
Concurrent Erlang Flow Graphs

Manfred Widera
Fachbereich Informatik

FernUniversität in Hagen
58084 Hagen

Germany

manfred.widera@fernuni-hagen.de

ABSTRACT
Flow graphs are an important, and useful tool for testing
programs or program components during software develop-
ment. For imperative languages it is state of the art to
use flow graph based coverage tools during the unit test-
ing stage. Based on flow graphs for functional programming
languages, that have to cope with higher order functions,
a flow graph concept for Erlang needs a special treatment
for the concurrent language constructs that are typical of
Erlang. This paper presents a definition of flow graphs for
Erlang programs that especially handles process generation
and message passing, and describes how these flow graphs
can be computed.

1. INTRODUCTION
Testing of software is a widely used method of detecting
errors during the software development process. Every soft-
ware is tested before being used in practice. Though testing
can just prove the presence, but not the absence of errors,
the passing of all tests given by an appropriate test set is
often understood as an evidence for reaching a certain level
of software quality. For imperative programming there are
several approaches defining the appropriateness of a test set
by coverage criteria based on the flow graph. Compared
to the test case selection based on the specification of a
program, these structure oriented criteria have the closest
correspondence to the actual implementation under testing.
Structure oriented testing is usually applied to small pro-
gram fractions like single modules, and is an important part
of the early stages of software development.

In the context of Erlang, the only available implementation
of source code directed testing is an ad hoc approach that
checks the individual lines of a program for coverage [6].
This tool works by an instrumentation of the the source
code of a module that is focused on the executable lines; it
is therefore not extendible to take into account relationships
between distant parts of the program, e.g. the data flow, and

especially the concurrent data flow in an Erlang program.

As systematic testing is an important task of professional
software development, it is desirable to have more advanced
source code oriented testing methods for Erlang available.
It is important to note, that systematic testing cannot be re-
placed completely by employing the suitability of functional
languages for verification. As the first main reason, verifi-
cation is a quite expensive, and time consuming task, and
cannot be applied to all the less critical components (which
should nevertheless be as correct as possible). Second, veri-
fication is always done against an already formalized speci-
fication of the intended program behavior which itself is not
guaranteed to be correct.

The aim of this paper is to give a definition of flow graphs of
Erlang programs similar to the known flow graph definition
for imperative programs, and to describe a system generat-
ing such a flow graph from a program’s source code. Based
on an preliminary approach for sequential Erlang programs
[23], the approach described here covers the whole Erlang
standard, especially handling process generation and mes-
sage passing.

The rest of the paper is organized as follows. In Sec. 2
related work is described and the current paper is classi-
fied in this context. Section 3 presents the language under
consideration which is essentially given by the full Erlang
standard without some of the syntactic sugar. A definition
of concurrent flow graphs is given in Sec. 4. Section 5 recalls
and refines some definitions of data flow analysis which are
necessary for the computation of concurrent flow graphs pre-
sented in Sec. 6. Conclusions, and possible areas of future
work are presented in Sec. 7.

2. RELATED WORK
2.1 Flow Graphs and Sequential Testing
The work presented here is related to publications from
several areas. In imperative programming languages, flow
graphs are accepted as a standard tool for checking test case
coverage during the unit testing stage [24]. In the context
of functional programming there are already approaches on
flow graphs that are, however, not focused on test case cov-
erage. Van den Berg [19] uses flow graphs, and call graphs
for software measurement on functional programs. The flow
graphs used there consider function calls as atomic oper-
ations and are generated for each function independently.

Information on calls between functions is given by a call
graph as separate structure.

A concept of generating flow graphs for higher order func-
tional programs is described by Shivers [17] and further an-
alyzed by Ashley/Dybvig [1]. Especially, the level 0CFA
described there is very similar to our approach. Due to its
use of continuation passing style (CPS) and the Y combi-
nator, it is, however, not very adequate for presenting the
analysis results to human programmers. The same holds
for works based on Shivers approach [17]. They do not fo-
cus on the presentation of the generated flow graphs to the
programmer.

Different approaches on testing and debugging functional
programs have been proposed. QuickCheck [4] aims at au-
tomatically checking Haskell programs by generating input
data on a random basis and checking the results with con-
straints on the expected output. In the WYSIWYT frame-
work [14, 15, 16] flow graphs are used for judging the cov-
erage of a functional program by a set of test inputs. This
approach is, however, restricted to spreadsheets considered
as first order functional programs without recursion.

Several approaches on declarative debugging and tracing
functional languages (e.g. [8], [12], [3, 20]) describe how to
trace down the programming errors causing an observed mis-
behavior of a program. These approaches, however, do not
provide mechanisms for generating or judging the test sets
that are used to provoke such a misbehavior.

The module cover that comes with the tools library of Er-
lang [6] implements a coverage test for Erlang modules, that
analyzes the individual lines of the source code for coverage.
It is, however, not able to distinguish between several com-
putations coded within a single line, or to check non-local
relationships, e.g. between calls, and called functions or be-
tween throws, and corresponding catches. Since the distant
relationships between send operations, and receives in a pro-
gram are also not considered by cover, the concurrent struc-
ture of Erlang programs is not an additional challenge for
the system. In contrast, the preliminary approaches to flow
graph based testing in sequential Erlang [23] need a non-
trivial extension to handle concurrent Erlang constructs.

2.2 Testing Concurrent Programs
In testing concurrent programs, one is usually especially in-
terested in certain interactions between the different pro-
cesses or threads that lead to a number of specific errors
like deadlocks and race conditions. The approaches to en-
sure the correctness of concurrent programs are divided into
static and dynamic approaches.

Static analysis of concurrent programs is often done in the
form of model checking. The underlying concept as well
as the VeriSoft tool for performing model checking are de-
scribed by Godefroid [9, 10].

The dynamic testing of concurrent systems is based on ex-
ecuting different schedules of synchronization events (i.e.
events that are observable from outside the triggering pro-
cess). Besides non-deterministic testing of schedules gener-
ated by chance, there are different systematic approaches

for generating schedules and for enforcing their execution.
Carver, and Tai [2] describe a deterministic testing approach
by enriching the program code with special calls to a sched-
uler that is able to generate and repeat different schedules of
interest. A similar approach of a scheduler function that is
explicitly called is followed by Stoller [18] for Java Programs.
Factor, Farchi, and Talmor [7] also address Java programs.
Besides the schedule replay they focus on a coverage test for
schedules. A further approach on systematically generating
schedules is given by Hwang, Tai, and Huang [11]. For a
given valid schedule new prefixes of schedules are generated
by introducing minimal changes to the known schedules.

2.3 Classification of the Current Paper
The approach presented here stands in the tradition of test-
ing sequential programs [24]: a flow graph oriented testing
tool is applied to program parts that are usually too small
for detecting the special forms of errors described in Subsec.
2.2. Concurrency and message passing are, however, very
prominent parts of the Erlang design, such that a strategy
in handling the concurrent language features to some extent
by the structure oriented testing process is necessary. The
aim of this work is to take into account the effects of message
passing on the possible destinations of higher order function
calls and on data flow oriented coverage criteria.

During the software development cycle the concurrent flow
graphs described here, and the coverage criteria based on
them can replace previously available structure oriented cov-
erage approaches. Other stages of the testing process remain
unchanged. This is especially the case for detecting synchro-
nization errors, where tools as those described in Subsec. 2.2
can be employed.

3. PRELIMINARIES
The flow graph generation is defined (and is mostly imple-
mented) for the whole Erlang standard [5]. The presentation
in this paper is, however, restricted to the subset defined in
Fig. 1 (ignoring the boxes around some expressions for the
moment). Definitions consisting of a ? are not of interest
here, and are therefore omitted. Infix operators are consid-
ered as ordinary functions. Timeouts for receive expressions
are omitted for simplification reasons. The BIFs throw/1
and the binary operator ! (which is denoted as ordinary
function send/2) need a special treatment and are therefore
considered as syntactic keywords in this work.

In the following when speaking of a first order function call
we mean a call of the form fn(e1, e2, . . . , ek) with a func-
tion name fn, and a higher order function call has the form
e0(e1, e2, . . . , ek) with an expression e0.

In the rest of this paper programs are assumed to fulfill the
following named definition property which is easy to obtain
by a preprocessing stage.

Definition 1 (named definition property). A pro-
gram P fulfills the named definition property if

• Every expression in P whose position is that of a boxed
expression in Fig. 1 consists of an instantiated vari-
able.

constants a: ?

variables X : ?

patterns p: a|X|{p1, . . . , pk}|[p1|p2]|[p1, . . . , pk]

guards g : ?

if clauses ic: g → l

case clauses cc: p [when g] → l

fun clauses fc: (p1, . . . , pk) [when g] → l

function name fn: ?

expressions e: a|X| e0 (e1 , e2 , . . . , ek)|fn(e1 , e2 , . . . , ek)|p = e|{ e1 , . . . , ek }|[e1 | e2]|

[e1 , . . . , ek]|begin l end|if ic1; ic2; . . . ick end|case e of cc1; cc2; . . . ; cck end|

fun fc1; fc2; . . . ; fcn
end|catch(e)|throw(e)|send(e , e)|receive cc1; cc2; . . . ; cck end

expression lists l : e1, e2, . . . , ek

functions f : fn fc1; fn fc2; . . . ; fn fc
n
.

programs P : f1f2 . . . fk

Figure 1: The Erlang Subset Under Consideration

• Each function consists of a single clause with just vari-
ables as arguments.1

• The return value of the function is bound to a return
variable on each branch of the function body. The re-
turn variable is unique for each function.

The preprocessing stage enforcing the named definition prop-
erty yields a name for each use of a value, a property that is
useful for performing data flow analysis and for presenting
the data flow results.

4. CONCURRENT FLOW GRAPHS
The definition of concurrent flow graphs is given in two
stages. Subsection 4.1 defines the basic properties of a con-
current flow graph. The correspondence between a program
P and its flow graph VP is defined in Subsec. 4.2.

4.1 Basic Flow Graph Definition
As ordinary flow graphs known from literature [24], con-
current flow graphs are given by sets of nodes and edges.
These sets are partitioned into a number of subsets. Their
definition is given in the following Definitions 2 and 3.

Essentially, each expression in a program is represented by
an individual node.2 These nodes are labeled to express all
information given by the expression itself. In order to assign
specific labels for the different kinds of expressions, different
kinds of nodes are necessary.

1To enforce this, the case distinction of the different func-
tion clauses, and the value decomposition by their patterns
need to be performed by a case-expression inside the single
clause. For functions with arity > 1 the arguments and the
corresponding patterns are structured into tuples of equal
element number.
2This also holds in the case of nested sub-expressions, which
have been eliminated by the preprocessing stage enforcing
the named definition property.

Definition 2 (nodes). The set V of nodes of a con-
current flow graph is divided into the following subsets.

• Vmatch ⊂ V denotes the set of all match nodes. A
match node is labeled by a pattern LHS and a further
node RHS ∈ V .

• Vcall ⊂ V denotes the set of all call nodes. A call
node is labeled with a function call e0(e1, . . . ek) or
fn(e1, . . . ek). Each call node occurs as label of a match
node in the flow graph.

• Vspawn ⊂ V denotes the set of all spawn nodes. A
spawn node is labeled with a function (given by module
name and function name) and a sequence e1, . . . , ek of
argument expressions.

• Vbranch ⊂ V denotes the set of all branching nodes. A
branching node is labeled with a sequence e1, . . . ek of
k ≥ 0 tests, and for each branch with a sequence of k

patterns, and a set of guards.

• Vblock ⊂ V denotes the set of all block nodes. A block
node is labeled with a set of nodes.

• Vcatch ⊂ V denotes the set of catch nodes. A catch node
is labeled with a further concurrent flow graph node n.

• Vthrow ⊂ V denotes the set of throw nodes. A throw
node is labeled with an expression e.

• Vsend ⊂ V denotes the set of send nodes. A send node
is labeled with two expressions, the destination expres-
sion ed and the message expression em.

• Vreceive ⊂ V denotes the set of receive nodes. A receive
node contains a set of branches, and is labeled with a
pattern, and a sequence of guards for each branch.

• Vfun ⊂ V denotes the set of fun nodes. A fun node is
labeled with a function name and an arity.3

• Vimport ⊂ V denotes the set of import nodes. An import
node is labeled with a list of variables.

• Vcontext ⊂ V denotes the set of context nodes. A context
node is labeled with a set of pairs (Var , Defs) where Var
is a variable v and Defs is a list of references to nodes
potentially assigning a value to v.

• Vreturn ⊂ V denotes the set of return nodes. A return
node is labeled with a variable.

• Vcompute = V \ (Vmatch ∪Vcall ∪Vspawn ∪Vbranch ∪Vblock ∪
Vcatch∪Vthrow∪Vsend∪Vreceive ∪Vfun∪Vimport∪Vcontext∪
Vreturn) denotes the set of all computation nodes. Each
node n ∈ Vcompute is labeled with an expression, that is
not a match, a call, a branch (i.e. if, case), a begin, a
catch, a throw, a send, a receive, or a fun.

All described subsets of V are pairwise disjoint.

For concurrent flow graphs several different kinds of edges
are necessary. Usually an edge in a flow graph describes the
(directed) control flow, and data flow between two nodes.
In concurrent flow graphs we distinguish two kinds of edges
with this property. Neighborhood edges connect nodes whose
represented expressions are adjacent in the source code. The
non-local returns given by the catch-throw mechanism in Er-
lang are expressed by throw edges in concurrent flow graphs.

Call edges express function calls, and are special in the sense
that they are bidirectional and represent both the control
and data flow during a function call, and during the return
from the call. (For the generation, we distinguish first order
call edges and higher order call edges, depending on the call
represented by their source node.)

Two further forms of edges just represent a data flow, but
no control flow. Spawn edges essentially represent the data
flow during the process generation. They do not represent
an ordinary control flow, because the new process generated
by them forms a new independent instance of control. Mes-
sage edges finally stand for the data flow performed by the
message passing mechanism between a send expression and
a receive expression. No control flow occurs between the
processes connected by a message edge.

The formal definitions of these kinds of edges are given by
the following Def. 3.

Definition 3 (edges). The set E of edges of a con-
current flow graph is divided into the following subsets.

• Ecall ⊂ E denotes the set of call edges. Source of a
call edge is a call node ns ∈ Vcall with call arguments
a1, . . . ak; destination is an import node nd ∈ Vimport

with parameters p1, . . . , pn such that k = n. A call
edge is labeled with the following information:

3Note that a fun node does not correspond to a fun ex-
pression directly: the node is labeled with a name for the
function instead of the function’s clauses.

– A set of assignments pi = ai for i ∈ {1, . . . , k}
called parameter assignments.

– An assignment u = r where r is the return vari-
able of the function starting with nd, and u is the
pattern, occurring besides ns as a label of a match
node. This is called the result assignment.

Call edges are divided into first order call edges and
higher order call edges, depending on the call repre-
sented by their source call node.

• Espawn ⊂ E denotes the set of all spawn edges. Source
of a spawn edge is a spawn node ns ∈ Vspawn labeled
with the function expression f and the argument ex-
pressions e1, . . . , ek; destination is the import node nd ∈
Vimport of a function with parameters p1, . . . , pn fulfill-
ing k = n such that there is at least one execution of
the containing program P with f denoting the desti-
nation function. A spawn edge is labeled with a set of
parameter assignments pi = ei for i ∈ {1, . . . , k}.

• Ethrow ⊂ E denotes the set of all throw edges. A throw
edge has a throw node as source, and a catch node as
destination.

• Emessage ⊂ E denotes the set of all message edges. A
message edge runs from a send node to a receive node.

• Eneighbor = E\(Ecall∪Espawn∪Ethrow∪Emessage) denotes
the set of neighborhood edges. Neighborhood edges emerg-
ing from a branching node or a receive node are labeled
with a clause number.

The described subsets of E are pairwise disjoint.

Combining the definitions of nodes and edges, we get the
following definition of a concurrent flow graph.

Definition 4 (concurrent flow graph). A concur-
rent flow graph is a pair G = (V, E) where

• The set V is divided into subsets Vmatch, Vcall, Vspawn,
Vbranch, Vblock, Vcatch, Vthrow, Vsend, Vreceive, Vfun, Vimport,
Vcontext, Vreturn, and Vcompute according to Def. 2.

• The set E of edges is divided into the subsets Ecall,
Ethrow, Emessage, and Eneighbor according to Def. 3.

Example 1 (concurrent flow graph). A graphical
example of a concurrent flow graph is given in Fig. 2. For
simplicity reasons, the presentation is simplified as follows.

• The context nodes are empty for all the functions and
are omitted in the graphical representation.

• Match nodes are marked with dotted lines inside the
nodes they are labeled with.

Call and spawn edges are marked by rounded corners. Re-
ceive nodes are marked by a triangle which is connected to a
number of rows, each containing the pattern and the guards

{PID, next}
stop

import(Value, F)

return(Ret4)

Ret4 = generator ! stop

import() import()

import()

Ret1 = ok

PID ! {generator, Value} ~1~ = F(Value)

return(Ret1)
3

A = get_next()

import(N)

return(Ret2)

import(Start, F)

return(Ret3)

~2~ = self()

generator ! {~2~, next}

{generator, Result}

return(Result)

init_gen(0, fun {anonymous, 1}/1) stop_gen() return(A)

{anonymous, 1}

stop_gen/0 get_next/0

loop/2

1 2

4

init_gen/2

use/0

first order call edge
neighborhood edge

higher order edge

spawn edge
message edge

Ret2 = N+1

Ret1 = loop(~1~, F)

~3~ = spawn(example, loop, [Start, F])

Ret3 = register(generator, ~3~)

Figure 2: Flow graph of example.erl

for one clause. In order to simplify the identification of func-
tions, the nodes of each function are contained in a gray box.

The numbers marking some of the edges are not of interest
for the moment. They will be used later for describing the
iterated edge computation by our implementation.

The graphical representation of the node forms not occurring
in Ex. 1 is identical to sequential Erlang flow graphs [23].

4.2 The Concurrent Flow Graph of a Program
Given an Erlang program P fulfilling the named definition
property, the following Definitions 5, 6, and 7 describe the
concurrent flow graph GP corresponding to P , i.e. the flow
graph that can be used to represent P .

Note that the definition of GP given here is not intended to
provide an algorithm for computing GP . Indeed, an algo-
rithm will just be able to compute an approximation of GP

instead of GP itself. The presentation of the implementation
in Sec. 6 will discuss sources of inaccuracy in the computa-
tion, and the effect of the necessary approximations on the
higher order call edges, spawn edges, throw edges, and mes-
sage edges.

We start the presentations with the correspondence between
the nodes in GP , and the program expressions in P . Essen-
tially, for each expression in the program a node is gener-
ated. The kind of node chosen depends on the structure of
the expression. Additionally, each function definition is ex-
tended by an import node representing a local definition of
the parameters of the function, a context node representing
local definitions of the variables taken from the context of

the function (this just applies to funs), and a return node
representing the return to the calling program part.

Definition 5 (corresponding nodes). Let P be a pro-
gram fulfilling the named definition property. The set VP

of corresponding nodes for P is generated by the following
rules.

• For each expression e denoting a function call of the
form e0(e1, . . . ek) or fn(e1, . . . ek) VP contains a call
node v ∈ VP labeled with e.
In the special case of a call fn(e1, . . . ek) with fn de-
noting the BIF spawn/3 or spawn/4, a spawn node
is generated instead, which is labeled with the func-
tion and the call arguments given by the arguments of
spawn at the corresponding positions.

• For each expression of the form if ic1; . . . ; ick there
exists a branching node n ∈ VP which is labeled with
the guards of the individual clauses.

• For each expression of the form case e of cc1; . . . ; cck
there exists a branching node n ∈ VP which is labeled
with the test e, and with patterns, and guards of the
individual clauses.

• For expressions of the form begin l end a block node
is introduced which is labeled with the nodes generated
for the expressions in l.

• For each expression of the form catch(e) a catch node
is generated and labeled with the node for the subex-
pression e.

• For each expression of the form throw(e) a throw node
is generated and labeled with the subexpression e.

• For each expression of the form send(e1, e2) a send
node is generated and labeled with e1 as destination
expression and e2 as message expression.

• For each expression of the form receive cc1; . . . ; cck
there exists a receive node n ∈ VP which is labeled with
the patterns and guards of the individual clauses.

• For every function definition in P and every expression
of the form fun fc1; . . . ; fck the following nodes are in
VP .

– An import node labeled with the formal parame-
ters of the function.

– A context node labeled with all variables v, and
references to the defining nodes n such that v is
defined outside the function,4 and the definition
of v in n reaches a use within the function.

– A branching node labeled with the patterns and
guards of the individual function clauses.

– A return node labeled with the return variable of
the function.

For expressions of the form fun fc1; . . . ; fck a fun node
is generated which is labeled with a generated function
name and the function arity.

4This only applies to funs. For named functions the context
node is empty.

• For every expression e of the form p = e′ there is a
match node v ∈ VP labeled with the pattern p and the
node v′ generated for e′.

• For each expression e of the form a, X, {e1, . . . , ek},
[e1|e2], or [e1, . . . , ek] a computation node is generated
and labeled with the expression e.

Edges represent a control or data flow between the indi-
vidual nodes. Their definition is based on the runtime be-
haviour of the program (which will be approximated for the
computation of flow graphs).

Definition 6 (corresponding edges). Let P be a pro-
gram fulfilling the named definition property, and VP the set
of corresponding nodes for P .
Now let n1, n2 ∈ VP be nodes, and let e1 and e2 be the expres-
sions in P the nodes n1 and n2 correspond to, respectively.5

The set EP of corresponding edges for P consists of all edges
generated by one of the following rules.

• There exists a neighborhood edge from n1 to n2 in EP

if e1 and e2 belong to the same function f , and one of
the following conditions holds.

– n1 is the import node, and n2 the context node of
f .

– n1 is the context node, and e2 the first expression
of f .

– e2 is the direct successor of e1 in a sequence of
expressions.

– n1 is a branching node or a receive node, and e2 is
the first expression in one of the clauses belonging
to e1. In this case the edge is labeled with the
clause, e2 belongs to.

– e1 is the last expression in a clause, and e2 is the
expression following the if, case or receive expres-
sion containing e1.

– e1 is the last expression of one of the clauses of f

(if the last expression e′ is an if, case or receive
expression, e1 is the last expression in the body
of one of the clauses of e′), and n2 is the return
node of f .

• There exists a call edge from n1 to n2 in EP if n1 is a
call node, n2 is the import node of a function f , and
there exists an execution of P such that e1 performs a
call to f .

• There exists a spawn edge from n1 to n2 in EP if e1 is
a spawn node, e2 is the import node of a function f ,
and there exists an execution of P such that e1 spawns
a process starting its execution with f .

• There exists a throw edge from n1 to n2 in EP if n1

is a throw node, n2 is a catch node, and there exists
an execution of P such that e1 throws a value that is
caught by e2.

5If ni is an import node, a context node, or a return node
then ei is undefined.

-module(example).

-export([loop/2, use/0]).

loop(Value, F) ->

receive

{PID, next} ->

PID ! {generator, Value},
loop(F(Value), F);

stop -> ok

end.

init gen(Start, F) ->

register(

generator,

spawn(example, loop, [Start, F])).

stop gen() -> generator ! stop.

get next() ->

generator ! {self(), next},
receive

{generator, Result} -> Result

end.

use() ->

init gen(0, fun(N) -> N + 1 end),

A = get next(),

stop gen(),

A.

Figure 3: Erlang source code of example module

• There exists a message edge from n1 to n2 in EP if n1

is a send node, n2 is a receive node, and there exists
an execution of P such that e1 sends a message that is
received by e2.

Combining corresponding nodes and corresponding edges of
a program P , we get the concurrent flow graph GP of P .

Definition 7 (corresponding flow graph). Let P

be a program fulfilling the named definition property. The
corresponding flow graph for P is defined by GP = (VP , EP)
where VP is the set of corresponding nodes for P and EP is
the set of corresponding edges for P .

Example 2 (corresponding flow graph). Consider
the module example.erl that is presented in Fig. 3, and that
contains the following functions.

• loop/2 forms a sequence generator that is meant to re-
side in an own process. It is initialized with the initial
value, and the successor function of the sequence. For
every message {PID,next} it sends the next sequence
element to the process PID.

• init gen/2, stop gen/0, and get next/0 are the ac-
cessor functions for initializing, stopping and accessing

the generator process.

• use/0 is an example user of the sequence generator. It
initializes the generator with the sequence of all natu-
ral numbers starting from 0, queries the first sequence
element, stops the generator process and returns the
element.

The concurrent flow graph corresponding to example.erl is
the one presented in Fig. 2.

5. DATA FLOW ANALYSIS
As stated by Shivers [17], the control flow given by a higher
order program can depend on the data flow of the funs from
their generation to their application in the program. In this
section we therefore give a definition (adapted towards the
use for concurrent flow graphs) of some base notions of data
flow analysis, that are known for imperative languages [13].
For a definition of a variable v we write def (v), for a use of
v we write use(v). The precise definitions of these notions
are as follows.

Definition 8 (definitions). Let G be a concurrent flow
graph, and v a variable. A node n in G contains a definition
of v if one of the following conditions holds.

• n is an import node, and v is one of the variables de-
fined in n.

• n is a context node, and v is one of the variables de-
fined in n. This is called an f-definition (denoted by
f-def(v)).

• n is a match node denoting a matching LHS = RHS, v

occurs in LHS, and there is at least one path w from
the beginning of the function containing n to n itself
such that v is not defined on w.

• n is a branching node, v occurs in at least one pattern p

in n, and there is at least one path w from the beginning
of the function containing n to n itself such that v is
not defined on w.

• n is a receive node, v occurs in at least one pattern p in
n, and there is at least one path w from the beginning of
the function containing n to n itself such that v is not
defined on w. This is called an m-definition (denoted
by m-def(v)).

A definition binding v to a value selected from a structure
(either by pattern matching or the corresponding selection
BIFs) is called an s-definition and denoted by s-def(v).

The opposite of the definition of a variable is given by its use.
Intuitively, a use of a variable v is given by every expression
that needs the value of v to be evaluated.

Definition 9 (uses). Let G be a concurrent flow graph,
and v a variable. A node n in G contains a use of v if one
of the following conditions holds.

• n is a node representing the expression E where

– E = v

– E = {v1, . . . , vk}, E = [v1|v2], or E = [v1, . . . , vk]
with v = vi for some i. This is called an s-use and
denoted by s-use(v).

– E = v0(v1, . . . , vk), or E = fn(v1, . . . , vk) with
v = vi for some i ∈ {0, . . . , k}.

• n is a branching node with a test given by v.

• n is a fun node, and there is at least one path w from
the beginning of the function containing n to n itself
such that v is defined on w. This is called an f-use and
denoted by f-use(v).

• n is a match node denoting a matching LHS = RHS, v

occurs in LHS, and there is at least one path w from
the beginning of the function containing n to n itself
such that v is defined on w.

• n denotes a branching node, or a receive node, v occurs
in at least one pattern p in n, and there is at least one
path w from the beginning of the function containing n

to n itself such that v is defined on w.

• n is a send node and v occurs either as destination
expression or as message expression. If v is the mes-
sage expression, this is called an m-use and denoted by
m-use(v).

Some special information is added to the specification of
a definition or use of a variable v inside a pattern p of a
branching or receive node. Besides the branching/receive
node n the number of the clause, the pattern p belongs to
is stored. Occurrences of v in the patterns of several clauses
of n are treated independently.

For the pairs, f-definition/f-use, s-definition/s-use, and m-
definition/m-use we need to define the notion of correspond-
ing uses and definitions: each of these kinds of use can hide
a value from the data flow analysis. The corresponding def-
inition makes the value available again (possibly under a
different name).

• Corresponding f-uses and f-definitions express the sit-
uation of using a definition for a freezing it in a fun-
generation. It is defrosted by the corresponding defi-
nition in the context node of the function.

• Corresponding s-uses and s-definitions express the sit-
uation of using a value to store it in a structure, and
selecting it from there in the definition of a variable.

• Corresponding m-uses and m-definitions express the
use of a value for sending it as a message, and the
definition of a variable by receiving this message.

The precise definitions are as follows.

Definition 10 (corresponding f-use, f-def). Let v be
a variable, u an f-use of v, and d an f-definition of v. u and
d correspond to each other if the fun containing d is the one
defined in u.

Definition 11 (corresponding s-use, s-def). Let v be
a variable, and u an s-use of v, generating a structure c.
A selection d defining a variable v′ is an s-definition of v′

corresponding to u if there exists at least on run of the con-
taining program P such that the structure decomposed in d

is c, and the selected element position is the one containing
the value of v.

Definition 12 (corresponding m-use, m-def). Let v

be a variable, and u an m-use of v in a node nu. An m-
definition d of some v′ in a node nd corresponds to u if
there is a message edge from nu to nd in the concurrent
flow graph.

Note that for an s-use, and the corresponding s-definition or
for an m-use, and the corresponding m-definition the vari-
able names usually differ.

The following main definition of this section states the situ-
ations under which a definition d reaches a use u.

Definition 13. Let d be a definition of a variable v, and
u a use of a variable v′. Then d reaches u if one of the
following properties holds.

• v = v′ and there is a path in the flow graph from d to
u that does not contain a definition of v different from
d. In this case d reaches u directly.

• There is a copy expression e of the form ~v = ~v′ such
that d reaches the use of ṽ′ in e and the definition of
ṽ in e reaches u.

• d reaches an f-use of some ṽ and there is a correspond-
ing f-definition of ṽ that reaches u.

• d reaches an s-use of v and there is a corresponding
s-definition of some ṽ that reaches u.

• d reaches an m-use of v and there is a corresponding
m-definition of some ṽ that reaches u.

Besides the data flow coded in some of the nodes, the la-
bels of edges can contain data flow information. This is the
case for the parameter assignments given by call edges and
spawn edges, and the result assignments of the call edges.
These labels have to be taken into account for the data flow
analysis. They are processed analogously to a sequence of
nodes containing copy expressions when the edge is followed
in the corresponding direction.

6. COMPUTATION OF CONCURRENT FLOW
GRAPHS

For a program P fulfilling the named definition property the
generation of the concurrent flow graph GP consists of the
following stages.

1. Generation of the set VP of nodes according to Def. 5.

2. Computation of the set Eneighbor of neighborhood edges.

3. Computation of the call edges for first order function
calls.

4. Computation of the call edges for higher order calls,
the throw edges, and the message edges by an iterated
process.6

Step (4) contains the computation of all edges that depend
on the data flow in the program. It is necessary to iter-
ate over all these edges because each new edge adds new
opportunities for data flow in the graph.

The steps (1), (2), and (3) consist of a direct transfer of the
corresponding definitions. They can be implemented in a
straightforward manner. A detailed description of Step (4)
is given in the following Subsec. 6.1.

6.1 Iterated Edge Computation
The generation of edges is implemented in form of three
functions.

1. The computation of higher order call edges is done by
a function

ho call edges(Graph1) → {Graph2, Bool}

2. For computing the throw edges in the concurrent flow
graph, we use a function

throw edges(Graph1) → {Graph2, Bool}

3. The computation of the message edges is done by a
function

message edges(Graph1, Process) → {Graph2, Bool}

Each function expects a flow graph as input and returns a tu-
ple containing a new flow graph and a boolean flag whether
any new edges have been introduces. For the computation
of the message edges in message edges/2 a description of
the initial process, essentially given by its initial call (or a
list of potential initial calls), must be provided as additional
argument.

The main loop introduce edges/2, which is presented in
Fig. 4, loops over the three functions until no change was
made by any of them in one step.

In the remaining presentation of ho call edges/1, throw
edges/1, and message edges/2 we omit the boolean flag for
changes in the return value in order to simplify the pre-
sentation. In the following, the high level structure of the
functions is presented, but we omit several of the called func-
tions. The names of the omitted functions are chosen to
represent their general semantics.

6Spawn edges behave very similar to higher order call edges
during the computation. To simplify the following presen-
tation, spawn edges are not discussed explicitely. Their cre-
ation is done together with the higher order call edges in an
analogous manner.

introduce edges(Graph, InitProcess) ->

% generate new edges
{GraphWithCall, CallChangeFlag} =

ho call edges(Graph),

{GraphWithThrow, ThrowChangeFlag} =

throw edges(GraphWithCall),

{GraphWithMessage, MessageChangeFlag} =

message edges(GraphWithThrow, InitProcess),

% check whether a further step is necessary
if

CallChangeFlag;

ThrowChangeFlag;

MessageChangeFlag ->

% next iteration with new graph
introduce edges(

GraphWithMessage, InitProcess);

true ->

% return graph with computed edges
GraphWithMessage

end. % if

Figure 4: computation of data flow dependent
edges

• ho call edges/1 is presented in Fig. 5. For each higher
order function call it analyzes the variable in the func-
tion position. For each reaching definition which de-
notes a function within the graph,7 a call edge is in-
troduced.

• throw edges/1 is presented in Fig. 6. For each catch
node c, it determines the set of throw nodes t such that
there exists a path from c to t without another catch
node in-between. For each such t a throw edge from t

to c is introduced.

• message edges/1 is presented in Fig. 7. First, it calcu-
lates the set of processes from the initial process. This
is done by an iterated analysis of the spawn nodes
reachable from the already known processes. For each
send node s in the graph, the following steps are per-
formed afterwards.

1. The first argument of the send node is analyzed
to determine the potential destination processes
from the set of all processes. This is done by
data flow analysis and partial evaluation on the
reaching definitions.

2. The variable v in the second argument of the send
node is tested against the receive statements of
the destination processes: if one of the definitions
reaching the use of v in the send node matches
one of the patterns of the receive r then a message
edge from s to r is inserted into the graph.

Example 3. We reconsider the module example.erl pre-
sented in Fig. 3, and its corresponding concurrent flow graph

7This property is checked using partial evaluation.

ho call edges(Graph) ->

% extract higher order calls
Sources = ho calls(Graph),

% compute and insert edges for each call independently
foldl(fun(Call, GraphAcc) -> edges from call(Call, GraphAcc) end, Graph, Sources).

edges from call(Call, Graph) ->

% compute all reaching definitions of function position in call that denote a function
Dest = filter(fun is function/1, reaching definitions(extract called function(Call))),

% insert edges from Call to each element of Dest into Graph
foldl(fun(SingleDest, GraphAcc) -> insert call edge(Call, SingleDest, GraphAcc) end, Graph, Dest).

Figure 5: Computation of higher order call edges

throw edges(Graph) ->

% extract catch nodes from graph
Dest = catch nodes(Graph),

% compute and insert the throw edges for each catch node independently
foldl(fun(Catch, GraphAcc) -> edges to catch(Catch, GraphAcc) end, Graph, Dest).

edges to catch(Catch, Graph) ->% compute all throw nodes that are reachable from the current
% catch without a further catch on the path

Source = filter(fun(PossibleSource) ->

% source is throw node, no other catch between Catch and trow node
is throw node(PossibleSource)

and not(catch on each path(Catch, PossibleSource))

end, nodes reached from(Catch)),

% insert an edge from each element of Source to Catch into Graph
foldl(fun(SingleSrc, GraphAcc) -> insert throw edge(SingleSrc, Catch, GraphAcc) end, Graph, Source).

Figure 6: Computation of throw edges

message edges(Graph, InitProcess) ->

% compute processes starting from InitProcess
Processes = compute all processes(Graph, InitProcess),

% extract send nodes from graph
Source = send nodes(Graph),

% compute and insert the throw edges for each send node independently
foldl(fun(Send, GraphAcc) -> edges from send(Send, GraphAcc, Processes) end, Graph, Source).

edges from send(Snd, Graph, Processes) ->

% compute all processes that can be the destination of the current send
DestProc = filter(fun(PossibleDest) -> member(PossibleDest, Processes) end,

reaching definitions(extract send destination(Snd))),

% compute set of sent messages
Messages = reaching definitions(extract send message(Snd)),

% compute all receives in all destination processes that match an element of Messages
Dest = filter(fun(Receive) -> receive matches value(Receive, Messages) end,

% test all receives of all destination processes
append(map(fun get process receive nodes/1, DestProc)))),

% insert edges from Snd to each element of Dest into Graph
foldl(fun(SingleDest, GraphAcc) -> insert message edge(Snd, SingleDest, GraphAcc) end, Graph, Dest).

Figure 7: Computation of message edges

presented in Fig. 2. The graph generation in this case con-
sists of the following steps.

1. The nodes, the neighborhood edges, and the first order
call edges (including the spawn edge) are generated.

2. During the first iteration of edge generation the follow-
ing edges are introduced.

• The higher order call edge marked with 4.

• The message edges marked with 1 and 2.

3. During the second iteration the message edge marked
with 3 is introduced. It is delayed to this step, because
it makes use of the data flow of variable ~2~ to PID on
the message edge marked with 2.

4. The third iteration does not introduce any further edges.
Therefore the iteration process terminates.

6.2 Sources of Inaccuracy
The algorithm presented previously in this section cannot
compute the concurrent flow graph according to Def. 7 ex-
actly because of a number of sources of inaccuracy during
the computation. All these inaccuracies just affect the sets
of higher order call edges, throw edges, and message edges.
The computation of the nodes, the neighborhood edges, and
the first order call edges does not depend on the data flow
analysis, and can be done in a precise manner.

In detail the data flow analysis is affected by the following
effects.

• Distant conditionals in a program can correspond in
a way, that only certain combinations of subpaths can
occur in a path. For instance, consider two functions
f, g that are called with the same argument n, and
both contain different branches for even and for odd
values of n. A path through the program that takes the
even branch in f but the odd branch in g for the same
n is not possible. Such situations are not recognized
by the system.

• The control flow is based on 0CFA [17], i.e. differ-
ent function closures sharing the same source code are
identified. When distinguishing these functions, sev-
eral nodes are necessary for what is represented by
one node in our approach. Especially, for higher or-
der function calls, each of these nodes could be more
specific in the sense of having less outgoing call edges
than the one node being the source for the union of all
these call edges in our concurrent flow graphs.

• In Erlang the function position of a higher order func-
tion call can be given by a fun, or a representation
of the name of the called function. The second case
is problematic because partial evaluation is necessary
to identify the called functions. This partial evalua-
tion must, however, be approximate, especially if the
needed information is not completely available before
runtime. (Example: the name of a called function is
read from the keyboard at runtime.)

• Parts of the data flow can escape the scope of the flow
graph. In that case approximating assumptions must
be used. For example this is the case when a function
f is passed to a function g as argument, but g is not
part of the code under testing. In this case we cannot
be sure whether f is called from g, or not.

• The test whether a definition matches a pattern of a
receive statement must approximate the value of the
definition. Therefore the computation of the message
edge destinations is approximate.

Approximation is done according to the following policy.
Whenever there is any doubt whether an edge is necessary,
the edge is introduced. This guarantees the concurrent flow
graph to contain as much control and data flow alternatives
as possible.

If there is, however, no information about the alternatives
at a certain point (e.g. when reading a name of the function
to be called from the keyboard) we do not insert edges to all
possible destinations (e.g. to all functions of the right arity
occurring in the flow graph).

6.3 Implementation
The computation of concurrent flow graphs for Erlang pro-
grams is implemented based on OTP R9C-2, i.e. both the
implemented code, and the programming constructs expected
in the analyzed program are based on this language stan-
dard.8

The flow graph structure is essentially based on the parse
result of the OTP library module epp.erl. This module is
used to read the source code modules under testing, and the
result format is preserved during the preprocessing stage
enforcing the named definition property. The flow graph
consists of a list of modules, each given by the result of
epp:parse file/3 which is modified in the following steps
to form the flow graph.

The node generation consists of a traversal of the code per-
forming the following tasks.

• In each expression representing a node, the line num-
ber entry of the epp output is changed to a tuple addi-
tionally holding a node number, and some local data
flow information.

• For each fun generation consisting of function clauses,
a new function name is generated, which replaces the
clauses in the definition. The clauses are taken to rep-
resent the generated function in the flow graph.

• Some of the structures denoting special expressions are
replaced or extended.

– Calls to the BIF throw/1 are replaced by a new
kind of tuple structure.

8At the moment, the implementation lacks the handling of
list comprehensions, that are a bit tedious to cope with,
but do not provide any new problems or insight. Code for
handling them will be added, once the restricted prototype
is finished.

– Entries for function calls are extended by a field
for the call edge information.

– Receive entries are extended by a field for infor-
mation on the message edges.

• For each function, the additional import, context and
return nodes are introduced, which are represented by
tuples similar to those returned by epp.

Some further information is pre-calculated and stored for
future use. Among others, a list of all call nodes (and other
important node types) is stored for each function, and an
index given by a balanced tree is generated for each module
for accessing the individual nodes by their number.

In a next step, the call nodes are divided into first order
calls and higher order calls. For the first order calls, the
destinations can be computed easily, and the resulting edge
information is stored in the prepared field of the call.

For the higher order call edges, the spawn edges, the throw
edges, and the message edges, the computation is done as
described in Subsec. 6.1, and the computation results are
coded into the prepared fields of the structures.

7. CONCLUSION AND FUTURE WORK
By adapting the notion of flow graphs to functional pro-
grams written in Erlang, especially containing the concur-
rent constructs integrated in the Erlang standard, we have
made a large step towards having the wide area of source
code directed testing (which is heavily used in industry) ac-
cessible for functional programming.

As already stated for flow graphs for sequential Erlang [23],
function calls have a strong influence on the control flow in
functional programs comparable to the looping constructs
in imperative languages. A refined definition of call edges
is given here, providing a notion of expressing the whole
control flow of a function call, namely the jump to a distant
piece of code and the return to the calling code piece after
processing the function call.

When considering higher order functional programs, we get
the additional problem that we need data flow analysis in
order to determine the set of functions that is possibly called
at a certain program point [23]. Throw edges and message
edges depend (like higher order call edges and spawn edges)
on the possible control flow in the program and therefore on
the computed higher order call edges. They, however, cause
additional data flow opportunities and can therefore extend
the set of higher order call edges in a program. An iteration
looping over the generation of higher order call edges (with
spawn edges), throw edges and message edges has been de-
scribed that computes all these edges, and terminates when
a fixpoint is reached.

Future work towards a coverage system based on concurrent
flow graphs consists of two steps. First, a tracing tool stor-
ing the control flow through the tested modules during a test
case execution [22] must be extended to handle several pro-
cesses, and to store information on the data flow generated
by passing messages between tested modules. As a second

step, a tool analyzing given traces for their coverage level
must be implemented. While a simple node coverage test
is already finished, we expect data flow oriented coverage
[21] to be of special use in the context of concurrent Erlang
programs, because data flow coverage is the only level of
coverage analysis that is able to consider messages passed
around the program.

8. REFERENCES
[1] J. M. Ashley and R. K. Dybvig. A practical and

flexible flow analysis for higher-order languages. ACM
Transactions on Programming Languages and
Systems, 20(4):845–868, July 1998.

[2] R. H. Carver and K.-C. Tai. Replay and testing for
concurrent programs. IEEE Software, 8(2):66–74,
1991.

[3] O. Chitil. A semantics for tracing. In Draft
Proceedings of the 13th International Workshop on
Implementation of Functional Languages, IFL, 2001.

[4] K. Claessen and J. Hughes. QuickCheck: a lightweight
tool for random testing of Haskell programs. In
Proceedings of the ACM Sigplan International
Conference on Functional Programming (ICFP’00),
volume 35.9 of ACM Sigplan Notices, pages 268–279,
N.Y., Sept. 18–21 2000. ACM Press.

[5] Ericsson Utvecklings AB. Erlang Reference Manual,
Version 5.3, 2003.

[6] Tools version 2.3. Documentation of Erlang/OTP
R9C.

[7] M. Factor, E. Farchi, and Y. Talmor. Timing
dependent bugs. In Software Testing Analysis and
Review (STAR98), May 1998.

[8] A. Gill. Debugging Haskell by observing intermediate
data structures. In Proceedings of the 4th Haskell
Workshop. Technical report of the University of
Nottingham, 2000.

[9] P. Godefroid. Model checking for programming
languages using VeriSoft. In Symposium on Principles
of Programming Languages, pages 174–186, 1997.

[10] P. Godefroid. Software model checking: The VeriSoft
approach. Formal Methods in System Design, 26(2),
Mar. 2005.

[11] G.-H. Hwang, K.-C. Tai, and T.-L. Huang.
Reachability testing: An approach to testing
concurrent software. In Proc. First Asia-Pacific
Software Engineering Conference (APSEC), Tokyo,
Japan, Dec. 1994.

[12] L. Naish. A declarative debugging scheme. Journal of
Functional and Logic Programming, 1997(3), 1997.

[13] F. Nielson, H. R. Nielson, and C. Hankin. Principles
of Program Analysis. Springer, 1999.

[14] G. Rothermel, M. Burnett, L. Li, C. DuPuis, and
A. Sheretov. A methodology for testing spreadsheets.
ACM Transactions on Software Engineering and
Methodology, 10(1):110–147, 2001.

[15] G. Rothermel, L. Li, C. DuPuis, and M. Burnett.
What you see is what you test: A methodology for
testing form-based visual programs. In Proceedings of
the 1998 International Conference on Software
Engineering, pages 198–207. IEEE Computer Society
Press/ACM Press, 1998.

[16] K. J. Rothermel, C. R. Cook, M. M. Burnett,
J. Schonfeld, T. R. G. Green, and G. Rothermel.
WYSIWYT testing in the spreadsheet paradigm. In
Proceedings of the 22nd International Conference on
Software Engineering, pages 230–239. ACM Press,
June 2000.

[17] O. Shivers. Control-flow analysis in Scheme. In
Proceedings of the SIGPLAN ’88 Conference on
Programming Language Design and Implementation,
pages 164–174, June 1988.

[18] S. D. Stoller. Testing concurrent java programs using
randomized scheduling. In Proceedings of the Second
Workshop on Runtime Verification (RV), volume 70 of
Electronic Notes in Theoretical Computer Science,
2002.

[19] K. van den Berg. Software Measurement and
Functional Programming. 1995.

[20] M. Wallace, O. Chitil, T. Brehm, and C. Runciman.
Multiple-view tracing for Haskell: a new hat. In
Preliminary Proceedings of the 2001 ACM SIGPLAN
Haskell Workshop, Firenze, Italy, pages 151–170, 2001.

[21] M. Widera. Data flow considerations for source code
directed testing of functional programs. In H.-W.
Loidl, editor, Draft Proceedings of the Fifth
Symposium on Trends in Functional Programming,
Nov. 2004.

[22] M. Widera. Flow graph interpretation for source code
directed testing of functional programs. In C. Grelck
and F. Huch, editors, Implementation an Application
of Functional Languages, 16th International
Workshop, IFL’04, Technischer Bericht 0408. Institut
für Informatik und Praktische Mathematik,
Christian-Albrechts-Universität zu Kiel, 2004.

[23] M. Widera. Flow graphs for testing sequential Erlang
programs. In Proceedings of the 3rd ACM SIGPLAN
Erlang Workshop. ACM Press, 2004.

[24] H. Zhu, P. Hall, and J. May. Software unit test
coverage and adequacy. ACM Computing Surveys,
29(4):366–427, Dec. 1997.

