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Abstract

Testing of software components during development is a heavily
used approach to detect programming errors and to evaluate the
quality of software. Systematic approaches to software testing get
a more and more increasing impact on software development pro-
cesses.
For imperative programs there are several approaches to measure
the appropriateness of a set of test cases for a program part under
testing. Some of them are source code directed and are given as
coverage criteria on flow graphs.
This paper gives a definition of flow graphs for Erlang programs
and describes a tool for generating such flow graphs. It provides
a first step towards the transfer of advanced source code directed
testing methods to functional programming.

Categories and Subject Descriptors:D.2.5[Software Engineer-
ing]: Testing and Debugging; D.1.1[Programming Techniques]:
Applicative (Functional) Programming

General Terms: Algorithms, Design

Keywords: Flow graphs, test coverage

1 Introduction

Testing of software is a widely used method of detecting errors dur-
ing the software development process. One can assume every soft-
ware to be tested before being put to use in practice. Though testing
can just prove the presence, but not the absence of errors, the pass-
ing of all tests given by an appropriate test set is often understood
as an evidence for reaching a certain level of software quality. For
imperative programming there are several approaches defining the
appropriateness of a test set by coverage criteria based on the flow
graph. Testing in this way is usually applied to small program frac-
tions like single modules.
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In the context of Erlang, there just exists one ad hoc approach to
source code directed testing that checks the individuallines of a
program for coverage [4]. As systematic testing is an important task
of professional software development, it is desirable to have more
advanced source code oriented testing methods for Erlang available.

The aim of this paper is to give a definition of flow graphs of (se-
quential) Erlang programs similar to the known flow graph defini-
tion for imperative programs, and to describe a system generating
such a flow graph from a program’s source code. This forms the
first step towards making the large area of systematic, source code
directed testing available for Erlang programs. The usefulness of
the flow graph definition is shown by carrying over the definition of
some basic coverage criteria without much effort.

The rest of the paper is organized as follows. Section 2 gives an
overview over related work. In Sec. 3 a restriction of the language
under consideration is given and a preprocessing task for programs
is sketched. The definition of flow graphs is given in Sec. 4. Section
5 contains the necessary definitions for data flow analysis that is
needed for generating flow graphs of higher order programs. The
generation of the flow graphs is sketched in Sec. 6, and Sec. 7 gives
an outlook on the use of flow graphs for test case analysis. Some
conclusions are given in Sec. 8.

2 Related Work

The work presented here is related to publications from several ar-
eas. There are already approaches on flow graphs for functional
languages. Van den Berg [13] uses flow graphs and call graphs in
the context of software measurement for functional programs. The
flow graphs used there consider function calls as atomic operations
and are generated for each function independently. Information on
calls between functions is given by a call graph as separate struc-
ture.

The concepts of generating flow graphs for higher order programs
is described by Shivers [12] and further analyzed by Ashley/Dybvig
[1]. Especially, the level 0CFA described there is very similar to our
approach. Due to its use of continuation passing style (CPS) and
the Y combinator, it is, however, not very adequate for presenting
the analysis results to human programmers. The same holds for
works based on Shivers approach [12]. They do not focus on the
presentation of the generated flow graphs to the programmer.

Different approaches on testing and debugging functional programs
have been proposed. QuickCheck [3] aims at automatically check-
ing Haskell programs by generating input data on a random basis
and checking the results with constraints on the expected output.



In the WYSIWYT framework [9, 10, 11] flow graphs are used for
judging the coverage of a functional program by a set of test inputs.
This approach is, however, restricted to spreadsheets considered as
first order functional programs without recursion.

Several approaches on declarative debugging and tracing functional
languages (e.g. [6], [8], [2, 14]) describe how to trace down the pro-
gramming errors causing an observed misbehavior of a program.
These approaches, however, do not provide mechanisms for gener-
ating or judging the test sets that are used to provoke such a misbe-
havior.

The module cover that comes with the tools library of Erlang [4]
implements a coverage test for Erlang source code that analyzes the
individual lines of the source code for coverage. It is, however, not
able to distinguish several computations coded within a single line,
or to check non local relationships e.g. between calls and called
functions or between throws and corresponding catches.

3 Preliminaries

For presenting the definition and generation of functional flow
graphs we do not consider the whole Erlang language. We rather
concentrate on the subset defined in Fig. 1 (ignoring the boxes
around some expressions for the moment). Definitions consisting
of a ? are not needed here, and are therefore omitted. Infix oper-
ators are considered as ordinary functions. Due to the importance
of the BIF throw for the control flow, it has the state of a syntactic
keyword in this work. In the following when speaking of a first or-
der function call we mean a call of the formfn(e1,e2, . . . ,ek) with
a function namefn, and a higher order function call has the form
e0(e1,e2, . . . ,ek).

Programs in the considered Erlang subset are normalized to meet
the following properties: every function just consists ofoneclause
with only variables as arguments, and all function calls, and lan-
guage constructs just have variables as arguments.

The first condition is met by introducing a new form of expression,
generated by the keywordfuncase, of the form

funcase( e1 , . . . , ek ) of f c1; f c2; . . . ; f ck end

which expresses the branching given by the original clauses.

To meet the second condition, we replace all expressions that are
boxed in Fig. 1, and in the newfuncaseconstruct by fresh vari-
ables. The necessary variable bindings are introduced before the
respective expression.1

EXAMPLE 1. Consider the following definition of the functions
even and odd.

even(0) -> true;
even(N) -> odd(N - 1).

odd(0) -> false;
odd(N) -> even(N - 1).

Performing the described preprocessing steps results in the follow-
ing function definitions:

1This process is comparable to the introduction of variable
names during A-normalization by Flanagan etal. [5]. Note that the
process fixes an evaluation order for the subexpressions which is
indeed implementation dependent in Erlang.

even(Arg1) ->
funcase (Arg1) of

0 -> true;
N -> Var1 = N - 1,

odd(Var1)
end.

odd(Arg2) ->
funcase (Arg2) of

0 -> false;
N -> Var2 = N - 1,

even(Var2)
end.

4 Flow Graphs for Erlang

4.1 Flow Graphs of Individual Functions

Flow graphs for programs using the language of Sec. 3 consist of
representations of the individual expressions as nodes, and edges
representing the control flow between these nodes.

There are different forms of nodes in a flow graph representing dif-
ferent kinds of expressions. These node forms are presented in Fig.
2.

• For computations by operators, data constructors, and data se-
lectors, a node is generated as shown in Fig. 2.a.

• Function calls are expressed by nodes as in Fig. 2.b.

• catch expressions are represented as in Fig. 2.c. The cir-
cle denotes the destination for non-local return edges. The
right hand side denotes the expression that might return non-
locally.2 The arrow towards the catch expression is directed
towards the expression node. Both, the expression node and
the circle have an outgoing edge towards the successor of the
catch.

• if, case, andfuncaseexpressions are represented as in Fig. 2.d.
The test expressions to be matched against the patterns are
stored in theTest fields. ThePattern fields hold the patterns
of the individual clauses, theGuards fields the lists of guards,
and theExprList fields the graphs of the lists of expressions
evaluated when the corresponding clause is chosen.

The set of nodes representing a function definitionf is extended by
an import nodeimport(a1, . . . ,ak) defining the argument variables
ai of f , a context nodecontext(v1, . . . ,vl ) providing a local defini-
tion for all variablesv j that come from the contextf was defined
within, and a return nodereturn(R) expressing to leave the code of
f , and to return the calculated value given in the variableR.

Within a single functionf , directed edges are introduced from node
n1 representing an expressione1 to noden2 representing an expres-
sione2 if there is a possible control flow evaluatinge2 directly after
e1 within f .

EXAMPLE 2. The flow graphs for the two functionsevenandodd
defined in Ex. 1 (after preprocessing) can be extracted from Fig. 3
by deleting the dashed arrows.

4.2 Function Calls in Flow Graphs

For function calls we have the following control flow: when reach-
ing a noden representing a call to a functionf , the control is trans-
fered to the import node off . When reaching the return node off ,
the control jumps back to the (unique) noden′ following n in the
single function flow graph described above.

2Instead of an expression according to Fig. 2.a, other node
forms, or a list of nodes are possible as right hand side as well.



constantsa: ?

variablesX: ?

patternsp: a|X|{p1, . . . , pk}|[p1|p2]|[p1, . . . , pk]
guardsg: ?

if clausesic: g→ l

case clausescc: p [wheng] → l

fun clausesfc: (p1, . . . , pk) [wheng] → l

function namefn: ?

expressionse: a|X| e0 ( e1 , e2 , . . . , ek )|fn( e1 , e2 , . . . , ek )|{ e1 , . . . , ek }|[ e1 | e2 ]|

[ e1 , . . . , ek ]|beginl end|if ic1; ic2; . . . ick end|case e of cc1;cc2; . . . ;cck end|

fun fc1; fc2; . . . ; fcn end|catche|throw e

expression listsl: e1,e2, . . . ,ek

functionsf : fn fc1; fn fc2; . . . ; fn fcn.

programsP: f1 f2 . . . fk

Figure 1. The Erlang Subset Under Consideration
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Figure 2. Flow Graph Representations of Erlang Constructs

To describe this, we introduce a new notion ofcall edgesor rub-
ber band edgesinto functional flow graphs. Such a rubber band
edge (going from the calling node to the import node of the called
function in the flow graph) represents the control flow to the called
function and the return after reaching the return node of this func-
tion. (We can understand a function call in the flow graph as tying
the arguments of a call to one end of a rubber band and throwing
them to the called function while holding the other end of the band.
When the computation of the call finishes, the band bounces back
with the result tied to it and the computation goes on with the next
node in the local flow graph.)

EXAMPLE 3. For the even odd example given in Ex. 1 we get the
graph in Fig. 3. (Rubber band edges are denoted by dashed lines.)

4.3 Throw Edges in Flow Graphs

Besides function calls, the catch-throw-mechanism provides an-
other way of non-local control flow in serial Erlang. When the
control reaches a call to the BIF throw, it returns non-locally to
the innermost catch expression in the stack of expressions currently
under evaluation. After evaluating a call to throw, the computation
will nevercontinue with the next expression in the code.

Since the control flow from a throw node (i.e. a node representing
a call to the BIF throw) to a corresponding catch node is a one way
connection, there is no need to distinguish throw edges from the
normal edges used in the function flow graphs.

As result, for each throw node there isnoedge fromt to its succes-
sor in the source code according to Subsec. 4.1, and for each catch
nodec denoting a catch expressioncatch expr such that there ex-
ists a path from the beginning ofexpr to t, not containing another
catch node, an edge fromt to c is inserted.

5 Data Flow Analysis Graphs

As stated by Shivers [12], the control flow given by a higher order
program can depend on the data flow of the funs in the program.
In this section we therefore give a definition (adapted towards the
use for Erlang) of some base notions for data flow analysis that are
known for imperative languages. For a definition of a variablev we
writedef(v), for a use ofvwe writeuse(v). Their precise definitions
are as follows.



import(Arg1) context()

context() return(Ret1)

return(Ret2)

even/1:

Arg1

0

N Var1 = N − 1

Ret1 = true

Ret1 = odd(Var1)

import(Arg2)odd/1:

Arg2

0

N Var2 = N − 1

Ret2 = false

Ret2 = even(Var2)

Figure 3. Flow Graph of the even odd Example

DEFINITION 1 (DEFINITIONS). Let G be a flow graph, and v a
variable. A node n in G contains a definition of v if one of the
following conditions holds:

• n is an import node and v is one of the variables defined in n.

• n is a context node and v is one of the variables defined in n.
This is called f-definition (denoted by f-def(v)).

• n denotes a pattern matchingLHS = RHS, v occurs inLHS,
and there is at least one path w from the beginning of the
function containing n to n itself such that v is not defined on
w.

• n denotes a conditional, v occurs in at least one pattern p in
n, and there is at least one path w from the beginning of the
function containing n to n itself such that v is not defined on
w.

A definition binding v to a value selected from a structure (either by
pattern matching or the corresponding selection BIFs) is called an
s-definition and denoted by s-def(v).

The opposite of the definition of a variable is given by its use. Intu-
itively, a use of a variablev is given by every expression that needs
the value ofv to be evaluated.

DEFINITION 2 (USES). Let G be a flow graph, and v a variable.
A node n in G contains a use of v if one of the following conditions
holds:

• n is a node representing the expression E or a match p= E
where

– E = v

– E = {v1, . . . ,vk}, E = [v1|v2], or E = [v1, . . . ,vk] with

v = vi for some i. This is called an s-use and denoted
by s-use(v).

– E = v0(v1, . . . ,vk) or E = fn(v1, . . . ,vk) with v= vi for
some i∈ {0, . . . ,k}.

• n is a conditional node with a test given by v.

• n contains the generation of a fun, and there is at least one
path w from the beginning of the function containing n to n
itself such that v is defined on w. This is called an f-use and
denoted by f-use(v).

• n denotes a pattern matchingLHS = RHS, v occurs inLHS,
and there is at least one path w from the beginning of the
function containing n to n itself such that v is defined on w.

• n denotes a conditional, v occurs in at least one pattern p in
n, and there is at least one path w from the beginning of the
function containing n to n itself such that v is defined on w.

Some special information is added to the specification of a defini-
tion or use of a variablev inside a patternpof a conditional. Besides
the noden of the conditional it contains the number of the clause,
the patternp belongs to. Occurrences ofv in the patterns of several
clauses ofn are treated independently.

For both, f-definitions and f-uses as well as s-definitions and s-uses,
we need to define the notion ofcorrespondinguses and definitions.

DEFINITION 3 (CORRESPONDINGf-use, f-def). Let v be a vari-
able, u an f-use of v, and d an f-definition of v. u and d correspond
to each other if the fun containing d is the one defined in u.

DEFINITION 4 (CORRESPONDINGs-use, s-def). Let v be a vari-
able, and u an s-use of v, generating a structure c. A selection d



defining a variable v′ is an s-definition of v′ corresponding to u if
the structure decomposed in d is c, and the selected element posi-
tion is the one containing the value of v.

Note that for an s-use and the corresponding s-def the variable
names can differ.

The following main definition of this section states the situations
under which a definitiond reaches a useu.

DEFINITION 5. Let d be a definition of a variable v, and u a use
of a variable v′. Then d reaches u if one of the following properties
holds:

• v = v′ and there is a path in the flow graph from d to u that
does not contain a definition of v different from d. In this case
we say d reaches udirectly.

• There is a copy expression e of the formṽ = ṽ′ such that d
reaches the use ofṽ′ in e and the definition of̃v in e reaches u.

• d reaches an f-use of v and there is a corresponding f-
definition of v that reaches u.

• d reaches an s-use of v and there is a corresponding s-
definition of somẽv that reaches u.

Note that each rubber band edge from a function callc to a func-
tion f/k contains implicit assignmentspi = ai for eachi = 1, . . . ,k
wherepi is theith parameter in the definition off andai is theith ar-
gument in the callc. For the return an additional assignment of the
return variable off to the variable assigned toc is given. These im-
plicit assignments are processed like ordinary renamings according
to Def. 5.

6 Flow Graph Generation

Source code oriented testing is usually done early during the soft-
ware development process, and is performed to small parts of a
programs source code rather than the whole program. The currently
tested modules are called thesupervised modulesof a program.

Given a list of names of Erlang modules, the generation of the cor-
responding flow graph is done in the following steps.

1. The individual modules are read, and preprocessed according
to Sec. 3.

2. The local flow graph for each function is generated.

3. The destinations of the call edges are calculated.

4. The destinations of the throw edges are calculated.

The steps (1) and (2) can be performed for each module individu-
ally. The steps (3) and (4) calculate edges that might cross module
borders. They, hence, need the list of all supervised modules as
input.

The most interesting step is Step (3) that calculates the possible
destinations of higher order calls by data flow analysis. The process
is iterated, and every step uses the call edges calculated in the steps
before. As there is just a finite number of functions to be called, the
iteration terminates in every case.

During Step (2) local information on the values potentially thrown
by the individual functions is computed. This information is suffi-

cient to perform Step (3) before Step (4) and to avoid the need for
iteration in Step (4).

7 Test Case Analysis

For the flow graph of a sequential Erlang program as introduced
above, we now want to discuss its use for evaluating test cases.3

7.1 Specialties of Functional Control Flow

For checking the coverage of a flow graph by a set of tests, the
execution of the tests has to be performed in a supervised manner in
order to collect the information about the followed execution paths.

For imperative programs an interpreter is used, that executes the
tests on the flow graph, and passes every call to an unsupervised
program part to the runtime system for evaluation.

In our approach unsupervised program parts can call supervised
functions that were passed to them as arguments. The runtime sys-
tem must, therefore, be modified to pass the control back to the in-
terpreter when calls to supervised modules occur from outside the
supervision.

7.2 Transfer of Known Coverage Criteria

In the research of testing imperative languages there exist several
different coverage criteria on flow graphs. Each of these criteria
defines a set of entities in the flow graph that should be covered in
the best possible way by the set of performed tests.

Following Zhu etal. [15] we want to discuss some of the criteria and
their use for functional programming.

• The node coverage criterion requires allnodesin the flow
graph to be covered at least once. This corresponds to the
execution of every statement in imperative programming, and
to the evaluation of every expression in functional program-
ming.
The already existing cover tool for Erlang [4] implements a
comparable criterion. It works just more coarse grain if the
program source code contains several expressions in some of
the lines.

• In the branch coverage criterion everyedgein the flow graph
must be covered (of course restricted to edgeswithin the flow
graph). When considering first order functional programs
without non-local returns, we can prove that this is equiva-
lent to the node coverage criterion. For higher order programs
this criterion enforces every supervised higher order function
to be called at least once in every possible supervised position.
For non-local returns, every return from athrowexpression to
a catchexpression which is a possible destination has to be
performed at least once.4

3Implementing this part of the system is work in progress.
Hence, broad experiences are not yet available.

4Because of the approximative behaviour of 0CFA, a 100 % cov-
erage according to this criterion might be impossible. The not cov-
erable edges can, however, be detected by the user quite easily. Es-
pecially, in the common case, a fun is generated directly as argu-
ment for a higher order function likemap, or fold, no inaccuracies
were expected or detected in experiments.



• Criteria based on the data flow reflect the declarative character
of functional programming. We therefore expect them to be
very useful in testing functional programs.5 It is, however, a
topic of future work, whether the distinction of uses in compu-
tations and in predicates carries over to the pattern matching
concept of Erlang.

Liggesmeyer [7] states, that for object oriented programming, we
can use the same testing tools as for structured programming, but
the appropriateness of the individual tools changes and therefore
should be revalidated in the new framework. A comparable reval-
idation is necessary for functional programming as well. For the
basic control flow directed coverage criteria their use is quite obvi-
ous as they formalize minimal criteria of checking every program
element at least once. Further work is possible and necessary in
this area to investigate the use of criteria that are based on covering
larger paths in a program (an open question here is the influence of
recursion on these criteria) and criteria based on the data flow.

8 Conclusions and Future Work

By adapting the notion of flow graphs to functional programs writ-
ten in a sequential subset of Erlang we have made a large step to-
wards having the wide area of source code directed testing (which
is heavily used in industry) accessible for functional programming.

Function calls have a strong influence on the control flow in func-
tional programs comparable to the looping constructs in imperative
languages. We, therefore, had to find a notion of expressing the
control flow of a function call, namely the jump to a distant piece
of code and the return to the calling code piece after processing
the function call. The introduction of rubber band edges allows
to express this situation without making the generated flow graphs
unnecessarily complex.

When considering higher order functional programs, we get the ad-
ditional problem that we need data flow analysis in order to deter-
mine the set of functions that is possibly called at a certain program
point. We have introduced definitions and uses of a value and a
notion of a definition reaching a use, that is precise enough to com-
pute all functions that can reach a function call. Furthermore, an
iterative process, essentially equivalent to 0CFA [12], allows to use
the already generated flow graph for the data flow analysis task, and
to update the graph correspondingly.

Future work will complete a testing tool for Erlang programs com-
parable to those tools already used for imperative programming.
The next step in developing such a system is the implementation of
a tracing tool for the test execution that copes with the problem of
higher order functions escaping the control.

With the tracing completed, the adaption of different coverage cri-
teria will become an interesting area of research: simple node
or branch coverage can already be of great help in keeping the
overview over testing complex and nested case distinctions. We
can, however, expect further criteria that are well adapted to func-
tional programming and that greatly increase the power of source
code directed testing of functional programs.

5Further evidence for that statement is given by the WYSIWYT
approach [9, 10, 11] using a criterion on the data flow in spread-
sheets.
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