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Abstract. Although the crucial role of if-then-conditionals for the dynamics of
knowledge has been known for several decades, they do not seem to fit well in
the framework of classical belief revision theory. In particular, the propositional
paradigm of minimal change guiding the AGM-postulates of belief revision proved
to be inadequate for preserving conditional beliefs under revision.

In this paper, we present a thorough axiomatization of a principle of conditional
preservation in a very general framework, considering the revision of epistemic states
by sets of conditionals. This axiomatization is based on a non-standard approach to
conditionals, which focuses on their dynamic aspects, and uses the newly introduced
notion of conditional valuation functions as representations of epistemic states. In
this way, probabilistic revision as well as possibilistic revision and the revision of
ranking functions can all be dealt with within one framework. Moreover, we show
that our approach can also be applied in a merely qualitative environment, extending
AGM-style revision to properly handling conditional beliefs.

1. Introduction

Knowledge is subject to change, either due to changes in the real world,
or by obtaining new findings about the domain under consideration.
New information may simply extend the prior knowledge base, or be in
conflict with it, in which case its incorporation makes complex revision
processes necessary. In any case, the modification of knowledge bases
brought about by learning new information may drastically alter the
response behavior of knowledge systems to queries; e.g. answers that
were meaningful in the context of the prior knowledge base, might
become irrelevant or even false in the light of new information.

Belief revision, the theory of dynamics of knowledge, has been mainly
concerned with propositional beliefs for a long time. The most ba-
sic approach here is the AGM-theory presented in the seminal paper
(Alchourrén et al., 1985) as a set of postulates outlining appropriate
revision mechanisms in a propositional logical environment. Condition-
als (BJA), to be read as “If A then B”, seem to play an ambiva-
lent role in belief revision: Although their dynamic power as revision
policies has been appreciated (see e.g. (Ramsey, 1950; Boutilier and
Goldszmidt, 1993)), Géardenfors’ triviality result (Géardenfors, 1988)
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describes an obvious incompatibility between conditionals and classical
AGM-approaches. This incompatibility, however, can be resolved by
leaving the narrow framework of classical logic — first, conditional be-
liefs must be understood as fundamentally different from propositional
beliefs (cf. (Levi, 1988)) and hence be treated differently, and second,
instead of focusing on belief sets (i.e. deductively closed propositional
theories) containing all certain beliefs, one should consider belief states
or epistemic states, respectively, as complex representations of cognitive
states of intelligent agents. Although the close connections between
belief revision and conditionals, on the one side, and between belief
revision and epistemic orderings, on the other side, has been apparent
for many years (cf. (Ramsey, 1950; Katsuno and Mendelzon, 1991b)), it
was only quite recently that first approaches extending the AGM-theory
to that broader framework have been brought forth: Darwiche and
Pearl (Darwiche and Pearl, 1997) reformulated the AGM-postulates
for revising epistemic states by propositional beliefs and, moreover,
they formulated four new postulates dealing explicitly with conditional
beliefs. Instead of following the minimal change paradigm which guides
propositional AGM-revision, Darwiche and Pearl’s postulates vaguely
outline how to preserve conditional beliefs under propositional revi-
sion. In (Kern-Isberner, 1999a), we then presented a complete set of
axioms for revising epistemic states by conditional beliefs, extending
propositional AGM-revision and covering the postulates of Darwiche
and Pearl.

Instead of only regarding the results of belief change, as in AGM-
theory, studying belief revision in the framework of epistemic states
and conditionals means to observe the very process of belief dynamics.
Perhaps the most important consequence of this is that, in overcoming
classical borders and peculiarities, it opens up the view to a most gen-
eral framework which unifies belief revision, nonmonotonic reasoning
and inductive representation of complex, conditional knowledge. To
be more precise, belief revision and nonmonotonic reasoning can be
linked via conditionals in epistemic states in the following way: A
nonmonotonically implies B, based on the knowledge given by the
epistemic state U (A B), iff the conditional (B|A) is accepted in
U (U = (B|A)), iff revising ¥ by A yields belief in B (¥ % A = B).
Note that here background knowledge represented by ¥ can be taken
explicitly into account, in contrast to the purely propositional view in
(Makinson and Gérdenfors, 1991). Furthermore, inductive knowledge
representation can be understood as revising a uniform belief state,
expressing complete ignorance, by the (conditional) knowledge to be
represented.
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The principle of conditional preservation in belief revision 3

For these reasons, revising epistemic states by conditional beliefs
should not be considered as an artifact, but rather be understood as
one of the most fundamental and powerful processes in formal knowl-
edge management. A thorough axiomatization of an appropriate prin-
ciple of conditional preservation in the sense of (Darwiche and Pearl,
1997) and (Kern-Isberner, 1999a) will be able to serve as an important
guideline for handling those revisions. To this end, we even go one
step further: We leave the purely qualitative framework and enter into
semi-quantitative (i.e. ordinal) and quantitative (i.e. probabilistic) en-
vironments, finding once again that more complex surroundings provide
clearer, unifying views. In this paper, conditional valuation functions
are introduced as quite general representation of epistemic states. Or-
dinal conditional functions, possibility distributions and probability
functions are special instances of conditional valuation functions. We
then formalize a most general principle of conditional preservation,
dealing with the revision of conditional valuation functions by sets of
(quantified) conditional beliefs. This includes any type of belief revision
considered to date and generalizes the classical AGM-framework in
three respects:

— observing conditional beliefs in the prior epistemic state
— handling revision by conditional beliefs
— handling simultaneous revision by a set of conditional beliefs

This principle to be developed here is inspired by properties of optimal
information-theoretical methods, and hence can be regarded as a most
appropriate paradigm to deal with conditional information. As ordinal
epistemic states (such as ordinal conditional functions and possibility
distributions) also allow a purely qualitative view, we investigate the
consequences of this quantitative principle of conditional preservation
in a qualitative setting. We show that our quantitative principle of con-
ditional preservation implies the validity of the axioms for conditional
belief revision of (Kern-Isberner, 1999a) and hence also provides a high-
level formalization of Darwiche and Pearl’s ideas (Darwiche and Pearl,
1997).

The principle of conditional preservation to be axiomatized in this
paper is based on a non-standard theory of conditionals which captures
the dynamic effects of establishing conditional relationships within epis-
temic states. Although the non-classical nature of conditionals has
been widely recognized and emphasized, classical logical views have
influenced (and limited) the handling of conditionals: Interactions of
conditionals have been reduced to logical interactions, checking for
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logical inconsistencies (cf. e.g. (Goldszmidt and Pearl, 1996)), and one
of the principal assumptions for conditional events is that their logic
should extend classical logic (cf. e.g. (Dubois and Prade, 1991; Walker,
1994)). One of the main reasons for basing conditional and revision
theories on classical logical approaches is to use the clear structure of
classical logic as a guideline, in order not to get lost under revision.
Indeed, the interactions of conditionals can become very complex, and
an adequate structural means for handling sets of conditionals is ur-
gently needed. Here we use the algebraic means of conditional structures
to make interactions of conditionals transparent and computable — a
crucial problem when revising by sets of conditionals.

This framework we consider conditionals in not only concerns belief
revision, nonmonotonic reasoning and inductive knowledge representa-
tion, but also helps unifying qualitative and quantitative approaches.
We clearly differentiate between numerical and structural aspects of
conditionals, by first building up a formal, algebraic frame for condi-
tionals and then linking this frame to numerical values by using the idea
of conditional indifference. Conditional indifference proves to be more
fundamental than the notion of conditional independence and is formal-
ized in terms of conditionals. It is just this idea of separating structures
from numbers that provides a solid basic theory of conditionals with
applications in (apparently) very different domains.

This paper is organized as follows: Section 2 contains some formal
preliminaries, and here we briefly explain the different types of epis-
temic states we are going to consider. In Section 3, conditional valuation
functions are introduced as basic representations of (semi-)quantitative
epistemic states. In Section 4, we present a new, dynamic view on
conditionals; in particular, we define the notions of subconditional and
of perpendicular conditionals, which are crucial for formalizing a qual-
itative principle of conditional preservation in Section 5. Section 6
prepares the axiomatization of the quantitative principle of conditional
preservation in Section 7 by explaining conditional structures and con-
ditional indifference. Finally, Section 8 shows that both principles are
compatible. Section 9 concludes with highlighting the main results of
this paper and pointing out further applications and ongoing work.

This paper is an elaboration and extension of ideas presented in
(Kern-Isberner, 2001c) and (Kern-Isberner, 2002a). All proofs can be
found in the Appendix.
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The principle of conditional preservation in belief revision 5
2. Conditionals, epistemic states and belief revision

We start with a finitely generated propositional language £, with atoms
a,b,c, ..., and with formulas A, B, C,.... For conciseness of notation,
we will omit the logical and-connector, writing AB instead of A A B,
and barring formulas will indicate negation, i.e. A means —A. Let Q
denote the set of possible worlds over £; €2 will be taken here simply as
the set of all propositional interpretations over £. w = A means that
the propositional formula A € £ holds in the possible world w € €.

By introducing a new binary operator |, we obtain the set (£ | £) =
{(B|A) | A,B € L} of conditionals over L. (B|A) formalizes “if A
then B” and establishes a plausible, probable, possible etc connection
between the antecedent A and the consequent B. Here, conditionals
are supposed not to be nested, that is, antecedent and consequent of a
conditional will be propositional formulas.

Conditionals are usually considered within richer structures such
as epistemic states. Besides certain knowledge, epistemic states also
allow the representation of preferences, beliefs, assumptions etc of an
intelligent agent. In a purely qualitative setting, preferences are as-
sumed to be given by a pre-ordering on L (reflexive and transitive,
but not symmetrical, and mostly induced by pre-orderings on worlds).
In a (semi-)quantitative setting, also degrees of plausibility, probabil-
ity, possibility, necessity etc can be expressed. Here, most widely used
representations of epistemic states are

— probability functions (or probability distributions) P : Q — [0,1]
with
Y weq P(w) = 1. The probability of a formula A € L is given
by P(A) = 3,4 P(w). Note that, since £ is finitely generated, O
is finite, too, and we only need additivity instead of o-additivity.
Conditionals are interpreted via conditional probability, so we have

P(B|A) = 58 for P(4) > 0,and P = (B|A) [1] iff P(B|A) = 2

(z € [0,1)).

— ordinal conditional functions, OCFs, (also called ranking func-
tions) Kk : © — NU {oo} with k71(0) # 0, expressing degrees
of plausibility of propositional formulas A by specifying degrees
of disbeliefs of their negations A (cf. (Spohn, 1988)). More for-
mally, we have k(A) := min{k(w) | w = A}, so that k(4 V
B) = min{x(A),k(B)}. Hence, due to x~'(0) # 0, at least one
of k(A),k(A) must be 0. A proposition A is believed if x(A) > 0
(which implies particularly x(A) = 0). Degrees of plausibility can
also be assigned to conditionals by setting k(B|A) = k(AB)—k(A).
A conditional (B|A) is accepted in the epistemic state represented
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by k, or k satisfies (B|A), written as k | (B|A), iff K(AB) <
k(AB), i.e. iff AB is more plausible than AB. We can also specify
a numerical degree of plausibility of a conditional by defining x =
(B|A) [n] iff K(AB) +n < k(AB) (n € N). Note that x = (B|A) iff
k = (B|A)[0]. OCF’s are the qualitative counterpart of probability
distributions. Their plausibility degrees may be taken as order-
of-magnitude abstractions of probabilities (cf. (Goldszmidt et al.,
1993; Goldszmidt and Pearl, 1996)).

— possibility distributions m : Q@ — [0,1] with max,eqm(w) = 1.
Each possibility distribution induces a possibility measure on L
via 7(A) := max, 4 m(w). Since the correspondence between pos-
sibility distributions and possibility measures is straightforward
and one-to-one, we will not distinguish between them. A necessity
measure Ny can also be based on 7 by setting N (A) := 1 —n(A).
Possibility measures and necessity measures are dual, so it is suffi-
cient to know only one of them. Furthermore, a possibility degree
can also be assigned to a conditional (B|A) by setting w(B|A) =
%, in full analogy to Bayesian conditioning in probability the-
ory. Note that we also make use of the product operation in [0, 1].
That means, that our approach is not only based upon comparing
numbers, but also takes relations between numbers into account.
These numerical relationships encode important information about
the (relative) strength of conditionals which proves to be particu-
larly crucial for representation and revision tasks. This amounts to
carrying over Spohn’s argumentation in (Spohn, 1988) to a possi-
bilistic framework (see also (Kern-Isberner, 1999b) and (Benferhat
et al., 1997)).

A conditional (B|A) is accepted in w, m = (B|A), iff 7(AB) >
7(AB) (which is equivalent to m(B|A) < 1 and N.(B|A) =1 —
7(B|A) > 0) (cf. (Dubois and Prade, 1994)). So, in accordance
with intuition, a conditional (B|A) is accepted in the epistemic
state modeled by a possibility distribution, if its confirmation (AB)
is considered to be more possible (or plausible) than its refutation
(AB). This definition can be generalized by saying that 7 accepts
(B|A) with degree x € (0,1], m |= (B|A) [z], iff N;(B|A) > z iff
7(AB) < (1 — 2)7(AB).

Possibility distributions are similar to ordinal conditional functions
(cf. (Benferhat et al., 1992)), but realize degrees of possibility (or
plausibility) in a non-discrete, compact domain. They can be taken
as fuzzy representations of epistemic states (cf. (Kruse et al., 1991;
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The principle of conditional preservation in belief revision 7

Dubois et al., 1994)), and are closely related to belief functions (cf.
(Benferhat et al., 2000)).

With each epistemic state ¥ (either qualitative or (semi-)quantita-
tive) one can associate the set Bel(V) = {A € L | ¥ |= A} of those
propositional beliefs the agent accepts as most plausible. Bel(¥) is
supposed to consist of formulas (or to be a formula, respectively) of £
and hence is subject to classical belief revision theory which investigates
the changing of propositional beliefs when new information becomes
evident. Here, most important work has been done by Alchourron,
Gérdenfors and Makinson in presenting in (Alchourrén et al., 1985) a
catalogue of postulates (the so-called AGM-postulates) which a well-
behaved revision operator * should obey. The revision of epistemic
states, however, cannot be reduced to propositional revision, for two
reasons: First, two different epistemic states ¥y, W9 may have equiv-
alent belief sets Bel(V,) = Bel(¥3). Thus an epistemic state is not
described uniquely by its belief set, and revising ¥; and ¥, by new
(propositional) information A may result in different revised belief sets
Bel(VUy x A) # Bel(¥4 x A). Second, epistemic states may represent
different kinds of beliefs, and beliefs on different levels of acceptance.
So “information” in the context of epistemic states must be understood
as a much more complex concept than provided by the propositional
framework. Incorporating new information in an epistemic state means,
for instance, to change degrees of plausibility, or to establish a new
conditional relationship. Nevertheless, the revision of ¥ by A € L
also yields a revised belief set Bel(V x A) C L, and of course, this
revision should obey the standards of the AGM theory. So, Darwiche
and Pearl have reformulated the AGM-postulates for belief revision so

as to comply with the framework of epistemic states (cf. (Darwiche and
Pearl, 1997)):

Suppose ¥, ¥, ¥, to be epistemic states and A, A, Ay, B € L;

(R*1) A is believed in U % A: Bel (U x A) |= A.

(R*2) If Bel(¥) A A is satisfiable, then Bel (U x A) = Bel (V) A A.

(R*3) If A is satisfiable, then Bel (¥ x A) is also satisfiable.

(R*4) If ¥y = ¥y and Ay = Ay, then Bel (¥ x Ay) = Bel (Vg x Ay).

(R*5) Bel(¥ x A) A B implies Bel (U (A A B)).

(R*6) If Bel(¥ % A) A B is satisfiable then Bel (¥ x (A A B)) implies
Bel (U % A) A B.
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Epistemic states, conditionals and revision are related by the so-
called Ramsey test, according to which a conditional (B|A) is accepted
in an epistemic state U, iff revising ¥ by A yields belief in B:

U = (B|A) iff U+ Al B (1)

In this paper, we will consider quantified as well as unquantified
(structural) conditionals, where the quantifications are taken from the
proper domain ([0,1] or NU {00}, respectively). If R* = {(B1|A41) [x1],
.y (Bp|Ap) [zn]} is a set of quantified conditionals, then R = {(B1]A1),
..., (By|Ap)} will be its structural counterpart.

3. Conditional valuation functions

What is common to probability functions, ordinal conditional func-
tions, and possibility measures is, that they make use of two different
operations to handle both purely propositional information and condi-
tionals adequately. Therefore, we will introduce the abstract notion of
a conditional valuation function to reveal more clearly and uniformly
the way in which (conditional) knowledge may be represented and
treated within epistemic states. As an adequate structure, we assume
an algebra A = (A4, <4.®,®,04,14) of real numbers to be equipped
with two operations, & and ©, such that

— (A, ®) is an associative and commutative structure with neutral
element 0%4;

— (A - {04}, ®) is a commutative group with neutral element 14;

— the rule of distributivity holds, i.e. z © (y® 2) = (x Qy) ® (z ©® 2)
for x,y, 2z € A;

— A is totally ordered by <4 with minimum 0 and maximum 14,
such that <4 is compatible with & and ® in that x <4 y implies
bothz@z<yy®zandz© 2 <y @2z forall z,y,z € A.

So A is close to be an ordered field, except that the elements of A need
not be invertible with respect to @.

Definition 1. (conditional valuation function) A conditional valuation
function is a (partial) function V : LU (L | £) — A from the sets of
formulas and conditionals into the algebra A satisfying the following
conditions:

1. V| is total such that V(L) = 04, V(T) = 14, and for exclusive
formulas A, B (i.e. AB = 1), it holds that V(AVB) = V(A)®V (B);
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The principle of conditional preservation in belief revision 9
2. for each conditional (B|A) € (£ | £) with V(A) # 04,
V(B|A) =V (AB) o V(A)™!

where V(A4) ! is the ®-inverse element of V(A) in A; for V(A) =
04, V(B|A) is undefined.

Conditional valuation functions assign degrees of certainty, plau-
sibility, possibility etc to propositional formulas and to conditionals.
Making use of two operations, they provide a framework for considering
and treating conditional knowledge as fundamentally different from
propositional knowledge, a point that is stressed by various authors
and that seems to be indispensable for representing epistemic states
adequately (cf. (Darwiche and Pearl, 1997)). There is, however, a close
relationship between propositions and conditionals — propositions may
be considered as conditionals of a degenerate form by identifying A with
(A|T): Indeed, we have V(A|T) = V(4) ® (1V)~! = V(A). Therefore,
conditionals should be regarded as extending propositional knowledge
by a new dimension.

For each conditional valuation function V', we have

V() =3 Vw)

w=A

so V is determined uniquely by its values on interpretations or on
possible worlds, respectively, and we will also write V' : Q@ — A. Note
that, due to 14 = V(T) = £,V (w), all V(w) must “sum up”
to 14, In general, for all A € A, we have 04 <4 V(A) <4 1A Tt
is easy to see that any conditional valuation function V' : £ — A is a
plausibility measure, in the sense of Friedman and Halpern, ((Friedman
and Halpern, 1996; Freund, 1998)), that is, it fulfills V(L) <4 V(A)
for all A € £, and A = B implies V(A) <4 V(B).

A notion which is well-known from probability theory may be gen-
eralized for conditional valuation functions: A conditional valuation
function V is said to be uniform if V(w) = V(&) for all worlds w,w’,
i.e. if it assigns the same degree of plausibility to each world. Let V,,
denote the uniform conditional valuation function.

The following examples show that the newly introduced notion of
a conditional valuation function indeed covers probability functions,
ordinal conditional functions and possibility distributions:

Ezample 1. Each probability function P may be seen as a condi-
tional valuation function P : Q — (R*, <, +,+,0,1), where R denotes
the set of all non-negative real numbers and < is its usual order-
ing. Conversely, each conditional valuation function V' : Q — (RT, <
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,+,+,0,1) is a probability function. The uniform probability function is

Similarly, each ordinal conditional function k is a conditional val-
uation function & : Q@ — (Z U {oo}, >, min, +, 00, 0), where Z denotes
the set of all integers, and any possibility measure w can be regarded
as a conditional valuation function 7 : Q — (R*, <, max,-,0,1). The

uniform ordinal conditional and possibility functions are k, (w) = 0 and
mu(w) =1, all w € Q, respectively.

Conditional valuation functions not only provide an abstract means
to quantify epistemological attitudes. Their extended ranges allow us
to calculate and compare arbitrary proportions of values attached to
single worlds. This will prove quite useful to handle complex conditional
interrelationships.

By means of a conditional valuation function V' : £ — A, we are able
to validate propositional as well as conditional beliefs. We may say, for
instance, that proposition A is believed in V, V = A, iff V(A) = 14,
or that the conditional (B|A) is valid or accepted in V, V = (B|A),
iff V(A) # 04 and V(AB) <4 V(AB), i.e. iff AB is more plausible
(probable, possible etc.) than AB. In this way, conditional valuation
functions are apt to represent epistemic states.

Note that there is a difference between taking a proposition A for
granted or to be true, which would be properly expressed by V(A) =
14, and considering A to be plausible, which amounts to stating V(A4) > 4
V (A). It is only from the second point of view, that propositions, A, can
be consistently identified with degenerate conditionals, (A|T). Since
belief revision is mostly concerned with revising plausible beliefs by
new plausible beliefs, conditionals offer a most adequate framework to
study revision methods in, and conditional valuation functions allow
us to distinguish between truth and plausibility.

4. A dynamic view on conditionals

As it is well-known, a conditional (B|A) is an object of a three-valued
nature, partitioning the set of worlds {2 in three parts: those worlds
satisfying AB and thus verifying the conditional, those worlds satisfy-
ing AB, thus falsifying the conditional, and those worlds not fulfilling
the premise A and so which the conditional may not be applied to at
all. The following representation of (B|A) as a generalized indicator
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function goes back to de Finetti (DeFinetti, 1974):

1 : wEAB
(BlA)(w) = { 0 : w=AB (2)
u o wEA

where u stands for unknown or indeterminate. Two conditionals are
considered equivalent iff the corresponding indicator functions are iden-
tical, i.e. (B|A) = (D|C) iff A= C and AB = CD (see e.g. (Calabrese,
1991)). Usually, equation (2) is applied in a static way, namely, to check
if possible worlds verify, or falsify a conditional, or are simply neutral
with respect to it. In the context of inductive knowledge representation
or belief revision, however, when conditionals are to be learned, it also
provides a dynamic view on how to incorporate conditional dependen-
cies adequately in a belief state (which might be the uniform one): The
conditional (B|A) distinguishes clearly between verifying, falsifying and
neutral worlds, but it does not distinguish between worlds within one
and the same of these partitioning sets. So, in order to establish (B|A),
if demanded with a suitable degree of certainty, the plausibilities or
probabilities of worlds have to be shifted uniformly, depending on to
which of the partitioning sets the worlds belong. In this sense, con-
ditionals have effects on possible worlds, taking an active role (like
agents) in the revision (or representation) process.

To make things more precise, we define the verifying set (B|A)T :=
Mod (AB), and the falsifying set (B|A)~ := Mod (AB) of a conditional
(B|A). Mod (A) is called the neutral set of (B|A). Each of these sets may
be empty. If (B|A)*T = (), (B|A) is called contradictory, if (B|A)~ = 0,
(BJA) is called tautological, and if Mod (A) = (), i.e. A is tautological,
(BJA) is called a fact. Verifying and falsifying set clearly identify a
conditional up to equivalence. Note that, although (B|A) and (B|A)
induce the same partitioning on €2, their verifying and falsifying sets
are different, in that (B|A)T = (B|A)~ and (B|A)~ = (BJ|A)™.

Ezample 2. (A]A) is a contradictory conditional, (4| A) is tautologi-
cal and (A|T) is a fact.

As usual, propositional formulas A € £ may be identified with
factual conditionals (A|T). Hence, the results to be presented can be
related to the theory of propositional revision, as will be done in Section
5. It should be emphasized, however, that in our framework, (A|T)
should be understood as “A is plausible” or “A is believed”, whereas A
actually means “A is true”. Hence a clear distinction between proposi-
tions as logical statements and propositions as epistemic statements is
possible, and is indeed respected in our framework (see (Kern-Isberner,
2001b)).
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Next, we introduce the notion of a subconditional:

Definition 2. (subconditional, ) A conditional (D|C) is called a sub-
conditional of (B|A), (D|C) C (BJA), iff (D|C)" C (BJA)" and (D|C)~
c (BlA)™.

The C-relation may be expressed using the standard ordering <
between propositional formulas: A < B iff A = B, i.e. iff Mod(A) C
Mod (B):

Lemma 1. Let (B|A),(D|C) € (£ | L). Then (D|C) is a subcondi-
tional of (B|A), (D|C) C (BJA), iff CD < AB and CD < AB; in
particular, if (D|C) C (B|A) then C' < A.

Thus (D|C) C (B|A) if the effect of the former conditional on worlds
is in line with the latter one, but (D|C') possibly applies to fewer worlds.
Furthermore, the equivalence relation for conditionals can also be taken
as to be induced by C:

Lemma 2. Two conditionals (B|A) and (D|C) are equivalent, (B|A) =
(D[C), iff (B|A) E (D|C) and (D|C) E (B|A).

We will now introduce another relation between conditionals that is
quite opposite to the subconditional relation and so describes another
extreme of possible conditional interaction:

Definition 3. (perpendicular conditionals, 1) Let (B|A), (D|C) €
(L] L) be two conditionals. (D|C) is called perpendicular to (B|A),
(D|C) AL (BJ|A), iff either Mod(C) C (B|A)*, or Mod(C) C (B|A) ",
or Mod (C) C Mod (A), i.e. iff either C < AB, or C < AB, or C < A.

The perpendicularity relation symbolizes a kind of irrelevance of
one conditional for another one. We have (D|C) AL (BJA) if Mod (C),
i.e. the range of application of the conditional (D|C), is completely
contained in exactly one of the sets (B|A)*, (B|A)~ or Mod (A). So for
all worlds which (D|C) may be applied to, (B|A) has the same effect
and yields no further partitioning. Note, that __ is not a symmetric
relation; (D|C) AL (B|A) rather expresses that (D|C) is not affected by
(B|A), or, that (B|A) is irrelevant for (D|C).

Ezample 3. Suppose a, b, c are atoms of the language £. Subcondi-
tionals of (b|a) are typically obtained by strengthening the antecedent:
(blac) and (bla€) are both subconditionals of (bla), (blac),(blac) C
(bla). As an example for perpendicularity, consider the conditionals
(c|ab), (c|ab) and (c[@) which are all perpendicular to (b|a): (c|ab), (c|ab),
(cla@) AL (b|a).
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The principle of conditional preservation in belief revision 13

It should be remarked that neither C nor Il provide new insights
for (flat) propositions, when identifying propositions with factual con-
ditionals. It is easily seen that (B|T) C (A|T) if and only if A and
B are logically equivalent, and (B|T)_L (A|T) can only hold if A is
tautological or contradictory. Both relations need the richer epistemic
framework of conditionals to show their usefulness. For a more thorough
discussion of the relations C and L, see (Kern-Isberner, 2001c).

5. A principle of conditional preservation in a qualitative
framework

In (Darwiche and Pearl, 1997), Darwiche and Pearl discussed the prob-
lem of preserving conditional beliefs under (propositional) belief revi-
sion in an AGM-environment. They emphasized that conditional beliefs
are different in nature from propositional beliefs, and that the mini-
mal change paradigm which is crucial for the AGM-theory (Alchourrén
et al., 1985) should not be blindly applied when considering condition-
als. They reformulated the AGM-postulates in the richer framework of
epistemic states (cf. Section 2) and extended this approach by phrasing
four new postulates explicitly dealing with the acceptance of condi-
tionals in epistemic states, in the following denoted as DP-postulates:

DP-postulates for conditional preservation:
(C1) IfC=BthenV = (D|C)iff U« B = (D] C).
(C2) If C =B then ¥V = (D|C)iff U+ B (D|C).
(C3) f U = (B|A) then UV x B = (B | A).

(C4) If U+ B = (B | A) then ¥ = (B | A).

The DP-postulates were supported by plausible arguments and many
examples (for a further discussion, see the original paper (Darwiche
and Pearl, 1997)). They are crucial for handling iterated revisions
via the Ramsey test (1). For instance, by applying (1), (C2) can be
reformulated to guide iterated revisions, as follows:

IfClEBthen U+« CEDiff UxB*xC = D.

The DP-postulates are not indisputable. An objection often made
is the following: Let C = p and B = pq (p,q atoms), such that
C = B. Then (C2) yields ¥ xp = D iff ¥ x pg +p = D, which
implies Bel (¥ x p) = Bel (V¥ * pg * p) — the information conveyed by
learning (p and) ¢ has apparently been extinguished when p becomes
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14 G. Kern-Isberner

evident. As atoms are assumed to be independent, this seems to be
counterintuitive. Actually, this example does not really cast doubt on
the DP-postulates, rather it proves the inappropriateness of a strictly
propositional framework for belief revision. In such a framework, it is
impossible to distinguish between revising by p and ¢, on the one hand,
and p A ¢ = pq, on the other hand, since sets of formulas are identi-
fied with the conjunction of the corresponding formulas. pq, however,
suggests an intensional connection between p and ¢, whereas {p,q}
does not. Furthermore, (C2) does not demand the equivalence of the
involved epistemic states ¥ x p and ¥ * pg * p, but only the identity
of the corresponding belief sets (cf. Section 2). Again, this distinction
gets lost when focusing on propositional beliefs.

In (Kern-Isberner, 1999a), we considered conditionals under revi-
sion in an even broader framework, setting up postulates for revising
epistemic states by conditional beliefs:

Postulates for conditional revision:

Suppose U is an epistemic state and (B|A), (D|C) are conditionals.
Let U (B|A) denote the result of revising ¥ by a non-contradictory
conditional (B|A).

(CRO) ¥ x (B|A) is an epistemic state.
(CR1) ¥« (B|A) = (B|A) (success).
(CR2) U« (B|A) =V iff U |= (B|A) (stability).

(CR3) ¥« B := VU x (B|T) induces a propositional AGM-revision
operator.

(CRA4) V¥ x (B|A) = ¥ * (D|C) whenever (B|A) = (D|C).

)
(CR5) If (D|C
)
)

) L (B|A) then ¥ |= (D|C) iff U « (B|A) = (D|C).
(CRS) If (D|C) C
)

f (B|A) and ¥ = (D|C) then ¥ x (B|A) = (D|C).

(CRT) If (D|C) C (B|A) and ¥ * (B|A) = (D|C) then ¥ = (D|C).

The postulates (CR0)-(CR2) and (CR4) realize basic ideas of AGM-
revision in this more general framework, and (CR3) links conditional
belief revision to propositional AGM-revision. (CR5)-(CR7) are the
proper axioms to formalize a qualitative principle of conditional preser-
vation. They realize the idea of preserving conditional beliefs by use of
the two relations C and _L, which reflect possible interactions be-
tween conditionals. In detail, (CR5) claims that revising by a con-
ditional should preserve all conditionals to which that conditional is
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The principle of conditional preservation in belief revision 15

irrelevant, in the sense described by the relation L. The rationale
behind this postulate is the following: The validity of a conditional
(B|A) in an epistemic state ¥ depends on the relation between (some)
worlds in Mod (AB) and (some) worlds in Mod (AB). So incorporating
(B|A) into ¥ may require a shift between Mod (AB) on one side and
Mod (AB) on the other side, but should leave intact any relations be-
tween worlds within Mod (AB), Mod (AB), or Mod (A). These relations
may be captured by conditionals (D|C) not affected by (B|A), that is,
by conditionals (D|C) 1L (B|A).

(CR6) states that conditional revision should bring about no change
for conditionals that are already in line with the revising conditional,
and (CR7) guarantees that no conditional change contrary to the re-
vising conditional is caused by conditional revision.

In particular, by considering a propositional formula as a degener-
ated conditional with tautological antecedent, each conditional revision
operator induces a propositional revision operator, as described by
(CR3). For this propositional revision operator, the postulates (CRO0)-
(CR2) and (CR4)-(CR6) above are trivially fulfilled within an AGM-
framework. Postulate (CR7) then reads

(CRT)P™P If U+ A = A, then ¥ = 4

An AGM-revision operator, obeying the postulate of success and yield-
ing a consistent belief state, would never fulfill the precondition U« A =
A, as long as the revising proposition A is not inconsistent. Hence
(CR7) is vacuous in an AGM-framework. If we only presuppose that
* satisfies the AGM-postulate of success, then ¥ x A = A implies the
inconsistency of ¥ x A, although A is assumed to be non-contradictory.
A reasonable explanation for this would be that W itself is inconsistent,
in which case it would entail anything, particularly ¥ = A would be
fulfilled. The handling of an inconsistent prior belief state is one of
the crucial differences between revision and update, as characterized in
(Katsuno and Mendelzon, 1991a) by the so-called KM-postulates. An
AGM-revision demands ¥ % A to be consistent, regardless if the prior
state ¥ is inconsistent or not, whereas update does not remedy the
inconsistence of a prior state, even if the new information is consistent.
So (CR7) would be trivially fulfilled for KM-updates. If we also give up
the postulate of success, then (CR7) describes a reasonable behavior of
a revision process in an extreme case: A revision should not establish
the negation of the revising proposition if this negated proposition is
not already implied by the prior belief state.

The following theorem shows that the postulates (CR0)-(CR7) cover
the DP-postulates (C1)-(C4):
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16 G. Kern-Isberner

Theorem 1. Suppose * is a conditional revision operator obeying the
postulates (CRO)-(CR7). Then for the induced propositional revision
operator, postulates (C1)-(C4) are satisfied, too.

Therefore, the idea of conditional preservation inherent to the postu-
lates (C1)-(C4) of Darwiche and Pearl ((Darwiche and Pearl, 1997)) is
indeed captured by our postulates. While (CR0) - (CR4) only serve as
basic, unspecific postulates, the last three postulates (CR5)-(CR7) can
be taken as properly axiomatizing a principle of conditional preserva-
tion in a qualitative framework. Moreover, our framework provides fur-
ther, formal justifications for the DP-postulates by making interactions
of conditionals more precise.

6. Conditional structures and conditional indifference

The notion of conditional structures has been presented and exempli-
fied in several papers (see, e.g., (Kern-Isberner, 2001a; Kern-Isberner,
2000; Kern-Isberner, 2001d)). Since they are basic to the results to be
obtained in this paper, we will summarize the main ideas and definitions
here. The concept of conditional indifference has also been a major
topic in (Kern-Isberner, 2001a); in the present paper, however, it is
developed in the general framework of conditional valuation functions.

In Section 4, we presented a dynamic approach to conditionals,
focusing on the effects of only one conditional in the revision pro-
cess. When considering sets R = {(B1]|41),...,(Bpl4n)} C (L | L)
of conditionals, the effects each of these conditionals exerts on worlds
must be clearly identified. To this end, we replace the numbers 0
and 1 in (2) by formal symbols, one pair of symbols a;",a; for each
conditional (B;|4;) in R; a; symbolizes a positive effect for worlds
verifying the respective conditional, whereas a; symbolizes a negative
effect for worlds falsifying it. Furthermore, in order to make these
conditional effects computable, we make use of a group structure, in-
troducing the free abelian group Fr = (af,a;,...,a} a;) with gen-
erators aj,a;,...,al, a,, i.e. Fr consists of all elements of the form
(i)™ (a;)® ... (af)™(a,;)*" with integers r;,s; € Z (the ring of in-
tegers). Each element of Fr can be identified by its exponents, so
that Fg is isomorphic to Z2?" (cf. (Lyndon and Schupp, 1977; Fine
and Rosenberger, 1999)). The commutativity of Fg corresponds to a
simultaneous application of the conditionals in R, without assuming
any order of application. Then the functions o; = o(p,;j4,), 1 <@ < n,
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The principle of conditional preservation in belief revision 17

defined by
a; if (BjlAi)(w)
ai(w)z a; if (BZ|A1)(Q))
1 if (BiAi)(w)

1
0 (3)

represent the effects each conditional (B;|A;) has on possible worlds w.
Note that the neutral element 1 of Fg is assigned to possible worlds in
the neutral sets of the conditionals.

The function or = [[1¢;<, 0i : @ = Fr, given by

or(w)= [ oilw)= I a" II a (4)

1<i<n Igign 1<isn
wi=A;B; wEA;B;

describes the all-over effect of R on w. or(w) is called (a representation
of ) the conditional structure of w with respect to R. For each world w,
or(w) contains at most one of each a; or a; , but never both of them
because each conditional applies to w in a well-defined way. The group
structure on Fr allows us to form products and in this way, to make
even complex interactions between the conditionals in R transparent.

The following simple example illustrates the notion of conditional
structures and shows how to calculate in this framework:

Ezample 4. Let R = {(cla), (c[b)}, where a,b,c are atoms, and let
Fr = {(aj,a;,aj,a,). We associate aj with the first conditional,
(cla), and a3 with the second one, (c|b). For instance, the world abe
verifies both conditionals, so we have o (abc) = aj aj. The following
table shows the values of the function ox on arbitrary worlds w € €2:

w  or(w) w or(w) w or(w) w or(w)
abc ajaj abc aj abc ajay abc  ay
abc  af abc 1 abc aj abc 1

We find that og(abc) - o (@bc) - og(abe)™! - or(@be)™" = afal - 1-
(af)~'- (af)~! = 1, which may be interpreted by saying that the sets
of worlds {abc,@bc} and {abc,abc} show identical conditional effects —
they are balanced with respect to the effects of the conditionals in R.
Although abe, @be, abe, abe all have different conditional structures, the
relationships between them with respect to R are clearly revealed.

To comply with the group structure of Fr, we also impose a mul-

tiplication on €, introducing the free abelian group Q := (w | w € Q)
generated by all w € €2, and consisting of all words © = w™ ... wp"™
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18 G. Kern-Isberner

with wy, ..., wm € Q, and integers ry, ... rp. Now og may be extended
to © in a straightforward manner by setting

UR(wlrl . wmrm) = UR(wl)rl . UR(wm)rm

H (aﬂ—)Zk:Gi(wk):ajrk. H (ai—)zk:di(wk):af Tk (5)

K3
1<ign 1<i<n
yielding a homomorphism of groups og : Q- Fr. As for the elements

of Fr, we will often use fractional representations for the elements of

A . . . . w1 . —_
(2, that is, for instance, we will write — instead of w;w, L

w2
Having the same conditional structure defines an equivalence rela-
tion = on Q:

W =g W iff og(W1) = or(we) iff UR(QIQEI) =1

The equivalence classes are in_one-to-one correspondence to the ele-
ments of the quotient group Q/p.. 5. = {@ - (ker or) | @ € Q},
where R
ker og = {@ € | UR(@) = 1}

denotes the kernel of the homomorphism ogr. Therefore, the kernel
plays an important role in identifying conditional structures. It contains
exactly all group elements & € 2 with a balanced conditional structure,
that means, where all effects of conditionals in R on worlds occurring
in @ are completely cancelled. For instance, in Example 4 above, the

abc - abe
element ——— is an element of the kernel of op.
abc - abe

Besides the conditional information in R (or R*, if one is concerned
with quantified conditionals), one usually has to take normalization
constraints such as P(T) = 1 for probability distributions P, or k(T) =
0 for ordinal conditional functions k, or m(T) = 1 for possibility dis-
tributions , into regard. This is done by focusing on the subgroup
Qo = ker o7 1) of Q. Since (T|T)(w) =1 for all w € 2, we have

o wh) = (@) @ty = (at) e
with some symbol (a™) representing the positive effect of (T|T) on
possible worlds. Hence

m
Q={G=w"" ... wymeQ|) r;=0} (6)
i=1
~ ~ S A .
Two elements @i = witowlm Wy = vyt € Q are equivalent
modulo g,
W1 =1 we iff 01Q¢ = Wy iff Z rj = Z Sk

1<j<m 1<k<p
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The principle of conditional preservation in belief revision 19

This means that &y =1 We iff they both are a (cancelled) product of
the same number of generators w, each generator being counted with
its corresponding exponent. Let

kerg o := kerog N Qo
be the part of ker o which is included in ﬁg.

be - ab
Ezample 5. In Example 4, we have abc-abc =T abe-abe, so w is

abc
not only an element of ker o, but also of kerg or. Note that although

b b
also an(ﬁ = ,_ﬁ ¢ kerg or because o(tT)(abc) =

(a®) # (a®)? = o 7)(abe - abe)

Finally, we will show how to describe the relations C and I be-
tween conditionals, introduced in Definitions 2 and 3, respectlvely, by
considering the kernels of the corresponding o-homomorphisms. As a
convenient notation, for each proposition A € £, we define

A={o=uwl".. W cQ|w = Aforallil<i<m}
Proposition 1. Let (B|A), (D|C) € (L | L) be conditionals.

1. (D|C) is either a subconditional of (B|A) or of (B|A) iff C < A
and ker om|cy N C = ker oB|A) N C.

2. (D|C) L (B|A) iff C N Qg C ker o(p4).

To study conditional interactions, we now focus on the behavior
of conditional valuation functions V' : £ — A with respect to the
“multiplication” ® in A (see Definition 1). Each such function may be
extended to a homomorphism V : O, — (A, ,®) by setting V(w™ -
Cewm™) = V(W) O ... ®V(wp)"™™, where Qy is the subgroup of O
generated by the set Q+ = {w € Q| V(w) # 04}, This allows us to an-
alyze numerical relationships holding between different V' (w). Thereby,
it will be possible to elaborate the conditionals whose structures V'
follows, that means, to determine sets of conditionals R C (£ | £) with
respect to which V' is indifferent:

Definition /4. (indifference wrt R) Suppose V : L — A is a condi-
tional valuation function and R C (£ | £) is a set of conditionals such
that V(A) # 04 for all (B|A) € R.

V' is indifferent with respect to R iff the following two conditions
hold:
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20 G. Kern-Isberner

04 then there is (B|A) € R such that o(B|4)(w) # 1 and

(i) If V(w) =
= 04 for all ' with o(p4)(w') = 0(p|4)(w).

V(w')
(i) V(@1) = V(@2) whenever og(@1) = o (@) for &y =1 @9 € Q.

If V is indifferent with respect to R C (L | £), then it does not distin-
guish between different elements @y, o which are equivalent modulo Qo
and have the same conditional structure with respect to R. Conversely,
for each @ € Qq, any deviation V(@) # 14 can be explained by the
conditionals in R acting on @ in a non-balanced way. Condition (i)
in Definition 4 is necessary to deal with worlds w ¢ Q. It says that
04-values in an indifferent valuation function V are established only in
according with the partitionings induced by the conditionals in R.

A first simple, but important property of R-indifferent valuation
functions V' is that =x-equivalent worlds are mapped onto the same
values under V:

Lemma 3. If the conditional valuation function V is indifferent with
respect to R, then og(wi) = og(wa) implies V(wy) = V(wy) for all
worlds w1y, wy € Q.

The following proposition rephrases conditional indifference by es-
tablishing a relationship between the kernels of og and V:

Proposition 2. Let R C (L | L) be a set of conditionals, and let V :
L — A be a conditional valuation function with V(A) # 04 for all
(B|A) € R.

V' is indifferent with respect to R iff condition (i) of Definition 4
holds, and kerg og N §+ C kerg V.

The next theorem provides a clear characterization of probability
functions, ordinal conditional functions and possibility distributions
with indifference properties:

Theorem 2. Let R = {(B1]A1),...,(Bn|An)} C (L | L) be a (finite)
set of conditionals.

1. A probability function P is indifferent with respect to R iff P(A4;) #
0 for all 7,1 <7 < n, and there are non-negative real numbers ay,

af,al,... ot a, € R ag > 0 such that, for all w € Q,
_ + -
Pl =ao [ o T o (7)
1<ign 1<ign
wl=A;B; wi=A;B;
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2. An ordinal conditional function « is indifferent with respect to R
iff k(A4;) # oo for all i,1 <i < n, and there are rational numbers
fig,ka;",ka; € Q, 1 <1 < n, such that, for all w € Q,

Kw)=ro+ Y. KT+ > K (8)
1<ign 1<ign
wl=A;B; wi=A;B;

3. A possibility distribution 7 is indifferent with respect to R iff there
are non-negative real numbers ag,af,af, ol ar € RY ag >
0, such that for all w € €,

rw)=ao [] of T[ o )

Note that conditional indifference is a structural notion, without
making any reference to degrees of certainty which may be assigned
to the conditionals in R. Theorem 2, however, also provides simple
schemata how to obtain indifferent probabilistic, OCF and possibilis-
tic representations of quantified conditionals: One has to simply set
up functions of the corresponding type according to (7), (8) or (9),
respectively, and to determine the constants ag, o, a;,...,al, a; or
Ko, n;r , K; , respectively, appropriately so as to ensure that all necessary
numerical relationships are established.

Definition 5. Conditional valuation functions which represent a set
R™) of (quantified) conditionals and are indifferent to it, are called
c-representations of R™).

For further details and examples, cf. (Kern-Isberner, 1998; Kern-Isberner,
2001a; Kern-Isberner, 2001e); see also Section 7.

Theorem 2 also shows, that most important and well-behaved induc-
tive representation methods realize conditional indifference: Namely,
the principle of maximum entropy in probabilistics (Paris, 1994), system-
Z* in the OCF-framework (Goldszmidt et al., 1993), and the LCD-
functions of Benferhat, Saffiotti and Smets (Benferhat et al., 2000)
all give rise to conditionally indifferent functions (cf. (Kern-Isberner,
1998; Kern-Isberner, 2001a; Kern-Isberner, 2001d)). The system-Z*
approach and that of LCD-functions can easily be derived by postulat-
ing conditional indifference and further plausibility assumptions (for a
more detailed discussion, cf. (Kern-Isberner, 2001d)). Indeed, the cru-
cial meaning of all these formalisms for adequate inductive knowledge
representation is mainly due to this indifference property. It should
be emphasized, that, to study interactions of conditionals, conditionals

foiks02_gki_ext_final.tex; 4/05/2003; 23:42; p.21



22 G. Kern-Isberner

here are not reduced to material implications, as for system-Z*, or
for LCD-functions. Instead, the full dynamic, non-classical power of
conditionals is preserved, and highly complex conditional interactions
can be dealt with.

We close this section by establishing an interesting connection be-
tween conditional indifference and conditional independence, one of the
most important means to support probabilistic reasoning in general
and the crucial glue to build up Bayesian networks in particular (cf.
e.g. (Pearl, 1988; Cowell et al., 1999)). The next proposition shows that
conditional indifference is a more fundamental notion than conditional
independence, reflecting more fine-grained structures.

Proposition 3. Let X,Y,Z be disjoint subsets of a set of propositional
variables V., and let P be a probability distribution over V. Let R be
the following set of conditionals:

R = {(x|z), (y|z) | x,y,z instantiations of variables in X,Y,Z, resp.}

If P is indifferent with respect to R, then X and Y are conditionally
independent in P, given Z.

Note that the converse of Proposition 3 does not hold. It is easy
to build up a probability distribution over, e.g., four variables z,y, z, w
such that x and y are conditionally independent given z, but P(xyzw) #
P(zyzw). However, for the conditional structure with respect to the
respective R in this case, w does not matter, so og (zyzw) = or (zyzw).
Hence P can not be indifferent with respect to R.

Therefore, the theory of conditional structures and conditional in-
difference presented so far proves to be of fundamental importance
both for theoretical and practical issues in inductive knowledge repre-
sentation. In the next section, we will show that it also provides an
appropriate framework for revising quantified beliefs.

7. A principle of conditional preservation in a
(semi-)quantitative framework

When we revise an epistemic state ¥ — which is supposed to be repre-
sented by a conditional valuation function V' — by a set of (quantified)
conditionals R™*) to obtain a posterior epistemic state ¥+ R(*) = V* =
V « R™, conditional structures and/or interactions must be observed
with respect to the prior state ¥ as well as to the new conditionals
in R. The theory of conditional structures can only be applied with
respect to R, since we usually do not know anything about the history
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of U, or V, respectively. Conditional relationships within ¥, however,
are realized via the operation ® on V, so we base our definition of a
principle of conditional preservation on an indifference property of the
relative change function V* ® V1 in the following written as V*/V.
Taking into regard prior knowledge V and the worlds w with V (w) = 04
appropriately, this gives rise to the following definitions:

Definition 6. (V -consistency, indifference wrt R and V) Let V : L —
A be a conditional valuation function, and let R™*) be a finite set of

(quantified) conditionals. Let V* = VR ™) denote the result of revising
V by R(™); suppose that V*(A4) # 04 for all (B|A) € R.

1. V* is called V-consistent iff V(w) = 04 implies V*(w) = 04; V* is
called strictly V-consistent iff V(w) = 04 & V*(w) = 04,

2. If V* is V-consistent, then the relative change function (V*/V') :
Q — A is defined by

*(w w) i w A
=[G ST v 0

3. V* is indifferent with respect to R and V iff V* is V-consistent and
the following two conditions hold:

(i) If V*(w) = 04 then V(w) = 04, or there is (B|4) € R such
that o 4)(w) # 1 and V* (') = 04 for all w' with oW =
o(Bl4)(W).

(if) (V*/V) (@) = (V*/V)(2) whenever og(w1) = ogr(w2) and
D1 =T By for &y, g € O, where O = (w € Q| V*(w) # 04).

Although the relative change function (V*/V) is not a conditional
valuation function, it may nevertheless be extended to a homomor-
phism (V*/V) : Q% — (A, ®). Therefore, Definition 6 is an appropriate
generalization of Definition 4 for revisions. Indeed, it can easily be ver-
ified that conditional valuation functions are indifferent with respect to
R iff they are indifferent with respect to R and the uniform conditional
valuation function V,.

Note that also for this extended notion of indifference, the quantifi-
cations of conditionals do not matter. For the revision process, however,
quantifications if present have to be taken into account. So we use both
symbols, R and R*, when considering indifferent revisions, and R will
always denote the set of unquantified conditionals occurring in R*.
Whereas in the probabilistic framework, quantifications of condition-
als are essential, they may be omitted in the ordinal or possibilistic
framework.
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We are now ready to formalize appropriately a principle of condi-
tional preservation for belief revision in a (semi-)quantitative frame-
work:

Definition 7. (principle of conditional preservation wrt R and V) A
revision V* = V+«R™ of a conditional valuation function by a set R*)
of (quantified) conditionals is said to satisfy the principle of conditional
preservation with respect to R™) and V iff V* is indifferent with respect
to R and V.

Thus in a numerical framework, the principle of conditional preser-
vation is realized as an indifference property.

From Theorem 2, we immediately obtain a concise characterization
of revisions preserving conditional beliefs, which may also serve in
practice as a schema to set up appropriate revision formalisms:

Theorem 3. Let R™) = {(B|A1)([x1]), ..., (BulAn)([z.])} C (L] L)
be a (finite) set of (quantified) conditionals. Let P be a probability
distribution, x an ordinal conditional function, and 7 a possibility
distribution, all serving as prior knowledge.

1. A probability distribution P* = P x R* satisfies the principle of
conditional preservation with respect to R and P if and only if
P*(A;) # 0, and there are real numbers ag,af,a;,..., o}, oy
with ag > 0 and of , a7 ,...,q,}, o, satisfying o; ", a; >0, o =0

iff z;, =0, ;] =0iff z; =1, 1 <7 < n, such that, for all w € 2,

P*(w) = apP(w) H o H a; (10)

1<ign 1€ign
wi=A; B;

124 w\:AiB_i
2. A revision k* = k* R(*) satisfies the principle of conditional preser-
vation with respect to R and k iff K*(4;) # oo for all 4,1 < i < n,
and there are numbers kg, Ii;r, k; € Q1 <4 < n, such that, for all

w €,
K (w) = ko + k(w) + Z n;“ + Z K; (11)
1<ign 1<ign
wl=A;B; wl=A;B;

3. A revision 7" = 7+ R ™) satisfies the principle of conditional preser-
vation with respect to R and = iff 7*(A4;) # 0, and there are
non-negative real numbers ag,ai, a7, ..., o}, o, € RY with ag >
0 such that for all w € Q,

" (w) = qpm(w) H o H a; (12)

1<ign 1<ign
wl=A;B; wi=A;B;
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Note that the principle of conditional preservation is based only on
observing conditional structures, without using any acceptance condi-
tions or taking quantifications of conditionals into account. It is exactly
this separation of numerical from structural aspects that results in a
wide applicability of this principle within a quantitative framework.
Revisions of epistemic states ¥ by sets R*) of (quantified) conditionals
that also fulfill the so-called success postulate ¥ x R™) = R™) are
termed c-revisions:

Definition 8. (c-revision) A revision V* = V « R of a conditional
valuation function by a set R(*) of (quantified) conditionals is called a

c-revision iff V* satisfies the principle of conditional preservation with
respect to V and R, and V* |= R,

C-revisions can easily be obtained by using the schemata provided
by Theorem 3 and choosing the constants «g, oz:r, «; , and kg, f@;“, K;
respectively, appropriately so as to establish the necessary numerical
relationships. Comparing Theorem 3 with Theorem 2 also shows clearly
that c-representations of a set of conditionals R*) are c-revisions of
uniform conditional valuation functions by R*). To illustrate this, we
will go into this in more detail for ordinal conditional functions.

A c-revision k* = k*R of an OCF k by R = {(B1|A1), ..., (Bn|An)}
has the form (11), and the postulate x* = R yields the following

conditions for £, k7 in a straightforward way:

— + . + —
K, — K, > w‘inj?Bi(/@(w) + ; ki + ; Kj) (13)
wk=A;B; wi=A;B;
— min_ (k(w)+ Y K+ D k)
wi=AiBi i i
w‘:Aij w\:A]'E]'

Moreover, quantifications of conditionals can be taken easily into ac-
count by modifying (13) slightly, so as to comply with the representa-
tion postulate k* |= (B|A) [my]:

Ky — K7 > m;+ min (k(w)+ Z ki + Z k;)  (14)
wI=A;Bj wi=4;B;
- min (s(w)+ Y KS+ D0 Kj)
wE=A;B; i J#i
wiEA;Bj wi=4;B;

C-revisions exist for any finitely valued OCF x and any consistent set R
of conditionals; if x also takes on infinite values, some basic demands for
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compatibility between x and R have to be observed (cf. (Kern-Isberner,
2001c)). In the following, we will describe a procedure how to calculate
such a c-revision for any finite OCF x and any finite consistent set R
of conditionals.

The consistency of a set R = {(Bi|A1),...,(Bn|An)} of condi-
tionals in a qualitative framework can be characterized by the notion
of tolerance. A conditional (B|A) is said to be tolerated by a set of
conditionals R iff there is a world w such that w verifies (B|A) (i.e.
(B|A)(w) = 1) and w does not falsify any of the conditionals in R (i.e.
r(w) # 0 for all » € R). R is consistent iff there is an ordered partition
Ro,R1,-.., R of R such that each conditional in R,, is tolerated by
U?:m R;, 0 < m < k (cf. (Goldszmidt and Pearl, 1996)).

Now suppose that R is consistent and such a partition Ry, R1,..., Rg
of R is given. For all conditionals r; € R, 1 < ¢ < n, set n;r =0, and
set successively, for each partitioning set R,,,, 0 < m < k, starting with
Ry, and for each conditional r; = (B;|4;) € Ry,

U= min (w4 Y A+l (15)
r(w);éOV’r‘GUf:le Tjeuzl_olnl
w\:AjEj

Finally, choose kg appropriately to make £*(w) = ko +r(w)+ > K,

- 2
1<ign

wl=A;B;
an ordinal conditional function. It is straightforward to check that
indeed, k* = R, so k* is a c-revision of K by R. In the same way,

by applying these ideas to the uniform OCF &, (w) = 0 (for all w € Q),
we obtain c-representations of R.

We will illustrate the basic ideas and features of c-representations
and c-revisions by an example.

Ezample 6. Epistemic knowledge about important relationships be-
tween the atoms f - flying, b - birds, p - penguins, w - winged animals,
and k - kiwis is to be represented by an OCF. Let the set R consist of
the following conditionals:

R: r1: (f|b) birds fly
ro: (blp) penguins are birds
r3: (flp) penguins do not fly
rq: (w|b) birds have wings
r5: (blk) kiwis are birds
We will apply the procedure sketched above to compute an ordinal
conditional function x which is a c-representation of R.

The conditionals rq, r4, and 75 are tolerated by R, whereas r9 and r3
are not; but both ry and r3 are tolerated by the set {ro,r3}. This yields
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the partitioning Rg = {r1, 74,75}, R1 = {re,r3} of R. In order to obtain
a suitable c-representation of R, we set Ii;— =0 foralli,1 <7 <5, and,
according to (15),

fﬁ:l :54 :K/E) =1,

Ky =Ky =K +1=2

The resulting c-representation x(w) := Z k; of R is shown in the

1<i<5
r; (w)=0

figure on page 28.

It is now easily checked that k = (w|k) — from their superclass birds,
kiwis inherit the property of having wings. Suppose now that we come
to know that this is false — kiwis do not possess wings, — and we want to
revise our knowledge x by this new information. The revised epistemic
state k* = k* {(w|k)} should be a c-revision of k by {(w|k)}. Then due
to (11), * has the form

k' (w) =

ko + k(w) + k1 ifw = kw
ko + k(w) + k7 fw=kw
Ko + K(w) ifwk=k

and (13) yields k= — k7 > min s(w) — min k(w) =1 -0 = 1, i.e.
wEkw wEkw

Kk~ > kT +1. Any such pair of kT, k~ will give rise to a c-revision, but, in
order to keep numerical changes minimal, we choose k™ := 0,k := 2.
No further normalization is necessary, so kg := 0. The revised k* is
shown in the figure on page 28, too'.

k* still represents the conditionals (f|b), (b|p), (f|p) and (w]b), but
it no longer satisfies (b|k), since *(bk) = k*(bk) = 1 — since birds and
wings have been plausibly related by the conditional (w|b), the property
of not having wings casts (reasonably) doubt on kiwis being birds. This
illustrates how conditional interrelationships are properly dealt with by
c-revisions. One might wish, however, to state that kiwi and birds are
more firmly related than birds and wings, in order to be able to accept
(b|k) still after revising k by (w|k). This can be achieved by assigning
an inferential strength = > 1 to (b|k) (and — for reasons of symmetry —
also to (b|p), because kiwis and penguins both are birds by definition).
Since no explicit quantification means assuming an inferential strength
of 0, this amounts to considering the following set R’ of quantified
conditionals:

R' = {(£[b)[0]. (blp)[x], (IP)[0], (w|b)[0], (b]k)[=]}

k" can also be regarded as the result of an update process, following evolution.

1
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w K(w) K (w) r1(w) KT (w)
pbfwk 2 4 2 4
pbfwk 2 2 2 2
pbfwk 3 3 3 3
pbfwk 3 3 3 3
pbfwk 1 3 1 3
pbfwk 1 1 1 1
pbfwk 2 2 2 2
pbfwk 2 2 2 2
pEwa 5 7 20 +5 2x 47
pbfwk 4 4 r+4 x+4
pbfwk 5 5 20 +5 20+5
pbfwk 4 4 z+4 44
pb fwk 3 5 20 +3 2x+5
pb fwk 2 2 r+2 x42
pb fwk 3 3 20 +3 20 +3
pb fwk 2 2 r+2 x+2
pbfwk 0 2 0 2
pbfwk 0 0 0 0
pbfwk 1 1 1 1
pbfwk 1 1 1 1
pbfwk 1 3 1 3
pbfwk 1 1 1 1
pbfwk 2 2 2 2
pbfwk 2 2 2 2
pbfwk 1 3 r+1 x+3
pbfwk 0 0 0 0
pbfwk 1 1 z+1 x+1
pbfwk 0 0 0 0
7b fwk 1 3 z+1 z+3
pb fwk 0 0 0 0
pb fwk 1 1 z+1 x+1
pb fwk 0 0 0 0

Figure 1. OCF’s k and k1, and revised x* and k] for Example 6
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A c-representation, k1, of R’ and a c-revision k7 = k1 * {(w|k)} (com-
puted in the same way as above) are both shown in the figure on page
28, too. Now we find x}(bk) = x + 1 > 1 = x}(bk), so the conditional
(b|k) is still accepted in k7.

The idea of c-revisions can be recovered in well-known approaches
to non-propositional revision. Actually, the so-called J-conditioning
presented in (Goldszmidt and Pearl, 1996) to adjust an OCF k to
uncertain evidence is actually a c-revision. In a probabilistic frame-
work, due to Theorem 3 it is easily seen that revisions following the
principle of minimum cross-entropy (so-called MINENT-principle or,
briefly, ME-principle) (Shore and Johnson, 1980; Paris and Vencovska,
1992; Paris, 1994; Kern-Isberner, 1998) are also c-revisions. This prin-
ciple is a method to revise a prior distribution P by a set R* =
{(B1|A1) [z1],...,(Bn|Apn) [zn]} of probabilistic conditionals, so that
the “dissimilarity” between P and the resulting distribution P* = R*
is minimal. A measure for this dissimilarity is given by the information—

theoretical concept of cross-entropy R(Q, P) = Z Q(w)log = g If R*

is compatible with the prior P, in the sense that there is a P-consistent
distribution () representing R*, this optimization problem has a unique
solution P* = P g R* (cf. (Csiszédr, 1975)), which can be written in

the form
P'(w)=aPw) ] o™ J] o™ (16)
1<ign 1<ign
wi=A;B; wl=A;B;

with the q;’s being exponentials of the Lagrange multipliers, appropri-
ately chosen so as to satisfy all conditionals in R* (cf. (Kern-Isberner,
2001c)). Comparing (16) to (10), it is obvious that P *pp R* satisfies
the principle of conditional preservation, and hence is a c-revision.

An ME-revision realizes perfectly the idea of unique, minimal change
in a probabilistic environment. For ordinal frameworks, the ideas un-
derlying system-Z* (Goldszmidt et al., 1993), or the LCD-functions
(Benferhat et al., 2000), can now also be applied to make revisions “rea-
sonably minimal”, due to the structural similarity of c-representations
and c-revisions (cf. Section 6). Basically, that is to say, that verification
of conditionals should not change a world’s degree of plausibility, hence
setting k7 = 0 in (11), and ;7 = 1 in (12), respectively, and worlds
falsifying conditionals should be shifted minimally, which amounts to
choosing x; in (11), and a; in (12) as small as possible. Our Example
6 follows this idea, too.

By Definition 7, we obtain a technically clear and precise formal-
ization of the intuitive idea of conditional preservation in a very gen-
eral framework, making it applicable to probabilistic, possibilistic and

foiks02_gki_ext_final.tex; 4/05/2003; 23:42; p.29



30 G. Kern-Isberner

OCF-revisions. Note that, as abstract and technical as it appears, this
principle is not a formal artifact but has been effectively guiding prob-
abilistic revisions via the principle of minimum cross-entropy for many
decades. Indeed, the first steps towards formalizing this principle have
been taken when extracting the most basic and crucial properties of
minimum cross-entropy methods in (Kern-Isberner, 1998). Therefore,
the axiomatization provided by Definition 7 allows us to carry over
a most successful information-theoretical idea from probabilistics to
other frameworks when designing adequate revision methods. No ex-
plicit reference to ME-probability distributions is needed, as was done
for system-Z* (cf. (Goldszmidt et al., 1993)).

Now that we are able to carry out belief revision in a most gen-
eral sense, namely by revising epistemic states by sets of (quantified)
conditionals, an approach to give semantics to nested conditionals in
epistemic states ¥ can be made via a straightforward generalization of
the Ramsey test (cf. (1)):

U= ((D[O) | (Bl4)) iff W «{(B|A)} = (D[C) (17)

This is different from Goldszmidt & Pearl’s suggestion made in (Gold-
szmidt and Pearl, 1996, p. 88) where nested conditionals are evaluated
with respect to a knowledge base, not to an epistemic state. In our
framework, their approach amounts to the following:

Given a set of conditionals (defaults) R, the nested conditional

((D|C) | (B]A)) is accepted iff ¥ x (R U{(B|A)}) = (D|C).
Here, W is the uniform epistemic state; note that in our framework,
representations of conditional knowledge bases are obtained by re-
visions of uniform epistemic states. This approach simply adds the
antecedent of ((D|C) | (B|A)) to the current default base R and checks
the consequences of this new default base. Here, Goldszmidt & Pearl
emphasize the “essential distinction” between having a conditional ex-
plicitly represented in R, or merely satisfied as a (nonmonotonic) conse-
quence of R. Indeed, if (B|A) is merely a default consequence of R, then
nevertheless (B|A) might be consistent with R and R U {(B|A)} will
yield reasonable inferences. Whereas, if (B|A) € R, then R U {(B|A4)}
is definitely inconsistent and has no nonmonotonic consequences at
all. This problem does not occur with the first definition (17) — even
if U = (B|A), a revision ¥ % {(B|A)} is always possible. Therefore,
a distinction between explicit and implicit knowledge — a point the
importance of which is pointed out by Goldszmidt & Pearl — seems to
be impossible in our approach which uses basically epistemic states for
inferences.

The difference between these two approaches to nesting conditionals
is better understood from a more general point of view. In a framework
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as rich as ours, the epistemic state ¥ may be thought of as being
formed by a combination of prior (or background) knowledge ¥, and
posterior (or evidential) default knowledge R via revision: ¥ = Uy %
R. Now there are two possible ways of incorporating new conditional
knowledge, namely by successive revision, (Vy * R) % {(B|A)}, which
roughly corresponds to updating (Katsuno and Mendelzon, 1991a), or
by simultaneous revision, U (RU{(B|A)}), which is more in the sense
of AGM-revision (Gérdenfors, 1988). Now it becomes clear that the
difference between the two approaches above results from the difference
between these two kinds of revision - in general, U+ R*S and Ux(RUS),
R,S C (L] L), will be found to differ, as the following example shows.

Ezample 7. We go back to Example 6. Here, the set R of conditionals
can be split into two sets Sy, So with S = {r1,r9, 74,75} and Sy = {r3}:
R = &1 U Ss. Suppose that first S; is to be learnt and c-represented.
Since all r; € §; are tolerated by S, we may choose )\;r =0\ =1i¢
{1,2,4,5}, as appropriate revision constants in (11) (with x = k,, being
the uniform ordinal conditional function), thus arriving at kg := Kk, xSy
as a c-representation of S; (see the figure on page 32). A c-revision of
k9 by 8o = {r3} according to the strategy described above can then
be obtained by adding A\; = 2 to all worlds falsifying r3. The resulting
K3 = kg xSg = (ky *S1) * Sy is shown in the figure on page 32, too, and
is clearly seen to be different from k = ky * R = Ky * (S U S2) in the
figure on page 28.

Which type of revision — simultaneous or successive revision — is
more appropriate will depend on the relation between already present
knowledge, R, and new incoming information, S. If both pertain to
the same situation, or the same world, respectively, simultaneous re-
vision should be used; otherwise, successive revision seems to be the
proper way to change beliefs. Actually, it needs this general framework
for belief revision to understand this thoroughly, since successive and
simultaneous revision cannot be distinguished in a purely propositional
framework.

8. Linking qualitative and quantitative approaches

In Sections 5 and 7, the idea of preserving conditional beliefs under
revision have been formalized in two (apparently) different ways: In
Section 5, we made use of the two relations C and _L, describing quite
simple ways of conditional interactions. In Section 7, we based our
formalization upon observing conditional structures. In any case, the
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v kW) mW)  w  Ke(w) K3W)
pbfwk 0 2 pbf wE 0 2
pbfwk 1 3 pbfwk 1 3
pbfwk 1 1 pbfwk 1 1
pbfwk 2 2 pbfwk 2 2
pbfwk 2 4 pbfwk 1 3
pbfwk 2 4 pbfwk 1 3
pb fwk 2 2 pb fwk 1 1
pb fwk 2 2 pbfwk 1 1
pbfwk 0 0 pbfwk 0 0
pbfwk 1 1 pbfwk 1 1
pbfwk 1 1 pbfwk 1 1
pbfwk 2 2 pbfwk 2 2
pbfwk 1 1 pbfwk 0 0
pbfwk 1 1 pofwk 0 0
pb fwk 1 1 pb fwk 0 0
pb fwk 1 1 pb fwk 0 0

Figure 2. OCF k2 and revised x5 for Example 7

principal idea was to focus on conditional (not logical) interactions,
considering the effects conditionals may exert when being established.
We will now show, that both approaches essentially coincide in the case
that a conditional valuation function (as a quantitative representation
of epistemic beliefs, like e.g. ordinal conditional functions or possibility
distributions) is revised by only one conditional. More exactly, we will
prove that a revision following the quantitative principle of conditional
preservation (see Definition 7 in Section 7) satisfy the postulates (CR5)-
(CR7) in Section 5, describing a qualitative principle of conditional
preservation.

We begin by characterizing revisions V* =V « R =V x (B|A) of a
conditional valuation function V' which satisfy the (quantitative) prin-
ciple of conditional preservation with respect to R = {(B|A4)} and V.
As a basic requirement for such revisions, we will only presuppose that
V*(A) # 04, instead of the (stronger) success postulate V* |= (B|A).
This makes the results to be presented independent of acceptance con-
ditions and helps concentrating on conditional structures; in particular,
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it will be possible to make use of these results even when conditionals
are assigned numerical degrees of acceptance.

Proposition 4. Let V : L — A be a conditional valuation function,
and let R = {(B|A)} consist of only one conditional (B|A) € (L | £).
Let V* =V «R =V «(B|A) denote a revision of V' by (B|A) such that
V*(A) # 04. V* satisfies the principle of conditional preservation with
respect to V and R iff there are constants ag, o™, o™ € A such that

V¥w)={ a0V (w) if wEAB (18)

{ ateV(w) if wpEAB
OV (w) if wEA

If V* is strictly V-consistent, then all constants ag,a™,a~ € A may
be chosen # 04

As an obvious link between the qualitative and the quantitative
frameworks, we now strengthen the central postulate (CR5) to com-
ply with the numerical information provided by conditional valuation
functions V:

(CR5%") If (D|C) 1L (B|A) and V(CD),(V % (B|A))(CD) # 04,
then

V(CD) o V(CD)™! = (V% (B|A))(CD)® (V% (B|A))(CD) .

(CR57“%"") ensures that essentially, the values assigned to condition-
als which are perpendicular to the revising conditional are not changed
under revision:

Lemma 4. Suppose the revision V % (B|A) is strictly V-consistent
and satisfies (CR574%™"), Then for any conditional (D|C) L (B|A) with
V(C) # 04, it holds that V(D|C) = (V * (B|A))(D|0).

The next proposition shows that indeed, (CR57“%"") is stronger than
its qualitative counterpart (CR5):

Proposition 5. Let V¥ =V « R =V x {(B|A)} denote a strictly V-
consistent revision of V' by (B|A) such that V*(A) # 04, If V* fulfills
(CR5%44"t) then it also satisfies (CR5).

The following theorem states that essentially, any revision of a con-
ditional valuation function which satisfies the quantitative principle
of conditional preservation (as specified by Definition 7), is also in

accordance with the qualitative principle of conditional preservation
(as described by (CR5)-(CRT7)):
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Theorem /4. Let V : L — A be a conditional valuation function, and
let R = {(B|A)},(B|A) € (L] L), consist of only one conditional. Let
V* =V xR denote a strictly V-consistent revision of V' by R fulfilling
the postulates (CR1) (success) and (CR2) (stability).

If V* satisfies the principle of conditional preservation, then the
revision also satisfies postulate (CR57%%") and the postulates (CR6)
and (CRT); in particular, it satisfies all of the postulates (CR5)-(CRT).

Therefore, Theorem 4 identifies the principle of conditional preser-
vation, as formalized in Definition 7, as a fundamental device to guide
reasonable changes in the conditional structure of knowledge.

9. Conclusion and Outlook

In this paper, we presented axiomatizations of a principle of condi-
tional preservation for belief revision operations in qualitative as well
as in (semi-)quantitative settings. In both cases, we dealt with revisions
of epistemic states by sets of conditional beliefs, thus studying belief
revision in a most general framework. In particular, the problem of
nesting conditionals can be addressed and dealt with properly in our
framework. As the inductive representation of a set of conditionals (or
default rules, respectively) can be considered as a special instance of
a revision problem, this paper also provides an approach for adequate
knowledge induction.

The crucial point in preserving conditional beliefs is to observe
conditional interactions, which can be described by two relations, sub-
conditionality and perpendicularity, in the qualitative framework, and
are based on the algebraic notion of conditional structures in the quan-
titative framework. Since subconditionality and perpendicularity can
also be defined via conditional stuctures, the theory of conditional
structures developed in this paper proves to be a most basic and power-
ful tool for handling conditionals in knowledge representation and belief
revision. We applied this theory to conditional valuation functions as
basic representations of (semi-) quantitative epistemic states, covering
probability distributions, ranking functions (ordinal conditional func-
tions), and possibility distributions. Therefore, the results presented in
this paper are of relevance for a wide range of revision problems in
very different environments. Moreover, apart from theoretical aspects,
our approach also yields practical schemata for setting up revision
and representation operations in probabilistic, possibilistic and ordinal
frameworks.

As the main result of this paper, we showed that the quantitative
principle of conditional preservation implies the qualitative principle
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in semi-quantitative settings. This not only closes the gap between
qualitative and quantitative approaches to belief revision, but also may
give new impetus to classical belief revision theory.

This rich, formal framework we used to develop our axiomatization
of principles of conditional preservation, with the basic notions of condi-
tional structures and conditional indifference, can also be used to study
basically structural approaches to default reasoning (cf. (Kern-Isberner,
2002b)). The connections to group theory which might appear a bit
strange at first sight can most efficiently be used to discover relevant
conditional relationships in statistical data (Kern-Isberner, 2000). The
implementations of these ideas as a computer system, CONDOR?, are
part of our ongoing work; a description of CONDOR as an abstract state
machine can be found in (Beierle and Kern-Isberner, 2003).

Appendix
Proofs

Proof of Theorem 1. Let A,B,C,D € L.

Suppose C' < B or C < B. Then (D|C) 1L (B|T). (CR3) and (CR5)
now imply (C1) and (C2).

(C3) and (C4) are direct consequences of (CR6) and (CR7) by using
that (B|A) C (B|T) and (B|A) C (B|T), respectively, due to Lemma
1.

Proof of Proposition 1.
Proof of (1): Let (D|C)
C < A, by Lemma 1. Let

C (B|A), where B is one of B, B. Then
O = w'...wpr € ker opje) N C, thus
wp = C for all 1 < k < m, and hence (D|C)(wy) = (B|A)(wi) €
{0,1}, using notation (2). So, (D|C)(wy) = 1 iff (B|A)(wg) = 1, and
(D[C)(wk) = 0 iff (B|A)(wg) = 0. 1 = 0(pjcy(©) HE Xp p)cy(we)=1 Tk =
Yk(D|C)w)=0Tk = 0, due to (5). But this is equivalent to
k:(B|A)(wy)=1 Ty = Zk:(B\A)(wk):(J Ty = 0, tOO, and therefore to
Conversely, suppose C < A and ker o(p|cy N C = ker o4 N C.
The case (D|C)*" = (D|C)~ =  is trivial, and also the case |(D|C)"|+
|(D|C)~| = 1 is easily dealt with: For instance, let (D|C)" = {wy} and
(D|C)~ = 0. Then wy = A, so that one of wy = AB or wy = AB holds.
Then clearly (D|C) C (B|A) or (D|C) C (B|A).

2 The development of CONDOR is supported by the DFG — Deutsche Forschungs-
gemeinschaft within the CONDOR-project under grant BE 1700/5-1.
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So, let us now assume |(D|C)*| > 1,|(D|C)~| > 1, and let wy €
w1 w1
(D|C)*,wy € (D|C) . Then opc) ( ) # 1, so o ¢ ker o(pjcy N C

and hence also ¢ ker o(p|a) nC. Therefore, (B|A)(w1) # (BJA)(w2),
w2

so we have w; € (B|A)" and wy € (B|A)™ or the other way round.
On the other hand, for any w; such that (D|C)(w!) = (D|C)(w;) (i €
{1,2}), the presupposition ker o(p|c) N C = ker o(playN C implies that
(B|A)(w!}) = (B|A)(w;). So (D|C) C (B|A), as desired.

Proof of (2): Let (D|C)_L(B|A), i.e. C < AB,AB or A, respec-
tively. Thus o(p|4)(w) is the same for all w = C. Due to cancellations,
cn QU C ker O(B|A)-

Conversely, suppose (D|C) L (B|A) does not hold. Then there are

W1, W9 ‘= C' such that U(B‘A)(wl) 79 U(B‘A)(wg), i.e. U(B\A) (Z—;) 79 1. So

w1 eln Qo, but “1 ¢ kera(B‘A).
w9 w2

Proof of Lemma 3. Let wy,ws € Q such that og(w1) = or(ws).
If V(wi) = 04 then there is (B|4) € R with op|a)(wi) # 1 and
V(w') = 04 for all o' with gy (W) = opay(w). or(wi) = or(w2)
implies in particular o(g|4)(w1) = o(pja)(w2), and hence V(ws) = 04,
too, by condition (i) of Definition 4(1).

Now suppose V(w1), V(wz) # 04, ie. wi,wy € Q.. Moreover, we

w ~
have — € Qp, so due to the presupposition og(w1) = ogr(ws2), we
wo

obtain V(w;) = V(w2), by condition (ii) of Definition 4, (1) and (2).

Proof of Proposition 2. Suppose V' : L — A is a conditional valuation
function which is indifferent with respect to R. Then, by definition,
condition (i) of Definition 4 holds. Let @ € kerg og N Q4, i.e. © € Q,
and oz () = 1 = or(eq), where eq is the empty word in €. Because
V' is indifferent with respect to R, we obtain V(@) = V(eq) = 1, so
w € kerg V.

Conversely, let V' : L — A be a conditional valuation function such
that condition (i) of Definition 4 holds and kery og N Q4 C kerg V.
Suppose o (@1) = O"R(CL)Q) for @ wl,wg € Q_|_, W1 =7 W9. Then o (@ -
Dy ) =1, ie. &1 @y " € kerg or N Q4 C kerg V. This implies V(& -
o 1) = 1, and thus V(w1) = V(wa). Therefore V' is indifferent with

respect to R.

Proof of Theorem 2. We will give a detailed proof only for the case
of probability functions. The proofs for ordinal conditional functions
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and possibility distributions, respectively, follow the same idea and are
indeed quite analogous.

Let P be a probability function and R = {(Bi|A1),...,(Bn|4n)}
be a set of conditionals. Suppose first that P is indifferent with respect
to R. Then P(A4;) # 0, due to the prerequisite in Definition 4. The
equivalence relation =g induces a partitioning €, ..., €, of Q so that,
according to Lemma 3, P(w) is constant on each equivalence class.
Assume P(w) = p; for w € Q;. Let wy,...,wy € Q be a representative
system of €y,..., €.

For the sake of simplicity of notation, we suppose that pq,...,py >
0, pg41 =-.. =pg =0 with ¢’ < gq.

For all P(wj) = p; = 0,¢' <j < g, there is (B;;|4;;,) € R such
that U(Bij\Aij)(wj) # 1 and P(w') = 0 for all &' with U(Bij\Aij)(Wl) =
U(Bij\Aij)(wj)' If J(Bij\Aij)(wj) = a;';, then set a;';, = 0 and o =1
if U(Bij\Aij)(wj) = a,; then set a;; = 1 and a5, = 0. Without loss
of generality, assume that those conditionals (B;;|4;;) € R are the
conditionals (B;|A4;), n' < i< n.

Let us now consider the constants p; # 0. Finding positive factors

+ - + = _ + -
g, 0 ,ap,..., a0, with 0 # P(w) = ag 1<]1{ Q; 1<]1’ a;
\’L\n \’L\TL
wEA;B;=1 wi=A;B;

amounts to solving the following system of ¢ equations

(&%) H a;r H a;:pj,j:].,---,ql, (19)
1€ign/ 1<ign!
wilEAiBi  wj=AB;
which can be transformed into a linear equational system
0f =X (20)
with 3 = (log a,log o, logay ..., log o, loga, )T € R27 10X =
(logpi,...,logpy)T € R? and a ¢’ x (2n' 4+ 1)-matrix © with elements
in {0,1}, such that 6;; = 1 for all j, 0,9, = 1 iff 0;(w;) = a;", ;041 = 1
iff o;(wj) =a; for 1 <j < ¢, 1<i<n' Let 9_;', 1 <j < ¢, denote the
rows of ©. The equational system (20) is solvable over R iff any linear
dependencies (over the field of rationals, because each entry of O is
either 0 or 1) between these rows correspond to relations between the
Aj = logpj, ie. Y 11 Om, = D) 8n,0n, must imply >, A, =
Y1 Sn; A, With rationals ry,, , sp,.

Arranging and multiplying both sums appropriately, we may
assume Y ;T Om, = > ;Sn,0n, with natural numbers 7, ,sp,.
By comparing the vector components, we obtain >, 7y, Om, 2i
Zl Snlenl,Qia Zk kaamk,Qi—i—l = Zl 5n19n1,2i+17 1 <i<n'. These equa-
tions imply > . ™m, = 2_; Sn; Zk:m(wmk)za;* Tm, = Zl:rn(wnl)—a* Sn,

%
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and ;.. iy )—ay T = >lio, wny)=a Sn1 Therefore the elements

[k w,rﬁ,'f and [, wf[[l are =T-equivalent and R-equivalent by equations
(5) and (6), and because P is assumed to be indifferent with respect to
‘R, we obtain

Hp?"mk _HF)(AJ””C T‘mk _prnl ny _HpSnl.
Applying the logarithm function now yields

Z T'my, Amk = Z Sny >\nla
k l

as desired. Thus the equational system (20), or (19), respectively, is
solvable, yielding a solution § = (Bo, 8,87, ..., 65, 8.)T € R +1,
Setting ag = exp(fo), o = exp(B;") and o; = exp(B;), 1 < i < n', we
obtain P(w)=ap [l « [I « for P(w)# 0. Taking now also

i
1<ign/ wl= 1<ign!

AiB; wl=A4;B;
into account the conditionals (B, 1|4 41),-- -, (Bn|An), belonging to
P(w;) =0, we thus have P(w) = ap ] of [l a; forallweQ
1<ign 1<ign
wl=A;B; w=A;B;

because the non-zero factors belonging to those conditionals are 1.

— + — s
To prove the converse assume P(w) = a9 [[ o [] o« isa

1<ign 1<ign
wi=A;B; w\:AiB_i
probability distribution with «y, af, ap .. ) € RY o > 0. We

have to show the indifference of P with respect to R.

If P(w) = 0 then there is (B;|A;) € R such that w = A;B; and
T =0,0r w = A4;B; and aj = 0. So, in any case o;(w) # 1 and
( ") =0 for any ' € Q with al( ") = oi(w). This shows condition (i)
of Definition 4.
Now consider two R-equivalent elements

mi ma2 N
@ = H wt and @y = lesl €N,

with identical conditional structures

or(@) = [[ orw)™= TI or)"=or(@)

1<k<m 1<i<mo
which are also =T-equivalent. Then >, rp,, = > sn,s > r =
kioi(wy)=a}
> s and > ry = > sy hold foralli =1,...,n
Lioi(v)=a} k:oi(wi)=a; Lioi(v))=a;
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according to equation (5). Checking condition (ii) of Definition 4 is now
an easy calculation:

P(&1) = P(w1)™ ... P(wm,)"™ =

Z Tk Z Tl
— a()z:k Tmy, H (aljl-)k:wk\zAiBi H (ai—)k:wk\zAiEi
1<ign 1<ign
S S
= 040231 o1 H (oﬁr)l"’l FA;B; H (of)l”’l\:AiEi
1
1<ign 1<ign

Proof of Proposition 3. The proof of this proposition is tedious and
technical, but straightforward. We will exemplify it for the case that
X,Y,Z each contain just one (binary) variable: X = {a}, Y = {b},
and Z = {c}. The corresponding set R then consists of the following
eight conditionals:

R={ (dle), @le), (blc), (ble),

(afe), (ale), (bfe), (bl2)

Let P be indifferent with respect to R. We have to show that a and b

are conditionally independent in P, given ¢, i.e. P(ab|¢) = P(alé¢)P(b|¢),

P(abé) P(abé)

P(abé) P(abé) -

be the group generators of Fr associated with (al¢), (alé¢), (b|¢), (b]¢),
respectively. Then

¢ € {c, ¢}, which is equivalent to =1. Let a{c, aéc, agt, ajf

- (abé-ﬁgé) _afajyaja, -ajajaja; ]
Rlabe-abi’  ajayazaj -a ajaja,
132833, -a;a3agay

and due to the indifference of P with respect to R, we also have
P(abé)P(abe)
P(ab¢)P(abé)

Proof of Proposition 4. Let V* = VxR = Vx(B|A) denote a revision
of the conditional valuation function V' : £ — A by R = {(B|A)}, and
assume V*(A) # 04,

V* satisfies the principle of conditional preservation with respect to

V and R iff V* is indifferent with respect to V' and R. According to
Definition 7, this means in particular that V* is V-consistent, and

(VH/V)(wr) = (VF/V)(w2) if (B]A)(w1) = (B[A)(w2)  (21)
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for V(wy),V(w2) # 04 Due to the prerequisite V*(A4) # 04 and the
V-consistency of V*, we have V(A4) # 04, too, so V(AB) # 04 or
V(AB) # 0A. IfV(AB) = 0, then V*(AB) = 04 and V(AB), V*(AB)
# 0. In this case, there is w™ € Mod (AB) such that V(w™), V*(w™) #
04; set at := 14,07 = (V*/V)(w™). If V(AB) = 04, then ana-
logically, a~ := 1" and ot := (V*/V)(w™) for some suitable wt €
Mod (AB). If both V(AB),V(AB) # 04, then choose worlds wt €
Mod(AB),w~ € Mod(AB) such that V(wt),V(w™) # 04 and set
at = (V*/V)(wT),a = (V*/V)(w"). Furthermore, we have V*(A4) =
04 iff V(A) = 04; in this case, set ag := 1. Otherwise, select wy €
Mod (A) with V(wp), V*(wy) # 04 and set ag := (V*/V)(wg). Due to
equation (21), we thus have

V¥w)={ a0V (w) if wEAB (22)

{ ateV(w) if wlEAB
OV (w) if wEA

with (at least) ag # 0.
Conversely, any revision V* of type (22) is V-consistent and satisfies

~

Definition 6. Let @ = w(' - ... wjy» € QF; then

) = (a+)zk=wk\:AB Tk (a*)Zk:wk\:AE Tk’

o(B|4)(@
and

(V*[V)(@) = (o) 2= ™ (o7 ) 2tai=aB ™ (ag) ka7,

Thus we see that V* of type (22) is indifferent with respect to V' and
(B|A). Furthermore, by the remarks above, it is clear that if V* is
strictly V-consistent, then all constants ag, at,a™ can be chosen # 04.
This completes the proof.

Proof of Lemma 4. Suppose the revision V* =V x (B|A) is strictly
V-consistent and satisfies (CR5744™). Let (D|C) be a conditional such
that (D|C) 1L (B|A) and with V(C) # 04. Since V* = V « (B|A) is
strictly V-consistent, we also have V*(C) # 04, and V(CD) = 04
iff V*(CD) = 04, D € {D,D}. If V(CD) = V*(CD) = 04, then
V(D|C) = V*(D|C) = 04; if V(CD) = V*(CD) = 04, then V(D|C) =
V*(D|C) = 14,

So assume now V(CD),V(CD) # 04. Then, by (CR57™),

V(CD)oV(CD) ' =Vv*(CD)® V*(CD) !,
and consequently,

V(D|C) = V(CD)eo V(C)™?
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= V(CD)® (V(CD)® V(CD)) ™!

= V(D)o V(D) 'o(14a V(CD)e V(D)™ H)™!

= (14 V*(CD)® V*(CD)*l)*l

*(CD)oVHCD) "o (14 eV (c )yoV*HCD)™H!
VHCD) e (V (CD) ®V*(CD))™!

vVHCD)o Vo) !
V(

|
1

Proof of Proposition 5. Let V* = V % (B|A) denote a strictly V-
consistent revision of V by (B|A) satisfying V*(A4) # 04 and (CR57%e"t).
Suppose (D|C) 1L (B|A). If V(CD) = V*(CD) = 04, then neither V
nor V* accepts (D|C). So let V(CD),V*(CD) # 04. Then (CR5quant)
implies

V(CD)e V(CD)™! =v*(CD) ® V*(CD) . (23)
According to Section 3, we have

V = (D[C) CD) <4 V(CD)
CD)oV(CD) ™t <414
CD

CD

= (D

V(
V(
V*(CD) ® VH(CD) ' <414 (due to (23))
<
|

vi(C

(

) <4 VHCD)

0).

te o

Thus (CR5) holds.

Proof of Theorem 4. Let V be a conditional valuation function, and
let V* =V x {(B|A)} denote a strictly V-consistent revision of V' by
(B|A) fulfilling the postulates (CR1) (success) and (CR2) (stability).
So in particular, we have V*(A4) # 04, and by the strict V-consistency
of the revision, we also have V (A) # 0.

If V* satisfies the principle of conditional preservation, then, by
Proposition 4, there exist constants ag,a®,a~ # 04 in A such that

V*w) =4 a6oV(w) if w=AB

{ ateOV(w) if wkE=AB
OV (w) if wEA

To prove (CR57“*™), suppose that (D|C) 1L (B|A) and V*(CD) #
04. So Mod (C) is completely included in one of Mod (AB), Mod (AB),
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Mod (A). Then for a suitable a € {ag, o™, a~}, we obtain

—1
vieD)evieD) !t = | 3 Vi) | e ( S EBV*(w))

wECD w=CD

~1
= Z eaa@V(w) ®< Z eaoz@V(w))

—1
= |la® Z EBV(w) ®(a® Z 63V(w))

wE=CD wE=CD
= a0V(CD)oa'®V(CD)™!
= V(D)o V(CD) !

This shows (CR5%4ent),

Suppose now (D|C) C (B|A), i.e. CD < AB and CD < AB. Then,
as in the calculations above, we obtain V*(AB) = aT®V(AB), V*(AB)
=a OV(AB) and V*(CD) = aT ®V(CD),V*(CD) = a~ ®V(CD).
Furthermore, V(CD) < V(AB) and V(CD) < V(AB).

By prerequisite, V* = (B|A), thus V*(AB) <4 V*(AB). f V |=
(B|A), then, by (CR2), V = V*, and (CR6), (CR7) are trivially ful-
filled.

So assume now that V [~ (B|A), that is, V(AB) <4 V(AB). From
V* = (B|A), we have a~ ® V(AB) <4 at ® V(AB) which implies
a  <gqat. IfV = (D|C), this yields

V*(CD) = a~ ®V(CD) <4 a* 0V (CD) <4 at @V (CD) = V*(CD),

hence V* |= (D|C). This shows (CR6).

To prove (CRT7), suppose (D|C) C (B|A), V [~ (BJA) and V* |=
(D|C), i.e. V*(CD) <4 V*(CD). Then a* ®V(CD) <4 a~ ®V(CD),
and consequently, by using = <4 o™, V(CD) <4 V(CD), which
means V' = (D|C). This shows (CR7).
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