
A thorough axiomatization of apriniple of onditional preservation in belief revisionGabriele Kern-Isberner(gabriele.kern-isberner�fernuni-hagen.de)FernUniversit�at Hagen, Department of Computer Siene,58084 Hagen, GermanyAbstrat. Although the ruial role of if-then-onditionals for the dynamis ofknowledge has been known for several deades, they do not seem to �t well inthe framework of lassial belief revision theory. In partiular, the propositionalparadigm of minimal hange guiding the AGM-postulates of belief revision provedto be inadequate for preserving onditional beliefs under revision.In this paper, we present a thorough axiomatization of a priniple of onditionalpreservation in a very general framework, onsidering the revision of epistemi statesby sets of onditionals. This axiomatization is based on a non-standard approah toonditionals, whih fouses on their dynami aspets, and uses the newly introduednotion of onditional valuation funtions as representations of epistemi states. Inthis way, probabilisti revision as well as possibilisti revision and the revision ofranking funtions an all be dealt with within one framework. Moreover, we showthat our approah an also be applied in a merely qualitative environment, extendingAGM-style revision to properly handling onditional beliefs.1. IntrodutionKnowledge is subjet to hange, either due to hanges in the real world,or by obtaining new �ndings about the domain under onsideration.New information may simply extend the prior knowledge base, or be inonit with it, in whih ase its inorporation makes omplex revisionproesses neessary. In any ase, the modi�ation of knowledge basesbrought about by learning new information may drastially alter theresponse behavior of knowledge systems to queries; e.g. answers thatwere meaningful in the ontext of the prior knowledge base, mightbeome irrelevant or even false in the light of new information.Belief revision, the theory of dynamis of knowledge, has been mainlyonerned with propositional beliefs for a long time. The most ba-si approah here is the AGM-theory presented in the seminal paper(Alhourr�on et al., 1985) as a set of postulates outlining appropriaterevision mehanisms in a propositional logial environment. Condition-als (BjA), to be read as \If A then B", seem to play an ambiva-lent role in belief revision: Although their dynami power as revisionpoliies has been appreiated (see e.g. (Ramsey, 1950; Boutilier andGoldszmidt, 1993)), G�ardenfors' triviality result (G�ardenfors, 1988) 2003 Kluwer Aademi Publishers. Printed in the Netherlands.
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2 G. Kern-Isbernerdesribes an obvious inompatibility between onditionals and lassialAGM-approahes. This inompatibility, however, an be resolved byleaving the narrow framework of lassial logi { �rst, onditional be-liefs must be understood as fundamentally di�erent from propositionalbeliefs (f. (Levi, 1988)) and hene be treated di�erently, and seond,instead of fousing on belief sets (i.e. dedutively losed propositionaltheories) ontaining all ertain beliefs, one should onsider belief statesor epistemi states, respetively, as omplex representations of ognitivestates of intelligent agents. Although the lose onnetions betweenbelief revision and onditionals, on the one side, and between beliefrevision and epistemi orderings, on the other side, has been apparentfor many years (f. (Ramsey, 1950; Katsuno and Mendelzon, 1991b)), itwas only quite reently that �rst approahes extending the AGM-theoryto that broader framework have been brought forth: Darwihe andPearl (Darwihe and Pearl, 1997) reformulated the AGM-postulatesfor revising epistemi states by propositional beliefs and, moreover,they formulated four new postulates dealing expliitly with onditionalbeliefs. Instead of following the minimal hange paradigm whih guidespropositional AGM-revision, Darwihe and Pearl's postulates vaguelyoutline how to preserve onditional beliefs under propositional revi-sion. In (Kern-Isberner, 1999a), we then presented a omplete set ofaxioms for revising epistemi states by onditional beliefs, extendingpropositional AGM-revision and overing the postulates of Darwiheand Pearl.Instead of only regarding the results of belief hange, as in AGM-theory, studying belief revision in the framework of epistemi statesand onditionals means to observe the very proess of belief dynamis.Perhaps the most important onsequene of this is that, in overominglassial borders and peuliarities, it opens up the view to a most gen-eral framework whih uni�es belief revision, nonmonotoni reasoningand indutive representation of omplex, onditional knowledge. Tobe more preise, belief revision and nonmonotoni reasoning an belinked via onditionals in epistemi states in the following way: Anonmonotonially implies B, based on the knowledge given by theepistemi state 	 (A j�	B), i� the onditional (BjA) is aepted in	 (	 j= (BjA)), i� revising 	 by A yields belief in B (	 � A j= B).Note that here bakground knowledge represented by 	 an be takenexpliitly into aount, in ontrast to the purely propositional view in(Makinson and G�ardenfors, 1991). Furthermore, indutive knowledgerepresentation an be understood as revising a uniform belief state,expressing omplete ignorane, by the (onditional) knowledge to berepresented.
foiks02_gki_ext_final.tex; 4/05/2003; 23:42; p.2



The priniple of onditional preservation in belief revision 3For these reasons, revising epistemi states by onditional beliefsshould not be onsidered as an artifat, but rather be understood asone of the most fundamental and powerful proesses in formal knowl-edge management. A thorough axiomatization of an appropriate prin-iple of onditional preservation in the sense of (Darwihe and Pearl,1997) and (Kern-Isberner, 1999a) will be able to serve as an importantguideline for handling those revisions. To this end, we even go onestep further: We leave the purely qualitative framework and enter intosemi-quantitative (i.e. ordinal) and quantitative (i.e. probabilisti) en-vironments, �nding one again that more omplex surroundings providelearer, unifying views. In this paper, onditional valuation funtionsare introdued as quite general representation of epistemi states. Or-dinal onditional funtions, possibility distributions and probabilityfuntions are speial instanes of onditional valuation funtions. Wethen formalize a most general priniple of onditional preservation,dealing with the revision of onditional valuation funtions by sets of(quanti�ed) onditional beliefs. This inludes any type of belief revisiononsidered to date and generalizes the lassial AGM-framework inthree respets:� observing onditional beliefs in the prior epistemi state� handling revision by onditional beliefs� handling simultaneous revision by a set of onditional beliefsThis priniple to be developed here is inspired by properties of optimalinformation-theoretial methods, and hene an be regarded as a mostappropriate paradigm to deal with onditional information. As ordinalepistemi states (suh as ordinal onditional funtions and possibilitydistributions) also allow a purely qualitative view, we investigate theonsequenes of this quantitative priniple of onditional preservationin a qualitative setting. We show that our quantitative priniple of on-ditional preservation implies the validity of the axioms for onditionalbelief revision of (Kern-Isberner, 1999a) and hene also provides a high-level formalization of Darwihe and Pearl's ideas (Darwihe and Pearl,1997).The priniple of onditional preservation to be axiomatized in thispaper is based on a non-standard theory of onditionals whih apturesthe dynami e�ets of establishing onditional relationships within epis-temi states. Although the non-lassial nature of onditionals hasbeen widely reognized and emphasized, lassial logial views haveinuened (and limited) the handling of onditionals: Interations ofonditionals have been redued to logial interations, heking for
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4 G. Kern-Isbernerlogial inonsistenies (f. e.g. (Goldszmidt and Pearl, 1996)), and oneof the prinipal assumptions for onditional events is that their logishould extend lassial logi (f. e.g. (Dubois and Prade, 1991; Walker,1994)). One of the main reasons for basing onditional and revisiontheories on lassial logial approahes is to use the lear struture oflassial logi as a guideline, in order not to get lost under revision.Indeed, the interations of onditionals an beome very omplex, andan adequate strutural means for handling sets of onditionals is ur-gently needed. Here we use the algebrai means of onditional struturesto make interations of onditionals transparent and omputable { aruial problem when revising by sets of onditionals.This framework we onsider onditionals in not only onerns beliefrevision, nonmonotoni reasoning and indutive knowledge representa-tion, but also helps unifying qualitative and quantitative approahes.We learly di�erentiate between numerial and strutural aspets ofonditionals, by �rst building up a formal, algebrai frame for ondi-tionals and then linking this frame to numerial values by using the ideaof onditional indi�erene. Conditional indi�erene proves to be morefundamental than the notion of onditional independene and is formal-ized in terms of onditionals. It is just this idea of separating struturesfrom numbers that provides a solid basi theory of onditionals withappliations in (apparently) very di�erent domains.This paper is organized as follows: Setion 2 ontains some formalpreliminaries, and here we briey explain the di�erent types of epis-temi states we are going to onsider. In Setion 3, onditional valuationfuntions are introdued as basi representations of (semi-)quantitativeepistemi states. In Setion 4, we present a new, dynami view ononditionals; in partiular, we de�ne the notions of subonditional andof perpendiular onditionals, whih are ruial for formalizing a qual-itative priniple of onditional preservation in Setion 5. Setion 6prepares the axiomatization of the quantitative priniple of onditionalpreservation in Setion 7 by explaining onditional strutures and on-ditional indi�erene. Finally, Setion 8 shows that both priniples areompatible. Setion 9 onludes with highlighting the main results ofthis paper and pointing out further appliations and ongoing work.This paper is an elaboration and extension of ideas presented in(Kern-Isberner, 2001) and (Kern-Isberner, 2002a). All proofs an befound in the Appendix.
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The priniple of onditional preservation in belief revision 52. Conditionals, epistemi states and belief revisionWe start with a �nitely generated propositional language L, with atomsa; b; ; : : :, and with formulas A;B;C; : : :. For oniseness of notation,we will omit the logial and-onnetor, writing AB instead of A ^ B,and barring formulas will indiate negation, i.e. A means :A. Let 
denote the set of possible worlds over L; 
 will be taken here simply asthe set of all propositional interpretations over L. ! j= A means thatthe propositional formula A 2 L holds in the possible world ! 2 
.By introduing a new binary operator j, we obtain the set (L j L) =f(BjA) j A;B 2 Lg of onditionals over L. (BjA) formalizes \if Athen B" and establishes a plausible, probable, possible et onnetionbetween the anteedent A and the onsequent B. Here, onditionalsare supposed not to be nested, that is, anteedent and onsequent of aonditional will be propositional formulas.Conditionals are usually onsidered within riher strutures suhas epistemi states. Besides ertain knowledge, epistemi states alsoallow the representation of preferenes, beliefs, assumptions et of anintelligent agent. In a purely qualitative setting, preferenes are as-sumed to be given by a pre-ordering on L (reexive and transitive,but not symmetrial, and mostly indued by pre-orderings on worlds).In a (semi-)quantitative setting, also degrees of plausibility, probabil-ity, possibility, neessity et an be expressed. Here, most widely usedrepresentations of epistemi states are� probability funtions (or probability distributions) P : 
 ! [0; 1℄withP!2
 P (!) = 1. The probability of a formula A 2 L is givenby P (A) =P!j=A P (!). Note that, sine L is �nitely generated, 
is �nite, too, and we only need additivity instead of �-additivity.Conditionals are interpreted via onditional probability, so we haveP (BjA) = P (AB)P (A) for P (A) > 0, and P j= (BjA) [x℄ i� P (BjA) = x(x 2 [0; 1℄).� ordinal onditional funtions, OCFs, (also alled ranking fun-tions) � : 
 ! N [ f1g with ��1(0) 6= ;, expressing degreesof plausibility of propositional formulas A by speifying degreesof disbeliefs of their negations A (f. (Spohn, 1988)). More for-mally, we have �(A) := minf�(!) j ! j= Ag, so that �(A _B) = minf�(A); �(B)g. Hene, due to ��1(0) 6= ;, at least oneof �(A); �(A) must be 0. A proposition A is believed if �(A) > 0(whih implies partiularly �(A) = 0). Degrees of plausibility analso be assigned to onditionals by setting �(BjA) = �(AB)��(A).A onditional (BjA) is aepted in the epistemi state represented
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6 G. Kern-Isbernerby �, or � satis�es (BjA), written as � j= (BjA), i� �(AB) <�(AB), i.e. i� AB is more plausible than AB. We an also speifya numerial degree of plausibility of a onditional by de�ning � j=(BjA) [n℄ i� �(AB)+n < �(AB) (n 2 N). Note that � j= (BjA) i�� j= (BjA) [0℄. OCF's are the qualitative ounterpart of probabilitydistributions. Their plausibility degrees may be taken as order-of-magnitude abstrations of probabilities (f. (Goldszmidt et al.,1993; Goldszmidt and Pearl, 1996)).� possibility distributions � : 
 ! [0; 1℄ with max!2
 �(!) = 1.Eah possibility distribution indues a possibility measure on Lvia �(A) := max!j=A �(!). Sine the orrespondene between pos-sibility distributions and possibility measures is straightforwardand one-to-one, we will not distinguish between them. A neessitymeasure N� an also be based on � by setting N�(A) := 1��(A).Possibility measures and neessity measures are dual, so it is suÆ-ient to know only one of them. Furthermore, a possibility degreean also be assigned to a onditional (BjA) by setting �(BjA) =�(AB)�(A) , in full analogy to Bayesian onditioning in probability the-ory. Note that we also make use of the produt operation in [0; 1℄.That means, that our approah is not only based upon omparingnumbers, but also takes relations between numbers into aount.These numerial relationships enode important information aboutthe (relative) strength of onditionals whih proves to be partiu-larly ruial for representation and revision tasks. This amounts toarrying over Spohn's argumentation in (Spohn, 1988) to a possi-bilisti framework (see also (Kern-Isberner, 1999b) and (Benferhatet al., 1997)).A onditional (BjA) is aepted in �, � j= (BjA), i� �(AB) >�(AB) (whih is equivalent to �(BjA) < 1 and N�(BjA) = 1 ��(BjA) > 0) (f. (Dubois and Prade, 1994)). So, in aordanewith intuition, a onditional (BjA) is aepted in the epistemistate modeled by a possibility distribution, if its on�rmation (AB)is onsidered to be more possible (or plausible) than its refutation(AB). This de�nition an be generalized by saying that � aepts(BjA) with degree x 2 (0; 1℄, � j= (BjA) [x℄, i� N�(BjA) > x i��(AB) 6 (1� x)�(AB).Possibility distributions are similar to ordinal onditional funtions(f. (Benferhat et al., 1992)), but realize degrees of possibility (orplausibility) in a non-disrete, ompat domain. They an be takenas fuzzy representations of epistemi states (f. (Kruse et al., 1991;
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The priniple of onditional preservation in belief revision 7Dubois et al., 1994)), and are losely related to belief funtions (f.(Benferhat et al., 2000)).With eah epistemi state 	 (either qualitative or (semi-)quantita-tive) one an assoiate the set Bel (	) = fA 2 L j 	 j= Ag of thosepropositional beliefs the agent aepts as most plausible. Bel(	) issupposed to onsist of formulas (or to be a formula, respetively) of Land hene is subjet to lassial belief revision theory whih investigatesthe hanging of propositional beliefs when new information beomesevident. Here, most important work has been done by Alhourron,G�ardenfors and Makinson in presenting in (Alhourr�on et al., 1985) aatalogue of postulates (the so-alled AGM-postulates) whih a well-behaved revision operator � should obey. The revision of epistemistates, however, annot be redued to propositional revision, for tworeasons: First, two di�erent epistemi states 	1;	2 may have equiv-alent belief sets Bel(	1) � Bel(	2). Thus an epistemi state is notdesribed uniquely by its belief set, and revising 	1 and 	2 by new(propositional) information A may result in di�erent revised belief setsBel(	1 � A) 6� Bel(	2 � A). Seond, epistemi states may representdi�erent kinds of beliefs, and beliefs on di�erent levels of aeptane.So \information" in the ontext of epistemi states must be understoodas a muh more omplex onept than provided by the propositionalframework. Inorporating new information in an epistemi state means,for instane, to hange degrees of plausibility, or to establish a newonditional relationship. Nevertheless, the revision of 	 by A 2 Lalso yields a revised belief set Bel(	 � A) � L, and of ourse, thisrevision should obey the standards of the AGM theory. So, Darwiheand Pearl have reformulated the AGM-postulates for belief revision soas to omply with the framework of epistemi states (f. (Darwihe andPearl, 1997)):Suppose 	;	1;	2 to be epistemi states and A;A1; A2; B 2 L;(R�1) A is believed in 	 �A: Bel (	 �A) j= A.(R�2) If Bel (	) ^A is satis�able, then Bel (	 � A) � Bel (	) ^A.(R�3) If A is satis�able, then Bel (	 �A) is also satis�able.(R�4) If 	1 = 	2 and A1 � A2, then Bel (	1 � A1) � Bel (	2 � A2).(R�5) Bel (	 � A) ^B implies Bel (	 � (A ^B)).(R�6) If Bel (	 � A) ^ B is satis�able then Bel (	 � (A ^ B)) impliesBel (	 �A) ^B.
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8 G. Kern-IsbernerEpistemi states, onditionals and revision are related by the so-alled Ramsey test, aording to whih a onditional (BjA) is aeptedin an epistemi state 	, i� revising 	 by A yields belief in B:	 j= (BjA) i� 	 � A j= B: (1)In this paper, we will onsider quanti�ed as well as unquanti�ed(strutural) onditionals, where the quanti�ations are taken from theproper domain ([0; 1℄ or N [ f1g, respetively). If R� = f(B1jA1) [x1℄;: : : ; (BnjAn) [xn℄g is a set of quanti�ed onditionals, thenR = f(B1jA1);: : : ; (BnjAn)g will be its strutural ounterpart.3. Conditional valuation funtionsWhat is ommon to probability funtions, ordinal onditional fun-tions, and possibility measures is, that they make use of two di�erentoperations to handle both purely propositional information and ondi-tionals adequately. Therefore, we will introdue the abstrat notion ofa onditional valuation funtion to reveal more learly and uniformlythe way in whih (onditional) knowledge may be represented andtreated within epistemi states. As an adequate struture, we assumean algebra A = (A;6A;�;�; 0A; 1A) of real numbers to be equippedwith two operations, � and �, suh that� (A;�) is an assoiative and ommutative struture with neutralelement 0A;� (A� f0Ag;�) is a ommutative group with neutral element 1A;� the rule of distributivity holds, i.e. x� (y� z) = (x� y)� (x� z)for x; y; z 2 A;� A is totally ordered by 6A with minimum 0A and maximum 1A,suh that 6A is ompatible with � and � in that x 6A y impliesboth x� z 6A y � z and x� z 6A y � z for all x; y; z 2 A.So A is lose to be an ordered �eld, exept that the elements of A neednot be invertible with respet to �.De�nition 1. (onditional valuation funtion) A onditional valuationfuntion is a (partial) funtion V : L [ (L j L) ! A from the sets offormulas and onditionals into the algebra A satisfying the followingonditions:1. V jL is total suh that V (?) = 0A; V (>) = 1A, and for exlusiveformulasA;B (i.e. AB � ?), it holds that V (A_B) = V (A)�V (B);
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The priniple of onditional preservation in belief revision 92. for eah onditional (BjA) 2 (L j L) with V (A) 6= 0A,V (BjA) = V (AB)� V (A)�1where V (A)�1 is the �-inverse element of V (A) in A; for V (A) =0A, V (BjA) is unde�ned.Conditional valuation funtions assign degrees of ertainty, plau-sibility, possibility et to propositional formulas and to onditionals.Making use of two operations, they provide a framework for onsideringand treating onditional knowledge as fundamentally di�erent frompropositional knowledge, a point that is stressed by various authorsand that seems to be indispensable for representing epistemi statesadequately (f. (Darwihe and Pearl, 1997)). There is, however, a loserelationship between propositions and onditionals { propositions maybe onsidered as onditionals of a degenerate form by identifyingA with(Aj>): Indeed, we have V (Aj>) = V (A) � (1V )�1 = V (A). Therefore,onditionals should be regarded as extending propositional knowledgeby a new dimension.For eah onditional valuation funtion V , we haveV (A) = X!j=A�V (!)so V is determined uniquely by its values on interpretations or onpossible worlds, respetively, and we will also write V : 
 ! A. Notethat, due to 1A = V (>) = P!2
�V (!), all V (!) must \sum up"to 1A. In general, for all A 2 A, we have 0A 6A V (A) 6A 1A. Itis easy to see that any onditional valuation funtion V : L ! A is aplausibility measure, in the sense of Friedman and Halpern, ((Friedmanand Halpern, 1996; Freund, 1998)), that is, it ful�lls V (?) 6A V (A)for all A 2 L, and A j= B implies V (A) 6A V (B).A notion whih is well-known from probability theory may be gen-eralized for onditional valuation funtions: A onditional valuationfuntion V is said to be uniform if V (!) = V (!0) for all worlds !; !0,i.e. if it assigns the same degree of plausibility to eah world. Let Vudenote the uniform onditional valuation funtion.The following examples show that the newly introdued notion ofa onditional valuation funtion indeed overs probability funtions,ordinal onditional funtions and possibility distributions:Example 1. Eah probability funtion P may be seen as a ondi-tional valuation funtion P : 
! (R+ ;6;+; �; 0; 1), where R+ denotesthe set of all non-negative real numbers and 6 is its usual order-ing. Conversely, eah onditional valuation funtion V : 
 ! (R+ ;6
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10 G. Kern-Isberner;+; �; 0; 1) is a probability funtion. The uniform probability funtion isPu(!) = 1j
j .Similarly, eah ordinal onditional funtion � is a onditional val-uation funtion � : 
 ! (Z [ f1g;>;min;+;1; 0), where Z denotesthe set of all integers, and any possibility measure � an be regardedas a onditional valuation funtion � : 
 ! (R+ ;6;max; �; 0; 1). Theuniform ordinal onditional and possibility funtions are �u(!) = 0 and�u(!) = 1, all ! 2 
, respetively.Conditional valuation funtions not only provide an abstrat meansto quantify epistemologial attitudes. Their extended ranges allow usto alulate and ompare arbitrary proportions of values attahed tosingle worlds. This will prove quite useful to handle omplex onditionalinterrelationships.By means of a onditional valuation funtion V : L ! A, we are ableto validate propositional as well as onditional beliefs. We may say, forinstane, that proposition A is believed in V , V j= A, i� V (A) = 1A,or that the onditional (BjA) is valid or aepted in V , V j= (BjA),i� V (A) 6= 0A and V (AB) <A V (AB), i.e. i� AB is more plausible(probable, possible et.) than AB. In this way, onditional valuationfuntions are apt to represent epistemi states.Note that there is a di�erene between taking a proposition A forgranted or to be true, whih would be properly expressed by V (A) =1A, and onsideringA to be plausible, whih amounts to stating V (A) >AV (A). It is only from the seond point of view, that propositions,A, anbe onsistently identi�ed with degenerate onditionals, (Aj>). Sinebelief revision is mostly onerned with revising plausible beliefs bynew plausible beliefs, onditionals o�er a most adequate framework tostudy revision methods in, and onditional valuation funtions allowus to distinguish between truth and plausibility.4. A dynami view on onditionalsAs it is well-known, a onditional (BjA) is an objet of a three-valuednature, partitioning the set of worlds 
 in three parts: those worldssatisfying AB and thus verifying the onditional, those worlds satisfy-ing AB, thus falsifying the onditional, and those worlds not ful�llingthe premise A and so whih the onditional may not be applied to atall. The following representation of (BjA) as a generalized indiator
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The priniple of onditional preservation in belief revision 11funtion goes bak to de Finetti (DeFinetti, 1974):(BjA)(!) = 8<: 1 : ! j= AB0 : ! j= ABu : ! j= A (2)where u stands for unknown or indeterminate. Two onditionals areonsidered equivalent i� the orresponding indiator funtions are iden-tial, i.e. (BjA) � (DjC) i� A � C and AB � CD (see e.g. (Calabrese,1991)). Usually, equation (2) is applied in a stati way, namely, to hekif possible worlds verify, or falsify a onditional, or are simply neutralwith respet to it. In the ontext of indutive knowledge representationor belief revision, however, when onditionals are to be learned, it alsoprovides a dynami view on how to inorporate onditional dependen-ies adequately in a belief state (whih might be the uniform one): Theonditional (BjA) distinguishes learly between verifying, falsifying andneutral worlds, but it does not distinguish between worlds within oneand the same of these partitioning sets. So, in order to establish (BjA),if demanded with a suitable degree of ertainty, the plausibilities orprobabilities of worlds have to be shifted uniformly, depending on towhih of the partitioning sets the worlds belong. In this sense, on-ditionals have e�ets on possible worlds, taking an ative role (likeagents) in the revision (or representation) proess.To make things more preise, we de�ne the verifying set (BjA)+ :=Mod (AB), and the falsifying set (BjA)� := Mod (AB) of a onditional(BjA).Mod (A) is alled the neutral set of (BjA). Eah of these sets maybe empty. If (BjA)+ = ;, (BjA) is alled ontraditory , if (BjA)� = ;,(BjA) is alled tautologial , and if Mod (A) = ;, i.e. A is tautologial,(BjA) is alled a fat . Verifying and falsifying set learly identify aonditional up to equivalene. Note that, although (BjA) and (BjA)indue the same partitioning on 
, their verifying and falsifying setsare di�erent, in that (BjA)+ = (BjA)� and (BjA)� = (BjA)+.Example 2. (AjA) is a ontraditory onditional, (AjA) is tautologi-al and (Aj>) is a fat.As usual, propositional formulas A 2 L may be identi�ed withfatual onditionals (Aj>). Hene, the results to be presented an berelated to the theory of propositional revision, as will be done in Setion5. It should be emphasized, however, that in our framework, (Aj>)should be understood as \A is plausible" or \A is believed", whereas Aatually means \A is true". Hene a lear distintion between proposi-tions as logial statements and propositions as epistemi statements ispossible, and is indeed respeted in our framework (see (Kern-Isberner,2001b)).
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12 G. Kern-IsbernerNext, we introdue the notion of a subonditional:De�nition 2. (subonditional, v) A onditional (DjC) is alled a sub-onditional of (BjA), (DjC) v (BjA), i� (DjC)+ � (BjA)+ and (DjC)�� (BjA)�.The v-relation may be expressed using the standard ordering 6between propositional formulas: A 6 B i� A j= B, i.e. i� Mod (A) �Mod (B):Lemma 1. Let (BjA); (DjC) 2 (L j L). Then (DjC) is a subondi-tional of (BjA), (DjC) v (BjA), i� CD 6 AB and CD 6 AB; inpartiular, if (DjC) v (BjA) then C 6 A.Thus (DjC) v (BjA) if the e�et of the former onditional on worldsis in line with the latter one, but (DjC) possibly applies to fewer worlds.Furthermore, the equivalene relation for onditionals an also be takenas to be indued by v:Lemma 2. Two onditionals (BjA) and (DjC) are equivalent, (BjA) �(DjC), i� (BjA) v (DjC) and (DjC) v (BjA).We will now introdue another relation between onditionals that isquite opposite to the subonditional relation and so desribes anotherextreme of possible onditional interation:De�nition 3. (perpendiular onditionals, j= ) Let (BjA); (DjC) 2(L j L) be two onditionals. (DjC) is alled perpendiular to (BjA),(DjC) j= (BjA), i� either Mod (C) � (BjA)+, or Mod (C) � (BjA)�,or Mod (C) � Mod (A), i.e. i� either C 6 AB, or C 6 AB, or C 6 A.The perpendiularity relation symbolizes a kind of irrelevane ofone onditional for another one. We have (DjC) j= (BjA) if Mod (C),i.e. the range of appliation of the onditional (DjC), is ompletelyontained in exatly one of the sets (BjA)+; (BjA)� or Mod (A). So forall worlds whih (DjC) may be applied to, (BjA) has the same e�etand yields no further partitioning. Note, that j= is not a symmetrirelation; (DjC) j= (BjA) rather expresses that (DjC) is not a�eted by(BjA), or, that (BjA) is irrelevant for (DjC).Example 3. Suppose a; b;  are atoms of the language L. Subondi-tionals of (bja) are typially obtained by strengthening the anteedent:(bja) and (bja) are both subonditionals of (bja), (bja); (bja) v(bja). As an example for perpendiularity, onsider the onditionals(jab); (jab) and (ja) whih are all perpendiular to (bja): (jab); (jab);(ja) j= (bja).
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The priniple of onditional preservation in belief revision 13It should be remarked that neither v nor j= provide new insightsfor (at) propositions, when identifying propositions with fatual on-ditionals. It is easily seen that (Bj>) v (Aj>) if and only if A andB are logially equivalent, and (Bj>) j= (Aj>) an only hold if A istautologial or ontraditory. Both relations need the riher epistemiframework of onditionals to show their usefulness. For a more thoroughdisussion of the relations v and j= , see (Kern-Isberner, 2001).5. A priniple of onditional preservation in a qualitativeframeworkIn (Darwihe and Pearl, 1997), Darwihe and Pearl disussed the prob-lem of preserving onditional beliefs under (propositional) belief revi-sion in an AGM-environment. They emphasized that onditional beliefsare di�erent in nature from propositional beliefs, and that the mini-mal hange paradigm whih is ruial for the AGM-theory (Alhourr�onet al., 1985) should not be blindly applied when onsidering ondition-als. They reformulated the AGM-postulates in the riher framework ofepistemi states (f. Setion 2) and extended this approah by phrasingfour new postulates expliitly dealing with the aeptane of ondi-tionals in epistemi states, in the following denoted as DP-postulates:DP-postulates for onditional preservation:(C1) If C j= B then 	 j= (D j C) i� 	 � B j= (D j C).(C2) If C j= B then 	 j= (D j C) i� 	 � B j= (D j C).(C3) If 	 j= (B j A) then 	 � B j= (B j A).(C4) If 	 �B j= (B j A) then 	 j= (B j A).The DP-postulates were supported by plausible arguments and manyexamples (for a further disussion, see the original paper (Darwiheand Pearl, 1997)). They are ruial for handling iterated revisionsvia the Ramsey test (1). For instane, by applying (1), (C2) an bereformulated to guide iterated revisions, as follows:If C j= B then 	 � C j= D i� 	 � B � C j= D.The DP-postulates are not indisputable. An objetion often madeis the following: Let C = p and B = pq (p; q atoms), suh thatC j= B. Then (C2) yields 	 � p j= D i� 	 � pq � p j= D, whihimplies Bel (	 � p) = Bel (	 � pq � p) { the information onveyed bylearning (p and) q has apparently been extinguished when p beomes
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14 G. Kern-Isbernerevident. As atoms are assumed to be independent, this seems to beounterintuitive. Atually, this example does not really ast doubt onthe DP-postulates, rather it proves the inappropriateness of a stritlypropositional framework for belief revision. In suh a framework, it isimpossible to distinguish between revising by p and q, on the one hand,and p ^ q � pq, on the other hand, sine sets of formulas are identi-�ed with the onjuntion of the orresponding formulas. pq, however,suggests an intensional onnetion between p and q, whereas fp; qgdoes not. Furthermore, (C2) does not demand the equivalene of theinvolved epistemi states 	 � p and 	 � pq � p, but only the identityof the orresponding belief sets (f. Setion 2). Again, this distintiongets lost when fousing on propositional beliefs.In (Kern-Isberner, 1999a), we onsidered onditionals under revi-sion in an even broader framework, setting up postulates for revisingepistemi states by onditional beliefs:Postulates for onditional revision:Suppose 	 is an epistemi state and (BjA); (DjC) are onditionals.Let 	 � (BjA) denote the result of revising 	 by a non-ontraditoryonditional (BjA).(CR0) 	 � (BjA) is an epistemi state.(CR1) 	 � (BjA) j= (BjA) (suess).(CR2) 	 � (BjA) = 	 i� 	 j= (BjA) (stability).(CR3) 	 � B := 	 � (Bj>) indues a propositional AGM-revisionoperator.(CR4) 	 � (BjA) = 	 � (DjC) whenever (BjA) � (DjC).(CR5) If (DjC) j= (BjA) then 	 j= (DjC) i� 	 � (BjA) j= (DjC).(CR6) If (DjC) v (BjA) and 	 j= (DjC) then 	 � (BjA) j= (DjC).(CR7) If (DjC) v (BjA) and 	 � (BjA) j= (DjC) then 	 j= (DjC).The postulates (CR0)-(CR2) and (CR4) realize basi ideas of AGM-revision in this more general framework, and (CR3) links onditionalbelief revision to propositional AGM-revision. (CR5)-(CR7) are theproper axioms to formalize a qualitative priniple of onditional preser-vation. They realize the idea of preserving onditional beliefs by use ofthe two relations v and j= , whih reet possible interations be-tween onditionals. In detail, (CR5) laims that revising by a on-ditional should preserve all onditionals to whih that onditional is
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The priniple of onditional preservation in belief revision 15irrelevant, in the sense desribed by the relation j= . The rationalebehind this postulate is the following: The validity of a onditional(BjA) in an epistemi state 	 depends on the relation between (some)worlds in Mod (AB) and (some) worlds in Mod (AB). So inorporating(BjA) into 	 may require a shift between Mod (AB) on one side andMod (AB) on the other side, but should leave intat any relations be-tween worlds withinMod (AB), Mod (AB), or Mod (A). These relationsmay be aptured by onditionals (DjC) not a�eted by (BjA), that is,by onditionals (DjC) j= (BjA).(CR6) states that onditional revision should bring about no hangefor onditionals that are already in line with the revising onditional,and (CR7) guarantees that no onditional hange ontrary to the re-vising onditional is aused by onditional revision.In partiular, by onsidering a propositional formula as a degener-ated onditional with tautologial anteedent, eah onditional revisionoperator indues a propositional revision operator, as desribed by(CR3). For this propositional revision operator, the postulates (CR0)-(CR2) and (CR4)-(CR6) above are trivially ful�lled within an AGM-framework. Postulate (CR7) then reads(CR7)prop If 	 � A j= A, then 	 j= AAn AGM-revision operator, obeying the postulate of suess and yield-ing a onsistent belief state, would never ful�ll the preondition 	�A j=A, as long as the revising proposition A is not inonsistent. Hene(CR7) is vauous in an AGM-framework. If we only presuppose that� satis�es the AGM-postulate of suess, then 	 � A j= A implies theinonsisteny of 	 �A, although A is assumed to be non-ontraditory.A reasonable explanation for this would be that 	 itself is inonsistent,in whih ase it would entail anything, partiularly 	 j= A would beful�lled. The handling of an inonsistent prior belief state is one ofthe ruial di�erenes between revision and update, as haraterized in(Katsuno and Mendelzon, 1991a) by the so-alled KM-postulates. AnAGM-revision demands 	 � A to be onsistent, regardless if the priorstate 	 is inonsistent or not, whereas update does not remedy theinonsistene of a prior state, even if the new information is onsistent.So (CR7) would be trivially ful�lled for KM-updates. If we also give upthe postulate of suess, then (CR7) desribes a reasonable behavior ofa revision proess in an extreme ase: A revision should not establishthe negation of the revising proposition if this negated proposition isnot already implied by the prior belief state.The following theorem shows that the postulates (CR0)-(CR7) overthe DP-postulates (C1)-(C4):
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16 G. Kern-IsbernerTheorem 1. Suppose � is a onditional revision operator obeying thepostulates (CR0)-(CR7). Then for the indued propositional revisionoperator, postulates (C1)-(C4) are satis�ed, too.Therefore, the idea of onditional preservation inherent to the postu-lates (C1)-(C4) of Darwihe and Pearl ((Darwihe and Pearl, 1997)) isindeed aptured by our postulates. While (CR0) - (CR4) only serve asbasi, unspei� postulates, the last three postulates (CR5)-(CR7) anbe taken as properly axiomatizing a priniple of onditional preserva-tion in a qualitative framework. Moreover, our framework provides fur-ther, formal justi�ations for the DP-postulates by making interationsof onditionals more preise.6. Conditional strutures and onditional indi�ereneThe notion of onditional strutures has been presented and exempli-�ed in several papers (see, e.g., (Kern-Isberner, 2001a; Kern-Isberner,2000; Kern-Isberner, 2001d)). Sine they are basi to the results to beobtained in this paper, we will summarize the main ideas and de�nitionshere. The onept of onditional indi�erene has also been a majortopi in (Kern-Isberner, 2001a); in the present paper, however, it isdeveloped in the general framework of onditional valuation funtions.In Setion 4, we presented a dynami approah to onditionals,fousing on the e�ets of only one onditional in the revision pro-ess. When onsidering sets R = f(B1jA1); : : : ; (BnjAn)g � (L j L)of onditionals, the e�ets eah of these onditionals exerts on worldsmust be learly identi�ed. To this end, we replae the numbers 0and 1 in (2) by formal symbols, one pair of symbols a+i ;a�i for eahonditional (BijAi) in R; a+i symbolizes a positive e�et for worldsverifying the respetive onditional, whereas a�i symbolizes a negativee�et for worlds falsifying it. Furthermore, in order to make theseonditional e�ets omputable, we make use of a group struture, in-troduing the free abelian group FR = ha+1 ;a�1 ; : : : ;a+n ;a�n i with gen-erators a+1 ;a�1 ; : : : ;a+n ;a�n , i.e. FR onsists of all elements of the form(a+1 )r1(a�1 )s1 : : : (a+n )rn(a�n )sn with integers ri; si 2 Z (the ring of in-tegers). Eah element of FR an be identi�ed by its exponents, sothat FR is isomorphi to Z2n (f. (Lyndon and Shupp, 1977; Fineand Rosenberger, 1999)). The ommutativity of FR orresponds to asimultaneous appliation of the onditionals in R, without assumingany order of appliation. Then the funtions �i = �(BijAi), 1 6 i 6 n,
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The priniple of onditional preservation in belief revision 17de�ned by �i(!) = 8<: a+i if (BijAi)(!) = 1a�i if (BijAi)(!) = 01 if (BijAi)(!) = u (3)represent the e�ets eah onditional (BijAi) has on possible worlds !.Note that the neutral element 1 of FR is assigned to possible worlds inthe neutral sets of the onditionals.The funtion �R = Q16i6n �i : 
! FR, given by�R(!) = Y16i6n�i(!) = Y16i6n!j=AiBi a+i Y16i6n!j=AiBi a�i (4)desribes the all-over e�et of R on !. �R(!) is alled (a representationof) the onditional struture of ! with respet to R. For eah world !,�R(!) ontains at most one of eah a+i or a�i , but never both of thembeause eah onditional applies to ! in a well-de�ned way. The groupstruture on FR allows us to form produts and in this way, to makeeven omplex interations between the onditionals in R transparent.The following simple example illustrates the notion of onditionalstrutures and shows how to alulate in this framework:Example 4. Let R = f(ja); (jb)g, where a; b;  are atoms, and letFR = ha+1 ;a�1 ;a+2 ;a�2 i. We assoiate a�1 with the �rst onditional,(ja), and a�2 with the seond one, (jb). For instane, the world abveri�es both onditionals, so we have �R(ab) = a+1 a+2 . The followingtable shows the values of the funtion �R on arbitrary worlds ! 2 
:! �R(!) ! �R(!) ! �R(!) ! �R(!)ab a+1 a+2 ab a+2 ab a�1 a�2 ab a�2ab a+1 ab 1 ab a�1 ab 1We �nd that �R(ab) � �R(ab) � �R(ab)�1 � �R(ab)�1 = a+1 a+2 � 1 �(a+1 )�1 � (a+2 )�1 = 1, whih may be interpreted by saying that the setsof worlds fab; abg and fab; abg show idential onditional e�ets {they are balaned with respet to the e�ets of the onditionals in R.Although ab; ab; ab; ab all have di�erent onditional strutures, therelationships between them with respet to R are learly revealed.To omply with the group struture of FR, we also impose a mul-tipliation on 
, introduing the free abelian group b
 := h! j ! 2 
igenerated by all ! 2 
, and onsisting of all words b! = !1r1 : : : !mrm
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18 G. Kern-Isbernerwith !1; : : : ; !m 2 
, and integers r1; : : : rm. Now �R may be extendedto b
 in a straightforward manner by setting�R(!1r1 : : : !mrm) = �R(!1)r1 : : : �R(!m)rmY16i6n(a+i )Pk:�i(!k)=a+i rk � Y16i6n(a�i )Pk:�i(!k)=a�i rk (5)yielding a homomorphism of groups �R : b
! FR. As for the elementsof FR, we will often use frational representations for the elements ofb
, that is, for instane, we will write !1!2 instead of !1!�12 .Having the same onditional struture de�nes an equivalene rela-tion �R on b
:b!1 �R b!2 i� �R(b!1) = �R(b!2) i� �R(b!1b!�12 ) = 1The equivalene lasses are in one-to-one orrespondene to the ele-ments of the quotient group b
=ker �R = fb! � (ker �R) j b! 2 b
g,where ker �R := fb! 2 b
 j �R(b!) = 1gdenotes the kernel of the homomorphism �R. Therefore, the kernelplays an important role in identifying onditional strutures. It ontainsexatly all group elements b! 2 b
 with a balaned onditional struture,that means, where all e�ets of onditionals in R on worlds ourringin b! are ompletely anelled. For instane, in Example 4 above, theelement ab � abab � ab is an element of the kernel of �R.Besides the onditional information in R (or R�, if one is onernedwith quanti�ed onditionals), one usually has to take normalizationonstraints suh as P (>) = 1 for probability distributions P , or �(>) =0 for ordinal onditional funtions �, or �(>) = 1 for possibility dis-tributions �, into regard. This is done by fousing on the subgroupb
0 = ker �(>j>) of b
. Sine (>j>)(!) = 1 for all ! 2 
, we have�(>j>)(!r11 : : : !rmm ) = (a+)r1 : : : (a+)rm = (a+)Pmj=1 rjwith some symbol (a+) representing the positive e�et of (>j>) onpossible worlds. Heneb
0 = fb! = !1r1 � : : : � !mrm 2 b
 j mXj=1 rj = 0g (6)Two elements b!1 = !r11 : : : !rmm ; b!2 = �s11 : : : �spp 2 b
 are equivalentmodulo b
0,b!1 �> b!2 i� b!1 b
0 = b!2 b
0 i� X16j6m rj = X16k6p sk
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The priniple of onditional preservation in belief revision 19This means that b!1 �> b!2 i� they both are a (anelled) produt ofthe same number of generators !, eah generator being ounted withits orresponding exponent. Letker0 �R := ker �R \ b
0be the part of ker �R whih is inluded in b
0.Example 5. In Example 4, we have ab�ab �> ab�ab, so ab � abab � ab isnot only an element of ker �R, but also of ker0 �R. Note that, althoughalso �R( abab � ab ) = 1, abab � ab 62 ker0 �R beause �(>j>)(ab) =(a+) 6= (a+)2 = �(>j>)(ab � ab)Finally, we will show how to desribe the relations v and j= be-tween onditionals, introdued in De�nitions 2 and 3, respetively, byonsidering the kernels of the orresponding �-homomorphisms. As aonvenient notation, for eah proposition A 2 L, we de�nebA := fb! = !r11 : : : !rmm 2 b
 j !i j= A for all i; 1 6 i 6 mgProposition 1. Let (BjA); (DjC) 2 (L j L) be onditionals.1. (DjC) is either a subonditional of (BjA) or of (BjA) i� C 6 Aand ker �(DjC) \ bC = ker �(BjA) \ bC.2. (DjC) j= (BjA) i� bC \ b
0 � ker �(BjA).To study onditional interations, we now fous on the behaviorof onditional valuation funtions V : L ! A with respet to the\multipliation" � in A (see De�nition 1). Eah suh funtion may beextended to a homomorphism V : b
+ ! (A;�) by setting V (!1r1 �: : : �!mrm) = V (!1)r1 � : : :� V (!m)rm , where b
+ is the subgroup of b
generated by the set 
+ := f! 2 
 j V (!) 6= 0Ag. This allows us to an-alyze numerial relationships holding between di�erent V (!). Thereby,it will be possible to elaborate the onditionals whose strutures Vfollows, that means, to determine sets of onditionals R � (L j L) withrespet to whih V is indi�erent :De�nition 4. (indi�erene wrt R) Suppose V : L ! A is a ondi-tional valuation funtion and R � (L j L) is a set of onditionals suhthat V (A) 6= 0A for all (BjA) 2 R.V is indi�erent with respet to R i� the following two onditionshold:
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20 G. Kern-Isberner(i) If V (!) = 0A then there is (BjA) 2 R suh that �(BjA)(!) 6= 1 andV (!0) = 0A for all !0 with �(BjA)(!0) = �(BjA)(!).(ii) V (b!1) = V (b!2) whenever �R(b!1) = �R(b!2) for b!1 �> b!2 2 b
+.If V is indi�erent with respet toR � (L j L), then it does not distin-guish between di�erent elements b!1; b!2 whih are equivalent modulo b
0and have the same onditional struture with respet to R. Conversely,for eah b! 2 b
0, any deviation V (b!) 6= 1A an be explained by theonditionals in R ating on b! in a non-balaned way. Condition (i)in De�nition 4 is neessary to deal with worlds ! =2 
+. It says that0A-values in an indi�erent valuation funtion V are established only inaording with the partitionings indued by the onditionals in R.A �rst simple, but important property of R-indi�erent valuationfuntions V is that �R-equivalent worlds are mapped onto the samevalues under V :Lemma 3. If the onditional valuation funtion V is indi�erent withrespet to R, then �R(!1) = �R(!2) implies V (!1) = V (!2) for allworlds !1; !2 2 
.The following proposition rephrases onditional indi�erene by es-tablishing a relationship between the kernels of �R and V :Proposition 2. Let R � (L j L) be a set of onditionals, and let V :L ! A be a onditional valuation funtion with V (A) 6= 0A for all(BjA) 2 R.V is indi�erent with respet to R i� ondition (i) of De�nition 4holds, and ker0 �R \ b
+ � ker0 V .The next theorem provides a lear haraterization of probabilityfuntions, ordinal onditional funtions and possibility distributionswith indi�erene properties:Theorem 2. Let R = f(B1jA1); : : : ; (BnjAn)g � (L j L) be a (�nite)set of onditionals.1. A probability funtion P is indi�erent with respet toR i� P (Ai) 6=0 for all i; 1 6 i 6 n, and there are non-negative real numbers �0;�+1 ; ��1 ; : : : ; �+n ; ��n 2 R+ ; �0 > 0 suh that, for all ! 2 
,P (!) = �0 Y16i6n!j=AiBi �+i Y16i6n!j=AiBi ��i (7)
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The priniple of onditional preservation in belief revision 212. An ordinal onditional funtion � is indi�erent with respet to Ri� �(Ai) 6= 1 for all i; 1 6 i 6 n, and there are rational numbers�0; �+i ; ��i 2 Q , 1 6 i 6 n, suh that, for all ! 2 
,�(!) = �0 + X16i6n!j=AiBi �+i + X16i6n!j=AiBi ��i (8)3. A possibility distribution � is indi�erent with respet to R i� thereare non-negative real numbers �0; �+1 ; ��1 ; : : : ; �+n ; ��n 2 R+ ; �0 >0; suh that for all ! 2 
,�(!) = �0 Y16i6n!j=AiBi �+i Y16i6n!j=AiBi ��i (9)Note that onditional indi�erene is a strutural notion, withoutmaking any referene to degrees of ertainty whih may be assignedto the onditionals in R. Theorem 2, however, also provides simpleshemata how to obtain indi�erent probabilisti, OCF and possibilis-ti representations of quanti�ed onditionals: One has to simply setup funtions of the orresponding type aording to (7), (8) or (9),respetively, and to determine the onstants �0; �+1 ; ��1 ; : : : ; �+n ; ��n or�0; �+i ; ��i , respetively, appropriately so as to ensure that all neessarynumerial relationships are established.De�nition 5. Conditional valuation funtions whih represent a setR(�) of (quanti�ed) onditionals and are indi�erent to it, are alled-representations of R(�).For further details and examples, f. (Kern-Isberner, 1998; Kern-Isberner,2001a; Kern-Isberner, 2001e); see also Setion 7.Theorem 2 also shows, that most important and well-behaved indu-tive representation methods realize onditional indi�erene: Namely,the priniple of maximum entropy in probabilistis (Paris, 1994), system-Z� in the OCF-framework (Goldszmidt et al., 1993), and the LCD-funtions of Benferhat, SaÆotti and Smets (Benferhat et al., 2000)all give rise to onditionally indi�erent funtions (f. (Kern-Isberner,1998; Kern-Isberner, 2001a; Kern-Isberner, 2001d)). The system-Z�approah and that of LCD-funtions an easily be derived by postulat-ing onditional indi�erene and further plausibility assumptions (for amore detailed disussion, f. (Kern-Isberner, 2001d)). Indeed, the ru-ial meaning of all these formalisms for adequate indutive knowledgerepresentation is mainly due to this indi�erene property. It shouldbe emphasized, that, to study interations of onditionals, onditionals
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22 G. Kern-Isbernerhere are not redued to material impliations, as for system-Z�, orfor LCD-funtions. Instead, the full dynami, non-lassial power ofonditionals is preserved, and highly omplex onditional interationsan be dealt with.We lose this setion by establishing an interesting onnetion be-tween onditional indi�erene and onditional independene, one of themost important means to support probabilisti reasoning in generaland the ruial glue to build up Bayesian networks in partiular (f.e.g. (Pearl, 1988; Cowell et al., 1999)). The next proposition shows thatonditional indi�erene is a more fundamental notion than onditionalindependene, reeting more �ne-grained strutures.Proposition 3. LetX;Y;Z be disjoint subsets of a set of propositionalvariables V, and let P be a probability distribution over V. Let R bethe following set of onditionals:R = f(xjz); (yjz) j x;y; z instantiations of variables in X;Y;Z; resp.gIf P is indi�erent with respet to R, then X and Y are onditionallyindependent in P , given Z.Note that the onverse of Proposition 3 does not hold. It is easyto build up a probability distribution over, e.g., four variables x; y; z; wsuh that x and y are onditionally independent given z, but P (xyzw) 6=P (xyzw). However, for the onditional struture with respet to therespetiveR in this ase, w does not matter, so �R(xyzw) = �R(xyzw).Hene P an not be indi�erent with respet to R.Therefore, the theory of onditional strutures and onditional in-di�erene presented so far proves to be of fundamental importaneboth for theoretial and pratial issues in indutive knowledge repre-sentation. In the next setion, we will show that it also provides anappropriate framework for revising quanti�ed beliefs.7. A priniple of onditional preservation in a(semi-)quantitative frameworkWhen we revise an epistemi state 	 { whih is supposed to be repre-sented by a onditional valuation funtion V { by a set of (quanti�ed)onditionals R(�) to obtain a posterior epistemi state 	�R(�) � V � =V � R(�), onditional strutures and/or interations must be observedwith respet to the prior state 	 as well as to the new onditionalsin R. The theory of onditional strutures an only be applied withrespet to R, sine we usually do not know anything about the history
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The priniple of onditional preservation in belief revision 23of 	, or V , respetively. Conditional relationships within 	, however,are realized via the operation � on V , so we base our de�nition of apriniple of onditional preservation on an indi�erene property of therelative hange funtion V � � V �1, in the following written as V �=V .Taking into regard prior knowledge V and the worlds ! with V (!) = 0Aappropriately, this gives rise to the following de�nitions:De�nition 6. (V -onsisteny, indi�erene wrt R and V ) Let V : L !A be a onditional valuation funtion, and let R(�) be a �nite set of(quanti�ed) onditionals. Let V � = V �R(�) denote the result of revisingV by R(�); suppose that V �(A) 6= 0A for all (BjA) 2 R.1. V � is alled V -onsistent i� V (!) = 0A implies V �(!) = 0A; V � isalled stritly V -onsistent i� V (!) = 0A , V �(!) = 0A;2. If V � is V -onsistent, then the relative hange funtion (V �=V ) :
! A is de�ned by(V �=V )(!) = ( V �(!)� V (!)�1 if V (!) 6= 0A0A if V (!) = 0A3. V � is indi�erent with respet to R and V i� V � is V -onsistent andthe following two onditions hold:(i) If V �(!) = 0A then V (!) = 0A, or there is (BjA) 2 R suhthat �(BjA)(!) 6= 1 and V �(!0) = 0A for all !0 with �(BjA)(!0) =�(BjA)(!).(ii) (V �=V )(b!1) = (V �=V )(b!2) whenever �R(b!1) = �R(b!2) andb!1 �> b!2 for b!1; b!2 2 b
�+, where b
�+ = h! 2 
 j V �(!) 6= 0Ai.Although the relative hange funtion (V �=V ) is not a onditionalvaluation funtion, it may nevertheless be extended to a homomor-phism (V �=V ) : b
�+ ! (A;�). Therefore, De�nition 6 is an appropriategeneralization of De�nition 4 for revisions. Indeed, it an easily be ver-i�ed that onditional valuation funtions are indi�erent with respet toR i� they are indi�erent with respet to R and the uniform onditionalvaluation funtion Vu.Note that also for this extended notion of indi�erene, the quanti�-ations of onditionals do not matter. For the revision proess, however,quanti�ations if present have to be taken into aount. So we use bothsymbols, R and R�, when onsidering indi�erent revisions, and R willalways denote the set of unquanti�ed onditionals ourring in R�.Whereas in the probabilisti framework, quanti�ations of ondition-als are essential, they may be omitted in the ordinal or possibilistiframework.
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24 G. Kern-IsbernerWe are now ready to formalize appropriately a priniple of ondi-tional preservation for belief revision in a (semi-)quantitative frame-work:De�nition 7. (priniple of onditional preservation wrt R and V ) Arevision V � = V �R(�) of a onditional valuation funtion by a set R(�)of (quanti�ed) onditionals is said to satisfy the priniple of onditionalpreservation with respet to R(�) and V i� V � is indi�erent with respetto R and V .Thus in a numerial framework, the priniple of onditional preser-vation is realized as an indi�erene property.From Theorem 2, we immediately obtain a onise haraterizationof revisions preserving onditional beliefs, whih may also serve inpratie as a shema to set up appropriate revision formalisms:Theorem 3. Let R(�) = f(B1jA1)([x1℄); : : : ; (BnjAn)([xn℄)g � (L j L)be a (�nite) set of (quanti�ed) onditionals. Let P be a probabilitydistribution, � an ordinal onditional funtion, and � a possibilitydistribution, all serving as prior knowledge.1. A probability distribution P � = P � R� satis�es the priniple ofonditional preservation with respet to R and P if and only ifP �(Ai) 6= 0, and there are real numbers �0; �+1 ; ��1 ; : : : ; �+n ; ��nwith �0 > 0 and �+1 ; ��1 ; : : : ; �+n ; ��n satisfying �+i ; ��i > 0, �+i = 0i� xi = 0, ��i = 0 i� xi = 1, 1 6 i 6 n, suh that, for all ! 2 
,P �(!) = �0P (!) Y16i6n!j=AiBi �+i Y16i6n!j=AiBi ��i (10)2. A revision �� = ��R(�) satis�es the priniple of onditional preser-vation with respet to R and � i� ��(Ai) 6=1 for all i; 1 6 i 6 n,and there are numbers �0; �+i ; ��i 2 Q ; 1 6 i 6 n, suh that, for all! 2 
, ��(!) = �0 + �(!) + X16i6n!j=AiBi �+i + X16i6n!j=AiBi ��i (11)3. A revision �� = ��R(�) satis�es the priniple of onditional preser-vation with respet to R and � i� ��(Ai) 6= 0, and there arenon-negative real numbers �0; �+1 ; ��1 ; : : : ; �+n ; ��n 2 R+ with �0 >0 suh that for all ! 2 
,��(!) = �0�(!) Y16i6n!j=AiBi �+i Y16i6n!j=AiBi ��i (12)
foiks02_gki_ext_final.tex; 4/05/2003; 23:42; p.24



The priniple of onditional preservation in belief revision 25Note that the priniple of onditional preservation is based only onobserving onditional strutures, without using any aeptane ondi-tions or taking quanti�ations of onditionals into aount. It is exatlythis separation of numerial from strutural aspets that results in awide appliability of this priniple within a quantitative framework.Revisions of epistemi states 	 by sets R(�) of (quanti�ed) onditionalsthat also ful�ll the so-alled suess postulate 	 � R(�) j= R(�) aretermed -revisions:De�nition 8. (-revision) A revision V � = V � R(�) of a onditionalvaluation funtion by a set R(�) of (quanti�ed) onditionals is alled a-revision i� V � satis�es the priniple of onditional preservation withrespet to V and R, and V � j= R(�).C-revisions an easily be obtained by using the shemata providedby Theorem 3 and hoosing the onstants �0; �+i ; ��i , and �0; �+i ; ��i ,respetively, appropriately so as to establish the neessary numerialrelationships. Comparing Theorem 3 with Theorem 2 also shows learlythat -representations of a set of onditionals R(�) are -revisions ofuniform onditional valuation funtions by R(�). To illustrate this, wewill go into this in more detail for ordinal onditional funtions.A -revision �� = ��R of an OCF � byR = f(B1jA1); : : : ; (BnjAn)ghas the form (11), and the postulate �� j= R yields the followingonditions for �+i ; ��i in a straightforward way:��i � �+i > min!j=AiBi(�(!) + Xj 6=i!j=AjBj�+j + Xj 6=i!j=AjBj��j ) (13)� min!j=AiBi(�(!) + Xj 6=i!j=AjBj�+j + Xj 6=i!j=AjBj��j )Moreover, quanti�ations of onditionals an be taken easily into a-ount by modifying (13) slightly, so as to omply with the representa-tion postulate �� j= (BjA) [mi℄:��i � �+i > mi + min!j=AiBi(�(!) + Xj 6=i!j=AjBj�+j + Xj 6=i!j=AjBj��j ) (14)� min!j=AiBi(�(!) + Xj 6=i!j=AjBj�+j + Xj 6=i!j=AjBj��j )C-revisions exist for any �nitely valued OCF � and any onsistent setRof onditionals; if � also takes on in�nite values, some basi demands for
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26 G. Kern-Isbernerompatibility between � andR have to be observed (f. (Kern-Isberner,2001)). In the following, we will desribe a proedure how to alulatesuh a -revision for any �nite OCF � and any �nite onsistent set Rof onditionals.The onsisteny of a set R = f(B1jA1); : : : ; (BnjAn)g of ondi-tionals in a qualitative framework an be haraterized by the notionof tolerane. A onditional (BjA) is said to be tolerated by a set ofonditionals R i� there is a world ! suh that ! veri�es (BjA) (i.e.(BjA)(!) = 1) and ! does not falsify any of the onditionals in R (i.e.r(!) 6= 0 for all r 2 R). R is onsistent i� there is an ordered partitionR0;R1; : : : ;Rk of R suh that eah onditional in Rm is tolerated bySkj=mRj, 0 6m 6 k (f. (Goldszmidt and Pearl, 1996)).Now suppose thatR is onsistent and suh a partitionR0;R1; : : : ;Rkof R is given. For all onditionals ri 2 R, 1 6 i 6 n, set �+i := 0, andset suessively, for eah partitioning set Rm, 0 6 m 6 k, starting withR0, and for eah onditional ri = (BijAi) 2 Rm��i := min!j=AiBir(!)6=08r2[kl=mRl (�(!) + Xrj2[m�1l=0 Rl!j=AjBj ��j ) + 1 (15)Finally, hoose �0 appropriately to make ��(!) = �0+�(!)+ P16i6n!j=AiBi ��ian ordinal onditional funtion. It is straightforward to hek thatindeed, �� j= R, so �� is a -revision of � by R. In the same way,by applying these ideas to the uniform OCF �u(!) = 0 (for all ! 2 
),we obtain -representations of R.We will illustrate the basi ideas and features of -representationsand -revisions by an example.Example 6. Epistemi knowledge about important relationships be-tween the atoms f - ying, b - birds, p - penguins, w - winged animals,and k - kiwis is to be represented by an OCF. Let the set R onsist ofthe following onditionals:R: r1: (f jb) birds yr2: (bjp) penguins are birdsr3: (f jp) penguins do not yr4: (wjb) birds have wingsr5: (bjk) kiwis are birdsWe will apply the proedure skethed above to ompute an ordinalonditional funtion � whih is a -representation of R.The onditionals r1; r4; and r5 are tolerated by R, whereas r2 and r3are not; but both r2 and r3 are tolerated by the set fr2; r3g. This yields
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The priniple of onditional preservation in belief revision 27the partitioningR0 = fr1; r4; r5g,R1 = fr2; r3g ofR. In order to obtaina suitable -representation of R, we set �+i = 0 for all i; 1 6 i 6 5, and,aording to (15), ��1 = ��4 = ��5 = 1;��2 = ��3 = ��1 + 1 = 2The resulting -representation �(!) := X16i65ri(!)=0 ��i of R is shown in the�gure on page 28.It is now easily heked that � j= (wjk) { from their superlass birds,kiwis inherit the property of having wings. Suppose now that we ometo know that this is false { kiwis do not possess wings, { and we want torevise our knowledge � by this new information. The revised epistemistate �� = ��f(wjk)g should be a -revision of � by f(wjk)g. Then dueto (11), �� has the form��(!) = 8<: �0 + �(!) + �+ if ! j= kw�0 + �(!) + �� if ! j= kw�0 + �(!) if ! j= kand (13) yields �� � �+ > min!j=kw �(!) � min!j=kw �(!) = 1 � 0 = 1, i.e.�� > �++1. Any suh pair of �+; �� will give rise to a -revision, but, inorder to keep numerial hanges minimal, we hoose �+ := 0; �� := 2.No further normalization is neessary, so �0 := 0. The revised �� isshown in the �gure on page 28, too1.�� still represents the onditionals (f jb); (bjp); (f jp) and (wjb), butit no longer satis�es (bjk), sine ��(bk) = ��(bk) = 1 { sine birds andwings have been plausibly related by the onditional (wjb), the propertyof not having wings asts (reasonably) doubt on kiwis being birds. Thisillustrates how onditional interrelationships are properly dealt with by-revisions. One might wish, however, to state that kiwi and birds aremore �rmly related than birds and wings, in order to be able to aept(bjk) still after revising � by (wjk). This an be ahieved by assigningan inferential strength x > 1 to (bjk) (and { for reasons of symmetry {also to (bjp), beause kiwis and penguins both are birds by de�nition).Sine no expliit quanti�ation means assuming an inferential strengthof 0, this amounts to onsidering the following set R0 of quanti�edonditionals:R0 = f(f jb)[0℄; (bjp)[x℄; (f jp)[0℄; (wjb)[0℄; (bjk)[x℄g1 �� an also be regarded as the result of an update proess, following evolution.
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28 G. Kern-Isberner! �(!) ��(!) �1(!) ��1(!)pbfwk 2 4 2 4pbfwk 2 2 2 2pbfwk 3 3 3 3pbfwk 3 3 3 3pbfwk 1 3 1 3pbfwk 1 1 1 1pbfwk 2 2 2 2pbfwk 2 2 2 2pbfwk 5 7 2x+ 5 2x+ 7pbfwk 4 4 x+ 4 x+ 4pbfwk 5 5 2x+ 5 2x+ 5pbfwk 4 4 x+ 4 x+ 4pb fwk 3 5 2x+ 3 2x+ 5pb fwk 2 2 x+ 2 x+ 2pb fwk 3 3 2x+ 3 2x+ 3pb fwk 2 2 x+ 2 x+ 2pbfwk 0 2 0 2pbfwk 0 0 0 0pbfwk 1 1 1 1pbfwk 1 1 1 1pbfwk 1 3 1 3pbfwk 1 1 1 1pbfwk 2 2 2 2pbfwk 2 2 2 2pbfwk 1 3 x+ 1 x+ 3pbfwk 0 0 0 0pbfwk 1 1 x+ 1 x+ 1pbfwk 0 0 0 0pb fwk 1 3 x+ 1 x+ 3pb fwk 0 0 0 0pb fwk 1 1 x+ 1 x+ 1pb fwk 0 0 0 0Figure 1. OCF's � and �1, and revised �� and ��1 for Example 6
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The priniple of onditional preservation in belief revision 29A -representation, �1, of R0 and a -revision ��1 = �1 � f(wjk)g (om-puted in the same way as above) are both shown in the �gure on page28, too. Now we �nd ��1(bk) = x + 1 > 1 = ��1(bk), so the onditional(bjk) is still aepted in ��1.The idea of -revisions an be reovered in well-known approahesto non-propositional revision. Atually, the so-alled J-onditioningpresented in (Goldszmidt and Pearl, 1996) to adjust an OCF � tounertain evidene is atually a -revision. In a probabilisti frame-work, due to Theorem 3 it is easily seen that revisions following thepriniple of minimum ross-entropy (so-alled MINENT-priniple or,briey, ME-priniple) (Shore and Johnson, 1980; Paris and Venovsk�a,1992; Paris, 1994; Kern-Isberner, 1998) are also -revisions. This prin-iple is a method to revise a prior distribution P by a set R� =f(B1jA1) [x1℄; : : : ; (BnjAn) [xn℄g of probabilisti onditionals, so thatthe \dissimilarity" between P and the resulting distribution P � j= R�is minimal. A measure for this dissimilarity is given by the information-theoretial onept of ross-entropy R(Q;P ) = P!2
Q(!) log Q(!)P (!) . IfR�is ompatible with the prior P , in the sense that there is a P -onsistentdistributionQ representing R�, this optimization problem has a uniquesolution P � = P �ME R� (f. (Csisz�ar, 1975)), whih an be written inthe form P �(!) = �0P (!) Y16i6n!j=AiBi �1�xii Y16i6n!j=AiBi ��xii (16)with the �i's being exponentials of the Lagrange multipliers, appropri-ately hosen so as to satisfy all onditionals in R� (f. (Kern-Isberner,2001)). Comparing (16) to (10), it is obvious that P �ME R� satis�esthe priniple of onditional preservation, and hene is a -revision.An ME-revision realizes perfetly the idea of unique, minimal hangein a probabilisti environment. For ordinal frameworks, the ideas un-derlying system-Z� (Goldszmidt et al., 1993), or the LCD-funtions(Benferhat et al., 2000), an now also be applied to make revisions \rea-sonably minimal", due to the strutural similarity of -representationsand -revisions (f. Setion 6). Basially, that is to say, that veri�ationof onditionals should not hange a world's degree of plausibility, henesetting �+i = 0 in (11), and �+i = 1 in (12), respetively, and worldsfalsifying onditionals should be shifted minimally, whih amounts tohoosing ��i in (11), and ��i in (12) as small as possible. Our Example6 follows this idea, too.By De�nition 7, we obtain a tehnially lear and preise formal-ization of the intuitive idea of onditional preservation in a very gen-eral framework, making it appliable to probabilisti, possibilisti and
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30 G. Kern-IsbernerOCF-revisions. Note that, as abstrat and tehnial as it appears, thispriniple is not a formal artifat but has been e�etively guiding prob-abilisti revisions via the priniple of minimum ross-entropy for manydeades. Indeed, the �rst steps towards formalizing this priniple havebeen taken when extrating the most basi and ruial properties ofminimum ross-entropy methods in (Kern-Isberner, 1998). Therefore,the axiomatization provided by De�nition 7 allows us to arry overa most suessful information-theoretial idea from probabilistis toother frameworks when designing adequate revision methods. No ex-pliit referene to ME-probability distributions is needed, as was donefor system-Z� (f. (Goldszmidt et al., 1993)).Now that we are able to arry out belief revision in a most gen-eral sense, namely by revising epistemi states by sets of (quanti�ed)onditionals, an approah to give semantis to nested onditionals inepistemi states 	 an be made via a straightforward generalization ofthe Ramsey test (f. (1)):	 j= ((DjC) j (BjA)) i� 	 � f(BjA)g j= (DjC) (17)This is di�erent from Goldszmidt & Pearl's suggestion made in (Gold-szmidt and Pearl, 1996, p. 88) where nested onditionals are evaluatedwith respet to a knowledge base, not to an epistemi state. In ourframework, their approah amounts to the following:Given a set of onditionals (defaults) R, the nested onditional((DjC) j (BjA)) is aepted i� 	0 � (R [ f(BjA)g) j= (DjC).Here, 	0 is the uniform epistemi state; note that in our framework,representations of onditional knowledge bases are obtained by re-visions of uniform epistemi states. This approah simply adds theanteedent of ((DjC) j (BjA)) to the urrent default base R and heksthe onsequenes of this new default base. Here, Goldszmidt & Pearlemphasize the \essential distintion" between having a onditional ex-pliitly represented inR, or merely satis�ed as a (nonmonotoni) onse-quene ofR. Indeed, if (BjA) is merely a default onsequene ofR, thennevertheless (BjA) might be onsistent with R and R [ f(BjA)g willyield reasonable inferenes. Whereas, if (BjA) 2 R, then R[ f(BjA)gis de�nitely inonsistent and has no nonmonotoni onsequenes atall. This problem does not our with the �rst de�nition (17) { evenif 	 j= (BjA), a revision 	 � f(BjA)g is always possible. Therefore,a distintion between expliit and impliit knowledge { a point theimportane of whih is pointed out by Goldszmidt & Pearl { seems tobe impossible in our approah whih uses basially epistemi states forinferenes.The di�erene between these two approahes to nesting onditionalsis better understood from a more general point of view. In a framework
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The priniple of onditional preservation in belief revision 31as rih as ours, the epistemi state 	 may be thought of as beingformed by a ombination of prior (or bakground) knowledge 	1, andposterior (or evidential) default knowledge R via revision: 	 = 	1 �R. Now there are two possible ways of inorporating new onditionalknowledge, namely by suessive revision, (	1 � R) � f(BjA)g, whihroughly orresponds to updating (Katsuno and Mendelzon, 1991a), orby simultaneous revision, 	� (R[f(BjA)g), whih is more in the senseof AGM-revision (G�ardenfors, 1988). Now it beomes lear that thedi�erene between the two approahes above results from the di�erenebetween these two kinds of revision { in general, 	�R�S and 	�(R[S),R;S � (L j L), will be found to di�er, as the following example shows.Example 7. We go bak to Example 6. Here, the set R of onditionalsan be split into two sets S1;S2 with S1 = fr1; r2; r4; r5g and S2 = fr3g:R = S1 [ S2. Suppose that �rst S1 is to be learnt and -represented.Sine all ri 2 S1 are tolerated by S1, we may hoose �+i = 0; ��i = 1; i 2f1; 2; 4; 5g, as appropriate revision onstants in (11) (with � = �u beingthe uniform ordinal onditional funtion), thus arriving at �2 := �u�S1as a -representation of S1 (see the �gure on page 32). A -revision of�2 by S2 = fr3g aording to the strategy desribed above an thenbe obtained by adding ��3 = 2 to all worlds falsifying r3. The resulting��2 = �2 �S2 = (�u �S1)�S2 is shown in the �gure on page 32, too, andis learly seen to be di�erent from � = �u � R = �u � (S1 [ S2) in the�gure on page 28.Whih type of revision { simultaneous or suessive revision { ismore appropriate will depend on the relation between already presentknowledge, R, and new inoming information, S. If both pertain tothe same situation, or the same world, respetively, simultaneous re-vision should be used; otherwise, suessive revision seems to be theproper way to hange beliefs. Atually, it needs this general frameworkfor belief revision to understand this thoroughly, sine suessive andsimultaneous revision annot be distinguished in a purely propositionalframework.8. Linking qualitative and quantitative approahesIn Setions 5 and 7, the idea of preserving onditional beliefs underrevision have been formalized in two (apparently) di�erent ways: InSetion 5, we made use of the two relations v and j= , desribing quitesimple ways of onditional interations. In Setion 7, we based ourformalization upon observing onditional strutures. In any ase, the
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32 G. Kern-Isberner! �2(!) ��2(!) ! �2(!) ��2(!)pbfwk 0 2 pbfwk 0 2pbfwk 1 3 pbfwk 1 3pbfwk 1 1 pbfwk 1 1pbfwk 2 2 pbfwk 2 2pbfwk 2 4 pbfwk 1 3pbfwk 2 4 pbfwk 1 3pb fwk 2 2 pb fwk 1 1pb fwk 2 2 pb fwk 1 1pbfwk 0 0 pbfwk 0 0pbfwk 1 1 pbfwk 1 1pbfwk 1 1 pbfwk 1 1pbfwk 2 2 pbfwk 2 2pbfwk 1 1 pbfwk 0 0pbfwk 1 1 pbfwk 0 0pb fwk 1 1 pb fwk 0 0pb fwk 1 1 pb fwk 0 0Figure 2. OCF �2 and revised ��2 for Example 7prinipal idea was to fous on onditional (not logial) interations,onsidering the e�ets onditionals may exert when being established.We will now show, that both approahes essentially oinide in the asethat a onditional valuation funtion (as a quantitative representationof epistemi beliefs, like e.g. ordinal onditional funtions or possibilitydistributions) is revised by only one onditional. More exatly, we willprove that a revision following the quantitative priniple of onditionalpreservation (see De�nition 7 in Setion 7) satisfy the postulates (CR5)-(CR7) in Setion 5, desribing a qualitative priniple of onditionalpreservation.We begin by haraterizing revisions V � = V � R = V � (BjA) of aonditional valuation funtion V whih satisfy the (quantitative) prin-iple of onditional preservation with respet to R = f(BjA)g and V .As a basi requirement for suh revisions, we will only presuppose thatV �(A) 6= 0A, instead of the (stronger) suess postulate V � j= (BjA).This makes the results to be presented independent of aeptane on-ditions and helps onentrating on onditional strutures; in partiular,
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The priniple of onditional preservation in belief revision 33it will be possible to make use of these results even when onditionalsare assigned numerial degrees of aeptane.Proposition 4. Let V : L ! A be a onditional valuation funtion,and let R = f(BjA)g onsist of only one onditional (BjA) 2 (L j L).Let V � = V �R = V � (BjA) denote a revision of V by (BjA) suh thatV �(A) 6= 0A. V � satis�es the priniple of onditional preservation withrespet to V and R i� there are onstants �0; �+; �� 2 A suh thatV �(!) = 8<: �+�V (!) if ! j= AB���V (!) if ! j= AB�0 �V (!) if ! j= A (18)If V � is stritly V -onsistent, then all onstants �0; �+; �� 2 A maybe hosen 6= 0A.As an obvious link between the qualitative and the quantitativeframeworks, we now strengthen the entral postulate (CR5) to om-ply with the numerial information provided by onditional valuationfuntions V :(CR5quant) If (DjC) j= (BjA) and V (CD); (V � (BjA))(CD) 6= 0A,thenV (CD)� V (CD)�1 = (V � (BjA))(CD)� (V � (BjA))(CD)�1:(CR5quant) ensures that essentially, the values assigned to ondition-als whih are perpendiular to the revising onditional are not hangedunder revision:Lemma 4. Suppose the revision V � (BjA) is stritly V -onsistentand satis�es (CR5quant). Then for any onditional (DjC) j= (BjA) withV (C) 6= 0A, it holds that V (DjC) = (V � (BjA))(DjC).The next proposition shows that indeed, (CR5quant) is stronger thanits qualitative ounterpart (CR5):Proposition 5. Let V � = V � R = V � f(BjA)g denote a stritly V -onsistent revision of V by (BjA) suh that V �(A) 6= 0A. If V � ful�lls(CR5quant), then it also satis�es (CR5).The following theorem states that essentially, any revision of a on-ditional valuation funtion whih satis�es the quantitative prinipleof onditional preservation (as spei�ed by De�nition 7), is also inaordane with the qualitative priniple of onditional preservation(as desribed by (CR5)-(CR7)):
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34 G. Kern-IsbernerTheorem 4. Let V : L ! A be a onditional valuation funtion, andlet R = f(BjA)g; (BjA) 2 (L j L), onsist of only one onditional. LetV � = V �R denote a stritly V -onsistent revision of V by R ful�llingthe postulates (CR1) (suess) and (CR2) (stability).If V � satis�es the priniple of onditional preservation, then therevision also satis�es postulate (CR5quant) and the postulates (CR6)and (CR7); in partiular, it satis�es all of the postulates (CR5)-(CR7).Therefore, Theorem 4 identi�es the priniple of onditional preser-vation, as formalized in De�nition 7, as a fundamental devie to guidereasonable hanges in the onditional struture of knowledge.9. Conlusion and OutlookIn this paper, we presented axiomatizations of a priniple of ondi-tional preservation for belief revision operations in qualitative as wellas in (semi-)quantitative settings. In both ases, we dealt with revisionsof epistemi states by sets of onditional beliefs, thus studying beliefrevision in a most general framework. In partiular, the problem ofnesting onditionals an be addressed and dealt with properly in ourframework. As the indutive representation of a set of onditionals (ordefault rules, respetively) an be onsidered as a speial instane ofa revision problem, this paper also provides an approah for adequateknowledge indution.The ruial point in preserving onditional beliefs is to observeonditional interations, whih an be desribed by two relations, sub-onditionality and perpendiularity, in the qualitative framework, andare based on the algebrai notion of onditional strutures in the quan-titative framework. Sine subonditionality and perpendiularity analso be de�ned via onditional stutures, the theory of onditionalstrutures developed in this paper proves to be a most basi and power-ful tool for handling onditionals in knowledge representation and beliefrevision. We applied this theory to onditional valuation funtions asbasi representations of (semi-) quantitative epistemi states, overingprobability distributions, ranking funtions (ordinal onditional fun-tions), and possibility distributions. Therefore, the results presented inthis paper are of relevane for a wide range of revision problems invery di�erent environments. Moreover, apart from theoretial aspets,our approah also yields pratial shemata for setting up revisionand representation operations in probabilisti, possibilisti and ordinalframeworks.As the main result of this paper, we showed that the quantitativepriniple of onditional preservation implies the qualitative priniple
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The priniple of onditional preservation in belief revision 35in semi-quantitative settings. This not only loses the gap betweenqualitative and quantitative approahes to belief revision, but also maygive new impetus to lassial belief revision theory.This rih, formal framework we used to develop our axiomatizationof priniples of onditional preservation, with the basi notions of ondi-tional strutures and onditional indi�erene, an also be used to studybasially strutural approahes to default reasoning (f. (Kern-Isberner,2002b)). The onnetions to group theory whih might appear a bitstrange at �rst sight an most eÆiently be used to disover relevantonditional relationships in statistial data (Kern-Isberner, 2000). Theimplementations of these ideas as a omputer system, Condor2, arepart of our ongoing work; a desription of Condor as an abstrat statemahine an be found in (Beierle and Kern-Isberner, 2003).AppendixProofsProof of Theorem 1. Let A;B;C;D 2 L.Suppose C 6 B or C 6 B. Then (DjC) j= (Bj>). (CR3) and (CR5)now imply (C1) and (C2).(C3) and (C4) are diret onsequenes of (CR6) and (CR7) by usingthat (BjA) v (Bj>) and (BjA) v (Bj>), respetively, due to Lemma1. Proof of Proposition 1.Proof of (1): Let (DjC) v ( _BjA), where _B is one of B;B. ThenC 6 A, by Lemma 1. Let b! = !r11 : : : !rmm 2 ker �(DjC) \ bC, thus!k j= C for all 1 6 k 6 m, and hene (DjC)(!k) = ( _BjA)(!k) 2f0; 1g, using notation (2). So, (DjC)(!k) = 1 i� ( _BjA)(!k) = 1, and(DjC)(!k) = 0 i� ( _BjA)(!k) = 0. 1 = �(DjC)(b!) i� Pk:(DjC)(!k)=1 rk =Pk:(DjC)(!k)=0 rk = 0, due to (5). But this is equivalent toPk:(BjA)(!k)=1 rk = Pk:(BjA)(!k)=0 rk = 0, too, and therefore to�(BjA)(b!) = 1.Conversely, suppose C 6 A and ker �(DjC) \ bC = ker �(BjA) \ bC.The ase (DjC)+ = (DjC)� = ; is trivial, and also the ase j(DjC)+j+j(DjC)�j = 1 is easily dealt with: For instane, let (DjC)+ = f!0g and(DjC)� = ;. Then !0 j= A, so that one of !0 j= AB or !0 j= AB holds.Then learly (DjC) v (BjA) or (DjC) v (BjA).2 The development of Condor is supported by the DFG { Deutshe Forshungs-gemeinshaft within the Condor-projet under grant BE 1700/5-1.
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36 G. Kern-IsbernerSo, let us now assume j(DjC)+j > 1; j(DjC)�j > 1, and let !1 2(DjC)+; !2 2 (DjC)�. Then �(DjC)(!1!2 ) 6= 1, so !1!2 62 ker �(DjC) \ bCand hene also !1!2 62 ker �(BjA)\ bC. Therefore, (BjA)(!1) 6= (BjA)(!2),so we have !1 2 (BjA)+ and !2 2 (BjA)� or the other way round.On the other hand, for any !0i suh that (DjC)(!0i) = (DjC)(!i) (i 2f1; 2g), the presupposition ker �(DjC)\ bC = ker �(BjA) \ bC implies that(BjA)(!0i) = (BjA)(!i). So (DjC) v ( _BjA), as desired.Proof of (2): Let (DjC) j= (BjA), i.e. C 6 AB;AB or A, respe-tively. Thus �(BjA)(!) is the same for all ! j= C. Due to anellations,bC \ b
0 � ker �(BjA).Conversely, suppose (DjC) j= (BjA) does not hold. Then there are!1; !2 j= C suh that �(BjA)(!1) 6= �(BjA)(!2), i.e. �(BjA) �!1!2� 6= 1. So!1!2 2 bC \ b
0, but !1!2 =2 ker �(BjA).Proof of Lemma 3. Let !1; !2 2 
 suh that �R(!1) = �R(!2).If V (!1) = 0A then there is (BjA) 2 R with �(BjA)(!1) 6= 1 andV (!0) = 0A for all !0 with �(BjA)(!0) = �(BjA)(!). �R(!1) = �R(!2)implies in partiular �(BjA)(!1) = �(BjA)(!2), and hene V (!2) = 0A,too, by ondition (i) of De�nition 4(1).Now suppose V (!1); V (!2) 6= 0A, i.e. !1; !2 2 b
+. Moreover, wehave !1!2 2 b
0, so due to the presupposition �R(!1) = �R(!2), weobtain V (!1) = V (!2), by ondition (ii) of De�nition 4, (1) and (2).Proof of Proposition 2. Suppose V : L ! A is a onditional valuationfuntion whih is indi�erent with respet to R. Then, by de�nition,ondition (i) of De�nition 4 holds. Let b! 2 ker0 �R \ b
+, i.e. b! 2 b
0,and �R(b!) = 1 = �R(�
), where �
 is the empty word in b
. BeauseV is indi�erent with respet to R, we obtain V (b!) = V (�
) = 1, sob! 2 ker0 V .Conversely, let V : L ! A be a onditional valuation funtion suhthat ondition (i) of De�nition 4 holds and ker0 �R \ b
+ � ker0 V .Suppose �R(b!1) = �R(b!2) for b!1; b!2 2 b
+, b!1 �> b!2. Then �R(b!1 �b!�12 ) = 1, i.e. b!1 � b!�12 2 ker0 �R \ b
+ � ker0 V . This implies V (b!1 �b!�12 ) = 1, and thus V (b!1) = V (b!2). Therefore V is indi�erent withrespet to R.Proof of Theorem 2. We will give a detailed proof only for the aseof probability funtions. The proofs for ordinal onditional funtions
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The priniple of onditional preservation in belief revision 37and possibility distributions, respetively, follow the same idea and areindeed quite analogous.Let P be a probability funtion and R = f(B1jA1); : : : ; (BnjAn)gbe a set of onditionals. Suppose �rst that P is indi�erent with respetto R. Then P (Ai) 6= 0, due to the prerequisite in De�nition 4. Theequivalene relation �R indues a partitioning 
1; : : : ;
q of 
 so that,aording to Lemma 3, P (!) is onstant on eah equivalene lass.Assume P (!) = pj for ! 2 
j. Let !1; : : : ; !q 2 
 be a representativesystem of 
1; : : : ;
q.For the sake of simpliity of notation, we suppose that p1; : : : ; pq0 >0; pq0+1 = : : : = pq = 0 with q0 6 q.For all P (!j) = pj = 0; q0 < j 6 q, there is (Bij jAij ) 2 R suhthat �(Bij jAij )(!j) 6= 1 and P (!0) = 0 for all !0 with �(Bij jAij )(!0) =�(Bij jAij )(!j). If �(Bij jAij )(!j) = a+ij then set �+ij = 0 and ��ij = 1;if �(Bij jAij )(!j) = a�ij then set �+ij = 1 and ��ij = 0. Without lossof generality, assume that those onditionals (Bij jAij ) 2 R are theonditionals (BijAi), n0 < i 6 n.Let us now onsider the onstants pj 6= 0. Finding positive fators�0; �+1 ; ��1 ; : : : ; �+n0 ; ��n0 with 0 6= P (!) = �0 Q16i6n0!j=AiBi=1 �+i Q16i6n0!j=AiBi ��iamounts to solving the following system of q0 equations�0 Y16i6n0!j j=AiBi �+i Y16i6n0!j j=AiBi ��i = pj ; j = 1; : : : ; q0; (19)whih an be transformed into a linear equational system�~� = ~� (20)with ~� = (log�0; log�+1 ; log��1 ; : : : ; log�+n0 ; log��n0)T 2 R2n0+1, ~� =(log p1; : : : ; log pq0)T 2 Rq0 and a q0� (2n0 +1)-matrix � with elementsin f0,1g, suh that �j;1 = 1 for all j, �j;2i = 1 i� �i(!j) = a+i , �j;2i+1 = 1i� �i(!j) = a�i for 1 6 j 6 q0, 1 6 i 6 n0. Let ~�j, 1 6 j 6 q0, denote therows of �. The equational system (20) is solvable over R i� any lineardependenies (over the �eld of rationals, beause eah entry of � iseither 0 or 1) between these rows orrespond to relations between the�j = log pj , i.e. Pk rmk~�mk = Pl snl~�nl must imply Pk rmk�mk =Pl snl�nl with rationals rmk ; snl .Arranging and multiplying both sums appropriately, we mayassume Pk rmk~�mk = Pl snl~�nl with natural numbers rmk ; snl .By omparing the vetor omponents, we obtain Pk rmk�mk;2i =Pl snl�nl;2i; Pk rmk�mk ;2i+1 = Pl snl�nl;2i+1, 1 6 i 6 n0. These equa-tions imply Pk rmk = Pl snl , Pk:�i(!mk )=a+i rmk = Pl:�i(!nl )=a+i snl
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38 G. Kern-Isbernerand Pk:�i(!mk )=a�i rmk = Pl:�i(!nl )=a�i snl . Therefore the elementsQk !rmkmk and Ql !snlnl are �>-equivalent and R-equivalent by equations(5) and (6), and beause P is assumed to be indi�erent with respet toR, we obtainYk prmkmk =Yk P (!mk)rmk =Yl P (!nl)snl =Yl psnlnl :Applying the logarithm funtion now yieldsXk rmk�mk =Xl snl�nl ;as desired. Thus the equational system (20), or (19), respetively, issolvable, yielding a solution ~� = (�0; �+1 ; ��1 ; : : : ; �+n0 ; ��n0)T 2 R2n0+1.Setting �0 = exp(�0), �+i = exp(�+i ) and ��i = exp(��i ), 1 6 i 6 n0, weobtain P (!) = �0 Q16i6n0!j=AiBi �+i Q16i6n0!j=AiBi ��i for P (!) 6= 0. Taking now alsointo aount the onditionals (Bn0+1jAn0+1); : : : ; (BnjAn), belonging toP (!j) = 0, we thus have P (!) = �0 Q16i6n!j=AiBi �+i Q16i6n!j=AiBi ��i for all ! 2 
beause the non-zero fators belonging to those onditionals are 1.To prove the onverse assume P (!) = �0 Q16i6n!j=AiBi �+i Q16i6n!j=AiBi ��i is aprobability distribution with �0; �+1 ; ��1 ; : : : ; �+n ; ��n 2 R+ , �0 > 0. Wehave to show the indi�erene of P with respet to R.If P (!) = 0 then there is (BijAi) 2 R suh that ! j= AiBi and�+i = 0, or ! j= AiBi and ��i = 0. So, in any ase �i(!) 6= 1 andP (!0) = 0 for any !0 2 
 with �i(!0) = �i(!). This shows ondition (i)of De�nition 4.Now onsider two R-equivalent elementsb!1 = m1Yk=1!rkk and b!2 = m2Yl=1!sll 2 b
+with idential onditional strutures�R(b!1) = Y16k6m1 �R(!k)rk = Y16l6m2 �R(�l)sl = �R(b!2)whih are also �>-equivalent. Then Pk rmk = Pl snl , Pk:�i(!k)=a+i rk =Pl:�i(�l)=a+i sl and Pk:�i(!k)=a�i rk = Pl:�i(�l)=a�i sl hold for all i = 1; : : : ; n
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The priniple of onditional preservation in belief revision 39aording to equation (5). Cheking ondition (ii) of De�nition 4 is nowan easy alulation:P (b!1) = P (!1)r1 : : : P (!m1)rm1 == �Pk rmk0 Y16i6n ��+i � Pk:!kj=AiBi rk Y16i6n���i � Pk:!kj=AiBi rk= �Pl snl0 Y16i6n ��+i � Pl:�lj=AiBi sl Y16i6n���i � Pl:�lj=AiBi sl= P (�1)s1 : : : P (�m2)sm2 = P (b!2):Proof of Proposition 3. The proof of this proposition is tedious andtehnial, but straightforward. We will exemplify it for the ase thatX;Y;Z eah ontain just one (binary) variable: X = fag, Y = fbg,and Z = fg. The orresponding set R then onsists of the followingeight onditionals: R = f (aj); (aj); (bj); (bj);(aj); (aj); (bj); (bj)Let P be indi�erent with respet to R. We have to show that a and bare onditionally independent in P , given , i.e. P (abj _) = P (aj _)P (bj _),_ 2 f; g, whih is equivalent to P (ab _)P (ab _)P (ab _)P (ab _) = 1. Let a�1 ;a�2 ;a�3 ;a�4be the group generators of FR assoiated with (aj _); (aj _); (bj _); (bj _),respetively. Then�R(ab _ � ab _ab _ � ab _) = a+1 a�2 a+3 a�4 � a�1 a+2 a�3 a+4a+1 a�2 a�3 a+4 � a�1 a+2 a+3 a�4 = 1;and due to the indi�erene of P with respet to R, we also haveP (ab _)P (ab _)P (ab _)P (ab _) = 1.Proof of Proposition 4. Let V � = V �R = V �(BjA) denote a revisionof the onditional valuation funtion V : L ! A by R = f(BjA)g, andassume V �(A) 6= 0A.V � satis�es the priniple of onditional preservation with respet toV and R i� V � is indi�erent with respet to V and R. Aording toDe�nition 7, this means in partiular that V � is V -onsistent, and(V �=V )(!1) = (V �=V )(!2) if (BjA)(!1) = (BjA)(!2) (21)
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40 G. Kern-Isbernerfor V (!1); V (!2) 6= 0A. Due to the prerequisite V �(A) 6= 0A and theV -onsisteny of V �, we have V (A) 6= 0A, too, so V (AB) 6= 0A orV (AB) 6= 0A. If V (AB) = 0A, then V �(AB) = 0A and V (AB); V �(AB)6= 0A. In this ase, there is !� 2 Mod (AB) suh that V (!�); V �(!�) 6=0A; set �+ := 1A; �� := (V �=V )(!�). If V (AB) = 0A, then ana-logially, �� := 1A and �+ := (V �=V )(!+) for some suitable !+ 2Mod (AB). If both V (AB); V (AB) 6= 0A, then hoose worlds !+ 2Mod (AB); !� 2 Mod (AB) suh that V (!+); V (!�) 6= 0A and set�+ := (V �=V )(!+); �� := (V �=V )(!�). Furthermore, we have V �(A) =0A i� V (A) = 0A; in this ase, set �0 := 1A. Otherwise, selet !0 2Mod (A) with V (!0); V �(!0) 6= 0A and set �0 := (V �=V )(!0). Due toequation (21), we thus haveV �(!) = 8<: �+�V (!) if ! j= AB���V (!) if ! j= AB�0 �V (!) if ! j= A (22)with (at least) �0 6= 0A.Conversely, any revision V � of type (22) is V -onsistent and satis�esDe�nition 6. Let b! = !r11 � : : : � !rmm 2 b
�+; then�(BjA)(b!) = (a+)Pk:!kj=AB rk(a�)Pk:!kj=AB rk ;and (V �=V )(b!) = (�+)Pk:!kj=AB rk(��)Pk:!kj=AB rk(�0)Pk:!kj=A rk :Thus we see that V � of type (22) is indi�erent with respet to V and(BjA). Furthermore, by the remarks above, it is lear that if V � isstritly V -onsistent, then all onstants �0; �+; �� an be hosen 6= 0A.This ompletes the proof.Proof of Lemma 4. Suppose the revision V � = V � (BjA) is stritlyV -onsistent and satis�es (CR5quant). Let (DjC) be a onditional suhthat (DjC) j= (BjA) and with V (C) 6= 0A. Sine V � = V � (BjA) isstritly V -onsistent, we also have V �(C) 6= 0A, and V (C _D) = 0Ai� V �(C _D) = 0A, _D 2 fD;Dg. If V (CD) = V �(CD) = 0A, thenV (DjC) = V �(DjC) = 0A; if V (CD) = V �(CD) = 0A, then V (DjC) =V �(DjC) = 1A.So assume now V (CD); V (CD) 6= 0A. Then, by (CR5quant),V (CD)� V (CD)�1 = V �(CD)� V �(CD)�1;and onsequently,V (DjC) = V (CD)� V (C)�1
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The priniple of onditional preservation in belief revision 41= V (CD)� (V (CD)� V (CD))�1= V (CD)� V (CD)�1 � (1A � V (CD)� V (CD)�1)�1= (1A � V �(CD)� V �(CD)�1)�1= V �(CD)� V �(CD)�1 � (1A � V �(CD)� V �(CD)�1)�1= V �(CD)� (V �(CD)� V �(CD))�1= V �(CD)� V �(C)�1= V �(DjC):Proof of Proposition 5. Let V � = V � (BjA) denote a stritly V -onsistent revision of V by (BjA) satisfying V �(A) 6= 0A and (CR5quant).Suppose (DjC) j= (BjA). If V (CD) = V �(CD) = 0A, then neither Vnor V � aepts (DjC). So let V (CD); V �(CD) 6= 0A. Then (CR5quant)implies V (CD)� V (CD)�1 = V �(CD)� V �(CD)�1: (23)Aording to Setion 3, we haveV j= (DjC) , V (CD) <A V (CD), V (CD)� V (CD)�1 <A 1A, V �(CD)� V �(CD)�1 <A 1A (due to (23)), V �(CD) <A V �(CD), V � j= (DjC):Thus (CR5) holds.Proof of Theorem 4. Let V be a onditional valuation funtion, andlet V � = V � f(BjA)g denote a stritly V -onsistent revision of V by(BjA) ful�lling the postulates (CR1) (suess) and (CR2) (stability).So in partiular, we have V �(A) 6= 0A, and by the strit V -onsistenyof the revision, we also have V (A) 6= 0A.If V � satis�es the priniple of onditional preservation, then, byProposition 4, there exist onstants �0; �+; �� 6= 0A in A suh thatV �(!) = 8<: �+�V (!) if ! j= AB���V (!) if ! j= AB�0 �V (!) if ! j= ATo prove (CR5quant), suppose that (DjC) j= (BjA) and V �(CD) 6=0A. So Mod (C) is ompletely inluded in one of Mod (AB);Mod (AB);
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42 G. Kern-IsbernerMod (A). Then for a suitable � 2 f�0; �+; ��g, we obtainV �(CD)� V �(CD)�1 = 0B� X!j=CD�V �(!)1CA�0� X!j=CD�V �(!)1A�1= 0B� X!j=CD���V (!)1CA�0� X!j=CD���V (!)1A�1= 0B��� X!j=CD�V (!)1CA�0��� X!j=CD�V (!)1A�1= �� V (CD)� ��1 � V (CD)�1= V (CD)� V (CD)�1This shows (CR5quant).Suppose now (DjC) v (BjA), i.e. CD 6 AB and CD 6 AB. Then,as in the alulations above, we obtain V �(AB) = �+�V (AB); V �(AB)= ���V (AB) and V �(CD) = �+�V (CD); V �(CD) = ���V (CD).Furthermore, V (CD) 6 V (AB) and V (CD) 6 V (AB).By prerequisite, V � j= (BjA), thus V �(AB) <A V �(AB). If V j=(BjA), then, by (CR2), V = V �, and (CR6), (CR7) are trivially ful-�lled.So assume now that V 6j= (BjA), that is, V (AB) 6A V (AB). FromV � j= (BjA), we have �� � V (AB) <A �+ � V (AB) whih implies�� <A �+. If V j= (DjC), this yieldsV �(CD) = ���V (CD) <A �+�V (CD) <A �+�V (CD) = V �(CD);hene V � j= (DjC). This shows (CR6).To prove (CR7), suppose (DjC) v (BjA), V 6j= (BjA) and V � j=(DjC), i.e. V �(CD) <A V �(CD). Then �+�V (CD) <A ���V (CD),and onsequently, by using �� <A �+, V (CD) <A V (CD), whihmeans V j= (DjC). This shows (CR7).ReferenesAlhourr�on, C., P. G�ardenfors, and P. Makinson: 1985, `On the logi of theoryhange: Partial meet ontration and revision funtions'. Journal of SymboliLogi 50(2), 510{530.Beierle, C. and G. Kern-Isberner: 2003, `Modelling Conditional Knowledge Disoveryand Belief Revision by Abstrat State Mahines'. In: E. Boerger, A. Gargantini,
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