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Abstract. Testing of software components during their development is
a heavily used approach to detect programming errors and to evaluate
the quality of software. Systematic approaches to software testing get a
more and more increasing impact on software development processes.
For imperative programs there are several approaches to measure the
appropriateness of a set of test cases for a program part under testing.
Some of them are source code directed and are given as coverage criteria
on flow graphs.
This paper sketches a tool for source code directed test analysis for the
functional language Erlang. It motivates the need for an interpreter for
flow graphs, and describes implementation and properties of such an
interpreter.

1 Introduction

Testing of software is a widely used method of detecting errors during the soft-
ware development process. One can assume every software to be tested before
being put to use in practice. Though testing can just prove the presence but not
the absence of errors, the passing of all tests given by an appropriate test set is
often understood as an evidence for reaching a certain level of software quality.
For imperative programming there are several approaches defining the appropri-
ateness of a test set by coverage criteria based on the flow graph. Testing in this
way is usually applied to small program fractions like single modules.

In the context of functional programming, there just exist simple ad hoc
approaches to source code directed testing, as e.g. the cover tool for Erlang [1]
that checks the individual lines of a program for coverage. As systematic testing
is an important task of professional software development, it is desirable to have
more advanced source code oriented testing methods for functional programming
languages available.

In this paper, a system for source code directed testing of programs in the
language Erlang is sketched. The focus of the paper lies on a prototype implemen-
tation of an interpreter for flow graphs that forms one of the central components
of the testing tool. Besides the description of the basic design decisions and
the implementation of the interpreter, the paper contains several measurement
results for the interpreter compared with the Erlang runtime system.



The rest of the paper is organized as follows. Section 2 contains a discussion
of related work. In Sec. 3 an overview over usual testing procedures, and over the
considered Erlang subset are presented as preliminaries. Section 4 describes the
top level structure of a source code directed testing tool for Erlang programs, and
in Sec. 5 the implementation of a graph interpreter forming one core component
of the testing tool is described. Section 6 describes some properties of the graph
interpreter by presenting and discussing several measurement results. Finally,
the conclusions are drawn and directions of future work are shown in Sec. 7.

2 Related Work

Flow graphs in functional programming, and the approach to use them for testing
functional programs are related to publications from several areas. There are
already approaches on flow graphs for functional languages. Van den Berg [2]
uses flow graphs and call graphs in the context of software measurement for
functional programs. The flow graphs used there consider function calls as atomic
operations and are generated for each function independently. Information on
calls between functions is given by a call graph as separate structure.

The concepts of generating flow graphs for higher order programs is described
by Shivers [3] and further analyzed by Ashley/Dybvig [4]. Especially, the level
0CFA described there is very similar to our approach. Due to its use of continua-
tion passing style (CPS) and the Y combinator, it is, however, not very adequate
for presenting the analysis results to human programmers. The same holds for
works based on Shivers approach [3]. They do not focus on the presentation of
the generated flow graphs to the programmer.

Different approaches on testing and debugging functional programs have been
proposed. QuickCheck [5] aims at automatically checking Haskell programs by
generating input data on a random basis and checking the results with con-
straints on the expected output. In the WYSIWYT framework [6–8] flow graphs
are used for judging the coverage of a functional program by a set of test inputs.
This approach is, however, restricted to spreadsheets considered as first order
functional programs without recursion.

Several approaches on declarative debugging and tracing functional languages
(e.g. [9], [10], [11, 12]) describe how to trace down the programming errors caus-
ing an observed misbehavior of a program. These approaches, however, do not
provide mechanisms for generating or judging the test sets that are used to
provoke such a misbehavior.

The module cover that comes with the tools library of Erlang [1] implements
a coverage test for Erlang source code that analyzes the individual lines of the
source code for coverage. It does not use an interpreter, but compiles the modules
to be analyzed in a special way. Cover is, however, not able to distinguish several
computations coded within a single line, or to check non local relationships e.g.
between calls and called functions or between throws and corresponding catches.



3 Preliminaries

3.1 An Overview over the Testing of Software

Literature on testing imperative programs (e.g. [13]) usually distinguishes three
different stages of testing during the software development process.

1. Component testing
2. Integration testing
3. System testing

Component testing focuses on testing the single units of a software product
early in the development process. Source code directed coverage criteria are used
in this stage to ensure that every program part is executed at least once. (The
definition of the term program part that applies in a certain situation is given
by the chosen coverage criterion.)

For integration testing several units (that have been tested individually dur-
ing component testing) are connected to each other, and their interaction is
tested. This stage is especially necessary to check the correct implementation of
interfaces by several components.

In the system testing phase the overall software product is tested. Among
others, this stage contains e.g. stress tests, and tests by selected users with
realistic applications.

For the remainder of this paper, it is important to note that source code
directed testing methods only make sense in the context of component testing.
Therefore, the code fragments and test cases, source code directed testing has
to deal with, are rather small and elementary.

3.2 Syntax of the Considered Erlang Subset

The described generator and interpreter for flow graphs do not work on the whole
set of Erlang constructs. We rather restrict ourselves to the subset defined in Fig.
1, that essentially covers the sequential part of Erlang without some syntactic
sugar. Definitions consisting of a ? are not needed here, and are therefore omitted.
Infix operators are considered as ordinary functions. Due to the importance of
the BIF (built in function) throw for the control flow, it has the state of a
syntactic keyword in this work. In the following when speaking of a first order
function call we mean a call of the form fn(e1, e2, . . . , ek) with a function name
fn, and a higher order function call has the form e0(e1, e2, . . . , ek).

4 Structure of the Test Analyzer

The top level structure of our test analysis system if given by a sequence of the
following three stages.

1. Flow graph generation.
2. Interpretation of one or several tests in the flow graph.
3. Evaluation of the tests according to a specified coverage criterion.



constants a: ?

variables X : ?

patterns p: a|X|{p1, . . . , pk}|[p1|p2]|[p1, . . . , pk]

guards g : ?

if clauses ic: g → l

case clauses cc: p [when g]→ l

fun clauses fc: (p1, . . . , pk) [when g]→ l

function name fn: ?

expressions e: a|X|e0(e1, e2, . . . , ek)|fn(e1, e2, . . . , ek)|
{e1, . . . , ek}|[e1|e2]|[e1, . . . , ek]|begin l end|
if ic1; ic2; . . . ick end|case e of cc1; cc2; . . . ; cck end|
fun fc1; fc2; . . . ; fcn end|catch e|throw e

expression lists l : e1, e2, . . . , ek

functions f : fn fc1; fn fc2; . . . ; fn fcn.

programs P : f1f2 . . . fk

Fig. 1. The Erlang subset under consideration

4.1 Flow Graph Generation

The generation of flow graphs is described in other publications [14, 15] and
therefore just sketched here for completeness. Given an Erlang module or a list
of modules, the flow graph generation consists of the following four steps.

1. The modules are read and preprocessed to meet the following properties.

– Every function has unique entry and exit points.
– Each function has an import node indicating the local definition of the

formal parameters, a context node indicating the local definition of the
variables taken from the context of the function definition, and a return
node denoting the leaving of the functions code and the returning of the
value bound to the return variable.

– All arguments to operations (function calls, structure generation, . . . )
are variables.

– The return variable containing the return value of the function is bound
before reaching the return node.

2. Flow graphs for the individual functions are generated. For each expression
a node is generated (especially containing a unique node number within the
module), and the nodes are connected in a straightforward manner. There
exists a number of different node representations for different expressions in
the source code [15].



import(Arg1) context()

context() return(Ret1)

return(Ret2)
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Fig. 2. Flow graph of the even-odd example

3. For each function call in the graph the possible destinations of the call are
calculated and the corresponding call edges are introduced. For first order
calls the destination is given by the called function; for higher order calls,
an iterated data flow analysis process is necessary to compute all possible
destinations. Call edges represent the control flow during calling a function
and the return from the call [15].

4. For each throw expression in the code, indicating a non-local return, the
corresponding destinations given by catch expressions are calculated and
edges are introduced.

Example 1. Consider the following definition of the functions even and odd.

even(0) -> true;

even(N) -> odd(N - 1).

odd(0) -> false;

odd(N) -> even(N - 1).

The flow graph of a module containing exactly these two function definitions
is given in Fig. 2. Call edges are denoted by dashed lines. The numbers at the
right top corners of the nodes are the unique node numbers.

4.2 The Graph Interpreter

A specialized interpreter for evaluating test cases is necessary to generate the
input for the following step of evaluating the test cases. Besides the result of a
test, the interpreter provides the trace through the flow graph during the test
evaluation.



Example 2. Consider the flow graph from Ex. 1 and the test even(1). This test
yields the result false and the trace

[1, 2, 3, 5, 6, [8, 9, 10, 11, 14], 7]

The sublist denotes the trace of the subcall odd(0) occurring during the evalu-
ation.

Details on the design of the interpreter and a discussion of its properties are
given in the following sections.

4.3 Judging the Test Coverage

Given the flow graph and the execution trace from the interpretation of some
test cases, we can calculate the parts of the flow graph that were already covered
by the tests. Several coverage criteria are known for imperative programming
languages [16], some of which are expected to be usable for functional program-
ming as well [15]. We just want to point out here, that the time consumption
for checking the coverage rate of a given test set can heavily differ according to
the chosen coverage criterion. Even quite simple coverage criteria like the node
coverage criterion, or, in case of a complex control flow with non-local returns
and higher order functions, the edge coverage criterion, can, however, be quite
helpful in testing.

Example 3. Consider the flow graph and the trace of Ex. 2. Judging this trace
according to the node coverage criterion, the nodes 1, 2, 3, 5, 6, 7 ,8, 9, 10, 11,
and 14 are covered by the test; the nodes remaining untested are 4, 12, and 13.

5 Design of the Graph Interpreter

In order to judge a given test set for coverage, the evaluation of the tests must
be performed in a supervised manner. The goal of supervising a test is the com-
putation of the trace the test takes through the flow graph. A collection of such
traces can be analyzed according to the different coverage criteria afterwards.
Precisely, the supervised execution is just necessary for the program parts (usu-
ally one or several modules) under test which are called the supervised modules
in the following.

Two ways of supervised processing are possible: an interpreter for flow graphs
or a modified compiler/runtime system for Erlang.

Since we are interested in easy to maintain code with a clear semantics for
the prototype of our test evaluation system, we prefer an interpreter for the flow
graph. In contrast to the modified compiler or runtime system, the implemen-
tation of an interpreter is self contained without a need for modifying existing
code. Furthermore, a testing tool based on an interpreter only needs the flow
graph as representation for the modules under supervision, while the alternative
approach also needs a specialized version of the compiled code.



The main disadvantage of a simple interpreter as presented here is a loss in
runtime performance and the loss of the space optimization for tail recursive
calls. To answer the question whether these restrictions are tolerable, Sec. 6
contains several measurements and a discussion of their results.

The main function of the interpreter expects the following inputs.

– A structure (usually given as a node from the flow graph).
– A context mapping bound variables to their values.

– The flow graph (needed for performing function calls). For convenience rea-
sons the current module in the graph is provided as an extra argument.

Given these arguments, the interpreter performs a case distinction on the
form of the given structure. Simple values (like numbers and characters) are
returned; for composed values the arguments are calculated and composed, and
the values for variables are looked up in the context.

In evaluating a function call the interpreter has to distinguish the following
cases for the called function.

– The called function is given by its module name and function name, and
the corresponding module is a supervised one. In this case the body of the
function in the flow graph is interpreted, using an updated context.

– The called function is given by its module name and function name, but
the corresponding module is not a supervised one. The call is passed to the
runtime system for evaluation. (The same holds for the predefined operators
known in Erlang.)1

– The called function is given by an Erlang value. In order to be successful, the
value must denote a fun.2 The call to this fun is evaluated by the runtime
system.
Whenever a fun-value is generated by the interpreter, the execution of the
fun has to be done by the interpreter as well. Therefore a fun is generated
that just calls the interpreter with the appropriate context and the body
of the intended fun. This ensures that the fun is always executed by the
interpreter, even when called from outside the supervision (e.g. after the fun
has been passed to a not supervised library function as argument).

The mechanism of non-local returns by catch and throw is implemented by
using this mechanism in Erlang directly. A catch expression is evaluated by
wrapping a catch around the call of interpreter for the argument. A throw just
throws its argument directly. This approach has the disadvantage that non-local
returns cannot be used by the interpreter (at least without great care over large
distance), but since there might occur both, catches and throws within code
evaluated by the runtime system, this restriction cannot be avoided anyway.

1 Functions just given by their name (denoting calls within the same module) cannot
occur here any more, because they are extended by the correct module name during
preprocessing.

2 Lambda closures are called funs in Erlang and are denoted by the keyword fun.



The main function of the interpreter returns a pair consiting of the evaluation
result, and a context that might be needed for further sub-evaluations. The
collection of execution traces makes use of the Erlang process concept. Before
evaluating a node, the interpreter sends the node number (and in case of a
module switch also the module name) to a process that collects the trace and
provides it on request. This is necessary to return the trace of program parts
that were called from outside the supervision.

6 Properties of the Graph Interpreter

The graph interpreter described in the section before is designed to offer a
straightforward semantics and easy changes for experiments. In this section the
practical use of the prototype is discussed, by measuring the maximal recursion
depth and the runtime for several small test programs.

All tests were performed on an unloaded Sun Ultra SPARC 60 with a 450 MHz
Microprocessor and 1,25 GB of memory.

6.1 The Test Programs

We start the discussion of the tests by describing the programs that were used
for the tests.

The following module loop contains the base loop that is used by all the test
programs.

-module(loop).

-export([l/1]).

l(0) -> 0;

l(X) -> l(X - 1).

The loop program is extended to perform an addition operation in each
iteration yielding the module add.

-module(add).

-export([l/1]).

l(0) -> 0;

l(X) -> 1 + l(X - 1).

An alternative operation is the generation of lists that is performed by the
module cons.

-module(cons).

-export([l/1]).

l(0) -> [];

l(X) -> [X | l(X-1)].



The following module fun gen generates a fun in every iteration.

-module(fun_gen).

-export([l/1]).

l(0) -> 0;

l(X) ->

F = fun l/1,

l(X-1).

The call to funs is tested by the module fun call that wraps the loop by a
fun.

-module(fun_call).

-export([l/1]).

l(A) ->

F = fun(0, _) -> 0;

(X, G) -> G(X-1, G)

end, % fun

F(A, F).

Due to the second parameter that has to be carried through by fun call, the
structure is no longer directly comparable to loop. We therefore have another
module loop call that represents the structural differences of fun call and
loop.

-module(loop_call).

-export([l/1]).

l(A) ->

F = fun(0, _) -> 0;

(X, G) -> G(X-1, G)

end, % fun (is never called, but just passed around)

t(A, F).

t(0, _) -> 0;

t(X, G) -> t(X-1, G).

6.2 Thresholds for the Recursion Depths

As already mentioned, our interpreter is not able to perform space optimizations
on tail recursive calls. Since Erlang relies on the fact that tail recursive calls can
be evaluated in constant space, the interpreter will show unintended behaviour
for large recursion depths.

Table 1 shows for each of the test programs the largest argument that does
not break the interpreter because of a heap overflow.



Program Max. argument

loop 2726568
add 1871991
cons 2507590
fun gen 1523222
fun call 1728769
loop call 2010925

Table 1. Maximum arguments to the individual functions

All test programs allow a recursion depth of over 1.5 million. As one could
expect, the highest recursion depth is found for loop that spends the least heap
memory for calculations within each recursion step.

6.3 Runtime Measurements

For the runtime measurements each value was generated as the average of 8
individual measurements. Runtimes are given in milliseconds as reported by the
Erlang profiler fprof [1]. The measurements just take into account the compila-
tion into the portable beam code, but not the HiPE compiler [17] that supports
compilation into native machine code on several platforms.

As a basis of the analysis we consider the individual programs for the ar-
guments 1, 10, 100, 1000, and 10000 when evaluated in the standard runtime
system. The results are presented in Fig. 3.

Besides a little overhead for small arguments, we get a linear correspondence
between the argument and the runtime. The runtimes of the individual programs
for the same argument are quite similar; the difference is bounded by a factor of
1.7 in the tests.

The same overview for the evaluation of the tests in our interpreter is pre-
sented in Fig. 4

Again we have a linear correspondence between the argument and the run-
time, with an overhead for small argument sizes, that has, however, a smaller
impact than in the case of standard evaluation. Again the runtimes of the indi-
vidual programs for the same argument are quite comparable with a maximum
difference factor of 2.0.

While the most expensive versions in standard evaluation were the value
manipulations by add and cons, the function calls and the higher number of ar-
guments in loop call and fun call have a stronger influence on the interpreted
runtimes.

Given a test case, the most interesting question is, how much more time
the interpreter needs to evaluate it compared to the standard runtime system.
Figure 5 presents the factors of the interpreted runtime divided by the standard
runtime.

Since the standard evaluation showed a higher overhead for small arguments
than the interpreted evaluation, the factors are quite small for the argument 1
(between 20 and 30). They increase up to 120 to 250 for the argument 10000, and
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Fig. 3. Runtimes for standard evaluation

from the form of the graphs we can expect that the difference factor converges
to values somewhere near the measurements for the argument 10000.

It turns out that the higher number of arguments in loop call and fun call

causes the highest difference between interpreted and standard runtime for these
two examples.

6.4 Discussion of the Results

Putting the above results together, the described interpreter allows for a recur-
sion depth that is sufficient for testing program fragments of several hundreds to
thousands of lines in most cases. Especially for small tests, the runtime ratio be-
tween standard and interpreted evaluation is not to bad because of the overhead
of the standard system for small tests.

For large test sets we expect to see a mix of the scenarios simulated by
the analyzed programs. In every case we expect the ratio between standard
evaluation and interpretation not to exceed 500, even for functions with high
arity and operations that are expensive in the interpretation.

Though the increase of time consumption by the flow graph interpreter com-
pared to the standard evaluation cannot be ignored, we expect it to be acceptable
in practical use for component testing because of the following reasons.
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Fig. 4. Runtimes for interpretation

– The program fragments put to test during component testing are small. They
should not exceed a single module without a good reason.3

– The test cases are usually small and simple. This is because unnecessarily
complex test cases make it harder to track down a misbehavior of a program
to a corresponding programming error.

– Much component testing can be done in batch mode where the runtime is
less critical than in interactive mode. Test sets are often designed according
to further criteria besides coverage, so that the design is completed before
performing a coverage test, and only few test cases are added interactively
in order to reach coverage. (This is especially the case for regression testing
where the test set from a previous program version is already available.)

– In situations where the runtime is a real matter, many tests can be performed
without using the interpreter. The coverage analysis can be done when the
performed tests do not show any misbehavior of the tested code any more.

7 Conclusions and Future Work

The supervised evaluation of test cases has been shown important in judging
the appropriateness of a test set for a program fragment according to a certain

3 Note that testing the software in larger blocks is deferred to the integration testing
and system testing stages.
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Fig. 5. Difference factors between interpreted and standard execution

coverage criterion. The solution described here is an interpreter that evaluates
the tests in the flow graph and tries to represent the semantics of the language
as seen by the programmer as precisely as possible.

Since source code directed testing usually applies to relatively small software
components, the interpreter is just used for the supervised modules (i.e. the set
of modules that is currently under testing). Calls to unsupervised modules are
passed to the runtime system. Because of this, the interpretation of a fun gener-
ation must indeed return a fun, that calls the interpreter with the appropriate
context and function body whenever evaluated. This is necessary, because su-
pervised funs can be called outside the supervision, e.g. when passed to a library
function as argument. The interaction between the interpreted parts of the pro-
gram and those evaluated by the runtime system also enforces the catch-throw
mechanism of Erlang to be used in the interpreter to implement the catch-throw
functionality.

Measurements showed a maximal possible recursion depth, that exceeded
1.500.000 for all tests on the used machine and should therefore be more than
sufficient for practical use, even though the interpreter does not optimize tail
recursion.

The delay by a factor between 20 and 250 compared to the execution by the
Erlang runtime system is expected to be tolerable in the intended application
scenario, especially allowing for batch execution of a larger number of tests in the



most cases. Less runtime consuming implementations are possible here (e.g. the
compilation of the tested modules to an enriched beam code), but at the cost of
a more complex implementation and a less clear and less extendable semantics.

Future work on our test system include the implementation and evaluation of
several coverage criteria, and the evaluation of the source code directed testing
approach for Erlang in a larger case study.
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