i 6 n, and there are non-negative real numbers �0;�+1 ; ��1 ; : : : ; �+n ; ��n 2 R+ ; �0 > 0 su
h that, for all ! 2 
,P (!) = �0 Y16i6n!j=AiBi �+i Y16i6n!j=AiBi ��i (7)
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The prin
iple of 
onditional preservation in belief revision 212. An ordinal 
onditional fun
tion � is indi�erent with respe
t to Ri� �(Ai) 6= 1 for all i; 1 6 i 6 n, and there are rational numbers�0; �+i ; ��i 2 Q , 1 6 i 6 n, su
h that, for all ! 2 
,�(!) = �0 + X16i6n!j=AiBi �+i + X16i6n!j=AiBi ��i (8)3. A possibility distribution � is indi�erent with respe
t to R i� thereare non-negative real numbers �0; �+1 ; ��1 ; : : : ; �+n ; ��n 2 R+ ; �0 >0; su
h that for all ! 2 
,�(!) = �0 Y16i6n!j=AiBi �+i Y16i6n!j=AiBi ��i (9)Note that 
onditional indi�eren
e is a stru
tural notion, withoutmaking any referen
e to degrees of 
ertainty whi
h may be assignedto the 
onditionals in R. Theorem 2, however, also provides simples
hemata how to obtain indi�erent probabilisti
, OCF and possibilis-ti
 representations of quanti�ed 
onditionals: One has to simply setup fun
tions of the 
orresponding type a

ording to (7), (8) or (9),respe
tively, and to determine the 
onstants �0; �+1 ; ��1 ; : : : ; �+n ; ��n or�0; �+i ; ��i , respe
tively, appropriately so as to ensure that all ne
essarynumeri
al relationships are established.De�nition 5. Conditional valuation fun
tions whi
h represent a setR(�) of (quanti�ed) 
onditionals and are indi�erent to it, are 
alled
-representations of R(�).For further details and examples, 
f. (Kern-Isberner, 1998; Kern-Isberner,2001a; Kern-Isberner, 2001e); see also Se
tion 7.Theorem 2 also shows, that most important and well-behaved indu
-tive representation methods realize 
onditional indi�eren
e: Namely,the prin
iple of maximum entropy in probabilisti
s (Paris, 1994), system-Z� in the OCF-framework (Goldszmidt et al., 1993), and the LCD-fun
tions of Benferhat, SaÆotti and Smets (Benferhat et al., 2000)all give rise to 
onditionally indi�erent fun
tions (
f. (Kern-Isberner,1998; Kern-Isberner, 2001a; Kern-Isberner, 2001d)). The system-Z�approa
h and that of LCD-fun
tions 
an easily be derived by postulat-ing 
onditional indi�eren
e and further plausibility assumptions (for amore detailed dis
ussion, 
f. (Kern-Isberner, 2001d)). Indeed, the 
ru-
ial meaning of all these formalisms for adequate indu
tive knowledgerepresentation is mainly due to this indi�eren
e property. It shouldbe emphasized, that, to study intera
tions of 
onditionals, 
onditionals
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22 G. Kern-Isbernerhere are not redu
ed to material impli
ations, as for system-Z�, orfor LCD-fun
tions. Instead, the full dynami
, non-
lassi
al power of
onditionals is preserved, and highly 
omplex 
onditional intera
tions
an be dealt with.We 
lose this se
tion by establishing an interesting 
onne
tion be-tween 
onditional indi�eren
e and 
onditional independen
e, one of themost important means to support probabilisti
 reasoning in generaland the 
ru
ial glue to build up Bayesian networks in parti
ular (
f.e.g. (Pearl, 1988; Cowell et al., 1999)). The next proposition shows that
onditional indi�eren
e is a more fundamental notion than 
onditionalindependen
e, re
e
ting more �ne-grained stru
tures.Proposition 3. LetX;Y;Z be disjoint subsets of a set of propositionalvariables V, and let P be a probability distribution over V. Let R bethe following set of 
onditionals:R = f(xjz); (yjz) j x;y; z instantiations of variables in X;Y;Z; resp.gIf P is indi�erent with respe
t to R, then X and Y are 
onditionallyindependent in P , given Z.Note that the 
onverse of Proposition 3 does not hold. It is easyto build up a probability distribution over, e.g., four variables x; y; z; wsu
h that x and y are 
onditionally independent given z, but P (xyzw) 6=P (xyzw). However, for the 
onditional stru
ture with respe
t to therespe
tiveR in this 
ase, w does not matter, so �R(xyzw) = �R(xyzw).Hen
e P 
an not be indi�erent with respe
t to R.Therefore, the theory of 
onditional stru
tures and 
onditional in-di�eren
e presented so far proves to be of fundamental importan
eboth for theoreti
al and pra
ti
al issues in indu
tive knowledge repre-sentation. In the next se
tion, we will show that it also provides anappropriate framework for revising quanti�ed beliefs.7. A prin
iple of 
onditional preservation in a(semi-)quantitative frameworkWhen we revise an epistemi
 state 	 { whi
h is supposed to be repre-sented by a 
onditional valuation fun
tion V { by a set of (quanti�ed)
onditionals R(�) to obtain a posterior epistemi
 state 	�R(�) � V � =V � R(�), 
onditional stru
tures and/or intera
tions must be observedwith respe
t to the prior state 	 as well as to the new 
onditionalsin R. The theory of 
onditional stru
tures 
an only be applied withrespe
t to R, sin
e we usually do not know anything about the history
foiks02_gki_ext_final.tex; 4/05/2003; 23:42; p.22



The prin
iple of 
onditional preservation in belief revision 23of 	, or V , respe
tively. Conditional relationships within 	, however,are realized via the operation � on V , so we base our de�nition of aprin
iple of 
onditional preservation on an indi�eren
e property of therelative 
hange fun
tion V � � V �1, in the following written as V �=V .Taking into regard prior knowledge V and the worlds ! with V (!) = 0Aappropriately, this gives rise to the following de�nitions:De�nition 6. (V -
onsisten
y, indi�eren
e wrt R and V ) Let V : L !A be a 
onditional valuation fun
tion, and let R(�) be a �nite set of(quanti�ed) 
onditionals. Let V � = V �R(�) denote the result of revisingV by R(�); suppose that V �(A) 6= 0A for all (BjA) 2 R.1. V � is 
alled V -
onsistent i� V (!) = 0A implies V �(!) = 0A; V � is
alled stri
tly V -
onsistent i� V (!) = 0A , V �(!) = 0A;2. If V � is V -
onsistent, then the relative 
hange fun
tion (V �=V ) :
! A is de�ned by(V �=V )(!) = ( V �(!)� V (!)�1 if V (!) 6= 0A0A if V (!) = 0A3. V � is indi�erent with respe
t to R and V i� V � is V -
onsistent andthe following two 
onditions hold:(i) If V �(!) = 0A then V (!) = 0A, or there is (BjA) 2 R su
hthat �(BjA)(!) 6= 1 and V �(!0) = 0A for all !0 with �(BjA)(!0) =�(BjA)(!).(ii) (V �=V )(b!1) = (V �=V )(b!2) whenever �R(b!1) = �R(b!2) andb!1 �> b!2 for b!1; b!2 2 b
�+, where b
�+ = h! 2 
 j V �(!) 6= 0Ai.Although the relative 
hange fun
tion (V �=V ) is not a 
onditionalvaluation fun
tion, it may nevertheless be extended to a homomor-phism (V �=V ) : b
�+ ! (A;�). Therefore, De�nition 6 is an appropriategeneralization of De�nition 4 for revisions. Indeed, it 
an easily be ver-i�ed that 
onditional valuation fun
tions are indi�erent with respe
t toR i� they are indi�erent with respe
t to R and the uniform 
onditionalvaluation fun
tion Vu.Note that also for this extended notion of indi�eren
e, the quanti�-
ations of 
onditionals do not matter. For the revision pro
ess, however,quanti�
ations if present have to be taken into a

ount. So we use bothsymbols, R and R�, when 
onsidering indi�erent revisions, and R willalways denote the set of unquanti�ed 
onditionals o

urring in R�.Whereas in the probabilisti
 framework, quanti�
ations of 
ondition-als are essential, they may be omitted in the ordinal or possibilisti
framework.
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24 G. Kern-IsbernerWe are now ready to formalize appropriately a prin
iple of 
ondi-tional preservation for belief revision in a (semi-)quantitative frame-work:De�nition 7. (prin
iple of 
onditional preservation wrt R and V ) Arevision V � = V �R(�) of a 
onditional valuation fun
tion by a set R(�)of (quanti�ed) 
onditionals is said to satisfy the prin
iple of 
onditionalpreservation with respe
t to R(�) and V i� V � is indi�erent with respe
tto R and V .Thus in a numeri
al framework, the prin
iple of 
onditional preser-vation is realized as an indi�eren
e property.From Theorem 2, we immediately obtain a 
on
ise 
hara
terizationof revisions preserving 
onditional beliefs, whi
h may also serve inpra
ti
e as a s
hema to set up appropriate revision formalisms:Theorem 3. Let R(�) = f(B1jA1)([x1℄); : : : ; (BnjAn)([xn℄)g � (L j L)be a (�nite) set of (quanti�ed) 
onditionals. Let P be a probabilitydistribution, � an ordinal 
onditional fun
tion, and � a possibilitydistribution, all serving as prior knowledge.1. A probability distribution P � = P � R� satis�es the prin
iple of
onditional preservation with respe
t to R and P if and only ifP �(Ai) 6= 0, and there are real numbers �0; �+1 ; ��1 ; : : : ; �+n ; ��nwith �0 > 0 and �+1 ; ��1 ; : : : ; �+n ; ��n satisfying �+i ; ��i > 0, �+i = 0i� xi = 0, ��i = 0 i� xi = 1, 1 6 i 6 n, su
h that, for all ! 2 
,P �(!) = �0P (!) Y16i6n!j=AiBi �+i Y16i6n!j=AiBi ��i (10)2. A revision �� = ��R(�) satis�es the prin
iple of 
onditional preser-vation with respe
t to R and � i� ��(Ai) 6=1 for all i; 1 6 i 6 n,and there are numbers �0; �+i ; ��i 2 Q ; 1 6 i 6 n, su
h that, for all! 2 
, ��(!) = �0 + �(!) + X16i6n!j=AiBi �+i + X16i6n!j=AiBi ��i (11)3. A revision �� = ��R(�) satis�es the prin
iple of 
onditional preser-vation with respe
t to R and � i� ��(Ai) 6= 0, and there arenon-negative real numbers �0; �+1 ; ��1 ; : : : ; �+n ; ��n 2 R+ with �0 >0 su
h that for all ! 2 
,��(!) = �0�(!) Y16i6n!j=AiBi �+i Y16i6n!j=AiBi ��i (12)
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The prin
iple of 
onditional preservation in belief revision 25Note that the prin
iple of 
onditional preservation is based only onobserving 
onditional stru
tures, without using any a

eptan
e 
ondi-tions or taking quanti�
ations of 
onditionals into a

ount. It is exa
tlythis separation of numeri
al from stru
tural aspe
ts that results in awide appli
ability of this prin
iple within a quantitative framework.Revisions of epistemi
 states 	 by sets R(�) of (quanti�ed) 
onditionalsthat also ful�ll the so-
alled su

ess postulate 	 � R(�) j= R(�) aretermed 
-revisions:De�nition 8. (
-revision) A revision V � = V � R(�) of a 
onditionalvaluation fun
tion by a set R(�) of (quanti�ed) 
onditionals is 
alled a
-revision i� V � satis�es the prin
iple of 
onditional preservation withrespe
t to V and R, and V � j= R(�).C-revisions 
an easily be obtained by using the s
hemata providedby Theorem 3 and 
hoosing the 
onstants �0; �+i ; ��i , and �0; �+i ; ��i ,respe
tively, appropriately so as to establish the ne
essary numeri
alrelationships. Comparing Theorem 3 with Theorem 2 also shows 
learlythat 
-representations of a set of 
onditionals R(�) are 
-revisions ofuniform 
onditional valuation fun
tions by R(�). To illustrate this, wewill go into this in more detail for ordinal 
onditional fun
tions.A 
-revision �� = ��R of an OCF � byR = f(B1jA1); : : : ; (BnjAn)ghas the form (11), and the postulate �� j= R yields the following
onditions for �+i ; ��i in a straightforward way:��i � �+i > min!j=AiBi(�(!) + Xj 6=i!j=AjBj�+j + Xj 6=i!j=AjBj��j ) (13)� min!j=AiBi(�(!) + Xj 6=i!j=AjBj�+j + Xj 6=i!j=AjBj��j )Moreover, quanti�
ations of 
onditionals 
an be taken easily into a
-
ount by modifying (13) slightly, so as to 
omply with the representa-tion postulate �� j= (BjA) [mi℄:��i � �+i > mi + min!j=AiBi(�(!) + Xj 6=i!j=AjBj�+j + Xj 6=i!j=AjBj��j ) (14)� min!j=AiBi(�(!) + Xj 6=i!j=AjBj�+j + Xj 6=i!j=AjBj��j )C-revisions exist for any �nitely valued OCF � and any 
onsistent setRof 
onditionals; if � also takes on in�nite values, some basi
 demands for
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26 G. Kern-Isberner
ompatibility between � andR have to be observed (
f. (Kern-Isberner,2001
)). In the following, we will des
ribe a pro
edure how to 
al
ulatesu
h a 
-revision for any �nite OCF � and any �nite 
onsistent set Rof 
onditionals.The 
onsisten
y of a set R = f(B1jA1); : : : ; (BnjAn)g of 
ondi-tionals in a qualitative framework 
an be 
hara
terized by the notionof toleran
e. A 
onditional (BjA) is said to be tolerated by a set of
onditionals R i� there is a world ! su
h that ! veri�es (BjA) (i.e.(BjA)(!) = 1) and ! does not falsify any of the 
onditionals in R (i.e.r(!) 6= 0 for all r 2 R). R is 
onsistent i� there is an ordered partitionR0;R1; : : : ;Rk of R su
h that ea
h 
onditional in Rm is tolerated bySkj=mRj, 0 6m 6 k (
f. (Goldszmidt and Pearl, 1996)).Now suppose thatR is 
onsistent and su
h a partitionR0;R1; : : : ;Rkof R is given. For all 
onditionals ri 2 R, 1 6 i 6 n, set �+i := 0, andset su

essively, for ea
h partitioning set Rm, 0 6 m 6 k, starting withR0, and for ea
h 
onditional ri = (BijAi) 2 Rm��i := min!j=AiBir(!)6=08r2[kl=mRl (�(!) + Xrj2[m�1l=0 Rl!j=AjBj ��j ) + 1 (15)Finally, 
hoose �0 appropriately to make ��(!) = �0+�(!)+ P16i6n!j=AiBi ��ian ordinal 
onditional fun
tion. It is straightforward to 
he
k thatindeed, �� j= R, so �� is a 
-revision of � by R. In the same way,by applying these ideas to the uniform OCF �u(!) = 0 (for all ! 2 
),we obtain 
-representations of R.We will illustrate the basi
 ideas and features of 
-representationsand 
-revisions by an example.Example 6. Epistemi
 knowledge about important relationships be-tween the atoms f - 
ying, b - birds, p - penguins, w - winged animals,and k - kiwis is to be represented by an OCF. Let the set R 
onsist ofthe following 
onditionals:R: r1: (f jb) birds 
yr2: (bjp) penguins are birdsr3: (f jp) penguins do not 
yr4: (wjb) birds have wingsr5: (bjk) kiwis are birdsWe will apply the pro
edure sket
hed above to 
ompute an ordinal
onditional fun
tion � whi
h is a 
-representation of R.The 
onditionals r1; r4; and r5 are tolerated by R, whereas r2 and r3are not; but both r2 and r3 are tolerated by the set fr2; r3g. This yields
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The prin
iple of 
onditional preservation in belief revision 27the partitioningR0 = fr1; r4; r5g,R1 = fr2; r3g ofR. In order to obtaina suitable 
-representation of R, we set �+i = 0 for all i; 1 6 i 6 5, and,a

ording to (15), ��1 = ��4 = ��5 = 1;��2 = ��3 = ��1 + 1 = 2The resulting 
-representation �(!) := X16i65ri(!)=0 ��i of R is shown in the�gure on page 28.It is now easily 
he
ked that � j= (wjk) { from their super
lass birds,kiwis inherit the property of having wings. Suppose now that we 
ometo know that this is false { kiwis do not possess wings, { and we want torevise our knowledge � by this new information. The revised epistemi
state �� = ��f(wjk)g should be a 
-revision of � by f(wjk)g. Then dueto (11), �� has the form��(!) = 8<: �0 + �(!) + �+ if ! j= kw�0 + �(!) + �� if ! j= kw�0 + �(!) if ! j= kand (13) yields �� � �+ > min!j=kw �(!) � min!j=kw �(!) = 1 � 0 = 1, i.e.�� > �++1. Any su
h pair of �+; �� will give rise to a 
-revision, but, inorder to keep numeri
al 
hanges minimal, we 
hoose �+ := 0; �� := 2.No further normalization is ne
essary, so �0 := 0. The revised �� isshown in the �gure on page 28, too1.�� still represents the 
onditionals (f jb); (bjp); (f jp) and (wjb), butit no longer satis�es (bjk), sin
e ��(bk) = ��(bk) = 1 { sin
e birds andwings have been plausibly related by the 
onditional (wjb), the propertyof not having wings 
asts (reasonably) doubt on kiwis being birds. Thisillustrates how 
onditional interrelationships are properly dealt with by
-revisions. One might wish, however, to state that kiwi and birds aremore �rmly related than birds and wings, in order to be able to a

ept(bjk) still after revising � by (wjk). This 
an be a
hieved by assigningan inferential strength x > 1 to (bjk) (and { for reasons of symmetry {also to (bjp), be
ause kiwis and penguins both are birds by de�nition).Sin
e no expli
it quanti�
ation means assuming an inferential strengthof 0, this amounts to 
onsidering the following set R0 of quanti�ed
onditionals:R0 = f(f jb)[0℄; (bjp)[x℄; (f jp)[0℄; (wjb)[0℄; (bjk)[x℄g1 �� 
an also be regarded as the result of an update pro
ess, following evolution.
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28 G. Kern-Isberner! �(!) ��(!) �1(!) ��1(!)pbfwk 2 4 2 4pbfwk 2 2 2 2pbfwk 3 3 3 3pbfwk 3 3 3 3pbfwk 1 3 1 3pbfwk 1 1 1 1pbfwk 2 2 2 2pbfwk 2 2 2 2pbfwk 5 7 2x+ 5 2x+ 7pbfwk 4 4 x+ 4 x+ 4pbfwk 5 5 2x+ 5 2x+ 5pbfwk 4 4 x+ 4 x+ 4pb fwk 3 5 2x+ 3 2x+ 5pb fwk 2 2 x+ 2 x+ 2pb fwk 3 3 2x+ 3 2x+ 3pb fwk 2 2 x+ 2 x+ 2pbfwk 0 2 0 2pbfwk 0 0 0 0pbfwk 1 1 1 1pbfwk 1 1 1 1pbfwk 1 3 1 3pbfwk 1 1 1 1pbfwk 2 2 2 2pbfwk 2 2 2 2pbfwk 1 3 x+ 1 x+ 3pbfwk 0 0 0 0pbfwk 1 1 x+ 1 x+ 1pbfwk 0 0 0 0pb fwk 1 3 x+ 1 x+ 3pb fwk 0 0 0 0pb fwk 1 1 x+ 1 x+ 1pb fwk 0 0 0 0Figure 1. OCF's � and �1, and revised �� and ��1 for Example 6
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The prin
iple of 
onditional preservation in belief revision 29A 
-representation, �1, of R0 and a 
-revision ��1 = �1 � f(wjk)g (
om-puted in the same way as above) are both shown in the �gure on page28, too. Now we �nd ��1(bk) = x + 1 > 1 = ��1(bk), so the 
onditional(bjk) is still a

epted in ��1.The idea of 
-revisions 
an be re
overed in well-known approa
hesto non-propositional revision. A
tually, the so-
alled J-
onditioningpresented in (Goldszmidt and Pearl, 1996) to adjust an OCF � toun
ertain eviden
e is a
tually a 
-revision. In a probabilisti
 frame-work, due to Theorem 3 it is easily seen that revisions following theprin
iple of minimum 
ross-entropy (so-
alled MINENT-prin
iple or,brie
y, ME-prin
iple) (Shore and Johnson, 1980; Paris and Ven
ovsk�a,1992; Paris, 1994; Kern-Isberner, 1998) are also 
-revisions. This prin-
iple is a method to revise a prior distribution P by a set R� =f(B1jA1) [x1℄; : : : ; (BnjAn) [xn℄g of probabilisti
 
onditionals, so thatthe \dissimilarity" between P and the resulting distribution P � j= R�is minimal. A measure for this dissimilarity is given by the information-theoreti
al 
on
ept of 
ross-entropy R(Q;P ) = P!2
Q(!) log Q(!)P (!) . IfR�is 
ompatible with the prior P , in the sense that there is a P -
onsistentdistributionQ representing R�, this optimization problem has a uniquesolution P � = P �ME R� (
f. (Csisz�ar, 1975)), whi
h 
an be written inthe form P �(!) = �0P (!) Y16i6n!j=AiBi �1�xii Y16i6n!j=AiBi ��xii (16)with the �i's being exponentials of the Lagrange multipliers, appropri-ately 
hosen so as to satisfy all 
onditionals in R� (
f. (Kern-Isberner,2001
)). Comparing (16) to (10), it is obvious that P �ME R� satis�esthe prin
iple of 
onditional preservation, and hen
e is a 
-revision.An ME-revision realizes perfe
tly the idea of unique, minimal 
hangein a probabilisti
 environment. For ordinal frameworks, the ideas un-derlying system-Z� (Goldszmidt et al., 1993), or the LCD-fun
tions(Benferhat et al., 2000), 
an now also be applied to make revisions \rea-sonably minimal", due to the stru
tural similarity of 
-representationsand 
-revisions (
f. Se
tion 6). Basi
ally, that is to say, that veri�
ationof 
onditionals should not 
hange a world's degree of plausibility, hen
esetting �+i = 0 in (11), and �+i = 1 in (12), respe
tively, and worldsfalsifying 
onditionals should be shifted minimally, whi
h amounts to
hoosing ��i in (11), and ��i in (12) as small as possible. Our Example6 follows this idea, too.By De�nition 7, we obtain a te
hni
ally 
lear and pre
ise formal-ization of the intuitive idea of 
onditional preservation in a very gen-eral framework, making it appli
able to probabilisti
, possibilisti
 and
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30 G. Kern-IsbernerOCF-revisions. Note that, as abstra
t and te
hni
al as it appears, thisprin
iple is not a formal artifa
t but has been e�e
tively guiding prob-abilisti
 revisions via the prin
iple of minimum 
ross-entropy for manyde
ades. Indeed, the �rst steps towards formalizing this prin
iple havebeen taken when extra
ting the most basi
 and 
ru
ial properties ofminimum 
ross-entropy methods in (Kern-Isberner, 1998). Therefore,the axiomatization provided by De�nition 7 allows us to 
arry overa most su

essful information-theoreti
al idea from probabilisti
s toother frameworks when designing adequate revision methods. No ex-pli
it referen
e to ME-probability distributions is needed, as was donefor system-Z� (
f. (Goldszmidt et al., 1993)).Now that we are able to 
arry out belief revision in a most gen-eral sense, namely by revising epistemi
 states by sets of (quanti�ed)
onditionals, an approa
h to give semanti
s to nested 
onditionals inepistemi
 states 	 
an be made via a straightforward generalization ofthe Ramsey test (
f. (1)):	 j= ((DjC) j (BjA)) i� 	 � f(BjA)g j= (DjC) (17)This is di�erent from Goldszmidt & Pearl's suggestion made in (Gold-szmidt and Pearl, 1996, p. 88) where nested 
onditionals are evaluatedwith respe
t to a knowledge base, not to an epistemi
 state. In ourframework, their approa
h amounts to the following:Given a set of 
onditionals (defaults) R, the nested 
onditional((DjC) j (BjA)) is a

epted i� 	0 � (R [ f(BjA)g) j= (DjC).Here, 	0 is the uniform epistemi
 state; note that in our framework,representations of 
onditional knowledge bases are obtained by re-visions of uniform epistemi
 states. This approa
h simply adds theante
edent of ((DjC) j (BjA)) to the 
urrent default base R and 
he
ksthe 
onsequen
es of this new default base. Here, Goldszmidt & Pearlemphasize the \essential distin
tion" between having a 
onditional ex-pli
itly represented inR, or merely satis�ed as a (nonmonotoni
) 
onse-quen
e ofR. Indeed, if (BjA) is merely a default 
onsequen
e ofR, thennevertheless (BjA) might be 
onsistent with R and R [ f(BjA)g willyield reasonable inferen
es. Whereas, if (BjA) 2 R, then R[ f(BjA)gis de�nitely in
onsistent and has no nonmonotoni
 
onsequen
es atall. This problem does not o

ur with the �rst de�nition (17) { evenif 	 j= (BjA), a revision 	 � f(BjA)g is always possible. Therefore,a distin
tion between expli
it and impli
it knowledge { a point theimportan
e of whi
h is pointed out by Goldszmidt & Pearl { seems tobe impossible in our approa
h whi
h uses basi
ally epistemi
 states forinferen
es.The di�eren
e between these two approa
hes to nesting 
onditionalsis better understood from a more general point of view. In a framework
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The prin
iple of 
onditional preservation in belief revision 31as ri
h as ours, the epistemi
 state 	 may be thought of as beingformed by a 
ombination of prior (or ba
kground) knowledge 	1, andposterior (or evidential) default knowledge R via revision: 	 = 	1 �R. Now there are two possible ways of in
orporating new 
onditionalknowledge, namely by su

essive revision, (	1 � R) � f(BjA)g, whi
hroughly 
orresponds to updating (Katsuno and Mendelzon, 1991a), orby simultaneous revision, 	� (R[f(BjA)g), whi
h is more in the senseof AGM-revision (G�ardenfors, 1988). Now it be
omes 
lear that thedi�eren
e between the two approa
hes above results from the di�eren
ebetween these two kinds of revision { in general, 	�R�S and 	�(R[S),R;S � (L j L), will be found to di�er, as the following example shows.Example 7. We go ba
k to Example 6. Here, the set R of 
onditionals
an be split into two sets S1;S2 with S1 = fr1; r2; r4; r5g and S2 = fr3g:R = S1 [ S2. Suppose that �rst S1 is to be learnt and 
-represented.Sin
e all ri 2 S1 are tolerated by S1, we may 
hoose �+i = 0; ��i = 1; i 2f1; 2; 4; 5g, as appropriate revision 
onstants in (11) (with � = �u beingthe uniform ordinal 
onditional fun
tion), thus arriving at �2 := �u�S1as a 
-representation of S1 (see the �gure on page 32). A 
-revision of�2 by S2 = fr3g a

ording to the strategy des
ribed above 
an thenbe obtained by adding ��3 = 2 to all worlds falsifying r3. The resulting��2 = �2 �S2 = (�u �S1)�S2 is shown in the �gure on page 32, too, andis 
learly seen to be di�erent from � = �u � R = �u � (S1 [ S2) in the�gure on page 28.Whi
h type of revision { simultaneous or su

essive revision { ismore appropriate will depend on the relation between already presentknowledge, R, and new in
oming information, S. If both pertain tothe same situation, or the same world, respe
tively, simultaneous re-vision should be used; otherwise, su

essive revision seems to be theproper way to 
hange beliefs. A
tually, it needs this general frameworkfor belief revision to understand this thoroughly, sin
e su

essive andsimultaneous revision 
annot be distinguished in a purely propositionalframework.8. Linking qualitative and quantitative approa
hesIn Se
tions 5 and 7, the idea of preserving 
onditional beliefs underrevision have been formalized in two (apparently) di�erent ways: InSe
tion 5, we made use of the two relations v and j= , des
ribing quitesimple ways of 
onditional intera
tions. In Se
tion 7, we based ourformalization upon observing 
onditional stru
tures. In any 
ase, the
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32 G. Kern-Isberner! �2(!) ��2(!) ! �2(!) ��2(!)pbfwk 0 2 pbfwk 0 2pbfwk 1 3 pbfwk 1 3pbfwk 1 1 pbfwk 1 1pbfwk 2 2 pbfwk 2 2pbfwk 2 4 pbfwk 1 3pbfwk 2 4 pbfwk 1 3pb fwk 2 2 pb fwk 1 1pb fwk 2 2 pb fwk 1 1pbfwk 0 0 pbfwk 0 0pbfwk 1 1 pbfwk 1 1pbfwk 1 1 pbfwk 1 1pbfwk 2 2 pbfwk 2 2pbfwk 1 1 pbfwk 0 0pbfwk 1 1 pbfwk 0 0pb fwk 1 1 pb fwk 0 0pb fwk 1 1 pb fwk 0 0Figure 2. OCF �2 and revised ��2 for Example 7prin
ipal idea was to fo
us on 
onditional (not logi
al) intera
tions,
onsidering the e�e
ts 
onditionals may exert when being established.We will now show, that both approa
hes essentially 
oin
ide in the 
asethat a 
onditional valuation fun
tion (as a quantitative representationof epistemi
 beliefs, like e.g. ordinal 
onditional fun
tions or possibilitydistributions) is revised by only one 
onditional. More exa
tly, we willprove that a revision following the quantitative prin
iple of 
onditionalpreservation (see De�nition 7 in Se
tion 7) satisfy the postulates (CR5)-(CR7) in Se
tion 5, des
ribing a qualitative prin
iple of 
onditionalpreservation.We begin by 
hara
terizing revisions V � = V � R = V � (BjA) of a
onditional valuation fun
tion V whi
h satisfy the (quantitative) prin-
iple of 
onditional preservation with respe
t to R = f(BjA)g and V .As a basi
 requirement for su
h revisions, we will only presuppose thatV �(A) 6= 0A, instead of the (stronger) su

ess postulate V � j= (BjA).This makes the results to be presented independent of a

eptan
e 
on-ditions and helps 
on
entrating on 
onditional stru
tures; in parti
ular,
foiks02_gki_ext_final.tex; 4/05/2003; 23:42; p.32



The prin
iple of 
onditional preservation in belief revision 33it will be possible to make use of these results even when 
onditionalsare assigned numeri
al degrees of a

eptan
e.Proposition 4. Let V : L ! A be a 
onditional valuation fun
tion,and let R = f(BjA)g 
onsist of only one 
onditional (BjA) 2 (L j L).Let V � = V �R = V � (BjA) denote a revision of V by (BjA) su
h thatV �(A) 6= 0A. V � satis�es the prin
iple of 
onditional preservation withrespe
t to V and R i� there are 
onstants �0; �+; �� 2 A su
h thatV �(!) = 8<: �+�V (!) if ! j= AB���V (!) if ! j= AB�0 �V (!) if ! j= A (18)If V � is stri
tly V -
onsistent, then all 
onstants �0; �+; �� 2 A maybe 
hosen 6= 0A.As an obvious link between the qualitative and the quantitativeframeworks, we now strengthen the 
entral postulate (CR5) to 
om-ply with the numeri
al information provided by 
onditional valuationfun
tions V :(CR5quant) If (DjC) j= (BjA) and V (CD); (V � (BjA))(CD) 6= 0A,thenV (CD)� V (CD)�1 = (V � (BjA))(CD)� (V � (BjA))(CD)�1:(CR5quant) ensures that essentially, the values assigned to 
ondition-als whi
h are perpendi
ular to the revising 
onditional are not 
hangedunder revision:Lemma 4. Suppose the revision V � (BjA) is stri
tly V -
onsistentand satis�es (CR5quant). Then for any 
onditional (DjC) j= (BjA) withV (C) 6= 0A, it holds that V (DjC) = (V � (BjA))(DjC).The next proposition shows that indeed, (CR5quant) is stronger thanits qualitative 
ounterpart (CR5):Proposition 5. Let V � = V � R = V � f(BjA)g denote a stri
tly V -
onsistent revision of V by (BjA) su
h that V �(A) 6= 0A. If V � ful�lls(CR5quant), then it also satis�es (CR5).The following theorem states that essentially, any revision of a 
on-ditional valuation fun
tion whi
h satis�es the quantitative prin
ipleof 
onditional preservation (as spe
i�ed by De�nition 7), is also ina

ordan
e with the qualitative prin
iple of 
onditional preservation(as des
ribed by (CR5)-(CR7)):
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34 G. Kern-IsbernerTheorem 4. Let V : L ! A be a 
onditional valuation fun
tion, andlet R = f(BjA)g; (BjA) 2 (L j L), 
onsist of only one 
onditional. LetV � = V �R denote a stri
tly V -
onsistent revision of V by R ful�llingthe postulates (CR1) (su

ess) and (CR2) (stability).If V � satis�es the prin
iple of 
onditional preservation, then therevision also satis�es postulate (CR5quant) and the postulates (CR6)and (CR7); in parti
ular, it satis�es all of the postulates (CR5)-(CR7).Therefore, Theorem 4 identi�es the prin
iple of 
onditional preser-vation, as formalized in De�nition 7, as a fundamental devi
e to guidereasonable 
hanges in the 
onditional stru
ture of knowledge.9. Con
lusion and OutlookIn this paper, we presented axiomatizations of a prin
iple of 
ondi-tional preservation for belief revision operations in qualitative as wellas in (semi-)quantitative settings. In both 
ases, we dealt with revisionsof epistemi
 states by sets of 
onditional beliefs, thus studying beliefrevision in a most general framework. In parti
ular, the problem ofnesting 
onditionals 
an be addressed and dealt with properly in ourframework. As the indu
tive representation of a set of 
onditionals (ordefault rules, respe
tively) 
an be 
onsidered as a spe
ial instan
e ofa revision problem, this paper also provides an approa
h for adequateknowledge indu
tion.The 
ru
ial point in preserving 
onditional beliefs is to observe
onditional intera
tions, whi
h 
an be des
ribed by two relations, sub-
onditionality and perpendi
ularity, in the qualitative framework, andare based on the algebrai
 notion of 
onditional stru
tures in the quan-titative framework. Sin
e sub
onditionality and perpendi
ularity 
analso be de�ned via 
onditional stu
tures, the theory of 
onditionalstru
tures developed in this paper proves to be a most basi
 and power-ful tool for handling 
onditionals in knowledge representation and beliefrevision. We applied this theory to 
onditional valuation fun
tions asbasi
 representations of (semi-) quantitative epistemi
 states, 
overingprobability distributions, ranking fun
tions (ordinal 
onditional fun
-tions), and possibility distributions. Therefore, the results presented inthis paper are of relevan
e for a wide range of revision problems invery di�erent environments. Moreover, apart from theoreti
al aspe
ts,our approa
h also yields pra
ti
al s
hemata for setting up revisionand representation operations in probabilisti
, possibilisti
 and ordinalframeworks.As the main result of this paper, we showed that the quantitativeprin
iple of 
onditional preservation implies the qualitative prin
iple
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The prin
iple of 
onditional preservation in belief revision 35in semi-quantitative settings. This not only 
loses the gap betweenqualitative and quantitative approa
hes to belief revision, but also maygive new impetus to 
lassi
al belief revision theory.This ri
h, formal framework we used to develop our axiomatizationof prin
iples of 
onditional preservation, with the basi
 notions of 
ondi-tional stru
tures and 
onditional indi�eren
e, 
an also be used to studybasi
ally stru
tural approa
hes to default reasoning (
f. (Kern-Isberner,2002b)). The 
onne
tions to group theory whi
h might appear a bitstrange at �rst sight 
an most eÆ
iently be used to dis
over relevant
onditional relationships in statisti
al data (Kern-Isberner, 2000). Theimplementations of these ideas as a 
omputer system, Condor2, arepart of our ongoing work; a des
ription of Condor as an abstra
t statema
hine 
an be found in (Beierle and Kern-Isberner, 2003).AppendixProofsProof of Theorem 1. Let A;B;C;D 2 L.Suppose C 6 B or C 6 B. Then (DjC) j= (Bj>). (CR3) and (CR5)now imply (C1) and (C2).(C3) and (C4) are dire
t 
onsequen
es of (CR6) and (CR7) by usingthat (BjA) v (Bj>) and (BjA) v (Bj>), respe
tively, due to Lemma1. Proof of Proposition 1.Proof of (1): Let (DjC) v ( _BjA), where _B is one of B;B. ThenC 6 A, by Lemma 1. Let b! = !r11 : : : !rmm 2 ker �(DjC) \ bC, thus!k j= C for all 1 6 k 6 m, and hen
e (DjC)(!k) = ( _BjA)(!k) 2f0; 1g, using notation (2). So, (DjC)(!k) = 1 i� ( _BjA)(!k) = 1, and(DjC)(!k) = 0 i� ( _BjA)(!k) = 0. 1 = �(DjC)(b!) i� Pk:(DjC)(!k)=1 rk =Pk:(DjC)(!k)=0 rk = 0, due to (5). But this is equivalent toPk:(BjA)(!k)=1 rk = Pk:(BjA)(!k)=0 rk = 0, too, and therefore to�(BjA)(b!) = 1.Conversely, suppose C 6 A and ker �(DjC) \ bC = ker �(BjA) \ bC.The 
ase (DjC)+ = (DjC)� = ; is trivial, and also the 
ase j(DjC)+j+j(DjC)�j = 1 is easily dealt with: For instan
e, let (DjC)+ = f!0g and(DjC)� = ;. Then !0 j= A, so that one of !0 j= AB or !0 j= AB holds.Then 
learly (DjC) v (BjA) or (DjC) v (BjA).2 The development of Condor is supported by the DFG { Deuts
he Fors
hungs-gemeins
haft within the Condor-proje
t under grant BE 1700/5-1.
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36 G. Kern-IsbernerSo, let us now assume j(DjC)+j > 1; j(DjC)�j > 1, and let !1 2(DjC)+; !2 2 (DjC)�. Then �(DjC)(!1!2 ) 6= 1, so !1!2 62 ker �(DjC) \ bCand hen
e also !1!2 62 ker �(BjA)\ bC. Therefore, (BjA)(!1) 6= (BjA)(!2),so we have !1 2 (BjA)+ and !2 2 (BjA)� or the other way round.On the other hand, for any !0i su
h that (DjC)(!0i) = (DjC)(!i) (i 2f1; 2g), the presupposition ker �(DjC)\ bC = ker �(BjA) \ bC implies that(BjA)(!0i) = (BjA)(!i). So (DjC) v ( _BjA), as desired.Proof of (2): Let (DjC) j= (BjA), i.e. C 6 AB;AB or A, respe
-tively. Thus �(BjA)(!) is the same for all ! j= C. Due to 
an
ellations,bC \ b
0 � ker �(BjA).Conversely, suppose (DjC) j= (BjA) does not hold. Then there are!1; !2 j= C su
h that �(BjA)(!1) 6= �(BjA)(!2), i.e. �(BjA) �!1!2� 6= 1. So!1!2 2 bC \ b
0, but !1!2 =2 ker �(BjA).Proof of Lemma 3. Let !1; !2 2 
 su
h that �R(!1) = �R(!2).If V (!1) = 0A then there is (BjA) 2 R with �(BjA)(!1) 6= 1 andV (!0) = 0A for all !0 with �(BjA)(!0) = �(BjA)(!). �R(!1) = �R(!2)implies in parti
ular �(BjA)(!1) = �(BjA)(!2), and hen
e V (!2) = 0A,too, by 
ondition (i) of De�nition 4(1).Now suppose V (!1); V (!2) 6= 0A, i.e. !1; !2 2 b
+. Moreover, wehave !1!2 2 b
0, so due to the presupposition �R(!1) = �R(!2), weobtain V (!1) = V (!2), by 
ondition (ii) of De�nition 4, (1) and (2).Proof of Proposition 2. Suppose V : L ! A is a 
onditional valuationfun
tion whi
h is indi�erent with respe
t to R. Then, by de�nition,
ondition (i) of De�nition 4 holds. Let b! 2 ker0 �R \ b
+, i.e. b! 2 b
0,and �R(b!) = 1 = �R(�
), where �
 is the empty word in b
. Be
auseV is indi�erent with respe
t to R, we obtain V (b!) = V (�
) = 1, sob! 2 ker0 V .Conversely, let V : L ! A be a 
onditional valuation fun
tion su
hthat 
ondition (i) of De�nition 4 holds and ker0 �R \ b
+ � ker0 V .Suppose �R(b!1) = �R(b!2) for b!1; b!2 2 b
+, b!1 �> b!2. Then �R(b!1 �b!�12 ) = 1, i.e. b!1 � b!�12 2 ker0 �R \ b
+ � ker0 V . This implies V (b!1 �b!�12 ) = 1, and thus V (b!1) = V (b!2). Therefore V is indi�erent withrespe
t to R.Proof of Theorem 2. We will give a detailed proof only for the 
aseof probability fun
tions. The proofs for ordinal 
onditional fun
tions
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The prin
iple of 
onditional preservation in belief revision 37and possibility distributions, respe
tively, follow the same idea and areindeed quite analogous.Let P be a probability fun
tion and R = f(B1jA1); : : : ; (BnjAn)gbe a set of 
onditionals. Suppose �rst that P is indi�erent with respe
tto R. Then P (Ai) 6= 0, due to the prerequisite in De�nition 4. Theequivalen
e relation �R indu
es a partitioning 
1; : : : ;
q of 
 so that,a

ording to Lemma 3, P (!) is 
onstant on ea
h equivalen
e 
lass.Assume P (!) = pj for ! 2 
j. Let !1; : : : ; !q 2 
 be a representativesystem of 
1; : : : ;
q.For the sake of simpli
ity of notation, we suppose that p1; : : : ; pq0 >0; pq0+1 = : : : = pq = 0 with q0 6 q.For all P (!j) = pj = 0; q0 < j 6 q, there is (Bij jAij ) 2 R su
hthat �(Bij jAij )(!j) 6= 1 and P (!0) = 0 for all !0 with �(Bij jAij )(!0) =�(Bij jAij )(!j). If �(Bij jAij )(!j) = a+ij then set �+ij = 0 and ��ij = 1;if �(Bij jAij )(!j) = a�ij then set �+ij = 1 and ��ij = 0. Without lossof generality, assume that those 
onditionals (Bij jAij ) 2 R are the
onditionals (BijAi), n0 < i 6 n.Let us now 
onsider the 
onstants pj 6= 0. Finding positive fa
tors�0; �+1 ; ��1 ; : : : ; �+n0 ; ��n0 with 0 6= P (!) = �0 Q16i6n0!j=AiBi=1 �+i Q16i6n0!j=AiBi ��iamounts to solving the following system of q0 equations�0 Y16i6n0!j j=AiBi �+i Y16i6n0!j j=AiBi ��i = pj ; j = 1; : : : ; q0; (19)whi
h 
an be transformed into a linear equational system�~� = ~� (20)with ~� = (log�0; log�+1 ; log��1 ; : : : ; log�+n0 ; log��n0)T 2 R2n0+1, ~� =(log p1; : : : ; log pq0)T 2 Rq0 and a q0� (2n0 +1)-matrix � with elementsin f0,1g, su
h that �j;1 = 1 for all j, �j;2i = 1 i� �i(!j) = a+i , �j;2i+1 = 1i� �i(!j) = a�i for 1 6 j 6 q0, 1 6 i 6 n0. Let ~�j, 1 6 j 6 q0, denote therows of �. The equational system (20) is solvable over R i� any lineardependen
ies (over the �eld of rationals, be
ause ea
h entry of � iseither 0 or 1) between these rows 
orrespond to relations between the�j = log pj , i.e. Pk rmk~�mk = Pl snl~�nl must imply Pk rmk�mk =Pl snl�nl with rationals rmk ; snl .Arranging and multiplying both sums appropriately, we mayassume Pk rmk~�mk = Pl snl~�nl with natural numbers rmk ; snl .By 
omparing the ve
tor 
omponents, we obtain Pk rmk�mk;2i =Pl snl�nl;2i; Pk rmk�mk ;2i+1 = Pl snl�nl;2i+1, 1 6 i 6 n0. These equa-tions imply Pk rmk = Pl snl , Pk:�i(!mk )=a+i rmk = Pl:�i(!nl )=a+i snl
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38 G. Kern-Isbernerand Pk:�i(!mk )=a�i rmk = Pl:�i(!nl )=a�i snl . Therefore the elementsQk !rmkmk and Ql !snlnl are �>-equivalent and R-equivalent by equations(5) and (6), and be
ause P is assumed to be indi�erent with respe
t toR, we obtainYk prmkmk =Yk P (!mk)rmk =Yl P (!nl)snl =Yl psnlnl :Applying the logarithm fun
tion now yieldsXk rmk�mk =Xl snl�nl ;as desired. Thus the equational system (20), or (19), respe
tively, issolvable, yielding a solution ~� = (�0; �+1 ; ��1 ; : : : ; �+n0 ; ��n0)T 2 R2n0+1.Setting �0 = exp(�0), �+i = exp(�+i ) and ��i = exp(��i ), 1 6 i 6 n0, weobtain P (!) = �0 Q16i6n0!j=AiBi �+i Q16i6n0!j=AiBi ��i for P (!) 6= 0. Taking now alsointo a

ount the 
onditionals (Bn0+1jAn0+1); : : : ; (BnjAn), belonging toP (!j) = 0, we thus have P (!) = �0 Q16i6n!j=AiBi �+i Q16i6n!j=AiBi ��i for all ! 2 
be
ause the non-zero fa
tors belonging to those 
onditionals are 1.To prove the 
onverse assume P (!) = �0 Q16i6n!j=AiBi �+i Q16i6n!j=AiBi ��i is aprobability distribution with �0; �+1 ; ��1 ; : : : ; �+n ; ��n 2 R+ , �0 > 0. Wehave to show the indi�eren
e of P with respe
t to R.If P (!) = 0 then there is (BijAi) 2 R su
h that ! j= AiBi and�+i = 0, or ! j= AiBi and ��i = 0. So, in any 
ase �i(!) 6= 1 andP (!0) = 0 for any !0 2 
 with �i(!0) = �i(!). This shows 
ondition (i)of De�nition 4.Now 
onsider two R-equivalent elementsb!1 = m1Yk=1!rkk and b!2 = m2Yl=1!sll 2 b
+with identi
al 
onditional stru
tures�R(b!1) = Y16k6m1 �R(!k)rk = Y16l6m2 �R(�l)sl = �R(b!2)whi
h are also �>-equivalent. Then Pk rmk = Pl snl , Pk:�i(!k)=a+i rk =Pl:�i(�l)=a+i sl and Pk:�i(!k)=a�i rk = Pl:�i(�l)=a�i sl hold for all i = 1; : : : ; n
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The prin
iple of 
onditional preservation in belief revision 39a

ording to equation (5). Che
king 
ondition (ii) of De�nition 4 is nowan easy 
al
ulation:P (b!1) = P (!1)r1 : : : P (!m1)rm1 == �Pk rmk0 Y16i6n ��+i � Pk:!kj=AiBi rk Y16i6n���i � Pk:!kj=AiBi rk= �Pl snl0 Y16i6n ��+i � Pl:�lj=AiBi sl Y16i6n���i � Pl:�lj=AiBi sl= P (�1)s1 : : : P (�m2)sm2 = P (b!2):Proof of Proposition 3. The proof of this proposition is tedious andte
hni
al, but straightforward. We will exemplify it for the 
ase thatX;Y;Z ea
h 
ontain just one (binary) variable: X = fag, Y = fbg,and Z = f
g. The 
orresponding set R then 
onsists of the followingeight 
onditionals: R = f (aj
); (aj
); (bj
); (bj
);(aj
); (aj
); (bj
); (bj
)Let P be indi�erent with respe
t to R. We have to show that a and bare 
onditionally independent in P , given 
, i.e. P (abj _
) = P (aj _
)P (bj _
),_
 2 f
; 
g, whi
h is equivalent to P (ab _
)P (ab _
)P (ab _
)P (ab _
) = 1. Let a�1 ;a�2 ;a�3 ;a�4be the group generators of FR asso
iated with (aj _
); (aj _
); (bj _
); (bj _
),respe
tively. Then�R(ab _
 � ab _
ab _
 � ab _
) = a+1 a�2 a+3 a�4 � a�1 a+2 a�3 a+4a+1 a�2 a�3 a+4 � a�1 a+2 a+3 a�4 = 1;and due to the indi�eren
e of P with respe
t to R, we also haveP (ab _
)P (ab _
)P (ab _
)P (ab _
) = 1.Proof of Proposition 4. Let V � = V �R = V �(BjA) denote a revisionof the 
onditional valuation fun
tion V : L ! A by R = f(BjA)g, andassume V �(A) 6= 0A.V � satis�es the prin
iple of 
onditional preservation with respe
t toV and R i� V � is indi�erent with respe
t to V and R. A

ording toDe�nition 7, this means in parti
ular that V � is V -
onsistent, and(V �=V )(!1) = (V �=V )(!2) if (BjA)(!1) = (BjA)(!2) (21)
foiks02_gki_ext_final.tex; 4/05/2003; 23:42; p.39



40 G. Kern-Isbernerfor V (!1); V (!2) 6= 0A. Due to the prerequisite V �(A) 6= 0A and theV -
onsisten
y of V �, we have V (A) 6= 0A, too, so V (AB) 6= 0A orV (AB) 6= 0A. If V (AB) = 0A, then V �(AB) = 0A and V (AB); V �(AB)6= 0A. In this 
ase, there is !� 2 Mod (AB) su
h that V (!�); V �(!�) 6=0A; set �+ := 1A; �� := (V �=V )(!�). If V (AB) = 0A, then ana-logi
ally, �� := 1A and �+ := (V �=V )(!+) for some suitable !+ 2Mod (AB). If both V (AB); V (AB) 6= 0A, then 
hoose worlds !+ 2Mod (AB); !� 2 Mod (AB) su
h that V (!+); V (!�) 6= 0A and set�+ := (V �=V )(!+); �� := (V �=V )(!�). Furthermore, we have V �(A) =0A i� V (A) = 0A; in this 
ase, set �0 := 1A. Otherwise, sele
t !0 2Mod (A) with V (!0); V �(!0) 6= 0A and set �0 := (V �=V )(!0). Due toequation (21), we thus haveV �(!) = 8<: �+�V (!) if ! j= AB���V (!) if ! j= AB�0 �V (!) if ! j= A (22)with (at least) �0 6= 0A.Conversely, any revision V � of type (22) is V -
onsistent and satis�esDe�nition 6. Let b! = !r11 � : : : � !rmm 2 b
�+; then�(BjA)(b!) = (a+)Pk:!kj=AB rk(a�)Pk:!kj=AB rk ;and (V �=V )(b!) = (�+)Pk:!kj=AB rk(��)Pk:!kj=AB rk(�0)Pk:!kj=A rk :Thus we see that V � of type (22) is indi�erent with respe
t to V and(BjA). Furthermore, by the remarks above, it is 
lear that if V � isstri
tly V -
onsistent, then all 
onstants �0; �+; �� 
an be 
hosen 6= 0A.This 
ompletes the proof.Proof of Lemma 4. Suppose the revision V � = V � (BjA) is stri
tlyV -
onsistent and satis�es (CR5quant). Let (DjC) be a 
onditional su
hthat (DjC) j= (BjA) and with V (C) 6= 0A. Sin
e V � = V � (BjA) isstri
tly V -
onsistent, we also have V �(C) 6= 0A, and V (C _D) = 0Ai� V �(C _D) = 0A, _D 2 fD;Dg. If V (CD) = V �(CD) = 0A, thenV (DjC) = V �(DjC) = 0A; if V (CD) = V �(CD) = 0A, then V (DjC) =V �(DjC) = 1A.So assume now V (CD); V (CD) 6= 0A. Then, by (CR5quant),V (CD)� V (CD)�1 = V �(CD)� V �(CD)�1;and 
onsequently,V (DjC) = V (CD)� V (C)�1
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The prin
iple of 
onditional preservation in belief revision 41= V (CD)� (V (CD)� V (CD))�1= V (CD)� V (CD)�1 � (1A � V (CD)� V (CD)�1)�1= (1A � V �(CD)� V �(CD)�1)�1= V �(CD)� V �(CD)�1 � (1A � V �(CD)� V �(CD)�1)�1= V �(CD)� (V �(CD)� V �(CD))�1= V �(CD)� V �(C)�1= V �(DjC):Proof of Proposition 5. Let V � = V � (BjA) denote a stri
tly V -
onsistent revision of V by (BjA) satisfying V �(A) 6= 0A and (CR5quant).Suppose (DjC) j= (BjA). If V (CD) = V �(CD) = 0A, then neither Vnor V � a

epts (DjC). So let V (CD); V �(CD) 6= 0A. Then (CR5quant)implies V (CD)� V (CD)�1 = V �(CD)� V �(CD)�1: (23)A

ording to Se
tion 3, we haveV j= (DjC) , V (CD) <A V (CD), V (CD)� V (CD)�1 <A 1A, V �(CD)� V �(CD)�1 <A 1A (due to (23)), V �(CD) <A V �(CD), V � j= (DjC):Thus (CR5) holds.Proof of Theorem 4. Let V be a 
onditional valuation fun
tion, andlet V � = V � f(BjA)g denote a stri
tly V -
onsistent revision of V by(BjA) ful�lling the postulates (CR1) (su

ess) and (CR2) (stability).So in parti
ular, we have V �(A) 6= 0A, and by the stri
t V -
onsisten
yof the revision, we also have V (A) 6= 0A.If V � satis�es the prin
iple of 
onditional preservation, then, byProposition 4, there exist 
onstants �0; �+; �� 6= 0A in A su
h thatV �(!) = 8<: �+�V (!) if ! j= AB���V (!) if ! j= AB�0 �V (!) if ! j= ATo prove (CR5quant), suppose that (DjC) j= (BjA) and V �(CD) 6=0A. So Mod (C) is 
ompletely in
luded in one of Mod (AB);Mod (AB);
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42 G. Kern-IsbernerMod (A). Then for a suitable � 2 f�0; �+; ��g, we obtainV �(CD)� V �(CD)�1 = 0B� X!j=CD�V �(!)1CA�0� X!j=CD�V �(!)1A�1= 0B� X!j=CD���V (!)1CA�0� X!j=CD���V (!)1A�1= 0B��� X!j=CD�V (!)1CA�0��� X!j=CD�V (!)1A�1= �� V (CD)� ��1 � V (CD)�1= V (CD)� V (CD)�1This shows (CR5quant).Suppose now (DjC) v (BjA), i.e. CD 6 AB and CD 6 AB. Then,as in the 
al
ulations above, we obtain V �(AB) = �+�V (AB); V �(AB)= ���V (AB) and V �(CD) = �+�V (CD); V �(CD) = ���V (CD).Furthermore, V (CD) 6 V (AB) and V (CD) 6 V (AB).By prerequisite, V � j= (BjA), thus V �(AB) <A V �(AB). If V j=(BjA), then, by (CR2), V = V �, and (CR6), (CR7) are trivially ful-�lled.So assume now that V 6j= (BjA), that is, V (AB) 6A V (AB). FromV � j= (BjA), we have �� � V (AB) <A �+ � V (AB) whi
h implies�� <A �+. If V j= (DjC), this yieldsV �(CD) = ���V (CD) <A �+�V (CD) <A �+�V (CD) = V �(CD);hen
e V � j= (DjC). This shows (CR6).To prove (CR7), suppose (DjC) v (BjA), V 6j= (BjA) and V � j=(DjC), i.e. V �(CD) <A V �(CD). Then �+�V (CD) <A ���V (CD),and 
onsequently, by using �� <A �+, V (CD) <A V (CD), whi
hmeans V j= (DjC). This shows (CR7).Referen
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