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Preface

Knowledge Representation is one of the major topics in AI. Its concerns are (logi-

cal) formalisms and reasoning, with the intention to explore and model the basics

of intelligent behaviour. In recent years, intelligent agents in the contexts of open

environments and multi agent systems have become the leading paradigm of the

�eld. Consequently, modern KR methods have to deal not only with static scenar-

ios, but also with dynamic modi�cations in knowledge and belief, due to uncertain

or incomplete information, or to changes in the environment. Moreover, agents

are often expected to learn from past experiences, or to interact with other agents,

making use of their knowledge and adjusting their beliefs during argumentation.

This volume contains the contributions that were presented at the Workshop

Dynamics of Knowledge and Belief on September 10th, 2007, in Osnabr�uck, Ger-

many, co-located with the 30th Annual German Conference on AI (KI-2007), and

organized by the Special Interest Group on Knowledge Representation and Rea-

soning of the Gesellschaft f�ur Informatik (GI-Fachgrupppe Wissensrepr�asentation

und Schlie�en). The particular focus of this workshop was on dynamic processes

concerning any changes that an agent's state of knowledge and belief may undergo.

The �rst three papers use quantitative methods for knowledge representation.

With their paper From syntactical to semantical and expedient information - a

survey, Wilhelm R�odder and Elmar Reucher make a contribution to clarify the

vague term \useful information" in economics and AI literature. In particular,

they address issues like \value" and \price" of information, and present a study

on creditworthiness. Jens Fisseler and Imre Feher make use of knowledge discov-

ery techniques to combine data from di�erent sources. The basic idea of their

paper A probabilistic approach to data fusion is to generate a probabilistic rule

base from each data set and to compute a joint distribution from the combined

rule bases. The paper also presents a real world application with data from a

telecommunication company. In the paper On a conditional irrelevance relation

for belief functions based on the operator of composition, Radim Jirousek presents

an approach how to de�ne conditional irrelevance for belief functions via compo-

sition properties. The new composition operator is compared to Dempster's rule

of combination, and relations to semigraphoids are pointed out.

Belief revision is the topic of the following papers. Haythem Ismail's paper

Reason maintenance and the Ramsey test sheds new light on an old problem in

belief revision, namely the incompatibility of handling conditionals according to

the Ramsey test within the AGM framework. He proposes a theory to handle
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conditionals adequately in a reason maintenance system which is based on relevance

logic. With Subjective models and multi-agent static belief revision, Guillaume

Aucher aims at generalising the famous AGM approach to multi-agent frameworks.

He shows that his static belief revision operator satis�es the AGM-properties, and

proposes some new postulates which are speci�c to the multi-agent scenario. The

paper What you should believe: Obligations and beliefs by Guido Boella, C�elia

da Costa Pereira, Gabriella Pigozzi, Andrea Tettamanzi and Leendert van der

Torre studies the interactions between obligations and beliefs when revising an

agent's belief by new information. It is shown how obligations might help to

choose between di�erent possible options the agent has, thereby providing the

logical grounds for modelling conventional wisdom agents.

Finally, the last two papers deal with conicting and evolving ontologies. The

paper On the conservativity and stability of ontology-revision operators based on

reinterpretation by �Ozg�ur �Ozcep and Carola Eschenbach addresses the problem of

resolving conicts that are caused by agents using di�erent ontologies in commu-

nication. The authors introduce ontology revision operators to establish consis-

tency and encode semantic mappings between ontologies as formulas on the object

level. The focus of Dynamic T-Box-handling in agent-agent-communication by

Moritz Goeb, Peter Reiss, Bernhard Schiemann and Ulf Schreiber is on agent-

agent-communication where the contents of messages are expressed in description

logics. The authors study the process of merging ontologies that have been modi-

�ed during communication.

We would like to thank all Program Committee members as well as the addi-

tional external reviewers Meghyn Bienvenu, Radim Jirousek, Thomas Lukasiewicz

and Eric Neufeld for detailed and high-quality reviews for all submitted papers.

Many thanks also to the organizers of KI-2007 for hosting the workshop at the

KI-2007 conference.

August 2007 Gabriele Kern-Isberner and Christoph Beierle
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From syntactical to semantical and expedient
information − a survey

Wilhelm Rödder and Elmar Reucher

University of Hagen, Germany
wilhelm.roedder@fernuni-hagen.de
elmar.reucher@fernuni-hagen.de

Abstract. In this contribution the frequently meaningless statements
in the relevant economy literature, about what is knowledge and what
is information, are overcome going back to the roots of information and
communication theory. Information and entropy are defined precisely
and then the theoretical concept is applied to an AI-model of knowledge
processing. The result of this application is a powerful inference mech-
anism, permitting conclusions from given facts in a conditional envi-
ronment. A creditworthiness problem for consumer credits demonstrates
the performance of information based decision support. Here the exter-
nal information factor, namely the clients’ profiles, is transformed into
expedient or useful information. This ability of the decision model gives
rise to a deep discussion about the value and price of information.

Key words: Artificial Intelligence, Information, Inference, Knowledge,
Creditworthiness.

1 Introduction

Information society has come. Economists and sociologists, among others, re-
alize that information is the resource of the future. Hundreds of books were
published recently on Knowledge Management (KM) and Information Manage-
ment (IM), worldwide. Unfortunately there is no precise definition of what these
concepts mean. Giving the gist of what we learned from dozens of publications:
KM is managing knowledge and IM is managing information; even valid defin-
itions of knowledge and information are missing. We quote two representative
authors: “Information is expedient knowledge” [29]; “Knowledge is information
in use, . . . ” [22]. We are confused whether knowledge is information or informa-
tion is knowledge; so we hope for answers from great thinkers: “All knowledge
is memory” (Hobbes); “To know what knowing and to know what doing, that
is knowledge” (Confucius); “Denken ist die Erkenntnis durch Begriffe” (Kant).
With the likeliest translation this reads “Thinking is knowledge or insight by
concepts”. All this wisdom seemingly does not create a useful definition of in-
formation and knowledge, so we should consult the exact sciences.

If there exists a precise definition of what information really is− and Information
Theory provides such a definition − it could and should be a basis for a more

1



stringent terminology also among economists and sociologists, we feel. And per-
haps Information Theory even admits a better understanding of what knowledge
really is, too.

The present paper will try a cautious transfer of Information Theory to Ar-
tificial Intelligence (AI) thus permitting precise definitions within this concept.
And even more: Economical or sociological problems expressable in AI-terms,
might then find their respective information theoretical interpretation. This is
a first step from syntactical to semantical and expedient information; an eco-
nomical decision problem will show its relevance. From this first step towards
Knowledge Management and Information Management will be a long and diffi-
cult way, of course.

In Section 2 Shannon’s Theory of Communication and the axiomatic justifica-
tion of entropy and information are sketched, in Section 3 these concepts are
applied to Artificial Intelligence, Section 4 presents an information theoretical
model of creditworthiness and in Section 5 the value of information is discussed.
A conclusion completes this paper.

Parts of the following considerations are developed in a German publication [21],
but with a different focus from the one in the present paper.

2 History of entropy and information

We met entropy for the first time in a physics lesson, when we learned that in
a thermodynamic equilibrium a closed system always tends to increase entropy
and that this physical magnitude measures the residual thermal energy which
cannot be transformed into mechanical energy. The American engineer Claude

Fig. 1. A communication channel

Elwood Shannon (1916-2001) was responsible for the codification of messages
between Roosevelt and Churchill during World War II and in 1948 he wrote
down what he had learned about a “Mathematical Theory of Communication”
[24]. The main subject of his work was to study the transmission of codified
messages from a transmitter to a receiver via a channel and their decoding, see
Figure 1. The channel may suffer from interference or not.

2



In this section we are interested in the transition of messages or symbols from a
source to a destination, only, neglecting the technical part of transmitting coded
signals, see again Figure 1. So we consider chains of symbols from a finite alpha-
bet like for example a b c a a b c. . . , and our main purpose is to measure the
average information in such a chain. There is a didactically good introduction
to information and entropy written by Topsøe (1974). Following his reasoning,
information is strongly related to the number of yes/no-questions necessary to
eliminate uncertainty about the unknown arriving symbols. For the very special
case of the alphabet

∑
= {a, b, c} and the symbols arriving with frequencies f1,

f2, f3, independently from each other, we develop the idea further. Assume a
person A knows the arriving symbols and B does not. Then B could ask “is it
a?”. If the answer is “yes”, the query is over. If it is “no” there could be a second
question “is it b?”. For either answer “yes” or “no” the query is over and the
average number of questions is f1·1+f2·2+f3·2. Please verify that for f1, f2, f3

equal 1/2, 1/4, 1/4 we get an average of 1,5 questions and for 3/4, 1/8, 1/8 it
counts 1,25. Are these results the respective desired information or reduction
of uncertainty? At least we doubt the result (1-ε)·1+ε/2·2+ε/2·2 = 1+ε for an
arbitrarily small ε > 0. This would mean that the average information always
exceeds 1 even for the case where the arrival of a is almost certain! Topsøe devel-
ops that building optimal queries for t-tuples of independent symbols z1z2. . . zt

from
∑

t and calculating the average number of questions would be a more suit-
able approach. Then – after many definitions and lemmas, and letting t grow
to infinity – he receives a result which is known as the first main theorem of
information theory. We repeat it here.

Theorem 1 If for an alphabet
∑

= {s1, ..., sn} its elements realise in a repeti-
tive process, each time with probabilities P (s1),. . . ,P (sn) and independent from
each other, then the average information with respect to these realisations is
H = −∑

i

P (si) ld P (si). This average information is equal to the average

uncertainty inherent in the process. The arrival of a concrete si results in an
information gain of ldP (si).

In Theorem 1, ld is the logarithm with basis 2 and H is called entropy. Mind
the fact that this entropy (as average uncertainty) and information (as average
uncertainty reduction) have the same numerical value but are dual concepts.

The reader easily verifies that for
∑

= {s1, s2} and P (s1) = P (s2) = 1/2 the
entropy H is 1; this unit has the dimension [bit]. Furthermore we see that for
the above probabilities 1/2, 1/4, 1/4 we get exactly H= 1,5, whereas for 3/4,
1/8, 1/8 the estimated “information” of 1,25 differs from the exact 1,06 [bit].
For 1, 0, 0 the entropy vanishes, as we expected.

Shannon did not only study independent processes like in Theorem 1 but he also
considered the intrinsic probabilistic dependency structure between the sym-
bols in Markov chains. For this we consider a process, now generating m-words
z1. . . zm from

∑
m rather than single symbols. This time

∑
might be the alpha-

bet of the English language and each m-word a sequence of letters of length m,
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including blanks e.g. Then the m-word entropy is

Hm = −
∑

z1...zm

P (z1 . . . zm)ldP (z1 . . . zm),

being P (z1. . . zm) the probabilities of such m-words. To study dependencies be-
tween letters it is necessary to look into the words. The factorization P (z1. . . zm) =
P (z1) ·P (z2|z1) . . . P (zm|zm−1. . . z1) into conditional probabilities permits a de-
composition of Hm in accordance with (1).

Hm = −
∑
z1

P (z1)ldP (z1)−
∑
z1

P (z1)
∑
z2

P (z2|z1)ldP (z2|z1)− . . .

−
∑

zm−1...z1

P (zm−1 . . . z1)
∑
zm

P (zm|zm−1 . . . z1)ldP (zm|zm−1 . . . z1) (1)

Equation (1) often is written as Hm = H1 + H2|1+. . .+Hm|m−1,...,1, a sum
of conditioned entropies and we have H1 = H2|1 = . . . = Hm|m−1,...,1, c.f. [15],
p. 19.

If all letters in the m-words would occur with the same distribution and inde-
pendently from each other, this would mean Hm = H1+. . . +H1 = m ·H1. But
in real texts of human languages, Hm is significantly smaller than m ·H1 due to
the probabilistic dependencies between the letters.

If the letters would be generated by a Markov-chain of order k, k < m, then the
m-word entropy would become Hk

m = H1 + H2|1 + . . . + (m− k)Hk+1|k,...,1, see
[3], p. 97. The longer the actual memory k of the Markov-chain the higher the
uncertainty reduction in the m-words, because Hk

m = H l
m = Hm for l > k.

Even for a modest k = 2 this reduction is significant, and in turn the symbols’
dependencies are surprising. Shannon and Weaver [25], p. 54 give a nice example
in which they simulate m-words given the conditional probabilities empirically
collected from English texts. Such an m-word for m = 102 is the following:

IN NO LAT WHEY CRADICT FROUL BIR GROCID PONDENOME
OF DEMONSTURES OF THE REPTAGIN IS REGOACTIONA OF
CRE.

The reader notices that this text does not make sense but nevertheless seems to
be English. It reflects the intrinsic probabilistic conditional structure between
letters. Such probabilistic conditional structures will occupy us in the Artificial
Intelligence concept to be presented in Section 3.

Shannon’s communication theory was pioneering, but it was a group of Russian
mathematicians, which made it a mathematical theory. Jaglom and Jaglom [9],
instead of focussing on communication focussed on experiments. More precisely,
they studied the uncertainty about the unknown outcomes of experiments and
its reduction = information when the outcomes realize.
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Example 1 We make the composed experiment of first flipping a fair coin and
then drawing a card from a deck of cards. The possible outcomes under consid-
eration and their respective probabilities are

heads & red, heads & clubs, heads & spades, tails & red, tails & clubs, tails & spades

1/4 1/8 1/8 1/4 1/8 1/8

An easy calculation shows H=2,5 [bit]. As the experiment is separable – first the
coin, then the card – the respective probabilities and conditioned probabilities
are 1/2, 1/2 for the first part and 1/2, 1/4, 1/4 for the second. The entropies
of either part we know already: 1 [bit] for the first and 1,5 [bit] for the second.
So the total entropy is H(1/2, 1/2) + 1/2 H(1/2, 1/4, 1/4) + 1/2 H(1/2, 1/4,
1/4) = 1 + 1/2·1,5 + 1/2 1,5 = 2,5 [bit].

The Russian mathematicians discovered that this separability of entropy is typ-
ical and that it is an essential property. There are four properties, which imply
the form of H to be like in Theorem 1. To see this let v be possible outcomes
of an experiment and ∪ v = Ω. Let furthermore A1,. . . ,Ak be any partition of
Ω, i.e. ∪Ai = Ω and Ai ∩ Aj = Ø i 6= j. Let P be a probability measure on Ω
and φ a function of its probabilities.

H1 φ(P (v), v ∈ Ω) is independent of the order of its arguments.

H2 φ is continuous in its arguments.

H3 φ(P (v), v ∈ Ω) = φ(P (A1), . . . , P (Ak))+
k∑

i=1

P (Ai)φ(P (v|Ai), v ∈ Ai).

These three axioms reflect exactly what we expect the entropy of experiments
to do. And even more: If we add

H4 φ(1/2, 1/2) = 1,

then they are sufficient to determine the exact form of φ.

Theorem 2 If a function φ satisfies H1 – H4, it is necessarily of the form

φ(P (v), v ∈ Ω) = −
∑

v

P (v)ldP (v).

The very costly proof goes back to Faddejew [4], p. 86 – 90.

This was a short story about the history of entropy and information, but do
these concepts help to measure expedient knowledge and information in economic
situations? This will be studied in the next sections.

3 Entropy and information in Artificial Intelligence

Shannon’s model was basically dynamic in that a flow of symbols was considered.
So the incoming information depends highly on the concrete symbols emitted
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by the source. In a long run, however, the average information H looses the dy-
namic character and is a function of the symbols’ probability distribution, only.
Also Jaglom and Jalglom’s experiments with unknown outcomes are of a mere
static nature.

In this section we neither consider a flow of symbols nor outcomes of an experi-
ment, but the essential pivot of the theory is a set of configurations, i.e. tuples of
variables’ values which describe the objects of a knowledge domain. Such config-
urations are similar to the m-words in the last section and as such have certain
probabilities to be true in this domain. With an increasing number of such con-
figurations the estimation of their probabilities becomes uncomfortable or even
impossible. Therefore a language to communicate the probability distribution
is necessary. The conditional structure in such a distribution then is considered
the knowledge about the domain.

To develop this idea further, the reader is invited to regard a distribution in
which nearly all conditioned probabilities are close to 1 or 0. If now a condition-
ing event becomes evident, respective conditioned events can be concluded to be
nearly true or false. It must be the aim of any kind of knowledge acquisition to
detect high degree dependencies between real world facts and to model them as
high degree dependencies between events in a probability distribution.

So, the subject of this section is exactly this: Show how to make a system learn
messages of a certain syntax, acquire knowledge and enable it to respond to ques-
tions – in an information theoretical and conditional environment. To do all these
things efficiently, we need a good description of the knowledge domain, a lan-
guage as communication tool between system and user, an inference mechanism
to acquire knowledge and to derive facts from acquired knowledge, respectively.
And we need adequate measures for the amount of acquired knowledge and for
information flows. A system with this capacity consists of the following elements.

Let V ={V1,. . . ,Vn} be a finite set of finite-valued variables with attributes vj of
Vj . We often use mnemonic upper case names for the variables and lower case
names for the attributes. A credit is GOod GO=yes/no (1/0), a client disposes
of financial MEans ME=yes/no (1/0) are typical examples of variables and their
respective attributes. Formulas of the type Vj = vj are literals. They are atomic
propositions, which can be true (t) or false (f) under a certain interpretation.
From such literals, elements of a propositional language L are formed by the
junctors ∧ (and), ∨ (or), ¯ (not) and by parentheses; such elements are denoted
by upper case letters A, B, C. . . . Complete or simple conjuncts of literals we
often write as unordered tuples such as v = v1. . . vn. V is the set of all complete
conjuncts and |V| its cardinality. | is the binary conditional operator. Formulas
of the type B|A are conditionals, GO=yes|ME=yes is a simple example. B|A for
a tautological A is equivalent to the unconditioned formula B. The set of all B|A
is the conditional propositional language L|L. B|A is t(rue) if B and A are true,
it is f(alse) for a false B and a true A, and it is undefined for a false A. So with
true or false conditionals we can express (conditioned) facts about the domain,
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like GO=yes|ME=yes [t] (is true), e.g. To improve the usefulness of such condi-
tionals we allow probabilities instead of just t or f. These probabilities express
the degree to which a conditional in the given domain is true. Such probabilistic
conditionals or facts we write B|A [x], being x the respective probability.

If now we have a set of several such probabilistic facts or messages R={Bi|Ai

[xi], i=1,. . . ,I}, are they informative to the system and how to learn them?

The epistemic state of the system is a probability measure P on V with its to-
tal intrinsic probabilistic conditional structure, and this epistemic state must be
built up from R.

Example 2 With the variables GO=yes/no, ME=yes/no and SUrety=yes/no
we study four probability measures on V.

GO ME SU P 0 P 1 P 2 P 3

yes yes yes 1/8 1/7 1/6 3/8
yes yes no 1/8 1/7 1/6 3/8
yes no yes 1/8 1/7 1/6 0
yes no no 1/8 1/7 1/6 0
no yes yes 1/8 0 0 0
no yes no 1/8 1/7 1/9 2/8
no no yes 1/8 1/7 1/9 0
no no no 1/8 1/7 1/9 0

In the first distribution, P 0, the pre-
diction of GO= yes given any combi-
nation of ME and SU is always 0,5; the
system is ignorant with respect to this
question. The second distribution, P 1,
knows that ME=yes∧SU=yes certainly
implies GO=yes, and the third one, P 2,
over and above attributes a 2/3 proba-
bility to GO=yes.

Table 1 - Epistemic states for a three-variables knowledge domain

Note that the respective entropies are 3 [bit], 2,81 [bit] and 2,78 [bit] for the
three distributions P 0, P 1, P 2. The more conditional probabilistic structure in a
distribution the lower entropy. Conditional structure is knowledge and H(P 0)−
H(P i), i = 1, 2, measures such knowledge.

Now we explain how to put this knowledge into the system, starting from an
ignorance representing uniform distribution P 0. To do so we need a function,
which measures the information theoretical distance between two distributions.
If a distribution P , for whatever reason, is changed to a distribution Q then the
distance is

R(Q,P ) =
∑

v

Q(v)ld(Q(v)/P (v)).

R is called the relative entropy of Q with respect to P . R measures the overall
change of conditional probabilistic structure from P to Q, for a detailed dis-
cussion confer [13], [16], [19], [26]. K(Q||P ), the well known Kullback−Leibler
(KL) divergence is equal to R(Q,P ) [1]. One reason for the change from P to Q
might be new messages in the form of probabilistic conditionals. So in Example
2, P 0 was first adapted to the message GO=yes|ME=yes∧SU=yes [1], yielding
P 1. P 2 was the result of adapting P 0 to two facts, namely GO=yes|ME=yes∧
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SU=yes [1] and GO=yes [2/3]. Mathematical calculations show that P 1 and P 2

are distributions of minimal relative entropy with respect to P 0, given the re-
spective probabilistic conditionals, c.f. [17]. Minimizing relative entropy means
best possible preserving the probabilistic structure in an epistemic state when
adapting it to new messages [2], [8], [10].

There is an absolute different concept to transform the probability distribution
or the epistemic state, respectively. Once we receive ad hoc knowledge about
a special situation or a special scenario, this information will be imposed on
the epistemic state only temporarily and then will be abandoned. Here again
the relative entropy R is a suitable means to process this ad hoc knowledge, as
shows the following example 3.

Example 3 P 2 from table 1 contains knowledge. To use this knowledge, now
enter the ad hoc information that ME=yes [1]. Obviously the adaptation of P 2

to this information yields P 3, again shown in table 1; now the probability of
GO=yes is 3/4. The system has concluded that under the given basic knowledge
and also imposing ad hoc knowledge, an object’s probability to show attribute
GO=yes is 75 %. The system was never explicitly informed about this fact, the
value 75 % had to be derived from P 2 and from the ad hoc knowledge. Please
verify that the entropy in P 3 is 1,56 [bit].

This discussion gives rise to a general mathematical concept of knowledge acqui-
sition, query and response, c.f. [20], [18]. First consider the knowledge acquisition:

P ∗ = arg min R(Q,P 0) s.t. Q(Bi|Ai) = xi, i = 1 . . . I (2)

P* is the resulting distribution when adapting P 0 to all probabilistic facts
Bi|Ai [xi]. If these facts were not valid in P 0 we get P*6= P 0, and the facts
become information for the system. For an axiomatic justification of this concept
c.f. also [12], [16], [26] and again [20]. All gathered information is knowledge. In
Example 2 we got P*=P 1 after learning one fact, and P*=P 2 after learning
two facts. This is what knowledge acquisition is concerned with. Now consider
a query:

P ∗∗ = arg min R(Q,P ∗) s.t. Q(F ) = 1 (3)

P ∗∗ is the resulting distribution when P ∗ undergoes a certain ad hoc situation
F . In Example 3 we had P ∗∗=P 3.

P ∗∗(G), for any proposition G (4)

is the answer of the system to the question “How likely is G, given basic
knowledge P ∗ and an ad hoc message F?”. In Example 3 we calculated for G ≡
GO=yes: P ∗∗(G) = 3/4. P ∗∗(G) was inferred from P ∗ and F . This is what in-
ference is concerned with.

The here described knowledge processing is sophisticated in that it has very
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desirable properties [11]. So if Müller is a German and if all Germans are credit-
worthy then the system concludes Müller to be creditworthy, too. This is tran-
sitivity. If the system learns 80% of all Germans to be creditworthy then any
male German, e.g., inherits this property, if no other information is available.
This is called cautions monotony. If the system learns the Germans, older then
60, to be 95% creditworthy and then finds out that Germans in general only in
80% of the cases pay back their credits correctly, it nevertheless keeps its earlier
conviction. This is called categorical specifity. The reader is invited to reflect
these properties in view of the demands which human intellect must meet, to
produce good survival strategies.

It remains to resume that R(P ∗, P 0) = H(P 0)−H(P ∗) is the quantity of knowl-
edge acquired by the system and R(P ∗∗, P 0) = H(P 0)−H(P ∗∗) is the knowledge
amount in the situation that F is true. The respective equalities are obvious and
their verification is left to the reader. All quantities measure in [bit]. If the sys-
tem’s knowledge increases by b [bit], it received an equal amount of information.
The respective message was informative. Please verify that the epistemic states
P 1, P 2 and P 3 in Examples 2 and 3 received 0,19, 0,22 and 1,44 [bit] of informa-
tion, respectively, and hence dispose of an equal acquired amount of knowledge.
The acquisition process from P 0 to P ∗, the transformation of P ∗ to P ∗∗ and
the entropies of the respective epistemic states are provided by an expert sys-
tem shell called SPIRIT [27]. In the next section we build up a decision support
model for a bank’s consumer credit business, based on the hitherto developed
theory.

4 Decision support for the credit business

A bank gives consumer credits to clients under certain conditions which are
determined by the market rate of interest, the effective interest, and a service
charge of 2%, e.g. As the market rate in EUROland is a low 2%, for an effective
interest of 7% the bank realises a required rate of return of 14,66%, if the credit
is paid back correctly within 4 years. For the easy calculations confer [23], p.
336-342. So this is a return of 1.466 for a 10.000 EURO credit. For a bad credit
the loss is 8.614 EURO. This value comes from an estimated pay back rate
lower than 20 %, which the bank usually collects only at the end of the credit’s
lifespan, here 4 years, and hence must be discounted at market interest. So the
bank confronts the decision situation in Table 2.

GO=yes GO=no
LO=yes 1.466 EURO -8.614 EURO
LO=no -29 EURO 0 EURO

LO=yes/no stands for ”loan the
money or not” and GO=yes/no
for a good or bad credit, like
above.

Table 2 – Decision situation for the bank
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The -29 EURO are estimated opportunity costs (c 2 % of 1.466 EURO of
a refused credit for a good client. The recent trivial strategy of the bank was
to concede all demanded credits and so for an average 88 % of good clients its
average rate of return was a weak 256 EURO. Because the bank wants to go
online it contracts a consultant to analyse the situation. We briefly repeat the
analyst’s reasoning.

A decider, absolutely uninformed about the percentage of good clients in the
population, might assume a 50/50 share and this certainly favours the not loan
strategy, as 0,5·1.466+0,5·(-8.614) < 0,5·(-29)+0,5·(0). For the observed 88 %
of good credits, the respective numbers read 0,88·1.466+0,12·(-8.614) > 0,88·(-
29)+0,12·(0), thus justifying the actual trivial loan strategy of the bank. As is
well known, Laplace’s daemon could predict exactly good and bad credits. Then
for the 88 % of good clients he would perform an average 0,88·1.466 = 1.290
EURO return, much better than the poor 256 EURO from above. We are not
Laplace’s daemon, but a good prediction model might improve the decisions,
too. Prediction models in the relevant literature are Scoring Models, Discrim-
inant Analysis, Neural Networks etc. [5], [6], [7]. Here we prefer an AI-system
based on the theory developed in the last section.

Fig. 2. Facts for the creditworthiness model

Each time a client applied for a credit we collected the following data: finan-
cial MEans available ME=yes/no, somebody offers SUrety SU=yes/no, INcome
sufficient IN=yes/no, has a JOb for more than three years JO=yes/no, client
is KNown to the bank KN=yes/no, No Bad earlier credits NB=yes/no, an In-
quiry Agency gives a positive judgement IA= yes/no. The screenshot in Figure
2 shows the frequencies P act of the clients’ property profiles for good and bad
credits GO=yes/no, from 3000 historical data. It furthermore shows the decision
variable LO=yes/no and an utility variable U which at any time calculates the
expected monetary return, depending on the respective decision and the clients
profile of attributes.

The model will now be applied to a control sample of again 3000 clients, also
historical, for which we know the clients’ profiles and the pay back modus
GO=yes/no. Of course the bank wants to separate “good” from “bad” clients
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with respect to its approximate break-even p = 0, 852 for which p · 1.466 + (1−
p) · (−8.614) = p · (−29) + (1 − p) · 0. The following Theorem 3 justifies the
application of the separation mechanism derived from the first sample.

Theorem 3 Let P be any probability measure on the attribute space given
in Figure 2, let m be an arbitrary profile of the clients’ attributes. With p =
P (GO=yes) we have the following proposition:
P (m|GO = yes) T P (m|GO = no) iff P (GO = yes|m) T p.

The proof of Theorem 3 is an immediate application of Bayes’ theorem, because
of space limits we omit it here. The theorem justifies the profiles as a separation
criterion for GO=yes and GO=no for any P , and especially for such a P with
p = p, the break-even for the bank.

For each client from the control sample with profile m, the loan was given if
P ∗(GO= yes|m) > 0.852 and was denied, otherwise. The model showed a good
performance as it increased the average return from a former 256 EURO to now
515 EURO. In 1.988 cases it gave loans to clients with a good credit history
and it correctly denied 297 loans for those with a bad history. The system failed
558 + 157 times, denying 558 credits for good and allowing 157 credits for bad
histories. Summing over all respective returns (1.466 EURO, -8.614 EURO, -29
EURO, 0 EURO) the total return was 1.545.828 EURO. Dividing by 3000 yields
515 EURO.

That was the decision model and its performance for a 3000-person control sam-
ple, but what is the value of such a model?

5 Expedient information, its value and price

A superficial reasoning about the model’s value would come to a fast conclusion:
Its value is the bank’s future return for an estimated number of clients and years.
This mere monetary value concept suffers from a deeper theoretical justification.
The value varies with the number of clients and even with the credit conditions.
For changing markets and effective interests the accumulated return alters sig-
nificantly.

The information theoretical concept of the system seems to be a better basis for
its evaluation. There are two first information measures related to the system:
The amount R(P ∗, P 0) = 3,55 [bit] of knowledge acquired by adapting P 0 to
all conditional facts as in Figure 2 of the last section, and the amount of the
external factor information processed by the system. The external factor is the
information about the attribute profiles, which clients must put at the system’s
disposal. Each time a client’s profile is put into the system’s epistemic state,
entropy decreases significantly. The sum of all 3000 such information jumps
amount to 16.748 [bit]. Neither measure is adequate for our purposes. In either
case the consideration of absolutely irrelevant attributes with respect to the ac-
tual problem (hair colour, sex, colour of dress etc.) would cause equal or even
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higher acquired knowledge and processed information, respectively, but never-
theless make the system a useless instrument. In such cases information would
not be expedient or useful.

Laplace’s daemon disposed of very useful knowledge, as the (hidden) attributes
separated perfectly good from bad credits. There is an information theoretical
function which measures this separation capacity, the transinformation T . The
reader not familiar with this concept might study any textbook on information
theory, like [14], e.g. For our purposes it is sufficient to develop that

T = H(P ∗(GO = yes/no))−
∑
m

P ∗(m)H(P ∗(GO = yes/no|m))

is the uncertainty on GO= yes/no minus the conditioned entropy given all pro-
files m, T is always nonnegative. The conditioned entropy measures the average
remaining uncertainty in GO in spite of known profiles. If it is high, creditwor-
thiness does not depend on the profiles, if it is low the dependency is big. Thus
in turn, T decreases with growing conditioned entropy. T is also equal to

∑
m

P ∗(m) ·
∑

GO=yes/no

R(P ∗(GO|m), P ∗(GO)).

The last expression shows T to be the weighted sum of relative entropies each of
which measures the information theoretical distance of P ∗(GO|m) with respect
to P ∗(GO). The higher in average this distance the greater the influence of m
over GO, all m. We calculated T = 0,085 [bit] for our creditworthiness example.

Laplace’s daemon “explains all uncertainty about the creditworthiness away”
and makes the transinformation maximum, in our case T=0,6 [bit], whereas the
here built system has a performance of T=0,085 [bit] or 14,1 % of this bench-
mark. Each time the bank applies for a credit decision, the system transforms
the external factor information of a client’s attribute profile m into expedient
information, R(P ∗(GO|m), P ∗(GO)). A stream of applying clients generates a
stream of such impacts and their weighted sum in average equals 0,085 [bit].
Expedient knowledge generates expedient information. Knowledge is a potential
and does not use up.

The following Figure 3 shows the transformation from external information to
expedient information. Expedient information is a precious resource, but what
is a fair price? Imagine in a last step the system to attend the queries of a great
number of banks, each time confronted with different credit levels, credit dura-
tions and interest rates. Each time it transmits a certain information quantity,
making information a raw material or a resource for the credit business. The
price of this resource is the result of the market equilibrium between supply and
demand. Here the supply consists of all disposable creditworthiness prediction
systems like Probabilistic Systems, Systems based on Discriminant Analysis or
Neural Networks, etc. All banks, saving banks and other credit institutes de-
mand such methods. We don’t know which price will realise in such a market, of
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Fig. 3. From external information to expedient information

course. But this price will highly depend on each system’s capability to trans-
form external into expedient information. For the here developed AI-model this
transformation process was shown to be measurable. Could this be a standard
for the comparison of different prediction systems and could this even be a first
step towards a more serious preoccupation with information as the most precious
resource of the future?

6 Résumé

In this contribution, for the very specific situation of decision support for the
consumer credit business the transformation process from incoming external
information in form of the clients’ profiles into expedient information concern-
ing their creditworthiness was developed. This modern view makes information
processing transparent and even measurable, thus permitting a theory-based
evaluation of the raw material information. We certainly stand at the beginning
of a new development, which hopefully overcomes the frequently meaningless
statements concerning Information Management and Knowledge Management
in recent publications.
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Abstract. Data fusion is the process of combining data and information
from two or more sources. It has its origin in market research, where it
is used to combine data from different surveys. Most data fusion stud-
ies use statistical matching as their fusion algorithm, which has several
drawbacks. Therefore, we propose a novel approach to data fusion, based
on knowledge discovery and knowledge representation with probabilistic
graphical models. We evaluate our approach on synthetic and real-world
data, demonstrating its feasbility.

1 Introduction

Data fusion is the process of combining data and information from two or more
sources. One of its application areas is market research, where it is used to
combine data from different surveys. Ideally, one would conduct a survey with all
questions of interest. But longer questionnaires lead to a lower response rate and
increased bias, and also require more time and funds to plan and execute [3,20].
Therefore, data fusion is used to combine the information gathered by two or
more surveys, all of them having different questions and separate interviewee
groups. In general, data fusion is a practical solution to make the information
contained in readily available data sets amenable for joint analysis.

Most data fusion studies conducted in market research utilize statistical
matching as their fusion algorithm [23]. Statistical matching uses a distance
measure to find similar objects in the given data sets, which are then combined.
In this paper, we propose an alternative approach to data fusion based on prob-
abilistic models. We use a knowledge discovery algorithm to compute sets of
probabilistic rules that model the dependencies between the variables in the
data sets. These rule sets are then combined to build a joint probabilistic model
of the data. We evaluate our approach on synthetic data and present the results
of a real-world application.

The next section presents a short introduction to data fusion and further
necessary background. Section 3 presents our novel data fusion process, which
is evaluated in Sect. 4. Some concluding remarks are given in Section 5.

15



2 Background

2.1 Data Fusion

Throughout this paper, we are concerned with the problem of fusing the infor-
mation contained in two data sets, DA and DB . The statistical framework of
data fusion we are concerned with [3] is based on the assumption that DA and
DB are two samples of an unknown probability distribution P (X,Y ,Z) over the
random variabes X ∪Y ∪Z, X, Y and Z being pairwise disjoint. Furthermore,
the samples of DA have the values of Y missing, and the samples of DB have X
missing. The variables in Z are the common variables of DA and DB , and data
fusion assumes that the variables in X and Y are conditionally independent
given values for the variables in Z

p(X,Y |Z) = p(X |Z)p(Y |Z), (1)

which is also written as X |= P Y |Z.
Most data fusion studies use statistical matching as their fusion algorithm

[23]. Statistical matching assumes that one data set, called the donor, is used to
provide the missing values for the other data set, the recipient. The statistical
matching algorithm computes k best matching donor objects for every recipi-
ent object, utilizing some distance measure on the common variables. Standard
measures such as the Euclidian or Hamming distance can be used, but some-
times the distance measure must be adjusted to the fusion process. For example,
the common variables might contain so called critical variables (also called cell
or threshold variables), for which the donor and recipient object must have the
same values in order to be matched.

After the k best matching donor objects have been computed for the current
recipient, the values for its missing variables must be calculated. This is done
by summarizing the values of the k donor object for each variable missing in
the recipient data set. For instance, the values of numerical variables can be
summarized by their mean, whereas the values of categorical variables can be
summarized by their mode.

Evaluating the quality of the data fusion is not a trivial problem [23]. Eval-
uation can be either internal or external, depending on the stage of the overall
data analysis process at which the evaluation is performed. Internal evaluation
takes place immediately after the data fusion and takes into account only the in-
formation available after the data fusion itself. External evaluation on the other
hand utilizes information obtained during the other steps of the data analysis
process, and thus can assess the appropriateness of the data fusion for the whole
data analysis process.

Four levels of quality of a data fusion procedure can be defined [13]:

1. The marginal and joint distributions of the variables in the input data sets
are preserved in the fused data.

2. In addition to the first level, the correlation structure of the variables is
preserved.
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3. In addition to level 2, the overall joint distribution is preserved in the fused
data.

4. In addition to level 3, the true but unobserved values of all variables are
preserved after fusion.

Note that levels 3 and 4 can only be validated for simulation studies where a
given data set is split into several parts, providing the input for the data fusion
procedure. Level 1 can always be validiated.

2.2 Probabilistic Conditional Logic

Representing and reasoning with (uncertain) knowledge is one of the main con-
cerns of artificial intelligence. One way to represent and process uncertain knowl-
edge is to use probabilistic methods, which, with the introduction of probabilis-
tic graphical models, have seen increasing research interest during the last two
decades [2, 16].

Directly representing a joint probability distribution is prohibitive for all
but the smallest problems, because of the exponential growth of the memory
needed for storing the distribution. Therefore, probabilistic graphical models
utilize graphs to represent (in)dependencies between random variables, exploit-
ing these to obtain a sparse representation of the joint probability distribution
and to facilitate efficient reasoning. Bayesian networks (BNs) are perhaps the
best known class of probabilistic graphical models. They use a directed acyclic
graph to represent the dependencies between the random variables and param-
eterize it with a conditional probability distribution for each variable, thereby
specifying a joint probability distribution. Despite their wide-spread use, BNs
have some drawbacks. Their directed acyclic structure prohibits the representa-
tion of certain cyclic or mutual dependencies, and they require the specification
of many (conditional) probabilities, which is especially troublesome in case a
Bayesian network is constructed by an expert and not learned from data.

Another way to construct a probabilistic graphical model is to specify certain
constraints, and compute an appropriate joint probability distribution that satis-
fies these constraints. In principle, there are many joint probability distributions
satisfying a given set of constraints, but in order to make meaningful inferences
one must choose a single “best” model. The principle of maximum entropy states
that, of all the distributions satisfying the given constraints, one should choose
the one with the largest entropy1, because it is the least unbiased, the one with
“maximum uncertainty” with respect to missing information. It can also be
shown that the principle of maximum entropy is the unique correct method of
inductive inference satisfying intuitive, commonsense requirements [15,21].

The probabilistic conditional logic (PCL) [19] is a formalism to represent
constraints on a joint probability distribution. Assume we are given a set U =
{V1, . . . , Vk} of random variables Vi, each with a finite range Vi. The atoms of

1 The entropy of a discrete probability distribution P with sample space Ω is defined
as H(P ) := −

P
ω∈Ω p(ω) log2 p(ω).
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PCL are of the form Vi = vi, depicting that random variable Vi has taken the
value vi ∈ Vi, and formulas are constructed using the usual logical connectives
¬, ∨, ∧. The constraints expressible with PCL are probabilistic facts ρ[x] and
probabilistic rules (ψ |φ)[x], where ρ, ψ and φ are formulas built from literals and
the usual logical connectives, and x is in [0, 1] 2. A probability distribution P

with sample space Ω =
∏k

i=1 Vi represents a probabilistic rule (ψ |φ)[x], written
P |= (ψ |φ)[x], iff p(φ) > 0 and p(φ ∧ ψ) = x · p(φ); it represents a set R of
probabilistic rules, written P |= R, iff it represents each probabilistic rule in R.

The maximum entropy distribution ME (R) = P ∗ := argmaxP |=RH(P ) rep-
resenting a set of probabilistic rules R = {(φ1 |ψ1)[x1], . . . , (φm |ψm)[xm]} can
be depicted as

p∗(x) =
1
Z

exp

 m∑
j=1

λjfj(x)

 =
1
Z

m∏
j=1

eλjfj(x), (2)

where λj ∈ R>0 are the weights depicting the influence of the feature functions
fj : Ω → [−xj , 1−xj ], one feature function for each probabilistic rule, and Z :=∑

x∈Ω exp
(∑m

j=1 λjfj(x)
)

is a normalization constant. Equation 2 is the log-
linear model notation for Markov networks, so PCL is a formalism for specifying
Markov networks, i.e. undirected graphical models [16]. The expert system shell
SPIRIT [14,17] is based on PCL, enabling the user to enter a set of probabilistic
rules and facts and to efficiently answer probabilistic queries, similar to an expert
system shell using Bayesian networks.

2.3 Learning Probabilistic Rules from Data

The expert system shell SPIRIT, introduced in the previous section, can be
used to build a probabilistic knowledge base by specifying a set of probabilistic
rules. I.e., we are given a set of probabilistic rules and utilize the principle of
maximum entropy to compute a probability distribution. Now assume we would
– instead of a set of rules – be given an (empirical) probability distribution.
Then we could ask the question which set of probabilistic rules would yield this
probability distribution, again utilizing the principle of maximum entropy.

Computing probabilistic rules from empirical probability distributions is an
example of knowledge discovery from databases (KDD) [4]. KDD is an interdis-
ciplinary area of research, drawing – amongst others – on methods from machine
learning, databases, statistics and knowledge aquisition for expert systems. As
the interest on research in probabilistic graphical models and knowledge dis-
covery in databases started to grow almost simultaneously, a lot of work has
been done on developing methods for learning probabilistic models from data,
especially Bayesian networks [9].

The development of a method for computing probabilistic rules from empir-
ical data was based on the idea that, using the discovered rules, the maximum
2 Probabilistic facts ρ[x] can also be represented as (ρ | >)[x].
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R P ∗

ME -reasoning

knowledge discovery

Fig. 1. Knowledge discovery by reversing knowledge representation

entropy approach to constructing a probabilistic model described in Sect. 2.2
should give the same probability distribution as the one the empirical data was
sampled from. This way, knowledge discovery can be interpreted as being inverse
to knowledge representation and reasoning, see Fig. 1.

Suppose we are given a set U = {V1, . . . , Vk} of random variables Vi, each
with a finite range Vi (cf. Sect. 2.2). Given a sample P̃ of a probability distri-
bution over U with sample space Ω =

∏k
i=1 Vi, we want to compute a set of

probabilistic rules R such that P̃ is a sample of ME (R). We assume that R
consists of so-called single-elementary rules, i.e. rules with a single atom as their
conclusion.

Recalling Equation 2, one can see that each rule R ∈ R has a certain amount
of influence on the probability of every event of the ME -probability distribution
ME (R). By associating abstract symbols with this influence one can build a the-
ory of conditional structures [11] which can be used to disentangle the complex
joint influence of probabilistic rules. Using this theory, one can search for certain
numerical relationships in an empirical probability distribution P̃ and use these
relationships to compute a set of rules which is able to model P̃ by Equation 2.
Details on this knowledge discovery approach are given in [11, 12]; here we will
only give a brief overview of the algorithm.

– The algorithm starts with a set of single-elementary rules. In principle, one
would choose each of the

∏k
i=1 |Vi| literals as the head, and all possible

combinations of the literals of the remaining k−1 variables as the conclusions.
As this results in an exponential number of rules, the events ω ∈ Ω with zero
probability are used to reduce the initial rule set.

– During the second step the algorithm searches for numerical relationships
that can be used to reduce the initial set of rules. These relationships are
depicted by even-length cycles in an undirected graph induced by Ω. As
there is an exponential number of such cycles, a length restriction has to be
imposed.

– After the numerical relationships have been computed, they are used to
reduce the set of rules. This is done by conjoining or removing rules until all
numerical relationships have been taken into account.

This algorithm has been implemented in CondorCKD [6, 7], which is a
part of the larger Condor system [1]. CondorCKD can be used to compute
the set of ME-optimal rules for given empirical probability distributions, which
are assumed to reside in tabular form as CSV or ARFF files. The resulting rules
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are interesting in themselves, but can also be used to construct a probabilistic
model with SPIRIT, see Sect. 2.2 and the following sections.

3 Data Fusion with CondorCKD and SPIRIT

Given two empirical probability distributions P̃A(X,Z) and P̃B(Y ,Z)3, we can
use CondorCKD to learn sets of probabilistic rules RA and RB that are
models for P̃A resp. P̃B . Combining these rule sets yields a probabilistic model –
a Markov network, cf. Sect. 2.2 – for the unknown joint probability distribution
P (X,Y ,Z). This Markov network has a corresponding graph structure G =
(U , E) with one node for every variable in U = X ∪ Y ∪Z. Two nodes S, T in
U , S 6= T , are connected by an edge iff there is at least one rule in RA∪RB that
contains both S and T [14]. Because RA and RB are computed from P̃A(X,Z)
and P̃B(Y ,Z), G will contain no edges between variables in X and Y . The only
way two variables in X and Y might be connected is by a path going through
Z, i.e. X and Y are graphically separated by Z in G, written as

X |= G Y |Z. (3)

For Markov networks, Equation 3 implies the conditional independence of X
and Y given Z [16], written as

X |= G Y |Z ⇒ X |= P Y |Z.

Thus, if the conditional independence assumption (see Equation 1) is valid
for two given data sets DA and DB , constructing a probabilistic graphical model
with CondorCKD and SPIRIT gives an adequate model for the unknown
joint probability distribution P (X,Y ,Z). The quality of this model depends on
the conditional independence of P̃A(X,Z) and P̃B(Y ,Z) given Z. For a known
joint probability distribution P (X,Y ,Z) the conditional independence of the
marginal distributions P (X,Z) and P (Y ,Z) given Z can be measured with the
conditional mutual information4 [8]

I(X,Y |Z) = EP

(
log2

p(x,y |z)
p(x |z)p(y |z)

)
= H(X,Z) +H(Y ,Z)−H(Z)−H(X,Y ,Z),

(4)

which is zero iff X |= P Y |Z.
I(X,Y |Z) can of course only be calculated when the joint probability dis-

tribution P (X,Y ,Z) is known, which in general is not the case with data fusion
problems. But the conditional mutual information can be used in experiments
with a known joint distribution to assess the quality and validity of our proposed
data fusion process.

Summarizing, our data fusion process consists of the following steps:
3 These are defined by computing the relative frequencies of the different joint events

or objects in DA resp. DB .
4 Note that EP (f) denotes the expected value of function f with respect to the prob-

ability distribution P .
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1. Compute two rule sets RA and RB for the given input data sets DA and
DB , using CondorCKD.

2. Build a model for the joint data by constructing a ME -probability distribu-
tion with SPIRIT, using RA ∪RB as input.

3. Evaluate the quality of the data fusion process, using (at least) level 1 vali-
dation.

4 Experiments

In order to verify our data fusion process, we first use a synthetic data set and
various partitionings of its variables to verify whether low conditional mutual
information results in a higher quality of the data fusion. After that we demon-
strate the applicability of our approach by fusing two real-world data sets.

4.1 Fusing synthetic data sets

We use a variant of the well-known Léa Sombé example [18,22] as our synthetic
data set. It has six binary variables, describing people in a fictional community:
S : Being a student
Y : Being young
G : Being single
P : Being a parent
M : Being married
C : Cohabiting
The dependencies between these attributes can be expressed by six rules:

(R1) 90% of all students are young: (Y |S)[0.9]
(R2) 80% of all young people are single, (G |Y )[0.8]
(R3) 70% of all single people are young, (Y |G)[0.7]
(R4) 30% of the young people are students, (S |Y )[0.3]
(R5) 90% of all students with children are married, (M |S ∧ P )[0.9]
(R6) 80% of the cohabiting people are young, (Y |C)[0.8]

G

C

Y S

M

P

Fig. 2. Markov network of the Léa Sombé example

Using these rules we build a probabilistic model of the Léa Sombé example,
whose Markov network is depicted in Fig. 2. In order to obtain a data set that
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can be processed by CondorCKD we generate a sample with 50,000 elements.
As we need two data sets for data fusion we have to partition the attribute set
{S, Y,G, P,M,C} in two non-disjoint sets and generate appropriate marginal
samples.

Examining the probabilistic rules and the resulting Markov network it can
be seen that there are two almost independent sets of attributes, {S, P,M} and
{Y,G,C}. These attribute sets are made dependent by the rules (R1) and (R4),
which can be verified by inspecting the Markov network depicted in Fig. 2, where
the attributes {M,P} are graphically separated from {G,C} by {S, Y }.

Based on these observations, we perform two kinds of partitionings. For the
first kind of partitionings we select one of the six attributes as the common
variable. Starting from the two sets of attributes, {S, P,M} and {Y,G,C}, this
results in six different partitionings, with the common variable being adjoined to
the attribute set of which it is not an element. For the second kind of partitionings
we select two attributes as the common variables, one from {S, P,M} and one
from {Y,G,C}, which results in nine different partitionings. As with the first
kind of partitionings we adjoin each of the common variables to the attribute
set of which it is not an element.

Table 1. Results of experiments with known joint probability distribution.

X Y Z I(X, Y |Z) DKL(P ‖Porig)

{S, Y, P, M} {Y, G, M, C} {Y, M} 0.00039963 0.00100968
{S, Y, P, M} {S, Y, G, C} {S, Y } 0.00034244 0.00104120
{S, Y, P, M} {Y, G, P, C} {Y, P} 0.00041526 0.00130367
{S, G, P, M} {S, Y, G, C} {S, G} 0.00029772 0.00131082
{S, P, M} {S, Y, G, C} {S} 0.00040399 0.00136513
{S, Y, P, M} {Y, G, C} {Y } 0.00046692 0.00205626

{S, P, M, C} {Y, G, P, C} {P, C} 0.06343040 0.07862572
{S, P, M, C} {Y, G, M, C} {S, M} 0.06294772 0.08167080
{S, P, M, C} {Y, G, C} {C} 0.06385933 0.08491127
{S, P, M} {Y, G, M, C} {M} 0.06774234 0.08557503
{S, P, M} {Y, G, P, C} {P} 0.06824536 0.08558482
{S, G, P, M} {Y, G, M, C} {G, M} 0.06570083 0.08708857
{S, G, P, M} {Y, G, C} {G} 0.06662601 0.08939546
{S, G, P, M} {Y, G, P, C} {G, P} 0.06623336 0.09087545

Table 1 shows the 15 different partitionings and the results of the evaluation
of the data fusion process. Columns “X” and “Y ” depict the attributes of the
two input data sets and column “Z” shows their common variables. The fourth
column, “I(X,Y |Z)”, shows the conditional mutual information of P (X,Z)
and P (Y ,Z) given Z, which we argue to be an indicator of the qualitify of the
data fusion. The last column, “DKL(P ‖Porig)”, shows the information diver-
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gence5 of the fused data set P and the original data Porig. Note that Table 1 is
sorted by the last column.

As can be seen, the 15 different partitionings can be grouped in two cate-
gories, based on the conditional mutual information and indicated by the hori-
zontal rule in Table 1. The conditional mutual information of the partitionings
in the first category is more than two orders of magnitude smaller of those par-
titionings in the second category. The information divergence between the fused
data sets in the first category and the original data set is also more than one
order of magnitude smaller than the information divergence of the fused data
sets in the second category, as shown in the fifth column.

Because {S, Y } graphically separates {M,P} and {G,C}, cf. Fig. 2, parti-
tioning into {S, Y, P,M} and {S, Y,G,C} should give the best data fusion result.
Although it is only second best with respect to DKL(P ‖Porig), which is proba-
bly due to sampling errors, it can be clearly seen that a low conditional mutual
information results in good data fusion quality. I.e., our data fusion process gives
good results in case the conditional independence assumption of data fusion, see
Equation 1, is fulfilled.

4.2 Fusing real-world data

After evaluating our data fusion process on synthetic data, we now apply it on
two real-world data sets. These originate from a Hungarian telecommunication
company and are called Dint and Dext. Dint is a sample (sample size 10,000)
from the data warehouse of the telecommunication company and contains the
following variables:

Internet access? Binary variable, depicting whether the customer’s household
has internet access.

Minutes outbound Numerical variable, depicting the monthly minutes of out-
bound (landline) calls.

Minutes inbound Numerical variable, depicting the monthly minutes of in-
bound (landline) calls.

Invoice total Numerical variable, depicting the monthly invoice total.
Alternative carrier? Binary variable, depicting whether the customer has used

an alternative telephone provider.

Dext is the result of a survey among a representative sample (sample size 3,140)
of all company customers. It contains the following variables:

Internet access? Binary variable, same as in Dint.
Minutes outbound Numerical variable, same as in Dint.

5 The information divergence, also called relative entropy orKullback-Leibler diver-
gence, of two probability distributions P and Q with common sample space Ω is
defined as DKL(P, Q) :=

P
ω∈Ω p(ω) log2

p(ω)
q(ω)

. It measures the difference of informa-
tion from P to Q, where Q is assumed to be the “true” probability distribution, and
is zero iff P equals Q [8, 10].
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Mobile phone? Binary variable, depicting whether any person in the cus-
tomer’s household owns a mobile.

Cable television? Binary variable, depicting whether the customer’s house-
hold has cable TV.

ESOMAR Categorical variable, representing the socio-economic group of the
customer according to ESOMAR criteria6.

Table 2. Discretization criteria for the variables “Minutes inbound”, “Minutes out-
bound” and “Invoice total”

Minutes inbound

Range Category
(min.)

[0, 90) few
[90, 200) average
[200,∞) many

Minutes outbound

Range Category
(min.)

[0, 130) few
[130, 250) average
[250,∞) many

Invoice total

Range Category
(HUF)

[0, 3600) small
[3600, 4800) average
[4800,∞) large

Dint and Dext shall be fused in order to plan and execute certain marketing
activities for which information from both sources is needed. Budget and/or time
constraints sometimes prohibit the collection of a larger survey, so this kind of
data fusion is quite common and is used to enrich readily availabe data with
information more costly to aquire.

As both data sets contain several numerical variables, these must be dis-
cretized first. This is done according to the criteria shown in Table 2.

Because there is no joint data set available, we cannot measure the conditional
mutual information in order to get an indicator what quality can be expected
of the data fusion. For larger, business critical data fusion projects one would
initially conduct a survey containing all variables of interest in order to assess the
validity of the conditional independence assumption. For our data sets we can
only evaluate how well they agree on their common variables. Because neither
data set is the “original” data, we compute both information divergences for
Dint and Dext, marginalized on their common variables “Internet access?” and
“Minutes outbound”:

DKL(P̃int ‖ P̃ext) = 0.0000008162553
DKL(P̃ext ‖ P̃int) = 0.0000008164547

The information divergence between both data sets (marginalized on their com-
mon variables, “Internet access?” and “Minutes outbound”) is negligible, al-
though the Dext is 9 months older and thus there might be some changes in
customer behaviour represented in Dint.

6 http://www.esomar.org/
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The data fusion process is the same as described in Sect. 3. We compute two
sets of probabilistic rules Rint and Rext from the given data sets, and combine
these rule sets with SPIRIT. Validation of the data fusion process can only
be done according to level 1 as described in Sect. 2.1, i.e. we can only evaluate
how well the marginals of the joint model agree with the original data sets. For
this purpose, we generate a sample (sample size 10,000) from the joint proba-
bilistic model and compute the information divergences between the appropriate
marginals and the original input data sets:

DKL(P ‖ P̃int) = 0.2704161
DKL(P ‖ P̃ext) = 0.125255

Although the information divergence between the common variables of Dint and
Dext is very small, the joint model has an information divergence larger than
might be expected, at least in comparison to the results with the synthetic data.
Part of this deviation is due to the fusion of the two probabilistic rule sets, as
can be seen by computing the relative entropy between the reconstructed data
sets and the original input data sets:

DKL(PRint ‖ P̃int) = 0.05815166
DKL(PRext

‖ P̃ext) = 0.004139472

Further work is necessary to investigate what aspects of the data fusion process
contribute to the larger deviation of the joint model from the original data sets,
and whether this is due to the data fusion itself or because of other factors like
improper common variables.

5 Conclusions and Further Work

We have presented a novel approach to data fusion which is based on probabilistic
models. Using the knowledge discovery software CondorCKD, we compute
probabilistic rules sets from the given input data sets, which are then combined
to build a joint model for the data sets, using the expert system shell SPIRIT.
We have evaluted our data fusion process on artificial and real-world data.

Whereas experiments with synthetic data sets yielded promising results, the
evaluation of the data fusion experiments with real-world data sets was some-
what inconclusive. Therefore, further work is necessary to evaluate the proposed
approach on more real-world data sets and compare its results to those of other
data fusion algorithms.

Nevertheless, our data fusion process is interesting and useful in itself, as
it offers an alternative approach to fuse data sets containing non-numeric, i.e.
categorical, variables.
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Abstract. The paper presents one additional possibility how to define
conditional independence relation for belief functions. The approach is
based on the operator of composition originally designed for multidi-
mensional model processing. Not to make confusion with the preceding
definitions we call this relation conditional irrelevance. The main result
of the paper, Block Irrelevance theorem, shows that this relation meets
the semigraphoid axioms.

1 Introduction

Last years of the last century witnessed emergence of a new approach to ef-
ficient representation of multidimensional probability distributions. This ap-
proach, which is an alternative to Graphical Markov Modeling, is based on a
simple idea: multidimensional distribution is composed from a system of low-
dimensional (oligodimensional) distributions by repetitive application of a spe-
cial operator of composition. This is also the reason why the models are called
compositional models. In several papers, in which the properties of the operator
were studied [3–5], it was shown (among others) that these models are, in a
way, equivalent to Bayesian networks. Roughly speaking, any multidimensional
distribution representable by a Bayesian network can also be represented with
approximately the same number of parameters (probabilities) in the form of a
compositional models, and vice versa.

Once (upon a time), after presenting a lecture on compositional models at
some conference I was asked a question whether it would be possible to introduce
analogous models also in the framework of belief functions. I have to confess that
that time my answer was rather negative. Nevertheless, since then the question
persistently came back to my subconscious until it originated a serious research,
which resulted in the contribution to ISIPTA’07 ([6]), in which the operator of
composition for belief functions was introduced. The discussions connected with
writing that paper inspired me to make a rather provoking proposal: to introduce
a new definition of a conditional independence relation in the framework of belief
functions with the help of the operator of composition. Since there are many
other definitions of this notion, we call the relation conditional irrelevance.
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The goal of this paper is neither to show that this definition is the best one,
nor to compare this definition with all the others. The goal of this paper is rather
modest. To show that the notion of conditional irrelevance introduced with the
help of the operator of composition intuitively corresponds to the properties
expected and that also formally it meets the required characteristics, namely
the semigraphoid properties.

Though the present paper is a contribution to belief function theory, we will
not use the term of belief function any more in this paper. We are convinced
that it will make the paper more legible for the reader when we will restrict
our considerations to basic belief assignments, only. Therefore we will define a
composition of basic assignments.

As said above, the paper is somehow connected with the contribution [6]. In
fact it takes over from this paper not only the denotation and some assertions
but also some other formulations (and one example).

The contribution is organized as follows. In Section 2 it summarizes basic no-
tions, notation and introduce the operator of composition, which is consequently
illustrated by examples in Section 3. Section 4 is devoted to the necessary proper-
ties of the operator and finally, in Section 5 we introduce the notion of conditional
irrelevance and prove Block Irrelevance Theorem.

2 Notation

Consider a finite index set N = {1, 2, . . . , n} and finite sets {Xi}i∈N . In this
text we will consider multidimensional frame of discernment

Ω = XN = X1 ×X2 × . . .×Xn,

and its subframes. For K ⊂ N , XK denotes a Cartesian product of those Xi,
for which i ∈ K:

XK =×i∈KXi.

A projection of x = (x1, x2, . . . , xn) ∈ XN into XK will be denoted x↓K , i.e. for
K = {i1, i2, . . . , i`}

x↓K = (xi1 , xi2 , . . . , xi`
) ∈ XK .

Analogously, for K ⊂ L ⊆ N and A ⊂ XL, A↓K will denote a projection of A
into XK :

A↓K = {y ∈ XK |∃x ∈ A : y = x↓K}.

Let us remark that we do not exclude situations when K = ∅. In this case
A↓∅ = ∅.

In addition to the projection, in this text we will need also the opposite
operation which will be called extension. By an extension of two sets A ⊆ XK

and B ⊆ XL we will understand a set

A⊗B = {x ∈ XK∪L : x↓K ∈ A & x↓L ∈ B}.

Notice that if A↓K∩L ∩B↓K∩L = ∅ then also A⊗B = ∅.
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Consider a basic (probability or belief ) assignment (or just assignment) m
on XN , i.e.

m : P(XN ) −→ [0, 1]

for which
∑

A⊆XN
m(A) = 1. For each K ⊂ N its marginal basic assignment is

defined (for each B ⊆ XK):

m↓K(B) =
∑

A⊆XN :A↓K=B

m(A).

Having two basic assignments m1 and m2 on XK and XL, respectively (we
assume that K, L ⊆ N), we say that these assignments are projective if

m↓K∩L
1 = m↓K∩L

2 ,

which occurs if and only if there exists a basic assignment m on XK∪L such that
both m1 and m2 are marginal assignments of m.

Now, we are ready to introduce the operator of composition. Consider two
sets K, L ⊂ N . At this moment we do not pose any restrictions on K and L;
they may be but need not be disjoint, one may be subset of the other. We even
admit that one or both of them are empty1. Let m1 and m2 be basic assignments
on XK and XL, respectively.

Our goal is to define new basic assignment, denoted m1 . m2, which will be
defined on XK∪L and will contain all of the information contained in m1 and as
much as possible of information of m2 (for the exact meaning see properties (iii)
and (iv) of Lemma 1). The required property is met by the following definition.

Definition 1. For two arbitrary basic assignments m1 on XK and m2 on XL

a composition m1 . m2 is defined for each C ⊆ XK∪L by one of the following
expressions:

[a] if m↓K∩L
2 (C↓K∩L) > 0 and C = C↓K ⊗ C↓L then

(m1 . m2)(C) =
m1(C↓K) ·m2(C↓L)

m↓K∩L
2 (C↓K∩L)

;

[b] if m↓K∩L
2 (C↓K∩L) = 0 and C = C↓K ×XL\K then

(m1 . m2)(C) = m1(C↓K);

[c] in all other cases
(m1 . m2)(C) = 0.

1 Notice that basic assignment m on X∅ is defined m(∅) = 1. Let us note that this
is the only case where we accept m(∅) > 0, otherwise m(∅) = 0 according to the
classical definitions of basic assignment and belief function, see [7].
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Remark 1. The definition is inspired by the probabilistic operator of composi-
tion, which was defined in [3]. For probability distributions π(xK) and κ(xL)
(xK ∈ XK , xL ∈ XL) for which

∀x ∈ XK∩L (κ(x) = 0 =⇒ π(x) = 0)

their composition π . κ was defined by the formula:

π(xK) . κ(xL) =
π(xK)κ(xL)

κ(xK∩L)
.

In case that there existed x ∈ XK∩L such that κ(x) = 0 and π(x) > 0 then the
composition remained undefined.

From the point of view of this paper the most important issue concerning
this probabilistic definition is that π(xK) . κ(xL), if defined, is a probability
distribution under which variables XK\L and variables XL\K are conditionally
independent given variables XK∩L.

Remark 2. Why, in the definition of the operator of composition for basic as-
signments, do we have to distinguish three different situations [a], [b] and [c]?

Case [a] corresponds to those C ⊆ XK∪L, which bear the information con-
tained in m1 and m2 and resembles the definition from probability theory.

Case [b] is used in the situations where is a danger of a strict discord; the
discord occurs when mK∩L

2 (CK∩L) = 0 < mK∩L
1 (CK∩L). In probability theory,

in this situation the composition remained undefined. For belief functions we
have a possibility to assign the respective mass m1(C↓K) (regardless it is positive
or not) to that C corresponding to the maximum ignorance.

Regarding the topic of this paper it is important to stress the point [c].
Namely, this point says that 0 is assigned to all the sets C ⊆ XK∪L, which
describe undesirable (conditional) dependence2.

Remark 3. Let us stress, for the reader familiar with the Dempster’s rule of
combination, that the introduced operator is something quite different.

First, Dempster’s rule of combination is defined for two basic assignments de-
fined on the same frame of discernment (there is no restriction regarding frames
of discernments of arguments connected with the introduced operator of compo-
sition; nevertheless, composition of basic assignments defined on the same frame
of discernment is uninteresting, because in this case the result is always the first
argument - see the next Remark).

2 Let us illustrate this property at this moment just by the simplest possible example.
Consider a situation when a positive mass is assigned to set {(0, 1), (1, 0)} ⊂ X1,2.
It says that we have a positive belief that variables X1 and X2 do not equal to
each other. Therefore, we have a positive belief about their mutual relationship and
thus we can hardly speak about their independence or irrelevance. The conditional
version of this simple (unconditional) case will be discussed in Example 2
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Moreover, Dempster’s rule of combination (for C 6= ∅)

(m1 ⊕m2)(C) =

∑
A∩B=C

m1(A) ·m2(B)

1−
∑

A∩B=∅
m1(A) ·m2(B)

equals (m2 ⊕ m1)(C); the respective operator ⊕ is commutative, which is not
the case for the operator . - see also property (iii) of Lemma 1.

The reader should keep in mind that the operator of composition was de-
signed for the situations when one has two basic assignments defined on different
frames of discernment and wants to get a new basic assignments defined on a
larger frame of discernment incorporating (as much as possible of) information
contained in the original basic assignments.

Remark 4. Notice, what Definition 1 yields in the following two degenerate sit-
uations:

• if K ∩ L = ∅ then m1 . m2 = m1 ·m2 (recall that m↓∅
2 (∅) = 1) – for details

regarding this situation see Example 1;
• if K ⊇ L then m1 . m2 = m1.

3 Examples

Example 1. Consider two basic assignments m1 and m2 on X1 = {a, ā} and
X2 = {b, b̄}, respectively, which are specified in Table 1.3 Since, in this case, m1

Table 1. Basic assignments m1 and m2.

A ⊆ X1 m1(A) A ⊆ X2 m2(A)

{a} 0.2 {b} 0.6

{ā} 0.3 {b̄} 0

{aā} 0.5 {ab̄} 0.4

and m2 are defined for disjoint sets of variables (K ∩ L is empty), composition
simplifies to the expression

(m1 . m2)(C) = m1(C↓{1}) ·m2(C↓{2}),

which is to be understood exactly in the sense of Definition 1: for all C such
that C = C↓{1} ⊗ C↓{2} it is defined by the product m1(C↓{1}) ·m2(C↓{2}), for
all the other C it is 0 (see also Table 2).

Using Table 2, where the values of m1.m2 are presented, the reader can easily
check that m1 = (m1 . m2)↓{1}, and since m1 and m2 are trivially projective
also m2 = (m1 . m2)↓{2} (see Lemma 1 below).
3 Let us note that, for the sake of simplicity, we use in examples x1 . . . xn instead of

(x1, . . . , xn).
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Table 2. Basic assignment m1 . m2 from Example 1.

C ⊆ X{1,2} C = C↓{1} ⊗ C↓{2} (m1 . m2)(C)

{ab} {a} ⊗ {b} 0.12

{ab̄} {a} ⊗ {b̄} 0

{āb} {ā} ⊗ {b} 0.18

{āb̄} {ā} ⊗ {b̄} 0

{ab, ab̄} {a} ⊗X2 0.08

{ab, āb} X1 ⊗ {b} 0.3

{ab, āb̄} 0

{ab̄, āb} 0

{ab̄, āb̄} X1 ⊗ {b̄} 0

{āb, āb̄} {ā} ⊗X2 0.12

{ab, ab̄, āb} 0

{ab, ab̄, āb̄} 0

{ab, āb, āb̄} 0

{ab̄, āb, āb̄} 0

{ab, ab̄, āb, āb̄} X1 ⊗X2 0.2

Example 2. Consider three binary variables X1, X2, X3 with X1 = {a, ā}, X2 =
{b, b̄}, X1 = {c, c̄}, and two 2-dimensional basic assignments m1 and m2 as
specified in Table 3.

Notice that these two assignments are not projective; for this see their one-
dimensional marginals in Table 4. Therefore, because of property (iii) of Lemma 1
presented below m1 . m2 6= m2 . m1.

To determine general 3-dimensional assignment (of binary variables) one has
to specify 255 numbers, because X{1,2,3} has 28 − 1 = 255 nonempty subsets.
However, when computing m1 . m2, most of these 255 values equal 0 because
most of these subsets do not meet the condition4 C = C↓{1,2} ⊗ C↓{2,3} and
therefore the corresponding value of the assignment m1 . m2 is defined by the
point [c] of the definition.

4 It is not difficult to show that for binary variables there are exactly 99 nonempty
subsets C ⊆ X{1,2,3}, for which C = C↓{1,2} ⊗ C↓{2,3}:

There are only 3 different C↓{1,2}, for which C↓{2} = {b}; namely {ab}, {āb} and
{ab, āb}. Analogously, there are 3 different C↓{2,3}, for which C↓{2} = {b}. There-
fore, there are only 9 sets C, for which C = C↓{1,2} ⊗ C↓{2,3} and C↓{2} = {b}.
Analogously, there are 9 such sets with C↓{2} = {b̄}.
In the same way one can show that there are 81 sets C, for which C = C↓{1,2} ⊗
C↓{2,3} and C↓{2} = {b, b̄}. This is because there are 9 different C↓{1,2}, for which
C↓{2} = {b, b̄}, and also 9 sets C↓{2,3}, for which C↓{2} = {b, b̄}.
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Table 3. Basic assignments m1(x{1,2}) and m2(x{2,3}).

C ⊆ X{1,2} m1(C)

{ab} 0.1

{ab̄} 0.5

{āb} 0.2

{āb̄} 0

{ab, ab̄} 0

{ab, āb} 0

{ab, āb̄} 0

{ab̄, āb} 0

{ab̄, āb̄} 0

{āb, āb̄} 0

{ab, ab̄, āb} 0

{ab, ab̄, āb̄} 0

{ab, āb, āb̄} 0

{ab̄, āb, āb̄} 0

{ab, ab̄, āb, āb̄} 0.2

C ⊆ X{2,3} m2(C)

{bc} 0

{bc̄} 0

{b̄c} 0.3

{b̄c̄} 0.1

{bc, bc̄} 0

{bc, b̄c} 0

{bc, b̄c̄} 0.1

{bc̄, b̄c} 0

{bc̄, b̄c̄} 0

{b̄c, b̄c̄} 0.1

{bc, bc̄, b̄c} 0

{bc, bc̄, b̄c̄} 0

{bc, b̄c, b̄c̄} 0.3

{bc̄, b̄c, b̄c̄} 0

{bc, bc̄, b̄c, b̄c̄} 0.1

What are the subsets for which C 6= C↓{1,2}⊗C↓{2,3}? For example, it is easy
to show that all the sets of cardinality 7 belong to this category (hint: show that
for any C ⊆ X{1,2,3}, for which |C| = 7, C↓{1,2} = X{1,2} and C↓{2,3} = X{2,3}).

Table 4. One-dimensional marginal assignments m
↓{1}
1 , m

↓{2}
1 and m

↓{2}
2 , m

↓{3}
2 .

A ⊆ X1 m
↓{1}
1 (A)

{a} 0.6

{ā} 0.2

{a, ā} 0.2

A ⊆ X2 m
↓{2}
1 (A)

{b} 0.3

{b̄} 0.5

{b, b̄} 0.2

A ⊆ X2 m
↓{2}
2 (A)

{b} 0

{b̄} 0.5

{b, b̄} 0.5

A ⊆ X3 m
↓{3}
2 (A)

{c} 0.3

{c̄} 0.3

{c, c̄} 0.4

Since all singletons (one-point-sets) meet the considered equality, all sets
C, for which C 6= C↓{1,2} ⊗ C↓{2,3} must have at least two elements: an ex-
ample is {abc, ābc̄}. As further examples may serve sets {abc̄, ābc, ābc̄, ab̄c̄} and
{ābc, ab̄c, abc̄}. A common characteristics of all these sets is that assigning a
positive belief to them one introduces a type of conditional relationship between
X1 and X3 given (at least one) value of X2.

Let us turn our attention back to computation of m1 .m2 for assignments of
our example. For this, one immediately notices that point [b] of the definition is
used whenever C ⊆ X{1,2,3} is considered for which C↓{2} = b, since m

↓{2}
2 (b) =
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0. In fact, we get only 8 subsets, for which the assignment is positive - see Table 5,
where the first column bears the information, which point of the definition is used
to compute the respective value.

Table 5. Basic assignment m1 . m2 for Example 2.

C ⊆ X{1,2,3} C = C↓{1,2} ⊗ C↓{2,3} (m1 . m2)(C)

[a] {ab̄c} {ab̄} ⊗ {b̄c} 0.3

[a] {ab̄c̄} {ab̄} ⊗ {b̄c̄} 0.1

[a] {ab̄c, ab̄c̄} {ab̄} ⊗ {b̄c, b̄c̄} 0.1

[b] {abc, abc̄} {ab} ⊗X1 0.1

[b] {ābc, ābc̄} {āb} ⊗X1 0.2

[a] {abc, ābc, ab̄c̄, āb̄c̄} X{1,2} ⊗ {bc, b̄c̄} 0.04

[a] {abc, ābc, ab̄c, āb̄c, ab̄c̄, āb̄c̄} X{1,2} ⊗ {bc, b̄c, b̄c̄} 0.12

[a] {abc, ābc, ab̄c, āb̄c, abc̄, ābc̄, ab̄c̄, āb̄c̄} X{1,2} ⊗X{2,3} 0.04

4 Basic properties of composition

In this section we shall recollect three assertions proved in [6], which will be used
in this paper.

Lemma 1. For arbitrary two basic assignments m1 on XK and m2 on XL the
following properties hold true:

(i) m1 . m2 is a basic assignment on XK∪L.
(ii) (m1 . m2)↓K = m1.
(iii) m1 . m2 = m2 . m1 ⇐⇒ m↓K∩L

1 = m↓K∩L
2 .

(iv) If K ⊆ L then m↓K
2 . m2 = m2.

Realize that property (iii) of the preceding Lemma says that the operator
is commutative if and only if it is applied to two projective basic assignments.
Generally, it is neither commutative nor associative. Therefore the following
assertion is of great importance.

Lemma 2. Let m1,m2,m3 be basic assignments on XK1 ,XK2 ,XK3 , respec-
tively. If K1 ⊇ (K2 ∩K3) then

(m1 . m2) . m3 = (m1 . m3) . m2. (1)

The next assertion, which is the last one borrowed from [6], expresses condi-
tions under which marginalization of a composition is simple.
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Lemma 3. Let m1,m2 be basic assignments on XK1 ,XK2 , respectively. If
K1 ∪K2 ⊇ L ⊇ K1 ∩K2 then

(m1 . m2)↓L = m↓K1∩L
1 . m↓K2∩L

2 .

The last assertion of this section is original and therefore will be presented
with its proof (it is a generalization of Lemma 6 from [6]).

Lemma 4. Let m1,m2 be basic assignments on XK1 ,XK2 , respectively. If
K1 ∪K2 ⊇ L ⊇ K2 then

m1 . m2 = m1 . (m1 . m2)↓L.

Proof. Due to (ii) of Lemma 1 assignments m1 and (m1 . m2)↓L are projective
and therefore (thanks to property (iii) of the same lemma) these arguments may
be commuted

m1 . (m1 . m2)↓L = (m1 . m2)↓L . m1 = (m↓K1∩L
1 . m2) . m1,

where the second modification is justified by Lemma 3. The last expression
meets the assumptions of Lemma 2 and therefore we can exchange second and
third arguments, from which the required expression is got by application of
property (iv) of Lemma 1:

(m↓K1∩K2
1 . m2) . m1 = (m↓K1∩K2

1 . m1) . m2 = m1 . m2.

ut

5 Conditional irrelevance

Each multidimensional probability distribution defines on a set of its variables a
ternary relation called independence structure [9–11]. Its knowledge enables us
to decompose the distribution, which may further help with its efficient represen-
tation and processing. If it is known, for example, that for a probability distri-
bution π variables XI and XJ are conditionally independent when variables XK

are given (for I, J,K disjoint), then distribution π(XI∪J∪K) is uniquely specified
by its marginals π(XI∪K) and π(XJ∪K) and can be expressed as

pi(XI∪J∪K) =
π(XI∪K) · π(XJ∪K)

π(XK)
.

In this section we shall deal with similar properties for basic assignments.
Since there have been introduced several notions of conditional independence
in the literature and we do not know their relation to the notion introduced in
this paper, we will call the newly introduced relation conditional irrelevance. In
a way we proceed in an opposite direction than mentioned above. If the basic
assignment can be decomposed, we will call the corresponding sets of variables
conditionally irrelevant.
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Definition 2. Consider an arbitrary basic assignment m on XM and three dis-
joint subsets I, J,K ⊂ M (I 6= ∅ 6= J). We say that for basic assignment m
variables XI and variables XJ are conditionally irrelevant given variables XK

(in symbol I ⊥⊥ J |K [m]) if

m↓I∪J∪K = m↓I∪K . m↓J∪K .

If K = ∅ we will also say that variables XI and variables XJ are (unconditionally)
irrelevant (for basic assignment m). For this special situation we will also use
simplified notation I ⊥⊥ J [m].

Remark 5. Notice that since m↓I∪K and m↓J∪K are projective, m↓I∪K.m↓J∪K =
m↓J∪K .m↓I∪K (due to property (iii) of Lemma 1) and therefore the conditional
irrelevance relation is symmetric in the sense that I ⊥⊥ J |K [m] = J ⊥⊥ I|K [m].

Let us now show that for the relation of conditional irrelevance the following
Block Independence theorem holds true, which means (together with the state-
ment from the previous Remark 5) that this relation meets the semigraphoid
properties.

Theorem 1. Let I, J,K,L be disjoint subsets of M , let I, J,K be nonempty.
Then for any basic assignment m on XM the following equivalence holds true:

I ⊥⊥ J ∪K|L [m] ⇐⇒ (I ⊥⊥ J |L [m]) & (I ⊥⊥ K|L ∪ J [m]).

Proof. Validity of I ⊥⊥ J ∪K|L [m] =⇒ I ⊥⊥ J |L [m] follows immediately from
application of Lemma 3 (it is applicable because (I∪L)∩(J∪K∪L) ⊂ I∪J∪L):

m↓I∪J∪L = (m↓I∪J∪K∪L)↓I∪J∪L = (m↓I∪L.m↓J∪K∪L)↓I∪J∪L = m↓I∪L.m↓J∪L.

To prove I ⊥⊥ J ∪K|L [m] =⇒ I ⊥⊥ K|J ∪L [m] we will use in the following
computations only property (iii) of Lemma 1 and Lemma 4 (its application is
possible because I ∪ J ∪K ∪ L ⊇ I ∪ J ∪ L ⊇ I ∪ L):

m↓I∪J∪K∪L = m↓I∪L . m↓J∪K∪L = m↓J∪K∪L . m↓I∪L

= m↓J∪K∪L . (m↓J∪K∪L . m↓I∪L)↓I∪J∪L

= m↓J∪K∪L . (m)↓I∪J∪L = m↓I∪J∪L . m↓J∪K∪L.

In the previous two steps we have proved one side of the required equivalence.
Now, let us assume that (I ⊥⊥ J |L [m]) & (I ⊥⊥ K|L ∪ J [m]).

According to the definitions of these two conditional irrelevance relations we
get

m↓I∪J∪K∪L = m↓I∪J∪L . m↓J∪K∪L = (m↓I∪L . m↓J∪L) . m↓J∪K∪L.

The last expression can be further modified using successively property (iii) of
Lemma 1, Lemma 2, property (iv) of Lemma 1 and eventually again property (iii)
of Lemma 1:

(m↓I∪L . m↓J∪L) . m↓J∪K∪L = (m↓J∪L . m↓I∪L) . m↓J∪K∪L

= (m↓J∪L . m↓J∪K∪L) . m↓I∪L

= (m↓J∪K∪L) . m↓I∪L = m↓I∪L . m↓J∪K∪L. ut
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Example 3. Let us consider the following simplified situation: Joan is considering
whether to go for a walk or not. To make the decision she has two sources of
information: weather forecast from the yesterday’s newspaper and the view out
of the window. The situation will be modeled by three variables:

• X1: weather forecast with two values s, c meaning ‘sunny’ and ‘changeable’,
respectively;

• X2 corresponds to the current weather: value r means that it is raining, value
d means it does not rain, it is dry;

• X3 describing Joan’s decision: values w, h corresponding to decision ‘go for a
walk’ and ‘stay at home’, respectively.

So, we are considering 3-dimensional frame of discernment Ω = {s, c}× {r, d}×
{w, h}. Assume that our belief regarding her decision-making situation is rep-
resented by 3-dimensional basic assignment given in Table 6 (in the table only
positive values of the considered assignment appear, all others equal 0).

Table 6. 3-dimensional basic assignment describing Joan’s walk example.

C ⊆ X{1,2,3} C = C↓{1,2} ⊗ C↓{2,3} m(C)

{srh} {sr} ⊗ {rh} 0.06̄

{sdw} {sd} ⊗ {dw} 0.24

{crh} {cr} ⊗ {rh} 0.13̄

{cdw} {cd} ⊗ {dw} 0.06

{srw, srh} {sr} ⊗ {rw, rh} 0.03̄

{sdw, sdh} {sd} ⊗ {dw, dh} 0.16

{crw, crh} {cr} ⊗ {rw, rh} 0.06̄

{cdw, cdh} {cd} ⊗ {dw, dh} 0.04

{srw, sdh, crw, cdh} X{1,2} ⊗ {rw, dh} 0.10

{srw, srh, sdw, sdh, crw, crh, cdw, cdh} X{1,2} ⊗X{2,3} 0.10

The question we want to answer is whether the decision regarding the walk
and weather forecast are conditionally irrelevant given the current weather, i.e.
whether {1} ⊥⊥ {3}|{2} [m]. The necessary condition for this conditional irrel-
evance relation is fulfilled because all the sets C ⊆ X{1,2,3} which are assigned
positive value meet the condition C = C↓{1,2}⊗C↓{2,3}. If this was not the case
then it would be out of question that m = m↓{1,2} . m↓{2,3}.

To be able to answer the question compute the necessary 2-dimensional
marginal assignments (see Table 7) and 1-dimensional marginal m{2} (Table 8).
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Table 7. Marginal basic assignments m↓{1,2} and m↓{2,3}.

C ⊆ X{1,2} m↓{1,2}(C)

{sr} 0.1

{sd} 0.4

{cr} 0.2

{cd} 0.1

{sr, sd} 0

{sr, cr} 0

{sr, cd} 0

{sd, cr} 0

{sd, cd} 0

{cr, cd} 0

{sr, sd, cr} 0

{sr, sd, cd} 0

{sr, cr, cd} 0

{sd, cr, cd} 0

{sr, sd, cr, cd} 0.2

C ⊆ X{2,3} m↓{2,3}(C)

{rw} 0

{rh} 0.2

{dw} 0.3

{dh} 0

{rw, rh} 0.1

{rw, dw} 0

{rw, dh} 0.1

{rh, dw} 0

{rh, dh} 0

{dw, dh} 0.2

{rw, rh, dw} 0

{rw, rh, dh} 0

{rw, dw, dh} 0

{rh, dw, dh} 0

{rw, rh, dw, dh} 0.1

From this we can verify that really m = m↓{1,2} . m↓{2,3}. It is enough to
verify it for 12 arguments from Table 6. For example, for C = {sdw, sdh} we get
(using point [a] of Definition 1):

(m↓{1,2} . m↓{2,3})({sdw, sdh}) =
m↓{1,2}({sd}) ·m↓{2,3}({dw, dh})

m↓{2}({d})

=
0.4 · 0.2

0.5
= 0.16.

Let us remark that all positive values of m↓{1,2} . m↓{2,3} are computed
according to point [a] of Definition 1. Point [b] is never used in this situation be-
cause, obviously, marginal assignments m↓{1,2} and m↓{2,3} must be projective.

Table 8. One-dimensional marginal assignment m↓{2}.

C ⊆ X2 m↓{2}(C)

{r} 0.3

{d} 0.5

{r, d} 0.2
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6 Conclusions

We have introduced the operator of composition for basic belief assignments.
Originally, the operator of composition was designed to construct and to com-
pute with multidimensional probabilistic models. If we are getting into problems
when coping with computational complexity of probabilistic models all the more
problems necessarily appear when applying belief function models, for which
there do not exist distribution functions; we have to represent them by set func-
tions defined on the whole power set of the frame of discernment Ω = XN .
Therefore, whilst multidimensionality for probability distributions means hun-
dreds and thousands, multidimensionality for belief functions means tens at max-
imum.

However constructing multidimensional models was not a topic of the paper.
Based on the properties of the operator of composition we have introduced a
new type of conditional independence relation, called in the paper conditional
irrelevance. We have shown that this relation meets the requirements of Block
Independence theorem, which is (for symmetric relations) equivalent to semi-
graphoid axioms. The main purpose was not to assert that this type of relation
is the only one which should be studied, rather the opposite. We wanted to
provoke questions concerning similarities and differences between individual ap-
proaches to define conditional independence/irrelevance for belief functions. At
this moment we cannot answer these questions, we know very little about rela-
tion between the models described in this paper and other models such as [1, 2,
8], as well as about the relation between the compositional models developed for
belief functions and those introduced in possibility theory [12, 13].
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Abstract. The Ramsey test provides an intuitive link between con-
ditionals and belief revision. How easy is it to incorporate a Ramsey-
account of conditionals in a reason maintenance system? In this paper,
it is shown that this is indeed possible, within a relevance-logical frame-
work. In addition, it is shown that independently motivated require-
ments on reason maintenance systems allow us to gracefully circumvent
Gärdenfors’s triviality result.

1 Introduction

Frank Ramsey’s so called “Ramsey test” provides an intuitive link between con-
ditionals (sentences of the form ‘If P then Q’) and belief change. The test grounds
the plausibility of conditionals in a process of belief change. In an often quoted
excerpt from [1], Robert Stalnaker gives a procedural interpretation of the Ram-
sey test:

First, add the antecedent (hypothetically) to your stock of beliefs; sec-
ond, make whatever adjustments are required to maintain consistency
(without modifying the hypothetical belief in the antecedent); finally,
consider whether or not the consequent is then true.

This procedure is particularly appealing for researchers in artificial intelli-
gence (AI), who have long been interested in reasoning about conditionals [2, 3,
for example]. What makes it even more appealing is that, in its crucial second
step, it provides a characterization of conditionals based on the (familiar to AI)
concept of belief revision. The AI and philosophical literature on belief revision
seem to have originated from different concerns. On one hand, the AI researchers
were primarily motivated by the implementation issues of supplementing a gen-
eral reasoning system with the facility to maintain consistency and revise its
beliefs. This gave rise to what are known as “reason maintenance” (or “truth
maintenance”) systems. [4, 5, for example]. On the other hand, the philosophers
were keen to uncover a tight set of rationality postulates that govern the prin-
ciples whereby a logical theory is to be revised [6]. These two attitudes have
witnessed considerable convergence over the history of belief revision [7–9, for
example].
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To everyone’s distress, however, Peter Gärdenfors [10] proved that the Ram-
sey test account of conditionals, together with some seemingly reasonable con-
straints on belief revision (three of the AGM postulates [6]), is inconsistent with
a minimal set of harmless demands on a logical theory. Gärdenfors’s result trig-
gered considerable research attempting to save the intuitive interpretation of
conditionals provided by the Ramsey test [11–17, for example].

In this paper, I attempt to do two things. First, I will argue that, if belief
revision is interpreted in the context of an implemented reason maintenance
system, Gärdenfors’s triviality result is avoided. This comes as a consequence
of rejecting some the AGM postulates, based on general demands on imple-
mented reason maintenance systems that are independent of conditionals and
Gärdenfors’s result. Second, as a side effect, I shall outline a theory for reasoning
about conditionals within an implemented knowledge representation and reason-
ing (KRR) system with a reason maintenance component. The discussion will
primarily focus on the SNePS KRR system [18, 19] and its reason maintenance
component SNeBR [5, 20, 9].

In Section 2, we review Gärdenfors’s triviality theorem and, in Section 3,
we examine previous attempts to rectify the damage it has wrought. Section 4
presents a reason maintenance system based on relevance logic, which is then
extended to accommodate conditionals. Finally, Section 5 evaluates the system
with respect to Gärdenfors’s triviality result.

2 The Triviality Trap

What exactly did Gärdenfors discover? As pointed out in the introduction, he
discovered that the Ramsey test is inconsistent with simple common demands
on a logical system. In particular, Gärdenfors proved that the Ramsey test will
introduce a contradiction into a belief set that contains none of three pair-wise
contrary propositions. That such a belief set may exist is uncontroversial. Hence,
the triviality result.

Nevertheless, Gärdenfors’s proof is based on a mesh of background assump-
tions. These assumptions are primarily of two types: (i) assumptions on the
belief revision process implied by the Ramsey test, and (ii) assumptions on what
a “belief set” is. Attempts to circumvent the triviality result are based on drop-
ping one or more of these assumptions. To get a deeper understanding of what
exactly the problem is, and to appreciate previous approaches to solve it, we
start by listing Gärdenfors’s background assumptions.1

In what follows, L0 is a ground language of classical propositional or first-
order logic including the absurd proposition ⊥2, L1 is the closure of L0 under

1 This is not an exhaustive list. It is a list of those assumptions that are (so far)
uncontroversial and/or relevant to my examination of previous work and my own
proposal.

2 It should be noted, however, that the triviality result was shown to be valid for a
more general class of monotonic [21] and non-monotonic [22] logics.
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the conditional connective >, K is a set of belief sets, K ∈ K is a belief set, and
∗ : K× L1 −→ K is a belief revision operator.

1. Assumptions on K:
(AK1) Belief sets are sets of sentences3: K ⊆ L1.
(AK2) Belief sets may include conditional sentences: For some K ∈ K, K 6⊆

L0.
(AK3) Belief sets are deductively-closed: if φ ∈ Cn0(K) then φ ∈ K.4

2. Assumptions on belief revision:
(A∗1) Success: φ ∈ K ∗ φ.
(A∗2) Consistency: If ⊥ ∈ Cn0(K ∗ φ) then ⊥ ∈ Cn0({φ}).
(A∗3) Expansion 1: Cn0(K ∗ φ) ⊆ Cn0(K ∪ {φ}).
(A∗4) Expansion 2: If ¬φ 6∈ Cn0(K), then Cn0(K ∪ {φ}) ⊆ Cn0(K ∗ φ).

From (A∗4), (A∗5) immediately follows:

(A∗5) Preservation: If ¬φ 6∈ Cn0(K), then Cn0(K) ⊆ Cn0(K ∗ φ).

With these background assumptions, Gärdenfors [10] states the Ramsey test as
follows.

(RT ) φ > ψ ∈ K if and only if ψ ∈ K ∗ φ.

For ease of reference, let us break (RT ) into two conditionals:

(RT1) If φ > ψ ∈ K then ψ ∈ K ∗ φ.
(RT2) If ψ ∈ K ∗ φ then φ > ψ ∈ K.

To simplify the proof of the triviality theorem, Gärdenfors first proves the fol-
lowing crucial lemma: The “monotonicity criterion”.

(M) For all K,K′ ∈ K and all φ ∈ L1, if K ⊆ K′ then K ∗ φ ⊆ K′ ∗ φ.

Proof.

1. K ⊆ K′ (Assumption)
→2. ψ ∈ K ∗ φ (Assumption)
→→3. φ > ψ ∈ K (2, (RT2))
→→4. φ > ψ ∈ K′ (1, 3)
→→5. ψ ∈ K′ ∗ φ (4, (RT1))
→6. K ∗ φ ⊆ K′ ∗ φ (2, 5)
7. (M) (1, 6)

Before we present Gärdenfors’s triviality result, we define the notion of non-
triviality of a belief revision system.
3 Gärdenfors [10] uses the term “proposition” instead of “sentence”. Yet, he states

that “belief sets are just theories in the standard logical sense” [10, p. 83].
4 Cn0 is classical (deductive) logical consequence. We may assume a natural deduction

system, although only modus ponens and the deduction theorem are needed.

44



(NT ) A belief revision system 〈L1,K, ∗〉 is non-trivial if, for some K ∈ K and
A,B, C ∈ L1,
1. {¬(A ∧B),¬(A ∧ C),¬(B ∧ C)} ⊆ Cn0(K); and
2. ¬A 6∈ Cn0(K),¬B 6∈ Cn0(K), and ¬C 6∈ Cn0(K).

Theorem 1. There is no non-trivial belief revision system that satisfies (AK1)–
(AK3), (A∗1)–(A∗4), and RT .

Proof.
1. ¬A 6∈ K (NT )
2. K ∗A = Cn0(K ∪ {A}) (1, AK3, A∗3, A∗4)
3. (B ∨ C) ∈ (K ∗A) ∗ (B ∨ C) (A∗1)
4. ¬(B ∨ C) 6∈ (K ∗A) ∗ (B ∨ C) (3, A∗2)
→5. ¬C 6∈ (K ∗A) ∗ (B ∨ C) (Assumption)
→6. ¬(A ∨B) 6∈ K (NT )
→7. K ∗ (A ∨B) = Cn0(K ∪ {A ∨B}) (6, AK3, A∗3, A∗4)
→8. K ∗ (A ∨B) ⊆ K ∗A (2,7,AK3,Cn0)
→9. (K ∗ (A ∨B)) ∗ (B ∨ C) ⊆ (K ∗A) ∗ (B ∨ C) (8,M)
-10. ¬C 6∈ (K ∗ (A ∨B)) ∗ (B ∨ C) (5,9)
-11. ¬(B ∨ C) 6∈ K ∗ (A ∨B) (7, NT, Cn0)
-12. (K ∗ (A ∨B)) ∗ (B ∨ C) = Cn0(K ∗ (A ∨B) ∪ {B ∨ C}) (11, AK3, A∗3, A∗4)
-13.(K ∗ (A ∨B)) ∗ (B ∨ C) = Cn0(K ∪ {A ∨B, B ∨ C}) (7, 12)
-14. (K ∗ (A ∨B)) ∗ (B ∨ C) = Cn0(K ∪ {B}) (13, NT )
-15. ¬C ∈ Cn0(K ∪ {B} (NT )
-16. ¬C ∈ (K ∗ (A ∨B)) ∗ (B ∨ C) (14, 15)
-17. ⊥ (10, 16)
18. (¬C 6∈ (K ∗A) ∗ (B ∨ C)) ⊃ ⊥ (5, 17, Cn0)
19. (¬B 6∈ (K ∗A) ∗ (B ∨ C)) ⊃ ⊥ (Similarly, 5–17)
20. ⊥ (4, 18, 19)

Having displayed the proof in detail, we can carefully analyze the different
loopholes proposed in the literature. Each of the proposed loopholes identifies
one or more of the background assumptions and/or the Ramsey test as the
culprit.

3 Loopholes

We shall consider six proposals [12–17], each identifying a different set of back-
ground assumptions as the culprit, or a different way out of the triviality trap.
Except for [14], all proposals attempt to invalidate the use of (M) in the proof.
They all (pace Gärdenfors in [10, 11]) preserve the Ramsey test (some version of
it, for that matter), and choose to reject M based on the background assump-
tions. Table 1 lists the culprits identified by each of the six proposals.

Rott [12] argues convincingly that (M) is indeed true, but only trivially so.
Informally, once we admit conditionals into belief sets (as per (AK2)), no belief
set can be a proper subset of another. From this general result, the invalidity
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AK1 AK2 AK3 A∗1 A∗2 A∗3 A∗4
Rott [12] × ×
Hansson [13] × × ×
Arló Costa and Levi [14] ×
Lindström and Rabinowicz [15] ×
Grahne [16] ×
Giordano et àl [17] × ×

Table 1. A comparison of six proposals to escape Gärdenfors’s triviality result. The
crosses indicate the culprits identified by each proposal.

of (A∗3) and (A∗4) (and hence (A∗5)) follows. The result is proved by Hansson
[13], making use of the following property of proper subsets.

(PSS ) K ∈ K has a proper subset if and only if there are K1 ⊆ K and K2 ⊆ K
such that K1 6⊆ K2 and K2 6⊆ K1.

To informally illustrate Hansson’s proof, I will refer to an example based on
one due to Darwiche and Pearl [23].

Example 1. A murder occurs. John and Mary are the prime suspects. Detec-
tive 1 finds evidence incriminating John (K1 = Cn0({J})). Detective 2, on the
other hand, finds evidence incriminating Mary (K2 = Cn0({M})). Both detec-
tives report to their supervisor (K = Cn0({J,M})). As long as we only consider
sentences in L0, then it is clear that K1,K2 and K satisfy (PSS ). However, in-
tuitively, ¬(J ∧M) > (J ∧ ¬M) ∈ K1.5 Similarly, ¬(J ∧M) > (¬J ∧M) ∈ K2.
But these two conditionals are contradictory; they cannot both be in K.

The above example illustrates the fundamental difficulty in finding three sets
satisfying (PSS ): incomplete information licences the belief in conditionals that
lose their support in a more informed belief state. Inspecting Table 1, [12, 13,
17] take issue with (A∗3) and (A∗4). Most probably [12, 13, 17] would identify
the main glitch in the triviality proof with step 7.6 Though they agree on the
culprit, each of these authors proposes a different way out of the triviality trap.
Rott [12] informally considers employing a non-monotonic logic instead of Cn0.
Hansson [13] presents a detailed theory founded on belief base revision. (Hence,

5 Hansson [13, p. 529] stresses that this last conclusion is based on “prephilosophical”
intuitions, and (crucially) not on the Ramsey test. However, I find the acceptance of
this prephilosophical intuition together with the Ramsey test (Hansson’s position)
a bit strange. For this certainly commits us to accepting certain properties of belief
revision. In particular, we are thus committed to (A∗4)—the very assumption that
Hansson rejects.

6 Of course, by rejecting (A∗3) and (A∗4), any step that is licensed by either is flawed.
Nevertheless, those authors seem to base most of their informal arguments on the
invalidity of step 7.
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his rejection of (AK2).)7 Giordano et àl [17] restrict (A∗3) and (A∗4) to the
maximal L0-subset of K.

Grahne [16] would probably identify step 12 as the main glitch. Grahne’s re-
jection of (A∗4) is based, not on admitting conditionals into belief states (as per
(AK2)), but on his very interpretation of the belief change operator appropri-
ate for the interpretation of conditionals as per the Ramsey test. Instead of the
classical AGM belief revision operator [6] , Grahne opts for Katsuno and Mendel-
zon’s belief update operator [24]. Belief revision is appropriate for a change in
belief signaled by acquiring information about a static world. Belief update, on
the other hand, is needed when the change in belief is necessary due to a change
in the world. When revising K ∗ (A ∨ B) with B ∨ C in step 12, we assume the
world has not changed. That is, A∨B is still true. Thus, B immediately follows,
since adding B ∨ C just gives us more specific information about which of the
contraries A and B is indeed true. On the other hand, when updating K∗(A∨B)
with B ∨ C, we assume that the world has changed, and, thus, cannot assume
that A∨B is till true. To our best knowledge, only B ∨C is certain, but not B.

Arló Costa and Levi [14] (following a hard-line position of Levi’s [25]) reject
AK2. They argue that conditionals do not qualify as members of belief sets (or as
truth-value bearers), but as representations of an agent’s dispositions to change
their beliefs. From the premise that this is Ramsey’s own position, Gärdenfors’s
(RT ) is disqualified as a formal rendering of the Ramsey test. Their proposal is
to adopt a stratified theory, where there is a clear distinction between the belief
set K (a subset of L0) and the set of sentences, s(K) ⊆ L1, supported by K.
Only the latter may include conditionals. A stratified version of the Ramsey test
may then be stated:

(SRT ) For all φ, ψ ∈ L0, φ > ψ ∈ s(K) if and only if ψ ∈ K ∗ φ.

Although a stratified version of (M) may also be derived (with the antecedent
being s(K) ⊆ s(K′)), the proof of the triviality result will be blocked at step 7,
since K ⊆ K′ does not entail s(K) ⊆ s(K′).

Lindström and Rabinowicz hold yet another position [15]. They identify AK1
as the sole culprit, and, instead of taking K to be a set of sentences, they assume
it is a set of propositions. How does this assumption get us out of the triviality
trap? The assumption by itself may not help if sentences and propositions stand
in one-to-one correspondence. This is exactly what Lindström and Rabinowicz
reject. They argue that conditionals are context-sensitive: the same conditional
may express different propositions in different contexts.8 On their account, a
context is simply a belief set.9 By adopting a context-sensitive version of the
Ramsey test, the proof of (M) is blocked and the triviality result is avoided.

7 A belief base B ⊆ K is a set of beliefs such that Cn0(B) = K.
8 It should be noted that the same position was skeptically considered by Gärdenfors

himself [10, p. 91].
9 Here, I am using the term “belief set” to refer to sets of propositions. Lindström and

Rabinowicz [15] use the term “belief state”, instead; they reserve “belief set” for sets
of sentences.
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Lindström and Rabinowicz’s rendering of the Ramsey test could be presented as
follows, where the semantics of < depends on the context K.

(CRT ) φ >K ψ ∈ K if and only if ψ ∈ K ∗ φ.

The proof of (M) blocks in step 5, which cannot be proved since >K′ is
needed in place of >K in step 4.

In what follows, I will present an assumption-based reason maintenance sys-
tem. The details of the system are based on assumptions that differ fundamen-
tally from some of those underlying the triviality result. As it turns out, these
assumptions, which are independently motivated by issues of rational agency
and computational complexity, allow us to gracefully escape the triviality trap
when the system is extended to accommodate conditionals.

4 Reason Maintenance and Conditionals

4.1 General Requirements on Reason Maintenance

Unlike belief revision theories, reason maintenance systems are required to take
into account issues of bounded computational resources and availability. These
issues motivate the following three requirements on reason maintenance systems.

RM1. Belief sets are not closed under logical consequence.
RM2. Paradoxes of implication are not tolerated.
RM3. Implicit inconsistencies are tolerated.

The motivation for RM1 is clear; no realistic computational (or rational)
reasoning system can be logically closed. While we may talk about the closure
of a belief set to facilitate the analysis of its potential theorems, the belief set
itself must be finite, and as small as possible for that matter. Clearly, RM1 is
at odds with (AK3).

RM2 is particularly required to block the derivation of arbitrary sentences
from contradictions. From the point of view of rational agency, it is clear that
agents (notably humans) can accommodate contradictory beliefs without com-
mitting to logical absurdity. From the point of view of computational reasoning
systems, a system should provide useful, sound inferences even in the presence
of contradictions.

RM3 is probably the least obvious. However, once RM2 is accepted, it
is clear that the harmful effects of contradictions can be isolated. In addition,
inconsistencies are only tolerated as long as they are only implicit, once a contra-
diction is explicitly derived (that is, added to the belief state), then consolidation
is triggered.

In what follows, a reason maintenance system that satisfies the above require-
ments will be presented. The system is based on [5] and [20, 9]. It is implemented
as SNeBR, the belief revision component of the SNePS knowledge representation
and reasoning system [18, 19].
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4.2 The Case of L0

First, let us consider a reason maintenance system for the language L0. It is
clear that the classical Cn0 does not observe RM2. SNePS logic is a version
of Anderson and Belnap’s relevance logic [26, 27]. A full exposition of relevance
logic is not needed (and not possible) here. Suffice it to say, that relevance logic
does observe RM2, and that it achieves this by keeping track of the history of
derivations. (Thus, we seem to have an independent motivation for recording
derivation traces, which is required by assumption-based reason maintenance.)
In what follows, CnR denotes relevance logic consequence.

Definition 1 A support set of a sentence φ ∈ L0 is a set s ⊆ L0 such that
φ ∈ CnR(s). s is minimal if, for every s′ ⊂ s, φ 6∈ CnR(s′).

The reader should note that minimal support sets of a sentence φ are Hans-
son’s φ-kernels [28].

Definition 2 A belief state S is a quadruple 〈K,B, σ, 4〉, where:

1. K ⊆ L0 is a belief set.
2. B ⊆ K, with K ⊆ CnR(B), is a belief base. If φ ∈ B, then φ is a base

belief.
3. σ : K −→ 22B is a support function, where each s ∈ σ(φ) is a minimal

support set of φ. If φ ∈ B, then {φ} ∈ σ(φ).
4. 4⊆ B × B is a total pre-order on base beliefs.10

On the intuitive interpretation of the above definition, base beliefs are beliefs
that have independent standing. For example, they are the result of perception
or interaction with another agent (possibly a human operator/user). Crucially,
they are not in the belief state based solely on inference. The belief set K is
not closed under CnR; it represents the set of sentences that are either base
beliefs or that were actually derived from base beliefs.11 This is in contrast to
the logically-closed CnR(K) which is the set of sentences derivable from base
beliefs.

The set σ(φ) is the family of minimal support sets that were actually used,
or discovered, to derive φ. B may include minimal support sets of φ that are,
nevertheless, not in σ(φ), if they are not yet discovered to derive φ. The total
pre-order 4 represents a preference ordering over base beliefs. This ordering will
be used when belief revision requires sacrificing a base belief; the least preferred
will be the victim. I will refrain from making any commitments about the origins
of this ordering. In particular, unlike standard epistemic entrenchment relations
[29, for example], I am not assuming any logical basis for preference. For the
purpose of this paper, the ordering is just given.12

10 A total pre-order is a complete, reflexive, and transitive binary relation.
11 Thus, in time, a belief state can evolve into a different belief state that share the

same base.
12 For future investigation, we may consider the possibility of moving 4 into the object

language.
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Belief revision in this system is a distant variant of Hansson’s semi-revision
[29]—a non-prioritized belief revision operator where success is not guaranteed.
We first need to define a notion of relevant expansion.

Definition 3 Let S = 〈K,B, σ, 4〉 be a belief state. The relevant expansion of
S with φ ∈ L0 is a belief state S +φ = 〈K+φ,B+φ, σ+φ,4+φ〉, with the following
properties:

(A+1) Success: B+φ = B ∪ {φ}.
(A+2) Inclusion: K ⊆ K+φ.
(A+3) Relevance: If ψ ∈ K+φ\K, and s ∈ σ+φ(ψ), then there is s′ ∈ σ+φ(φ)

such that s′ ⊆ s.
(A+4) Support update: If ψ ∈ K and s ∈ σ+φ(ψ), then either s ∈ σ(ψ) or there

is s′ ∈ σ+φ(φ) such that s′ ⊆ s.
(A+5) Order preservation: 4+φ is the smallest total pre-order on B+φ satisfying

1. 4⊆4+φ and
2. for every ψ ∈ B, either φ 4 ψ or ψ 4 φ.

Relevant expansion is simply assertion with forward inference. The belief
state resulting from relevant expansion by φ will include φ and anything that
follows from it. That all newly derived sentences indeed follow from φ is guar-
anteed by (A+3), provided that φ was not derived in K. In addition, old sen-
tences may acquire new support only as a result of discovered derivations from
φ ((A+4)). It should be noted that, given certain constraints on CnR, the set
K+φ is finite (provided that K is). (A+5) makes the simplifying assumption that
adding φ does not disturb the preference relations already established; φ simply
gets added in some appropriate position in the 4-induced chain of equivalence
classes.

Definition 4 Let S = 〈K,B, σ,4〉 be a belief state. The relevant revision of
S with φ ∈ L0 is a belief state Suφ = 〈Kuφ,Buφ, σuφ,4uφ〉, with the following
properties:

(Au1) Base inclusion: Buφ ⊆ B+φ.
(Au2) Inclusion: Kuφ ⊆ K+φ.
(Au3) Lumping: ψ ∈ K+φ\Kuφ if and only if, for every s ∈ σ+φ(ψ), s 6⊆ Buφ.
(Au4) Preferential core-retainment: ψ ∈ B+φ\Buφ if and only if ⊥ ∈ K+φ and

ψ ∈ {x | ∃s ∈ σ+φ(⊥), x ∈ s, and ∀y ∈ s, x 4+φ y}.
(Au5) Support update: If ψ ∈ Kuφ, then σuφ(ψ) is the largest subset of σ+φ(ψ)

restricted to Buφ.
(Au6) Order preservation: 4uφ is the largest subset of 4+φ restricted to Buφ.

Thus, relevant revision is assertion with forward inference followed by consol-
idation [29]. As a result of consolidation, some base beliefs might be retracted in
case relevant expansion with φ results in a contradiction.13 (Au1) captures this
13 Technically, the contradiction need not be supported by φ. However, in practice,

a reason maintenance system should not tolerate explicit contradiction (SNeBR
does not). Thus, prior to relevant revision with φ, we may assume that no explicit
contradiction was around, and, thus, that φ is somehow responsible for discover-
ing/introducing a contradiction.
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intuition. Since belief sets are not the logical closures of their bases, (Au2) does
not necessarily follow from (Au1). It is needed to indicate that relevant revision
does not result in derivations that are not accounted for by relevant expansion.
(Au3) makes sure that only sentence that are still supported are believable.14

(Au4) guarantees that base beliefs that are evicted to retain (explicit) con-
sistency indeed must be evicted. In addition, if a choice is possible, base beliefs
that are least preferred are chosen for eviction. Note that, according to the above
definition, this selection strategy is skeptical ; that is, if multiple least preferred
beliefs exist, all are evicted. This strategy, however, is only adopted here to
simplify the exposition, and nothing relevant depends on it.

As a simple corollary, it follows from (Au3) and (Au4) that the resulting
belief state is not known to be inconsistent:

(Au7) Contradiction ignorance: ⊥ 6∈ Kuφ

4.3 The Case of L1

To extend the reason maintenance system presented above to L1, a number of su-
perficial alterations of the definitions are needed. The important point, however,
is to devise an extension of CnR that accommodates conditionals. Following [26],
I am assuming a natural deduction system. Adding the connective > to the lan-
guage, we need two inference rules—one for elimination and one for introduction.
First, a piece of notation.

Definition 5 Let S = 〈K,B, σ,4〉 be a belief state. The hypothetical expan-
sion of S with φ ∈ L1 is a belief state S ∓ φ = 〈K∓φ,B∓φ, σ∓φ, 4∓φ〉 where

1. B∓φ = B ∪ {φ};
2. σ∓φ(φ) = {{φ}}; and
3. for every ψ ∈ B, ψ 4∓φ φ and φ 64∓φ ψ

Hypothetical expansion (re)introduces φ into the belief state with indepen-
dent standing as a most preferred belief. It is similar to the do operator of Pearl
[31] in that it detaches φ from its derivational history (causal history, in the case
Pearl). We now define the elimination and introduction rules for > as follows.

(> E) If φ, φ > ψ ∈ K, then ψ may be added to K, with σ(ψ) = {sφ ∪
s> | 〈sφ, s>〉 ∈ σ(φ)× σ(φ > ψ)}.

(> I) If ψ ∈ (K∓φ)uφ, then φ > ψ may be added to K provided that σ(φ >
ψ) = {s\{φ} | s ∈ (σ∓φ)uφ(ψ)\σ∓φ(ψ)} is not empty.

The elimination rule (> E) is a direct extension of Anderson and Belnap’s
rule for the elimination of material implication [26]. The introduction rule (>
I) is also an extension of Anderson and Belnap’s rule for the introduction of
material implication. The extension in this case is, by no means, direct though.
14 By “lumping”, I’m referring to the lumping operation of Kratzer [30], whereby cer-

tain propositions either stay together or go together.
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(> I) is actually the right-to-left direction of the Ramsey test (RT2), within
the context of relevance logic. In simple English, the rule describes a procedure
whereby one may decide whether to believe in the conditional φ > ψ:

1. Hypothetically expand the belief state with φ.
2. Perform relevant forward inference to derive all sentences that could be de-

rived from φ.
3. Consolidate the resulting belief state, giving φ highest preference.
4. If ψ is in the resulting belief state, accept φ > ψ.

In addition to deciding on whether to accept φ > ψ, we also compute its sup-
port sets along the way. The relevance of this derivation is guaranteed by two
measures. The first is the hypothetical expansion step. The reason why we need
this is that we need to make sure that any derivation of ψ following relevant
expansion with φ follows from φ itself, not merely from its supports. The second
is the procedure used to compute σ(φ > ψ): We only consider support sets that
were added as a result of relevant expansion with φ. This eliminates cases where
a conditional is only accepted as a result of its consequent being already in the
belief set. The final removal of φ from the sets of supports is inherited from
Anderson and Belnap’s rule for material implication introduction.

By adding (> E) and (> I) to our repertoire of inference rules, we define an
extension CnR> of CnR for relevant conditional consequence. All the definitions
of Section 4.2 may now be extended to L0 by replacing each occurrence of L0

by L1, and each occurrence of CnR by CnR>. This may be considered overly
permissive by many scholars. For, now, we allow two things that are traditionally
not allowed.

We allow, pace Hansson [13], (i) belief bases to include conditional sentences
and (ii) belief states to be revised with conditional sentences. The justification
for this is the same: we view conditionals to possibly have independent standing.
For a rational agent or knowledge representation and reasoning system, this is
actually reasonable. The following example of a “useful counterfactual” is due
to Costello and McCarthy [2, p. 1].

(1) If another car had come over the hill when you passed that car, there would
have been a head-on collision

A natural context in which (1) may be uttered is one in which the speaker
is teaching someone an important safety rule of car driving. Most probably,
the person receiving this utterance does not have enough experience to have
concluded it themselves. The person can learn from (1), though. And they can
do that without ever trying to achieve its antecedents. Thus, it seems that in
similar cases, the only reasonable thing to assume is that the conditional is a
base belief that probably could not have been derived without external help.

5 The Trap Reentered

What can we say now about the Ramsey test and Gärdenfors’s triviality result?
First, as (> I) indicates, only one direction of the Ramsey test is adopted; we
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use it as a rule of introduction for conditionals. A direct reversal of (> I) would
yield.

(RRT1 ) If φ > ψ may be added to K with
σ(φ > ψ) = {s\{φ} | s ∈ (σ∓φ)uφ(ψ)\σ∓φ(ψ)}, then ψ ∈ (K∓φ)uφ and
{s\{φ} | s ∈ (σ∓φ)uφ(ψ)\σ∓φ(ψ)} is not empty.

This does not look right. For what does it mean to say that φ > ψ may be added
to K? Note that it does not mean that φ > ψ is in K, for K is not logically
closed. The primary way, within our system, we can make sure that φ > ψ may
be added to K is probably by using (> I). But, then, (RRT1 ) will not be very
useful; it is only telling us something that we already know about CnR>.

So maybe we can simply replace “may be added to K” with “is in K”. But,
then, the first antecedent (φ > ψ ∈ K) would imply the second consequent
(σ(φ > ψ) 6= ∅), and the second antecedent (the definition of σ(φ > ψ)) would
imply the first consequent (ψ ∈ (K∓φ)uφ). Again, this version of RRT1 does not
seem useful.

Finally, we can simply drop all mention of supports and state that φ > ψ ∈ K
if and only if ψ ∈ (K∓φ)uφ. This is far from being the converse of (> I). In
addition, I do not see how useful it may be, at least from the point of view of
rational agency or a KRR system. If anything, it may save us some time by
caching one of the results of hypothetically revising with φ (we can also easily
reconstruct the supports of ψ in the resulting belief state). This, however, is
not unproblematic. For even assuming φ > ψ ∈ K, it need not be the case that
ψ ∈ (K∓φ)uφ. This may happen, for example, if deriving ψ using (> E) may
result in a contradiction. Considering the following variant of Example 1 may
clarify this point (where φ = M and ψ = ¬J).

Example 2. The supervisor believes (probably by default) that only one per-
son committed the murder: {J > ¬M, M > ¬J}. Detective 1 reports evidence
incriminating John. This results in adding the beliefs J and ¬M to the super-
visor’s belief set. Now detective 2 reports evidence incriminating Mary. At this
point, the supervisor needs to do some consolidation. Assuming that the evidence
provided by both detectives is highly reliable, the supervisor would disbelieve
J > ¬M , rendering ¬M no longer supported. In addition, note that M > ¬J
also needs to be removed, to block the derivation of ¬J . Thus, when faced with
strong evidence to the contrary, the supervisor gives up the belief in a single
murderer.

Now, even if we assume some reasonable converse of (> I), the triviality
proof will not go through. Any step in the proof that depends on closure (AK3),
success (A∗1), or consistency (A∗2) will be invalid. In addition, since revisions
are now based on CnR>, step 8 is obviously invalid. For, even if we admit closure,
CnR>(K ∪ {A ∨B}) 6⊆ CnR>(K ∪ {A}) (since A ∨B 6∈ CnR>({A})).

In addition, Hansson [13, p. 531–532] argued that even if two belief sets are
identical, base-revising them may yield different results. Thus any step in the
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proof that relies on the equality of revising two identical belief sets will be invalid
(for example, step 13).

Example 3 [13, p. 531–532]. Let S1 be a belief state with B1 = {p}. Con-
sider, S2 = S1uq and S3 = S1up ⇔ q. Clearly, B2 = {p, q}, B3 = {p, p ⇔ q}, and
CnR>(B2) = CnR>(B3). In particular, if p ⇔ q ∈ K2 then σ2(p ⇔ q) = {{p, q}}.
similarly, if q ∈ K3, then σ3(q) = {{p, p ⇔ q}}. Now consider S2 u ¬p and
S3 u¬p, assuming p 4 ¬p in both S2 and S3. Given Definition 4, q is in the first
belief set and ¬q is derivable in the second.

Finally, similar to [15], the proof of (M) will be blocked due to the context-
sensitivity of conditionals. In our system, context-sensitivity is defined by the
dependence of > I (and its presumed converse) on sets of supports. Even with
closure, success, and consistency reinstated, similar to [15], the proof of (M) will
be blocked at step 5:

1. K ⊆ K′ (Assumption)
−2. ψ ∈ (K∓φ)uφ and {s\{φ} | s ∈ (σ∓φ)uφ(ψ)\σ∓φ(ψ)} 6= ∅ (Assumption)
−−3. φ > ψ ∈ K
−− 3. with σ(φ > ψ) = {s\{φ} | s ∈ (σ∓φ)uφ(ψ)\σ∓φ(ψ)} (2, (> I))
−−4. φ > ψ ∈ K′
−− 4. with σ′(φ > ψ) = {s\{φ} | s ∈ (σ∓φ)uφ(ψ)\σ∓φ(ψ)} (1, 3)

At this point we are stuck; we cannot prove ψ ∈ (K′∓φ)uφ since this requires
σ′, and not σ, in the definition of the support of φ > ψ. For instance, in Example
2, it is clear that the set of supports of M > ¬J in K = {J > ¬M, M > ¬J} is
different from that in K′ = K∪{J}, where in the former it is simply {{M > ¬J}}
and in the latter it is the empty sets.

6 Conclusions

Based on [5, 9], I have presented a reason maintenance system with an underlying
relevance logic. I have shown how such a system could be extended to accommo-
date a relevance-logical account of conditionals. One direction of the Ramsey test
is used as a conditional-introduction inference rule. The rule defines the set of
supports of the derived conditional in such a way that effects context-sensitivity
as per [15]. Given independently motivated assumptions on the underlying logic,
the belief state, and the belief revision operator, Gärdenfors’s triviality result is
avoided.

The system presented here is similar to that of [13] in its use of base revision.
It is different, however, in allowing conditional sentences to be members of belief
bases and candidates for expansion and revision. Compared to the system of
[16], the revision-based approach presented here is a practical alternative to
the update-based approach of [16]. It is my conviction that, ultimately, both
revision and update are needed for reasoning about conditionals. In particular,
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the relation between indicative conditionals and belief revision on one hand, and
subjunctive conditionals and belief update on the other hand, remains to be
investigated.
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Abstract. We generalize the AGM belief revision theory to the multi-
agent case. To do so, we first generalize the semantics of the single-agent
case, based on the notion of interpretation, to the multi-agent case. We
also compare this generalized semantics, based on the notion of subjective
model, to the standard semantics of multi-agent epistemic logic. Then
we show that, thanks to the shape of our new semantics, all the results
of the AGM framework transfer to the multi-agent case. Afterwards we
investigate some postulates specific to our multi-agent setting. Finally,
we give an example of revision operator that fulfills one of these new
postulates and give an example of revision on a concrete example.

Note 1. An extended version of this paper with full proofs can be found at
the following address: ftp://ftp.irit.fr/pub/IRIT/LILAC/rap-IRIT-RR-2007-20-
EN.pdf.

1 Introduction

AGM belief revision theory [1] has been designed for a single agent. It seems
natural to extend it to the multi-agent case. In this case the agent at stake (that
we call Y like Y ou), in his/her representation of the surrounding world, will
have to deal not only with facts about the world but also with how the other
agents perceive the surrounding world. So, we will have to extend or generalize
the single agent semantics in order to take into account this multi-agent aspect.

Besides, we have to be careful about what kind of multi-agent belief revision
we study. Indeed, we must make a distinction (also made in [4]) between multi-
agent dynamic belief revision and multi-agent static (or private) belief revision.
On the one hand, dynamic belief revision occurs after (or during) an event took
place that changes the original situation and the other agents’ beliefs. This is the
case of a public announcement for example that often affects and changes all the
? I thank my PhD supervisors Hans van Ditmarsch and Andreas Herzig for useful

comments and discussions. I also thank Jérôme Lang and an anonymous referee for
their comments on this paper.
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agents’ beliefs. On the other hand, static belief revision occurs when the agent
Y learns some piece of information about the original situation but this original
situation and the other agents’ beliefs do not actually change. Typically, this is
the case when Y learns privately (from an external source for example) some
piece of information (possibly epistemic) about the original situation, the other
agents not being aware of anything. In this case, the other agents’ beliefs clearly
do not change. For example, suppose you (Y ) believe p, and agent j believes p
(and perhaps even that p is common belief of Y and j); when a third external
agent privately tells you that ¬p then you still believe that j believes p (and that
j believes that p is common belief). The multi-agent dynamic case has received
a lot of attention in what is commonly called dynamic epistemic logic ([5], [11],
or [2] for instance). In this paper we study the static case; this static aspect
enables us to use the standard methods of AGM belief revision theory.

The paper is organized as follows. In Section 2, we recall belief revision theory
in the line of [8]. In Section 3, we first introduce the notions of multi-agent
possible worlds and subjective models in order to adequately represent agent Y ’s
perception of the surrounding world. Then we generalize the results of Section 2
to the multi-agent case. In Section 4, we investigate some additional rationality
postulates specific to our multi-agent approach. Finally in Section 5, we give an
example of revision operator and an application of this operator to a concrete
example.

2 The Single Agent Case: the AGM Approach

In this paper Φ is a finite set of propositional letters and L the propositional
language defined over Φ. We prefer to follow the knowledge base approach of [8]
as it is easier to handle by computers. As argued by Katsuno and Mendelzon,
because Φ is finite, a belief set K can be equivalently represented by a mere
propositional formula ψ. Then ϕ ∈ K iff ψ → ϕ.

Lemma 1. [8] Let * be a revision operator on knowledge sets and ◦ its corre-
sponding operator on belief bases (i.e. ψ ◦ µ implies ϕ iff ϕ ∈ Cn(ψ) ∗ µ). Then
* satisfies the 8 AGM postulates (K ∗ 1) − (K ∗ 8) iff ◦ satisfies the postulates
(R1)− (R6) below:

(R1) ψ ◦ µ → µ.
(R2) if ψ ∧ µ is satisfiable, then ψ ◦ µ ↔ ψ ∧ µ.
(R3) If µ is satisfiable, then ψ ◦ µ is also satisfiable.
(R4) If ψ1 ↔ ψ2 and µ1 ↔ µ2, then ψ1 ◦ µ1 ↔ ψ2 ◦ µ2.
(R5) (ψ ◦ µ) ∧ ϕ → ψ ◦ (µ ∧ ϕ).
(R6) If (ψ ◦ µ) ∧ ϕ is satisfiable, then ψ ◦ (µ ∧ ϕ) → (ψ ◦ µ) ∧ ϕ.

Let I be the set of all the interpretations of the finite propositional language
L. Mod(ψ) denotes the set of all the interpretations that make ψ true. Let M be
a set of interpretations of L. form(M) denotes a formula whose set of models
is equal to M.
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A pre-order ≤ over I is a reflexive and transitive relation on I. A pre-order is
total if for every I, J ∈ I, either I ≤ J or J ≤ I. Consider a function that assigns
to each propositional formula ψ a pre-order ≤ψ over I. We say this assignment
is faithful if the following three conditions hold:

1. If I, I ′ ∈ Mod(ψ), then I <ψ I ′ does not hold.
2. If I ∈ Mod(ψ) and I ′ /∈ Mod(ψ), then I <ψ I ′ holds.
3. If ψ ↔ ϕ, then ≤ψ=≤ϕ.

Let M be a subset of I. An interpretation I is minimal in M with respect
to ≤ψ if I ∈M and there is no I ′ ∈M such that I ′ <ψ I. Let

Min(M,≤ψ) := {I; I is minimal in M with respect to ≤ψ}
Theorem 1. [8] Revision operator ◦ satisfies conditions (R1) − (R6) iff there
exists a faithful assignment that maps each knowledge base ψ to a total pre-order
≤ψ such that Mod(ψ ◦ µ) = Min(Mod(µ),≤ψ).

3 The Multi-agent Case

3.1 Some Technical Preliminaries

In the sequel, G is a fixed set of agents such that Y ∈ G. An epistemic model
M is a tuple M = (W, {Rj ; j ∈ G}, val) where W is a set of worlds, Rj are
accessibility relations indexed by agents j ∈ G and val is a function that assigns
to each w ∈ W a subset of Φ. A KD45G epistemic model is an epistemic model
whose accessibility relations are serial, transitive and euclidean. Classically an
epistemic model M is given with an actual world wa: (M,wa). We define Rj(w)
by Rj(w) := {v;wRjv} and say that M is generated from w if W = (

⋃
j∈G

Rj)∗(w).

Finally |M | is the number of worlds in M . The epistemic language is defined by
L : ϕ := ⊥|p|¬ϕ|ϕ ∧ ϕ|Bjϕ|CG1ϕ, j ∈ G,G1 ⊆ G, p ∈ Φ.
Its semantics is defined as usual by: M, w |= p iff p ∈ val(w); M, w |= Bjϕ iff

for all v ∈ Rj(w) M, v |= ϕ; M, w |= CG1ϕ iff for all v ∈ (
⋃

j∈G1

Rj)∗(w) M, v |= ϕ.

We now recall the definition of a bisimulation.

Definition 1. Let Z be a relation between two finite epistemic models M =
(W, {Rj ; j ∈ G}, val) and M ′ = (W ′, {R′j ; j ∈ G}, val′). We define the property
of Z being a bisimulation in w and w′, noted Z : M, w - M ′, w′ as follows.

1. If wZw′ then val(w) = val′(w′);
2. if wZw′ and v ∈ Rj(w) then there exists v′ ∈ Rj(w′) such that vZv′;
3. if wZw′ and v′ ∈ Rj(w′ then there exists v ∈ Rj(w) such that vZv′.

We can define bisimilarity between M, w and M ′, w′, noted M, w - M ′, w′

by M, w - M ′, w′ iff there is a relation Z such that Z : M, w - M ′, w′. It can
be shown (in case M and M ′ are finite) that M, w - M ′, w′ iff for all ϕ ∈ L,
M,w |= ϕ iff M ′, w′ |= ϕ. So, intuitively, two epistemic models are bisimilar if
they contain the same information.
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Proposition 1. [3][10] Let M be a finite epistemic model and w ∈ M . Then
there is an epistemic formula δM (w) (involving common knowledge) such that

1. M, w |= δM (w)
2. For every finite epistemic model M ′ and world w′ ∈ M ′, if M ′, w′ |= δM (w)

then M, w - M ′, w′.

This proposition tells us that a finite model can be completely characterized
(modulo bisimulation) by an epistemic formula. It will be very useful to prove
that the results of the single agent case transfer to the multi-agent case1.

3.2 Possible World Versus Multi-agent Possible World

The notion of multi-agent possible world In the AGM framework, one con-
siders a single agent Y . The possible worlds introduced are supposed to represent
how the agent Y perceives the surrounding world. Because she is the only agent,
these possible worlds deal only with propositional facts about the surrounding
world. Now, because we suppose that there are other agents than agent Y , a
possible world for Y in that case should also deal with how the other agents per-
ceive the surrounding world. These “multi-agent” possible worlds should then
not only deal with propositional facts but also with epistemic facts. So to repre-
sent a multi-agent possible world we need to introduce a modal structure to our
possible worlds. We do so as follows.

Definition 2 (multi-agent possible world).
A multi-agent possible world (M, w) is a finite epistemic model M = (W, {Rj ; j ∈

G}, val) such that for all j, Rj is serial, transitive and euclidean, and

– RY (w) = {w};
– there is no v and j 6= Y such that w ∈ Rj(v).

Our definition is defined in such a way that in case Y is the only agent then
a multi-agent possible world boils down to an interpretation. The first condition
ensures us that in case Y assumes that she is in the multi-agent possible world
(M, w) then for her w is the only possible world. The second condition will
be explained in the next paragraph. Note that if we remove the constraints on
the accessibility relations (seriality, euclidicity and transitivity) the results in
this paper are still valid. We prefer to keep them because we find them more
intuitive to model the notion of belief.

Definition 3 (subjective model). A subjective model is a finite set of multi-
agent possible worlds.

1 Note that van Benthem, in [10], already mentioned that this proposition could be
used in belief revision theory
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a (single-agent) possible world:

w : p,¬q

a multi-agent possible world:

w′ : p,¬q
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Note that in the single-agent case, a subjective model boils down to a (non-
empty) set of interpretations, so represents a belief set. Intuitively, a subjective
model is the formal model that agent Y has “in her head” and that represents
how she perceives the surrounding world. This interpretation of our formalism
differs from epistemic models (M, wa), usually encountered in epistemic logic,
which are supposed to represent objectively and from an external point of view
how all the agents perceive the actual world wa. We can nevertheless draw a
formal parallel between the two formalisms (keeping in mind that their inter-
pretation is different).

From subjective models to epistemic models, and vice versa
Let {(M1, w1), . . . , (Mn, wn)} be a subjective model. The epistemic model

associated to {(M1, w1), . . . , (Mn, wn)} is the KD45G epistemic model M =
(W,Rj , val) defined as follows. W := W1 ∪ . . . ∪ Wn; Rj := R1

j ∪ . . . ∪ Rn
j for

j 6= Y ; RY := R1
Y ∪ . . . ∪ Rn

Y ∪ {(wi, wk); i, k = 1 . . . n}; and val(w) := vali(w)
if w ∈ Wi. We can now motivate the second item of Definition 2. Indeed, if
this item was not fulfilled then it might be possible that j’s beliefs about Y ’s
beliefs (for some j 6= Y ) might be different in the subjective model and in the
associated epistemic model, due to the creation of new links between the multi-
agent possible worlds.

Example 1. In Figure 1 is represented the subjective model {(M1, w), (M2, v)}
and in Figure 2 is represented an epistemic model bisimilar to the epistemic
model associated to {(M1, w), (M2, v)}.
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Fig. 1. A subjective model : multi-agent possible world (M1, w) (left) and multi-agent
possible world (M2, v) (right)

w : p
Y,A //

Y,A

¼¼
v : ¬p

Y,A

¼¼
oo

Fig. 2. (Epistemic model bisimilar to) the epistemic model associated to
{(M1, w), (M2, v)}

Hence a subjective model can be represented equivalently by a KD45G epis-
temic model2. The other way round, one can easily show that any epistemic
model that is generated from RY (wa), where wa is the actual world, can be
represented equivalently by a subjective model. So it turns out that epistemic
models can model the same things as subjective models do. But the shape of our
semantics, based on the notion of multi-agent possible world, allows to generalize
easily concepts and methods from AGM belief revision theory, as we will now
see.

3.3 The Multi-agent Generalization of the AGM Approach

In the multi-agent case like in the single-agent case, it does not make any sense to
revise by formulas dealing with what the agent Y believes or considers possible.
Indeed, due to the fact that positive and negative introspection are valid in
KD45, Y already knows all she believes and all she disbelieves. So we restrict
the epistemic language to a fragment that we call Lj 6=Y defined as follows.

Definition 4. Lj 6=Y : ϕ := ⊥|p|Bjψ|CG1ψ|ϕ ∧ ϕ|¬ϕ, ψ ∈ L, j 6= Y , Y /∈ G1 ⊆
G

We can then apply with some slight modifications the procedure spelled out
for the single agent case in Section 2.

First the postulates for multi-agent belief revision are identical to the ones
spelled out in Lemma 1 but this time ψ, µ and ϕ belong to Lj 6=Y . Now we define
2 This equivalence could be easily specified formally by stating that for all i and

ϕ ∈ Lj 6=Y , M, wi |= ϕ iff Mi, wi |= ϕ (see Definition 5 below).
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IG to be the set of all multi-agent possible worlds modulo bisimulation, i.e.
we pick the smallest multi-agent possible world among each class of bisimilarly
indistinguishable multi-agent possible worlds. We define Mod(ψ) by Mod(ψ) :=
{(M, w); (M, w) ∈ IG and M, w |= ψ}. Let M be a subjective model. Thanks to
Proposition 1 we can easily prove that

Fact (*) there is a formula form(M) ∈ Lj 6=Y such that Mod(form(M)) = M.

We then get the multi-agent generalization of Theorem 1 by replacing in-
terpretations I by multi-agent possible worlds (M, w). The proof is completely
similar to the single agent case and relies heavily on the fact (*) proved thanks
to Proposition 1.

Theorem 2. Revision operator ◦ on Lj 6=Y satisfies conditions (R1) − (R6) iff
there exists a faithful assignment that maps each knowledge base ψ to a total
pre-order ≤ψ such that Mod(ψ ◦ µ) = Min(Mod(µ),≤ψ).

Remark 1 (important). We have picked only one of the theorems of [8] but in
fact all the theorems present in [8] transfer to the multi-agent case. It includes
in particular the theorem about ≤l being a partial order instead of a total order.

In summary, the concept of subjective model allows for a straightforward
transfer of the AGM framework and results.

4 Some Considerations Specific to our Multi-agent
Approach

In this section we are going to investigate some multi-agent rationality postu-
lates. Indeed, because we add a multi-agent structure to our possible worlds, it
is natural to study how the other agents’ beliefs evolve during a revision process.

As said in the introduction, multi-agent static revision amounts to make a
private announcement to Y , the other agents not being aware of anything. So,
in particular, the beliefs of the agents who are not concerned by the private
announcement should not change. We first need to define formally the agents
who are concerned by a formula.

4.1 On the kind of information a formula is concerned about

First note that an input may not only concern agents but also the objective state
of nature, i.e. propositional facts, that we note pf . For example, the formula
p ∧ BjBi¬p concerns agent j’s beliefs but also propositional facts (namely p).
Besides, a formula cannot be about Y ’s beliefs because ϕ ∈ Lj 6=Y by assumption.
So what an input is about includes propositional facts but excludes agent Y ’s
beliefs. This leads us to the following definition.

Definition 5. C := (G ∪ {pf})− {Y }.
We define by induction the agents who are concerned by a formula as follows:
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– C(p) := pf ; C(Bjϕ) := {j}; C(CG1ϕ) := G1;
– C(¬ϕ) := C(ϕ); C(ϕ ∧ ϕ′) := C(ϕ) ∪ C(ϕ′).

For example, C(p∨ (q∧BjBir)∧Bkr)) = {pf, j, k}, and C(Bip∨BjBk¬p) =
{i, j}. We then define a language LC0 whose formulas concern only agents in C0,
and possibly propositional facts if pf ∈ C0.

Definition 6. Let C0 ⊆ C. We define the language LC0 as follows.

ϕ :=⊥ |A|Bjψ|CG1ϕ|ϕ ∧ ϕ|¬ϕ, j ∈ C0, G1 ⊆ C0, ψ ∈ L,

with A = Φ if pf ∈ C0 and A = ∅ otherwise.

Now we define a notion supposed to tell us whether two pointed and finite
epistemic models contain the same information about some agents’ beliefs and
possibly about propositional facts.

Definition 7. Let C0 ⊆ C. We say that (M,w) and (M ′, w′) are C0-bisimilar,
noted M, w -C0 M ′, w′, iff

– if pf ∈ C0 then val(w) = val(w′) and
– for all j0 ∈ C0,

if v ∈ Rj0(w) then there is v′ ∈ Rj0(w
′) such that M,v - M ′, v′,

if v′ ∈ Rj0(w
′) then there is v ∈ Rj0(w) such that M,v - M ′, v′.

Proposition 2. Let C0 ⊆ C. Then M,w -C0 M ′, w′ iff for all ϕ ∈ LC0 ,
M,w |= ϕ iff M ′, w′ |= ϕ.

Proposition 2 ensures us that the notion we just defined captures what we
wanted. We then have a counterpart of Proposition 1.

Proposition 3. Let C0 ⊆ C, let M be a finite epistemic models and w ∈ M .
Then there is δC0

M (w) such that

1. M, w |= δC0
M (w)

2. for every finite epistemic model M ′ and world w′ ∈ M ′, if M ′, w′ |= δC0
M

then M, w -C0 M ′, w′

Definition 8. Let M and M′ be two sets of multi-agent possible worlds, we set
M -C0 M′ iff for all (M,w) ∈ M there is (M ′, w′) ∈ M′ such that M, w -C0

M ′, w′, and for all (M ′, w′) ∈ M′ there is (M, w) ∈ M such that M,w -C0

M ′, w′.

4.2 Some Postulates Specific to our Multi-agent Approach

As we said before, static revision amounts to a private announcement to Y , the
other agents not being aware of anything. So, in particular, Y ’s beliefs about the
beliefs of the agents who are not concerned by the formula should not change.
This can be captured by the following postulate:
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(R7) Let ϕ,ϕ′ ∈ Lj 6=Y such that C(ϕ) ∩ C(ϕ′) = ∅.
If ψ → ϕ′ then ψ ◦ ϕ → ϕ′

This postulate is the multi-agent version of Parikh and Chopra’s postulate
[6]. The example of the introduction illustrates this postulate: there ϕ = ¬p and
ϕ′ = Bjp ∧BjCGp. Now the semantic counterpart of (R7):

Proposition 4. Revision operator ◦ satisfies (R7) iff for all ϕ ∈ Lj 6=Y , for all
(M ′, w′) ∈ Mod(ψ ◦ ϕ) there is (M, w) ∈ Mod(ψ) such that M, w -C′ M ′, w′,
with C ′ := C − C(ϕ).

Another interesting postulate is the following.

(R8) Let ϕ,ϕ′ ∈ Lj 6=Y such that C(ϕ) ∩ C(ϕ′) = ∅.
If ψ ∧ ϕ′ is satisfiable then (ψ ◦ ϕ) ∧ ϕ′ is satisfiable.

And the semantic counterpart:

Proposition 5. Revision operator ◦ satisfies (R8) iff for all ϕ ∈ Lj 6=Y , for all
(M, w) ∈ Mod(ψ) there is (M ′, w′) ∈ Mod(ψ ◦ ϕ) such that M, w -C′ M ′, w′,
with C ′ := C − C(ϕ).

Note that (R8) is the converse of (R7). Unlike (R7), (R8) is not really suitable
for revision because all the worlds representing Y ’s epistemic state “survive”
revision process if (R8) is fulfilled. This is not the case in general because new
information can discard some previous possibilities. This is however the case for
update where we apply the update process to each world independently (see [7]
for an in depth). So (R8) is more suitable for an update operation.

In fact (R8) can be seen as the multi-agent counterpart of the propositional
update postulate (U8): consider ψ := Bip∨Bjp and ϕ := ¬Bip. Then the revised
formula is ψ ◦ ϕ = Bjp ∧ ¬Bip according to postulate (R2). But according to
postulate (R8), after the revision ¬Bjp should be satisfiable because ψ ∧ ¬Bjp
was satisfiable.

Postulates (R7) and (R8) together are equivalent to: for all ϕ,ϕ′ ∈ Lj 6=Y

such that C(ϕ) ∩ C(ϕ′) = ∅, ψ → ϕ′ iff ψ ◦ ϕ → ϕ′. Then

Proposition 6. Revision operator ◦ satisfies (R7) and (R8) iff for all ϕ ∈
Lj 6=Y , Mod(ψ) -C′ Mod(ψ ◦ ϕ), with C ′ := C − C(ϕ).

5 An Example of Revision Operator

In this section we propose a revision operator based on a degree of similarity
between multi-agent possible worlds defined very much in the same way as it is
done in [9].
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5.1 Mathematical Preliminaries

The structure F used to measure the degree of similarity between
multi-agent possible worlds We are going to define a degree of similarity
between multi-agent possible worlds. This degree of similarity will be measured
by an integer or an infinite number. Ordinals are not commutative for addition
so we resort to a fragment of hyperreal numbers. Hyperreal numbers are an
extension of real numbers with infinite numbers and infinitely small numbers.
We consider first the set S0 := N∪{∞} of all natural numbers together with an
arbitrary infinite number ∞. The fragment F we consider is simply the closure
of S0 under addition: F := {x+ y;x ∈ S0 and y ∈ S0}. The order < on F is just
the restriction of the order for hyperreals to F . So for instance we have 2 < ∞,
∞ < ∞+∞,. . .

n-bisimulation Our definition of n-bisimulation is a slight modification of the
definition of n-bisimulation in [3].

Definition 9. Let Z be a relation between worlds of two finite epistemic models
M and M ′. We recursively define the property of Z being a n-bisimulation in w
and w′, noted Z : M,w -n M ′, w′:

1. Z : M, w -0 M ′, w′ iff wZw′ and val(w) 6= val(w′);
2. Z : M, w -1 M ′, w′ iff wZw′ and val(w) = val(w′);
3. For all n ≥ 1 Z : M, w -n+1 M ′, w′ iff wZw′ and val(w) = val(w′) and for

all j ∈ G,
– for all v ∈ Rj(w) there is v′ ∈ Rj(w′) such that Z : M,v -n M ′, v′.
– for all v′ ∈ Rj(w′) there is v ∈ Rj(w) such that Z : M,v -n M ′, v′.

The usual definition of Z being a bisimulation corresponds to Z : M, w -n

M ′, w′ for all n ∈ N∗. It will be noted here Z : M, w -∞ M ′, w′. Now we can
define n-bisimilarity between w and w′, noted M, w -n M ′, w′ by M,w -n

M ′, w′ iff there exists a relation Z such that Z : M, w -n M ′, w′.
Two worlds being n-bisimilar (with n ≥ 1) intuitively means that they have

the same modal structure up to modal depth n − 1, and thus they satisfy the
same formulas of degree at most n− 1.

5.2 Definition of the Revision Operator

First we are going to define a degree of similarity d between two multi-agent
possible worlds that will allow for a lexicographic order.

Definition 10. Let (M,w) and (M ′, w′) be two multi-agent possible worlds and
M and M′ be two sets of multi-agent possible worlds.

Let v ∈ M , v′ ∈ M ′ and n := max{|M |; |M ′|},
– δ(v, v′) := max{k ∈ F ;M, v -k M ′, v′};
– δ(S, S′) := max{δ(v, v′); v ∈ S and v′ ∈ S′};
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– d((M, w), (M ′, w′)) :=
(δ(w, w′),

∑
j∈G

δ(Rj(w), Rj(w′)), ..,
∑

j1,..,jn∈G
ji 6=ji+1

δ(Rj1◦..◦Rjn(w), Rj1◦..◦Rjn(w′)));

– d(M,M′) := max{d((M, w), (M ′, w′)); (M, w) ∈M, (M ′, w′) ∈M′}.

δ(v, v′) measures a degree of similarity between the worlds v and v′. Note
that 0 ≤ δ(v, v′) ≤ ∞ for all v and v′. If δ(v, v′) = ∞ then the worlds v and v′

are bisimilar by definition. So their degree of similarity is the highest possible.
If δ(v, v′) = 0, that is M, v -0 M ′, v′ then their degree of similarity is the lowest
possible because they differ even on propositional facts. d((M,w), (M ′, w′)) is a
tuple which represents by how much two multi-agent possible worlds are similar
relatively to their respective modal depth. Note that for a given modal depth
we only compare the degree of similarity of worlds which have the same history
(i.e. they are all accessed from w and w′ by the same sequence of accessibility
relations Rj1 , . . . , Rjk

). Doing so, in our comparison we stick very much to the
modal structure of both multi-agent possible worlds. Besides we take the sum
of their degree of similarity for every possible history in order to give the same
importance to these different possible histories. Finally, the tuple is of size n =
max{|M |, |M ′|} in order to reach all the worlds of both models.

When comparing multi-agent possible worlds, we would like to give priority
to the similarity of worlds of low modal depth rather than to the similarity of
worlds of high modal depth. This can be achieved by defining a lexicographic
ordering between tuples.

Definition 11. Let (l1, . . . , ln) ∈ Fn and (l′1, . . . , l
′
m) ∈ Fm. We set (l1, . . . , ln) <l

(l′1, . . . , l
′
m) iff

– l1 < l′1 or
– for all i < j ≤ min{m,n} li = l′i and lj < l′j or
– for all i ≤ min{m,n} li = l′i and n < m.

Then we set ≤l:=<l ∪{(L,L), ((∞, L), (∞, L′)); L and L’ are arbitrary tuples }.

Now we can define the revision operator.

Definition 12. Let ψ ∈ Lj 6=Y . We assign to ψ a total pre-order ≤ψ on multi-
agent possible worlds defined as follows:

(M, w) ≤ψ (M ′, w′) iff d(Mod(ψ), (M, w)) ≥l d(Mod(ψ), (M ′, w′)).
The revision operator ◦ associated to this pre-order ≤ψ is defined semantically

by Mod(ψ ◦ µ) := Min(Mod(µ),≤ψ).

We finally have the following nice property.

Proposition 7. The assignment defined in Definition 12 is a faithful assign-
ment. Therefore the operator ◦ defined in Definition 12 satisfies the postulates
(R1)− (R6). Besides ◦ satisfies also (R7).
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5.3 Concrete Example

Consider the subjective model defined in Figure 1. Proposition 8 below tells us
that {(M ′

1, w
′); (M ′

2, v
′)} displayed in Figure 3 is the result of the revision of the

subjective model {(M1, w); (M2, v)} by the formula BAp.
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Y
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Y
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WW A,Y
// w′3 : ¬p

A,Y
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oo v′2 : p

A,Y

WW A,Y
// v′3 : ¬p

A,Y

WW
oo

Fig. 3. Multi-agent possible worlds (M ′
1, w

′) and (M ′
2, v

′)

Proposition 8. Mod(form({(M1, w); (M2, v)}) ∗BAp) = {(M ′
1, w

′); (M ′
2, v

′)}
The epistemic model associated to {(M ′

1, w
′); (M ′

2, v
′)} is bisimilar to the

epistemic model depicted in Figure 4. If we compare this model with the original
model of Figure 2 we observe that agent Y ’s beliefs about A’s beliefs have indeed
changed; but agent A’s beliefs about Y ’s beliefs have not changed. This is what
we should expect after a private announcement of BAp to Y because agent A is
not aware of this announcement (see the introduction).

6 Conclusion

We have proposed a semantics to adequately represent the agent Y ’s perception
of the surrounding world in a multi-agent setting and have connected this se-
mantics with (standard) epistemic models. This semantics generalizes the single
agent one of AGM belief revision theory. Then Proposition 1 has enabled us to
also generalize easily the results of AGM belief revision theory to the multi-agent
case. Finally, we have studied two additional multi-agent postulates and we have
given an example of revision operator that satisfies one of these multi-agent pos-
tulates.

The power of our approach is that it generalizes all the results of the AGM
belief revision theory to the multi-agent case. In fact, if we consider in particular
that there are no other agents than Y then our approach boils down to classical
AGM belief revision.
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Fig. 4. Epistemic model bisimilar to the epistemic model associated to
{(M ′

1, w
′); (M ′

2, v
′)}

It would be interesting to investigate other multi-agent postulates and other
distances over multi-agent possible worlds.3 Another line of research would be to
study multi-agent update as we have started in Section 4.2. Indeed, the results
of [8] about propositional update transfer to the multi-agent case as well.
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3 Université du Luxembourg, Computer Science and Communication
L-1359, Luxembourg, rue Richard Coudenhove - Kalergi 6, Luxembourg

{gabriella.pigozzi,leon.vandertorre}@uni.lu

Abstract. This paper presents and discusses a novel approach to indeterministic
belief revision. An indeterministic belief revision operator assumes that, when
an agent is confronted with a new piece of information, it can revise its belief
base in more than one way. We define a rational agent not only in terms of what
it believes, as often assumed in belief revision, but also of what it ought or is
obliged to do. Hence, we propose that the agent’s goals play a role in the choice
of (possibly) one of the several available revision options. Properties of the new
belief revision mechanism are also investigated.

Keywords. Rational agents, indeterministic belief revision, qualitative decision
theory.

1 Introduction

Norms and obligations are increasingly being introduced in Multiagent Systems, in
particular to meet the coordination needs of open systems where heterogeneous agents
interact with each other. Witness the numerous papers presented at conferences and the
organization of workshops like NorMas and COIN in the last years. Introducing norms
raise the issue, however, of the interaction between obligations and other mental at-
titudes like beliefs, goals, and intentions. While the relation between obligations and
motivational attitudes is being studied [4,6,5,12,11,19,20,3,10,16], the relation between
beliefs and obligations is still unclear. In this paper we study the role of obligations in
the task of revising the agent’s beliefs under the light of new information. Revising the
beliefs can lead to a situation where a choice among different alternatives cannot be
made on the basis of the available information. However, obligations and other motiva-
tional attitudes can lead a rational agent to choose among the equally likely alternatives,
in order not to lose precious opportunities.

For example, suppose that you are a politician who is subject to the obligation to
reduce deficit, for example due to a decision of the EU or the IMF, and you believe that
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A) Blocking enrollment leads to a decrease in spending
B) A decrease of investment in infrastructures leads to a decrease in spending
C) A decrease in spending leads to a reduction of deficit

Therefore, your plan to meet your obligation is either to block the enrollment, or to
decrease investment in infrastructures.

Now, suppose that someone very trustworthy and well-reputed convinces you that
blocking enrollment does not lead to a reduction of deficit. Beliefs A and C cannot hold
together anymore, and you have to give up one of them.

If you give up A, you still have another possibility to reduce the deficit because you
can decrease spending by decreasing investment in infrastructures. However, if you give
up C, you do not have any possibility to achieve the reduction of deficit. Indeed,

1. Let us first assume that A is factually wrong, whereas C is true. If you choose
to retain (wrong) belief A and to reject C, you will do nothing and you will not
succeed in reducing deficit. But, had you kept your belief in C and rejected A, you
could have decreased investment in infrastructures in order to decrease spending,
and therefore you could have met your obligation to reduce deficit. To conclude, by
choosing to maintain A, you risk to miss an opportunity to meet your obligation.

2. Let us now assume that A is actually true and C is wrong. If you choose to keep
(wrong) belief C, you will decrease spending, but you will not achieve the goal of
reducing deficit. However, even if you had chosen the right revision, i.e., to retain
A and reject C, there was no way for you to achieve your goal of reducing deficit.
To conclude, by choosing C (wrong), you believed you could achieve a goal when
you could not, so you will be disappointed for trying in vain, but at least you tried.

The moral of the story is that, if you are interested only in meeting your obligation
(and there are no other goals relevant for you), choosing to maintain C — even when
it is factually wrong, but you do not know whether it is false or not — is the only
rational choice. This is because, independently of C being right or wrong, by choosing
that belief you will be better off. Moreover, in one situation — the former — you will
be better off if you choose C than if you choose A. Summarizing, you should drop A,
because that way, you keep all possibilities to achieve your goal open.

We can formalize the above example, by defining the following atomic propositions:

b blocking enrollment;
s decrease spending;
d reduce deficit;
i decrease investment in infrastructures.

The belief base before being convinced that blocking enrollment does not lead to a
reduction of deficit (¬(b ⊃ d)) would contain the three formulas b ⊃ s, i ⊃ s, and
s ⊃ d. You have to, first of all, reduce deficit, d, and, if possible, not decrease investment
in infrastructures, ¬i. Adding ¬(b ⊃ d) to your beliefs would make them inconsistent.
Therefore, you have to revise your beliefs by giving up either b ⊃ s or s ⊃ d. The
choice you make may depend on the obligations you can meet in the alternatives: if you
give up b ⊃ s, your plan will be to decrease investment in infrastructures, so you will
not achieve ¬i, but might succeed in achieving d; if you give up s ⊃ d, your plan will
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be to do nothing, so you will certainly not achieve d, but you will fulfill ¬i. Depending
on the punishment you have for violating your obligation to achieve d or ¬i, you could
prefer one or the other alternative.

We use the deficit reduction example as a running example throughout the paper.
The choice among belief bases is distinct from other decision problems, due to

the possibility of wishful thinking. Consider for example that you have to block the
enrollment (b) to decrease spending, and that this obligation is more important than
the obligation of reducing deficit (d). What will you do? At least in a naive approach,
you could reason by cases as follows. Assume you choose b ⊃ s: in that case you
believe that accomplishing the obligation of blocking enrollment leads to a decrease in
spending. Assume you choose s ⊃ d: in that case you believe you will achieve the goal
of reducing deficit. Since b is more important than d, you choose b ⊃ s.

Instead, the idea of this paper is inspired by the notion of conventional wisdom
(CW) as introduced by economist John Kenneth Galbraith:

We associate truth with convenience, with what most closely accords with self-
interest and personal well-being. ([14])

That is, CW consists of “ideas that are convenient, appealing”. This is the rationale
for keeping them. One basic brick of CW could then be the fact that some ideas are
maintained because they maximize the goals that the agents (believe) they can achieve.
This work may be seen as an initial attempt to formally capture the concept of a CW
agent. In the following we provide a logical framework that models how a CW agent
revises its beliefs under its obligations.

The paper is structured as follows. In Section 2 we introduce the aim of this paper,
the used methodology and particular challenges encountered. In Section 3 we introduce
the agent theory we use in our approach, and in Section 4 we introduce an indeterminis-
tic belief change operator in this agent theory. In Section 5 we define the choice among
beliefs as a decision problem in the agent theory. Section 6 concludes.

2 Aim, Methodology and Challenges

The research problem of this paper is to develop a formal model to reason about the kind
of choices among belief bases discussed in the previous section, and to generalize the
example above in case of additional beliefs, multiple goals with different importance,
conditional obligations, a way to take violated goals into account, and so on.

We use a combination of the framework of belief revision together with a qualita-
tive decision theory. Classical approaches to belief revision assume that, when an agent
revises its belief base in view of new input, the outcome is well-determined. This pic-
ture, however, is not realistic. When an agent revises its beliefs in the light of some
new fact, it often has more than one available alternative. Approaches to belief revision
that do not stipulate the existence of a single revision option are called indeterministic
[18,24]. In this paper we suggest that one possible policy an agent can use in order to
choose among available alternatives is to check the effect of the different revisions on
the agent’s set of goals.
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Moreover, for the qualitative decision theory we are inspired by agent theories such
as the BOID architecture [4,6,5,12,11,19,20,3,10], the framework of goal generation
in 3APL as developed by van Riemsdijk and colleagues [26], and [8]. In particular,
our agent model is based on one of the versions of 3APL, because the belief base in
the mental state of a 3APL agent is a consistent set of propositional sentences, just
like in the framework of belief revision. However, we do not care about how goals are
generated and how their achievability (plan existence) is established. That is because we
do not include “goal-adoption rules” or “practical reasoning rules” representing which
action to choose in a particular state. We assume that there is a planning module, which
would take a set of goals, actions, and an initial world state representation in input and
produce a solution plan in output. This planning module might rely on the well-known
graphplan algorithm [2], or any other propositional AI planner: as in object-oriented
programming, we encapsulate the planner within a well-defined interface and overlook
the implementation details of how a solution plan is found. This is in line with, on one
hand, the BOID architecture [4], where the planning component is kept separate from
the remainder of agent deliberation, and, on the other hand with the works of Móra and
colleagues describing the relationship between propositional planning algorithms and
the process of means-end reasoning in BDI agents. In these works, [21,22], it is shown
how the mental state of an agent can be mapped to the STRIPS [13] notation forth and
back. This relation has been done on an abstract BDI interpreter named X-BDI [27,7]
and augmented with graphplan.

In other words, we model the choice among belief bases essentially as a decision
problem, that is, as a choice among a set of alternatives. We do not use classical deci-
sion theory (utility function, probability distribution, and the decision rule to maximize
expected utility), but a qualitative version based on maximizing achieved goals and min-
imizing violated goals in an abstract agent theory (see e.g. [9] for various approaches
to formalize the decision process of what an agent should do), because such qualitative
decision theories include beliefs and therefore are easier to combine with the theory of
belief revision. However, what precisely are the alternatives?

An indeterministic belief revision operator associates multiple revision options to a
belief base that turns out to be inconsistent as a consequence of a new piece of infor-
mation. Our revision mechanism selects the revision alternative that allows the agent to
maximize its achievable goals. However, it will not always be possible to select exactly
one revision alternative. For example, there may be one most important goal set but two
revision alternatives that lead the agent to achieve it. In this case, the two belief revision
candidates are said to be equivalent. In Section 5.3 we will provide conditions under
which a revision for a CW agent is deterministic, that is, when our revision operator
can select exactly one revision alternative.

Besides the issue of wishful thinking, another complicating factor when choosing
among belief bases in the context of conditional obligation rules, is that a maximization
of goals may lead to a meta-goal to derive obligations by choosing revisions where you
believe that the condition is true and the obligation applies. However, deriving goals
by itself does not have to be desirable. In contrast, it may even be argued that fewer
goals are better than more goals, as you risk to violate goals and become unhappy (as
in Buddhism). We therefore also take goal violations into account.
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3 An Abstract Agent Theory

In this section, we represent the formalism which is used throughout the paper.

3.1 A Brief Introduction to AI Planning and Agent Theory

Any agent, be it biological or artificial, must possess knowledge of the environment
it operates in, in the form of, e.g., beliefs. Furthermore, a necessary condition for an
entity to be an agent is that it acts. We shall call the factors that motivate an agent to act
obligations. For artificial agents, obligations may be the purposes an agent was created
for.

Obligations are necessary, not sufficient, conditions for action. When an obligation
is met by other conditions that make it possible for an agent to act, that obligation
becomes a goal.

The reasoning side of acting is known as practical reasoning or deliberation, which
may include planning. Planning is a process that chooses and organizes actions by an-
ticipating their expected effects with the purpose of achieving as good as possible some
pre-stated objectives or goals.

The objective of our formalism is to analyze, not to develop, agent systems. More
precisely, our agent must single out the set of goals to be given as input to a traditional
planner. That is because the intentions of the agent are not considered. We merely con-
sider beliefs (knowledge the agent has about the world states), obligations (or motiva-
tions) and relations (obligation-adopting rules) defining how the obligation base will
change with the acquisition of new beliefs and/or new obligations. The goal generation
process that underlies this work is very much in line with the work carried out in [25] on
oversubscription planning problems, in which the main objective is to find the maximal
set of desires to be reached in a given period and with a limited quantity of resources,
and with goal generation in the BOID architecture [4].

3.2 Beliefs, Obligations, and Goals

The basic components of our language are beliefs and obligations. Beliefs are repre-
sented by means of a belief base. A belief base is a finite and consistent set of propo-
sitional formulas describing the information the agent has about the world and internal
information. Obligations are represented by means of an obligation base. An obligation
base consists of a set of propositional formulas which represent the situations the agent
has to achieve. However, unlike the belief base, an obligation base may be inconsistent,
e.g., {p,¬p}.

Definition 1 (Belief Base B and Obligation Base O) LetL be a propositional language
with > a tautology, and the logical connectives ∧ and ¬ with the usual meaning. The
agent’s belief base B is a consistent finite set such that B ⊆ L. B can also be repre-
sented as the conjunction of its propositional formulas. The agent’s obligation base is
a possibly inconsistent finite set of sentences denoted by O, with O ⊆ L.
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We define two modal operators Bel and Obl such that, for any formula φ of L, Belφ
means that φ is believed whereas Oblφ means that the agent has obligation φ. Since
the belief and obligation bases of an agent are completely separated, there is no need to
nest the operators Bel and Obl.

Definition 2 (Obligation-Adoption Rule) An obligation-adoption rule is a triple 〈φ, ψ, τ〉 ∈
L×L×L whose meaning is: if Belφ and Oblψ, then τ will be adopted as an obligation
as well.

The set of obligation-adoption rules is denoted by R. If ∃φ′, ψ′, τ ′ such that φ ↔
φ′, ψ ↔ ψ′, τ ↔ τ ′, then 〈φ′, ψ′, τ ′〉 ∈ R.

Goals, in contrast to obligations, are represented by consistent obligation sets. There
are various ways to generate candidate goal sets from the obligation adoption rules, as
discussed in the remainder of this section.

Definition 3 (Candidate Goal Set) A candidate goal set is a consistent subset of O.

3.3 Mental State Representation

We assume that an agent is equipped with three components:

– belief base B ⊆ L;
– obligation base: O ⊆ L;
– obligation-adoption rule set R.

The mental state S of an agent is completely described by a triple S = 〈B, O,R〉.
In addition, we assume that each agent can be described using a problem-dependent
function V , a goal selection function G, and a belief revision operator ∗, as discussed
below.

In our deficit reduction example, we have:

B = {¬(b ∧ ¬s),¬(i ∧ ¬s),¬(s ∧ ¬d)},
O = {d,¬i},
R = {〈>,>, d〉; 〈>,>,¬i〉}.

The semantics we adopt for the belief and obligation operators are standard.

Definition 4 (Semantics of Bel operator) Let φ ∈ L, Belφ ⇔ B |= φ.

Definition 5 (Semantics of Obl operator) Let φ ∈ L, Oblφ ⇔ ∃ a maximal consis-
tent subset O′ ⊆ O such that O′ |= φ.

We expect a rational agent to try and manipulate its surrounding environment to
fulfill its goals. In general, given a problem, not all goals are achievable, i.e. it is not
always possible to construct a plan for each goal. The goals which are not achievable or
those which are not chosen to be achieved are called violated goals. Hence, we assume
a problem-dependent function V that, given a belief base B and a goal set O′ ⊆ O,
returns a set of couples 〈Oa, Ov〉, where Oa is a maximal subset of achievable goals
and Ov is the subset of violated goals and is such that Ov = O′ \ Oa. Intuitively, by
considering violated goals we can take into account, when comparing candidate goal
sets, what we lose from not achieving certain goals.

76



3.4 Comparing Goals and Sets of Goals

The aim of this section is to illustrate a qualitative method for goal comparison in the
agent theory. More precisely, we define a qualitative way in which an agent can choose
among different sets of candidate goals. Indeed, from an obligation base O, several
candidate goal sets Oi, 1 ≤ i ≤ n, may be derived. How can an agent choose among
all the possible Oi? It is unrealistic to assume that for a rational agent all goals have the
same priority. We use the notion of importance of obligations to represent how relevant
each goal is for the agent depending, for instance, on the punishment for violating the
obligations. The idea is that a rational agent tries to choose a set of candidate goals
which contains the greatest number of achievable goals (or the least number of violated
goals).

We assume we dispose of a total orderº over an agent’s obligations. In the example,
you have to reduce, in the first place, deficit and, if possible, you should not decrease
investments in infrastructures. Therefore, d is more important than ¬i, in symbols d º
¬i.

The º relation can be extended from goals to sets of goals. We have that a goal set
O1 is more important than another one O2 if, considering only the goals occurring in
either set, the most important goals are in O1 or the least important goals are in O2.
Note that º is connected and therefore a total pre-order, i.e., we always have O1 º O2

or O2 º O1.

Definition 6 (Equivalent Goals)
A goal φ1 is said equivalent to a goal φ2, noted φ1 ≈ φ2, if and only if φ1 and φ2 are
equally important, i.e. φ1 º φ2 and φ2 º φ1.

Definition 7 (Difference Goal set Operator)
Let O1 and O2 be two sets of goals. The difference based on the equivalence between
goals in O1 and in O2 noted O1 \≈ O2, is defined as follow:

O1 \≈ O2 = {φ1 ∈ O1|¬∃φ2 ∈ O2 such that φ1 ≈ φ2}

Definition 8 (Relative Importance of Sets of Goals)
Let O′

1 = O1 \≈ O2 and O′2 = O2 \≈ O1. The goal set O1 is at least as important as
O2, denoted O1 º O2 iff

O′2 = ∅ or ∃φ1 ∈ O′1, ∀φ2 ∈ O′2 φ1 º φ2.

In our example, it is easy to verify that {d,¬i} Â {d} Â {¬i} Â ∅. However, we
also need to be able to compare the mutual exclusive subsets (achievable and violated
goals) of the considered candidate goal, as defined below.

3.5 Comparing Couples of Goal Sets

We propose two methods to compare couples of goal sets.
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3.5.1 The Direct Comparison ºD

Given the ºD criterion, a couple of goal sets 〈Oa
1 , Ov

1〉 is at least as important as the
couple 〈Oa

2 , Ov
2〉, noted 〈Oa

1 , Ov
1〉 ºD 〈Oa

2 , Ov
2〉 iff Oa

1 º Oa
2 and Ov

1 ¹ Ov
2 .

ºD is reflexive and transitive but partial. 〈Oa
1 , Ov

1〉 is strictly more important than
〈Oa

2 , Ov
2〉 in two cases:

1. Oa
1 º Oa

2 and Ov
1 ≺ Ov

2 , or
2. Oa

1 Â Oa
2 and Ov

1 ¹ Ov
2 .

They are indifferent when Oa
1 = Oa

2 and Ov
1 = Ov

2 . In all the other cases, they are not
comparable.

3.5.2 The Lexical Comparison ºLex

Given the ºLex criterion, a couple of goal sets 〈Oa
1 , Ov

1〉 is at least as important as the
couple 〈Oa

2 , Ov
2〉 (noted 〈Oa

1 , Ov
1〉 ºLex 〈Oa

2 , Ov
2〉) iff Oa

1 = Oa
2 and Ov

1 = Ov
2 ; or

there exists a φ ∈ L such that:

1. ∀φ′ º φ, the two couples are indifferent, i.e., one of the following possibilities
holds:
a) φ′ ∈ Oa

1 ∩Oa
2 ;

b) φ′ 6∈ Oa
1 ∪Ov

1 and φ′ 6∈ Oa
2 ∪Ov

2 ;
c) φ′ ∈ Ov

1 ∩Ov
2 .

2. Either of the following holds:
a) φ ∈ Oa

1 \Oa
2 ;

b) φ ∈ Ov
2 \Ov

1 .

ºLex is reflexive, transitive, but partial.

3.6 Defining the Goal Set Selection Function

In general, given a set of obligations O, there may be many possible candidate goal sets.
A rational agent in state S = 〈B,O, R〉 will select one precise candidate goal set O′

which consists of the most important couple of achievable and violated goals.
Let us call G the function which maps a state S into the goal set selected by a

rational agent in state S . G is such that G(S) = O′.

4 Situating the Problem: Indeterministic Belief Change

“Most models of belief change are deterministic. Clearly, this is not a realis-
tic feature, but it makes the models much simpler and easier to handle, not
least from a computational point of view. In indeterministic belief change, the
subjection of a specified belief base to a specified input has more than one
admissible outcome.
Indeterministic operators can be constructed as sets of deterministic operations.
Hence, given n deterministic revision operators ∗1, ∗2, . . . , ∗n, ∗ = {∗1, ∗2, . . . , ∗n}
can be used as an indeterministic operator.” [17]
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Let us consider a belief base B and a new belief β. The revision of B in light of β
is simply:

B ∗ β ∈ {B ∗1 β, B ∗2 β, . . . B ∗n β}. (1)

More precisely, revising the belief base B with the indeterministic operator ∗ in
light of the new belief β leads to one of the n belief revision results:

B ∗ β ∈ {B1
β , B2

β , . . . Bn
β}, (2)

where Bi
β is the i-th possible belief revision result.

Applying the operator ∗ is then equivalent to applying one of the virtual operators
∗i contained in its definition. While the rationality of an agent does not suggest any
criterion to prefer one revision over the others, a defining feature of a CW agent is that
it will choose which revision to adopt based on the consequence of that choice. One
important consequence is the set of goals the agent will decide to pursue.

In our deficit reduction example, β = Bel(b ∧ ¬d), and

B ∗ β ∈
{

B1
β = {b ∧ ¬d,¬(s ∧ ¬d),¬(i ∧ ¬s)},

B2
β = {b ∧ ¬d,¬(b ∧ ¬s),¬(i ∧ ¬s)}

}
. (3)

In the next section we propose some possible ways to tackle the problem of choosing
one of the revision options.

5 Belief Revision as a Decision Problem

By considering an indeterministic belief revision, we admit B ∗ β to have more than
one possible result. In this case, the agent must select (possibly) one among all possible
revisions. Among the possible criteria for selection, one is to choose the belief revision
operator for which the goal set selection function returns the most important goal set.
In other words, selecting the revision amounts to solve an optimization problem.

5.1 Indeterministic State Change

The indeterminism of belief revision influences the obligation-updating process. In fact,
the belief revision operator is just a part of the state-change operator, which is indeter-
ministic as well, as a consequence of the indeterminism of belief revision. Therefore,
Sβ ∈ {S1

β ,S2
β , . . . ,Sn

β }, where Si
β = 〈Bi

β , Oi
β , R〉.

Which goal set is selected by an agent depends on G:

G(Sβ) ∈ {G(S1
β), G(S2

β), . . . , G(Sn
β )}. (4)

In the example, G(Sβ) ∈ {G(S1
β), G(S2

β)}, where G(S1
β) = {d} and G(S2

β) = {¬i}.
The following table summarizes the possibilities the agent may face when choosing
between the two alternative revisions.

reality→ 6|= b ⊃ s |= b ⊃ s
↓ beliefs |= s ⊃ d 6|= s ⊃ d

B1
β d is achieved no obligation

decrease investment ¬i is not achieved is met
in infrastructures

B2
β d is not achieved

do nothing ¬i is achieved
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A traditional rational agent could not choose one of the G(Si
β) because they are

incomparable. Now, for a CW agent,

G(Sβ) ∈ I{G(S1
β), G(S2

β), . . . , G(Sn
β )}, (5)

where I(S) denotes the most important set of S defined as follows:

Definition 9 (Important Set I) Given two sets S and X such that S ⊆ X , and given
an importance relation º over X , the most important set of S is

I(S) = {x ∈ S : ¬∃x′ ∈ S, x′ Â x}. (6)

5.2 Choosing a Revision

Choosing the most important revision option is not a trivial operation. We can distin-
guish two situations:

– there is just one most important goal set O′, but more than one alternative options
leads to O′;

– there is no unique most important goal set; that is, there are different goal sets
O1, . . . , Om, none of which is strictly more important than the others, i.e., for all
i, j ∈ {1, . . . , m}, Oi º Oj .

Definition 10 (Equivalent Belief Revision Candidates) A belief revision candidate B1
β

is equivalent to another belief revision candidate B2
β (denoted by B1

β ≈ B2
β), if and only

if G(S1
β) º G(S2

β) and G(S2
β) º G(S1

β).

It is easy to verify that ≈ is a standard equivalence relation, i.e., reflexive, symmet-
ric, and transitive.

The choice of which revision outcome to adopt may thus be deterministic or in-
deterministic. It is indeterministic in the two cases presented above. More precisely,
the choice depends on the importance relations over the goal sets, which determine the
equivalence between revision candidates:

– if ‖I{G(S1
β), G(S2

β), . . . , G(Sn
β )}‖ = 1, i.e., the equivalent class of an important

belief revision is a singleton and, if there is no i, j such that G(Si
β) = G(Sj

β), the
choice of the belief operator is obviously deterministic;

– if ‖I{G(S1
β), G(S2

β), . . . , G(Sn
β )}‖ = 1, and there is at least a couple i, j such that

G(Si
β) = G(Sj

β), the choice is indeterministic, but also indifferent;
– if ‖I{G(S1

β), G(S2
β), . . . , G(Sn

β )}‖ > 1, the choice is indeterministic.

It is important to notice that an agent that has to choose between G(Si
β) and G(Sj

β)
is in a different situation than an agent that has to randomly choose among a number
of competing revisions. The reason is that a random choice is hardly a rational option.
But, when an agent must choose between two revision options, it knows that, no matter
which revision it chooses, the outcome does not change. In such a context, a random
choice becomes a rational option.
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Proposition 1 Let ∗ be an indeterministic belief operator, and n be the number of pos-
sible belief revisions candidate. We have:

1 ≤ ‖I{G(S1
β), G(S2

β), . . . , G(Sn
β )}‖ ≤ n.

5.3 Conditions for Determinism of a CW Agent

Traditional indeterministic belief revision approaches allow for the result of belief revi-
sion to be indeterminate in the sense that there may be many possible revision alterna-
tives that are equally rational. Our proposal builds on the idea that what an agent wishes
to achieve can play a role in the choice of which beliefs to reject and which beliefs to
retain. The example we have been using in this paper also tries to capture the intuition
that an agent who behaves in this manner is rational. Our richer model can distinguish
one revision alternative from the other depending on the effect that each option has on
the agent’s goal set. Hence, under certain conditions, the choice among several revision
alternatives can be reduced to one. This is what we want to investigate now, that is we
want to investigate the conditions under which a revision for a CW agent is determin-
istic even if an indetermistic revision operator is used, i.e., ‖I{G(Si

β)}i=1,...‖ = 1 and,
for all i, j, G(Si

β) 6= G(Sj
β).

Observation 1 B ∗ β is deterministic in state S = 〈B,O, R〉, iff no two alternative
revisions are equivalent, i.e., for all i, j, Bi

β 6≈ Bj
β .

Proposition 2 A sufficient condition for no two alternative revisions, Bi
β and Bj

β , being
equivalent is that

1. for all i, j, G(Si
β) 6= G(Sj

β);
2. the importance relation on goals is strict, i.e., for all φ, φ′ ∈ G(Sβ), φ 6= φ′,

φ º φ′ ⇒ φ′ 6º φ.

Proof: From Hypothesis 1 and 2, by applying Definition 8, we obtain Bi
β 6≈ Bj

β . There-
fore, no two alternative revisions can be equivalent. ¤

6 Conclusions

A new framework, inspired by the concept of conventional wisdom, aiming at deal-
ing with indeterminism in belief revision has been proposed. While a traditional agent
would not be able to choose among multiple revision candidates in indeterministic be-
lief revision, a CW agent evaluates the effects the different revision options have on
its goals and selects the revision which maximizes its achievable goals. Fundamental
definitions and properties of such belief revision mechanism have been given.
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Abstract. This article deals with the problem of integrating possibly
conflicting information into an ontology. We define and analyze a fam-
ily of ontology-revision operators that resolve conflicts by reinterpreting
concept symbols occurring in the triggering information. The analysis of
the iterated application of the operators focusses on issues of conserva-
tivity and stability of the ontology extension.

1 Introduction

Communication between natural or artificial agents relies on using shared terms
with shared meanings. This precondition, however, cannot always be established
in advance. While human users of natural language have flexible means to handle
situations where different uses of the same term become obvious, such mecha-
nisms of reinterpretations are not well studied for artificial agents. In this article,
we are concerned with the specific case of heterogeneity between terminologies,
where different agents use the same term with different meanings (conf. [1]) and
where this ambiguity is discovered while the sender agent gives information that
conflicts with the information the receiver holds. The approach aims at handling
the communication between agents that hold kindred ontologies where conflicts
are the exception rather than the rule. Therefore no preprocessing stage of align-
ing the terminologies in advance is assumed.

The specification of the terminology used in communication is based on an
ontology the agent holds. For agents whose ontologies are consistent and well-
tried the treatment of observed heterogeneities should not lead to the loss of
(parts of) its former ontology. Therefore, we are faced with the problem of es-
tablishing a semantic mapping between the receiver’s (internal) ontology and
the sender’s terminology during the exchange of information using the terms
rather than the exchange of information about the terminologies. In this article
we will focus on a lifting process where the incoming information is handled as
a sequence of facts and the ontology of the sender is not communicated.

We outline the theoretical basis on which to generate semantic mappings as
the product of applying a consistency resolving change operator to an ontology,
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represent semantic mappings as description logical formulas in the object lan-
guage and use them like other logical formulas as premises for inferences needed
to calculate the outcome of the change operators.

The ontology-revision operators defined and analyzed in this article are moti-
vated by ideas from the area of belief revision. Along with a treatment of iterated
revision (iterated application of an revision operator), we will discuss stability
aspects for the operators. There are no considerations about the semantics of
our approach in this article. They are left for future work.

A concrete application of the analyzed ontology-revision operators could be to
embed them into an information processing system IPS. More concretely imagine
a software agent that holds an ontology OR. The IPS formulates a query (e.g.,
‘List all cheap books on thermodynamics’) and sends it as a request to another
agent (the sender) that offers services concerning the request, e.g., services that
are needed for online book stores. The sender processes the request, generates a
response by using its own ontology OS , and sends the response as a sequence of
information. The IPS processes the sequence by applying the revision operator
(incrementally) and, in doing so, resolves conflicts that possibly occur due to the
difference between OR and OS , thereby, e.g., discovering that the concept cheap
has different meanings in OS and OR.

2 Ontology-Revision Operators: Definitions

Following M. Grove’s idea of so called sphere-based belief revision outlined in
[2], Wassermann/Fermé ([3]) constructed operators for expanding, revising and
contracting a set of concept descriptions by a concept description. As ontologies
deal with concepts, [4] adapted these ideas in order to define ontology-revision
operators that get as input an ontology O and a sentence α, also called the
trigger information, and that have as output a new ontology. Two different types
of operators �1 and �2 were defined in a local and global variant respectively.
In this article only the global variants will be dealt with.

For the definition of the operators some preliminary notation is necessary.
Throughout this article an ontology will be understood as a finite set of sentences
over a description logical (DL) language.1 The DL constructions and their se-
mantics used in this article—which amounts to the DL ALUCN— are listed in
Tab. 1. The question for which specific DLs our framework is suited has to be
worked out by the analysis of the operators. An interpretation I (or M) is a pair
consisting of the nonempty domain ∆I = dom(I) and a function assigning to
every constant a an element aI ∈ ∆I , to every concept symbol K a set KI ⊆ ∆I

and to every role symbol R a relation RI ⊆ ∆I × ∆I .
Concept descriptions will be denoted by C and indexed or primed variants.

Concept symbols (or atomic concept descriptions) will be denoted by K, S, T and
indexed or primed variants. Constants will be denoted by a, b, c . . . and indexed
variants. Role symbols are denoted by R and indexed variants. An ontology will

1 For the definitions and the syntax of DLs see [5].
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Name Syntax Semantics
Top � ∆I

Bottom ⊥ ∅
Intersection C1 � C2 CI

1 ∩ CI
2

Union C1 � C2 CI
1 ∪ CI

2

Negation ¬C ∆I \ CI

Value restriction ∀RC {x ∈ ∆I | ∀y(x, y) ∈ RI → y ∈ CI}
Limited exist. quant. ∃R� {x ∈ ∆I | ∃y(x, y) ∈ RI}
Unqual. number restriction ≤ nR {x ∈ ∆I | |{y ∈ ∆I | (x, y) ∈ RI}| ≤ n}

Table 1. DL syntax and semantics for ALUCN

be denoted by O and indexed or primed variants. As usual the sentences of an
ontology are divided into the A-box (world description) and the T-box (termino-
logical knowledge). In this article we focus on A-boxes consisting of sentences of
the form C(a) or R(a, b) and on T-boxes consisting of general inclusion axioms
(GCI), i.e., sentences of the form C1 � C2. Their semantics are respectively
given by: I |= C(a) iff aI ∈ CI ; I |= R(a, b) iff (aI , bI) ∈ RI ; I |= C1 � C2 iff
CI

1 ⊆ CI
2 . Additionally we use inequalities a �= b (with the semantic I |= a �= b

iff aI �= bI), which are not contained in the ontologies but are used to formulate
unique name assumptions. Mod(O) is the set of models of O, i.e., the set of
interpretations for which all sentences of O are true. Sentences of the form K(a)
(for K a concept symbol) will be called positive literals, sentences of the form
¬K(a) will be named negative literals and the union of these sets of sentences
will be simply named literals.

An ontology over a language L is a set of sentences in which all non-logical
symbols, i.e., the concept symbols, constants and role symbols, are among those
in L. L(O) describes exactly the non-logical symbols occurring in O. Writing
α ∈ L for a sentence α means that all non-logical symbols of α are in L. O[K1/K2]

is the outcome of uniformly substituting K1 by K2 in O. Sentences that occur
as the second arguments of the operators are denoted by α or β and indexed
variants and are called trigger information or just trigger.

The (global) operators of [4] are defined with reference to the most specific
concept assigned by an ontology to a constant. C is a most specific concept (msc)
for a in the ontology O iff O |= C(a) and for all C′ such that O |= C′(a) it is
true that O |= C � C′. The existence of a most specific concept depends on the
ontology O and the underlying description logic.2 We assume that there is some
systematic way (e.g. an ordering over concept descriptions) to pick out for every
constant a a unique most specific concept in an ontology O. This unique most
specific concept will be denoted by mscO(a) and we will talk about the most
specific concept of a constant in an ontology (or regarding an ontology).

2 [6] describes a family of description logics for which the most specific concept exists
and an algorithm for determining the most specific concept.
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The main ideas underlying the definitions below are the following: If the
trigger α is compatible with O, then it is just added to O to receive the new
ontology O ∪ {α}. If α is incompatible with O, something different is done to
guarantee the consistency of the resulting ontology. If, e.g. , α has the form K(a),
the incompatibility with the original ontology is assumed to be caused by the
fact that the sender uses K to denote a more general concept than in O. This
relation between the different terminological uses of K by the holder of O and
the sender is expressed by a subsumption, e.g. K � K ′ in (1). Here a new symbol
K ′ is introduced in order to disambiguate the different uses of K. In the case
of the weak operators (Def. 3) there are no other assumptions concerning the
relation of K and K ′. For the strong operators (Def. 1, 2) additional bounds are
added that try to capture the idea of minimal difference between K and K ′.

The inconsistency resolving mechanism used in the definitions below, which
we call reinterpretation, does not, in a proper sense, ‘change’ the original ontology
as it is usually the case for classical belief revision mechanisms; but it conserves
the old ontology and extends it by T-box axioms capturing the relation between
the terminology of the holder of O and the sender.

Definition 1. Let O be an ontology over a DL-Language L, α = K(a) a sen-
tence in L with K a concept symbol and let a be a constant for which mscO(a)
exists. Let K ′ be a new concept symbol not occurring in O∪{α}. Then the global
operators of type 1 and 2 (for positive literals) are defined by ([4], p. 87):

O �1 K(a) =




O ∪ {K(a)} if O ∪ {K(a)} is consistent,
O ∪ {K � K ′, K ′ � K � mscO(a) ,

K ′(a)} else
(1)

O �2 K(a) =




O ∪ {K(a)} if O ∪ {K(a)} is consistent,
O[K/K′] ∪ {K ′ � K, K � K ′ � mscO[K/K′](a) ,

K(a)} else
(2)

The operators �1 and �2 are similar as one can obtain �2 by changing the
roles of K ′ and K in the definition of �1. The case that O ∪ {α} is consistent is
handled by both operators in the same way by adding α to O.

The difference of �1 and �2 comes into play in the inconsistency case. The
operators �1 and �2 differ regarding which concept (the concept represented
in O vs. the concept represented in α) is denoted by the new symbol K ′. The
type-1 operator �1 substitutes the occurrence of K in the trigger information
by a new symbol K ′ while O is not changed. We will also say that K in α is
reinterpreted. The type-2 operator �2 substitutes the occurrences of K in the
ontology O by a new symbol K ′, while preserving α. We will also say that K in
O is reinterpreted. The difference between �1 and �2 can also be described by
saying that �1 preserves the terminology of the ontology O while �2 adapts to
the terminology of the sender of α.

As a consequence, O is not changed by applying �1 and α is put in a rein-
terpreted form into the resulting ontology. The operator �1 fulfills the condition
of monotonicity (see below) but only a weak form of the success postulate men-
tioned in the classic belief revision postulates of AGM ([7], p. 513). The operator
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�2, on the other hand, fulfills the success postulate, i.e., α ∈ O �2 α, but not
monotonicity.

Both operators declare upper and lower bounds in which the old symbol
K and the new symbol K ′ occur. In case of �1 the bounds are given for K ′

depending on K and in case of �2 the bounds are given for K depending on K ′.

Example 1. There is an asymmetry concerning how positive and negative lit-
erals are dealt with in revising with a positive literal K(a). Consider, e.g. , the
ontology O = {¬K(a), K(b),¬K(c)} and the trigger α = K(a). Then mscO(a) =
mscO(c) = ¬K and we have on the one hand O�2 K(a) |= K(b) (i.e. K(b) is pre-
served along the revision) but on the other hand O�2 K(a) �|= ¬K(c) (i.e.¬K(c)
is not preserved). As K(b) has the same prefix as the trigger (no negation), it is
preserved: The K of the sender denotes a wider concept, so all individuals (like
the one denoted by b) that instantiated K of the original O also do it after the
change. For those individuals (like the one denoted by c) that did not instantiate
K in O, the situation is different. Only if they are provably different (in O) from
the individual referred to in the trigger (here a) they stay outside of K. In this
example c and a are not sufficiently different, as O �|= ¬mscO(a)(c). (See also
Prop. 2, (12), (13), (16), (17).)

A limitation of the definitions for �1 and �2 is the fact that they deal
only with positive literals. In order to widen the applicability of the operators,
we extend the definitions of the operators to deal also with negative literals.3
Proceeding in this way (from the literals to more complex trigger information)
we can check whether it is justifiable also to investigate operators that can handle
a wider class of trigger information.

Definition 2. Let O be an ontology over a DL-Language L, K a concept symbol,
and let a be a constant in L for which mscO(a) exists. Let K ′ be a new concept
symbol not occurring in O ∪ {¬K(a)}. Then the global operators of type 1
and 2 (for literals) are defined according to Def. 1 for the positive cases and
for the negative cases by

O �1 ¬K(a) =




O ∪ {¬K(a)} if O ∪ {¬K(a)} is consistent,
O ∪ {K ′ � K, K � K ′ � mscO(a) ,

¬K ′(a)} else
(3)

O �2 ¬K(a) =




O ∪ {¬K(a)} if O ∪ {¬K(a)} is consistent,
O[K/K′] ∪ {K � K ′, K ′ � K � mscO[K/K′](a) ,

¬K(a)} else
(4)

The use of mscs in the definitions results from the construction in [4], in
which the global operators (defined above) originate as generalizations of the
local operators—using the msc as a common bound for all local operators. By
3 The extension of the definitions to other types of trigger information is more complex

since it needs to handle more than one candidate for reinterpretation. To this end
a choice function (or a preference relation) could to be defined that decides which
concept in the trigger has to be reinterpreted.
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weakening the specification, yielding definitions for the operators ⊗1 and ⊗2,
we get rid of the reference to most specific concepts. The analysis of ⊗1 and
⊗2 aims at preparing the analysis of the stronger operators �1 and �2 and will
show that these weak operators also have some undesirable properties.

Definition 3. Let O be an ontology over a DL-Language L, K a concept symbol
and let a be a constant in L. Let K ′ be a new concept symbol not occurring in
O∪{K(a)}. Then the weak global operators of type 1 and 2 (for literals)
are defined by

O ⊗1 K(a) =
{

O ∪ {K(a)} if O ∪ {K(a)} is consistent,
O ∪ {K � K ′, K ′(a)} , else (5)

O ⊗1 ¬K(a) =
{

O ∪ {¬K(a)} if O ∪ {¬K(a)} is consistent,
O ∪ {K ′ � K,¬K ′(a)} else (6)

O ⊗2 K(a) =
{

O ∪ {K(a)} if O ∪ {K(a)} is consistent,
O[K/K′] ∪ {K ′ � K, K(a)} else (7)

O ⊗2 ¬K(a) =
{

O ∪ {¬K(a)} if O ∪ {¬K(a)} is consistent,
O[K/K′] ∪ {K � K ′,¬K(a)} else (8)

The operators �i and ⊗i for (i ∈ {1, 2}) can be considered as special cases
of the operators ⊕sel

i defined (for positive literals) according to (9) and (10):

O ⊕sel
1 K(a) = O ⊗1 K(a) ∪ {K � K ′ � sel({C | O |= C(a)})} (9)

O ⊕sel
2 K(a) = O ⊗2 K(a) ∪ {K ′ � K � (

sel({C | O |= C(a)}))
[K/K′]} (10)

The operator ⊕sel
i has a selection function sel as a parameter that, in order to

warrant consistency, selects one concept M = sel({C | O |= C(a)}) from the set
of concepts C instantiated by a in O. If sel is such that M = 
, one gets the
operator ⊗2. If sel is such that M = mscO(a), one gets the operator �2.4

In this article we will focus on the operators �i and ⊗i for (i ∈ {1, 2}) thereby
avoiding the additional complexity due to the selection function sel.

One of the main questions of this article is how the operators behave in case
a finite sequence of literals A = (α1, α2, . . . , αn) or an infinite sequence of trigger
information is to be integrated into an ontology. To formulate this question, we
use some additional notation: Let ◦ ∈ {�1,�2,⊗1,⊗2} be an operator, A =
(α1, α2, . . . , αn) a finite sequence of literals. Then O ◦ A =def (. . . (O ◦ α1) ◦
α2) . . .) ◦ αn describes the outcome of iterated applications of the operator ◦ to
the resulting ontologies and the trigger information of the sequence A. In case
the sequence A is known and has length n we will use O◦(n) instead of O ◦ A
and even shorter O(n) if it is clear from the context which operator is meant
(or if it is not relevant for which operator repeated application is considered). If
A = (α1, . . . , αi, . . .), then let O◦(i) = (. . . (O ◦ α1) ◦ . . . ◦ αi). If A is a sequence
of length n, then Ai (for i ≤ n) is the prefix of A of length i. The set of elements
4 The function sel has a role similar to the role of the selection functions in partial

meet revision and its special cases maxi-choice and full meet revision ([7]).
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occurring in a sequence A is denoted by Ã. The symbol ‘◦1’ will be used as
metavariable for type-1 operators, i.e., ‘◦1’ stands for �1 or ⊗1, and ‘◦2’ will be
used as metavariable for type-2 operators, i.e., ‘◦2’ stands for �2 or ⊗2.

3 Monotonicity and Non-Monotonicity

The following observation directly results from the definitions of the operators:

Observation 1. Let O be an ontology over L, α ∈ L and A a sequence of
literals. Let ◦1 be a type-1 operator and ◦2 be a type-2 operator. Then:

1. O ⊆ O ◦1 α (monotonicity of ◦1)
2. For all n ∈ IN: O ⊆ O◦1(n) (monotonicity of iterated ◦1)
3. O ⊗i α ⊆ O �i α, for i ∈ {1, 2} (�i is at least as strong as ⊗i)
4. α ∈ O ◦2 α (success for ◦2)
5. O ◦ α = O ∪ {α} iff O ∪ {α} is consistent. (vacuity)
6. O ⊆ O ◦ A = O ∪ Ã iff O ∪ Ã is consistent.
7. O ◦ α is consistent.5 (consistency)
8. If Mod(O1) = Mod(O2), then Mod(O1 ◦α) = Mod(O2 ◦α) (extensionality in

left argument)
9. If O ∪ {α} is inconsistent and K ′ is the new symbol introduced in O ◦2 α

resp. O ◦1 α, then: (O ◦2 α)[K/L,K′/K] = (O ◦1 α)[K′/L], for L �= K ′ /∈ L(O ∪
{α}) and α = K(a) or α = ¬K(a).

Assertions 1.4,1.5, 1.7 and 1.8 of the observation are four adapted variants from
six of the AGM postulates.6 The other two postulates deal with the revision of
belief sets/propositions with complex information (conjunction) which we cannot
(yet) simulate in our setting as we defined the operators only for literals.

In the case of inconsistency, one can say a little bit more about the behavior
of type-1 operators: The integration of α into O results in a conservative exten-
sion. According to logical terminology a theory O′ in a language L′ is called a
conservative extension of the theory O in a language L ⊆ L′ iff for all sentences
α in L: O |= α iff O′ |= α.7 The following proposition states conservativity:

Proposition 1. Let O be an ontology over a language L, and α ∈ L be a literal.
Then: If O ∪ {α} is inconsistent, then O �1 α and O ⊗1 α are conservative
extensions of O.

Proof. See Appendix.

In the consistency case one cannot guarantee O ◦1 α to be a conservative exten-
sion, only the property of monotonicity holds. As a consequence it is not the case
that for all n: O◦1(n) is a conservative extension of O. Additionally the following
observations can be made:
5 This can be proved as a corollary to Prop. 1.
6 Compare the (re-)formulation of the postulates in [8].
7 [9], p. 208 and [10], p. 625.
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Observation 2. For an ontology O over L and literals α, αi, αj ∈ L:

1. The outcome of applying ◦1 to a sequence A of literals depends on the order
of the elements in A. In case of O |= ¬(αi ∧ αj) for αi, αj ∈ Ã and i < j it
is possible that αi wins/survives when resolving the conflict in step j.

2. There is a subset Ã′, such that: O∪ Ã′ ⊆ O◦1(n) and O◦1(n) is a conservative
extension of O ∪ Ã′.

3. The monotonicity of ◦1 preserves conflicts: If O ∪ {α} is inconsistent, then
O(n) ∪ {α} is also inconsistent. Thus, if O ∪ {α} is inconsistent, repeated
occurrences of α in A never result in O(n) |= α for any n ∈ IN.

The operators of type 2 are not monotone: O �⊆ O ◦2 α if O ∪ {α} is in-
consistent. Therefore the analysis of the type-2 operators is more complicate.
But in combination with the fact that the success postulate is fulfilled, stability
(in an intuitive sense defined below) is provable (at least for the weak type-2
operators). From now on we will concentrate on type-2 operators.

4 Detailed Analysis

4.1 Restricted Conservativity

The following proposition states restricted conservativity properties for the op-
erators �2 and ⊗2. More precisely, (14) and (18) state conservativity for all
sentences β that do not contain one of the concept symbols K, K ′ (directly)
involved in the reinterpretation. Assertions (11) and (15) express conservativity
for those sentences that are literals and in which the reinterpreted symbol K
occurs with the same prefix (negation vs. no negation symbol) as in the trigger.
Similarly (12) and (16) express conservativity (only in case of the strong op-
erator �2) for those sentences that are literals and in which the reinterpreted
symbol K occurs with a different (complementary) prefix as in the trigger. As-
sertions (13) and (17) express the fact that ⊗2 does not preserve literals in which
the reinterpreted symbol K occurs with a different prefix than the prefix of the
occurrence of K in the trigger.

Proposition 2. Let a and c be constants, K be a concept symbol, O be an
ontology such that mscO(a) exists. Let L = L(O ∪ {K(a), K(c)}). Then for all
formula β ∈ L \ {K, K ′}:

– If O |= ¬K(a), then:

O ◦2 K(a) |= K(c) iff O ∪ {a �= c} |= K(c) (11)
O �2 K(a) |= ¬K(c) iff O |= ¬K(c) and O |= ¬mscO(a)(c) (12)
O ⊗2 K(a) �|= ¬K(c) (13)

O ◦2 K(a) |= β iff O |= β (14)
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– If O |= K(a), then:

O ◦2 ¬K(a) |= ¬K(c) iff O ∪ {a �= c} |= ¬K(c) (15)
O �2 ¬K(a) |= K(c) iff O |= K(c) and O |= ¬mscO(a)(c) (16)
O ⊗2 ¬K(a) �|= K(c) (17)

O ◦2 ¬K(a) |= β iff O |= β (18)

Proof. See Appendix.

The operators �2 and ⊗2 nearly fulfill the same restricted conservativity
assertions. The crucial difference is expressed by (12) and (13) (for positive
literals) and (16) and (17) (for negative literals). Because of this we can infer
more about ⊗2 than is expressed in Prop. 2. (See Sect. 4.2 on stability.)

The conservativity properties expressed in Prop. 2 are called ‘restricted’ be-
cause of two reasons: 1) Conservativity holds only for a subset of the sentences
(the set of literals) and 2) the ‘if’-directions of two of the proposed assertions
((11), (15)) hold only with additional assumptions concerning the uniqueness of
constants. These additional assumptions will be called ‘local unique name as-
sumptions’ and will be abbreviated by ‘UNA’. They express for some (not all)
constants occurring in the ontology and the trigger information the condition
that they denote different entities.

The local unique name assumptions have a crucial role in the question of
stability which we deal with in the next subsection.

4.2 Stability

The main setting we consider is that of an agent holding some ontology O and
receiving a sequence A of trigger information (all being literals) and integrating
them into its ontology by using an operator of type 2. If the trigger stems from
the same source ontology and this ontology is consistent, also A is consistent.8
We focus on cases for which A contains only a finite set of different literals and
for which some literals can occur infinitely often in A. As the operators of type
2 fulfill success the question arises whether there is a step during integrating A
from which on the ontology does not change anymore. Formally: Is there some
i ∈ IN such that O◦2(i+m) = O◦2(i) for all m ∈ IN?

For the weak operator ⊗2 stability holds under some local unique name
assumptions. Stability in general does not hold without a (local) UNA. This can
be demonstrated by a simple example.

Example 2. Consider the ontology O = {R(c, a), R(c, b), (≤ 1R)(c)}. It says that
c is in R-relation to a and b and that there is at most one individual to which
c is R-related. Thus O |= a = b. If A is the infinite sequence (K(a),¬K(b),
K(a),¬K(b), . . .) (having finite different literals), then stability cannot occur. In

8 This seems to be a plausible assumption to be found in the discussion of the belief
revision community concerning the interpretation of iterated revision. See, e.g., [11].
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other words: If according to the ontology of the receiver one object is denoted
by different constants a, b but according to the ontology of the sender a, b denote
different objects, then this mismatch cannot be solved by an operator of type 2.

The stability question for �2 is a bit more complex because of the additional
bound containing the most specific concept. The problematic fact in case of �2

is that information integrated in one step i may disappear in a later step i + m
and perhaps be replaced by its negation in another (or the same) step. This is
demonstrated by the following example.

Example 3. Let the ontology O and the sequence A be given by

O = {¬K(a1), L(a1), L(a2)}
A = (α1, α2, α3, α4) = (¬K(a2), K(a1),¬L(a1),¬L(a2))

Applying the definition of �2 results in

O �2 A ≡ {¬K ′(a1), L′(a1), L′(a2),¬K ′(a2), K(a1), K ′ � K,

K � K ′ � L′,¬L(a1), L � L′, L′ � (¬K ′ � ¬K)) � L,¬L(a2)}
Consequently O�2 A |= ¬α1, i.e., the trigger α1 from the first step is abandoned
in a later step and its negation follows from O �2 A. Thus success for α1 is not
warranted.

This example does not show that stability cannot hold for �2, but it shows
that we cannot prove it by proving O(i) �|= ¬α1.

The main result of this article is the stability of ⊗2 and can be proved as
a corollary to the following theorem. The operator una used in the theorem
explicates the unique name assumption implicitly contained in A:

una(A) = {a �= b | K(a),¬K(b) ∈ Ã, for a concept symbol K}
Defining una(A) in this way, also expresses the assumption that the set of literals
in A is consistent.

Theorem 1. Let O be a consistent ontology over L. Then for all finite sequences
A of literals in L: If (O⊗2 A)∪una(A) is consistent, then (O⊗2 A)∪una(A)∪ Ã
is consistent as well.

Sketch of Proof. We need some additional notation. For a sequence A = (αi)i∈I

and a concept symbol K let

AK = {αj | j ∈ I, αj = K(aj) for some constant aj}
be the set of literals contained in A in which K occurs positively. Accordingly

A¬K = {αj | j ∈ I, αj = ¬K(aj) for some constant aj}
is the set of literals contained in A in which K occurs negatively. Let A(K) =
AK ∪ A¬K . With OK = {β ∈ O | β contains K} we describe that part of the
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ontology O that syntactically contains K. Let K = {Ki | i ∈ I} be the set of all
concept symbols in L for some I ⊆ IN.

The main ideas in the proof outlined in the following are first to separate
the ontologies in different parts according to the concept symbols and second to
check the following two facts: 1) If a conflict resolution for a literal αi = K(a) is
done in step i, then a conflict resolution for a literal αj (integrated in step j > i)
containing the same concept symbol K can only occur if αj has the form ¬K(b).
(Accordingly if αi = ¬K(a), then αj must have the form K(b).) 2) There can
be at most two conflict resolutions with respect to the same concept symbol.

The proof is done by induction on the length of A. In fact the assertion proved
by induction is stronger than the one formulated in the theorem, and it contains
the assertion of the theorem as (the last) conjunctive part. The assertion is:

For all finite sequences A of length n: There are two disjoint sets of concept
symbols K′

n and K′′
n that are disjoint from K and have the form K′

n = {K ′
i |

i ∈ I ′n} and K′′
n = {K ′′

i | i ∈ I ′′n} for I ′′n ⊆ I ′n ⊆ I. And there is a substitution σn

defined by Kiσn = K ′
i if i ∈ I ′n and Kiσn = Ki else, such that the following five

assertions holds:

1. Oσn ⊆ O(n)

This expresses the fact that the (original) ontology O in some way is pre-
served along the integration. It can be found in the resulting ontology O(n)

by applying the substitution σn which maps the concept symbols of the old
ontology onto the corresponding (primed new) symbols of the new ontology
and thereby acts like a semantic mapping.

2. All concept symbols contained in O(n) are contained in K ∪ K′
n ∪ K′′

n.
3. O(n) can be represented by

O(n) = Oσn ∪
no revision︷ ︸︸ ︷⋃

i∈I\I′
n

A(Ki) ∪
simple revision︷ ︸︸ ︷⋃

i∈I′
n\I′′

n

(
O

(n)
Ki

∪ (A(Ki) \ O
(n)
Ki

)σn

)∪
⋃

i∈I′′
n

(
O

(n)
Ki

∪ O
(n)
K′′

i
∪ (

A(Ki) \ O
(n)
Ki

\ O
(n)
K′′

i
[K′′

i
/Ki]

)
σn

)
︸ ︷︷ ︸

twofold revision

As the comments under and over the cambered brackets suggest, there can be
maximally two conflict resolutions with respect to the same concept symbol.

4. For all i ∈ I:
(a) If i /∈ I ′n, then A(Ki) ⊆ O(n).
(b) If i ∈ I ′n \ I ′′n , then (A(Ki) \ O

(n)
Ki

)σn ⊆ O(n) and there is exactly one
T-box axiom in O(n) of the form K ′

i � Ki (case (A)) or Ki � K ′
i (case

(B)).
(A) In this case additionally

O
(n)
Ki

⊆ {K ′
i � Ki} ∪A(Ki) and if O(n) |= ¬Ki(aj), then Ki(aj) /∈ Ã.

(B) In this case additionally
O

(n)
Ki

⊆ {Ki � K ′
i} ∪A(Ki) and if O(n) |= Ki(aj), then ¬Ki(aj) /∈ Ã.
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(c) If i ∈ I ′′n , then there is K ′′
i ∈ K′′

n such that (A(Ki)\O(n)\O(n)
K′′

i
[K′′

i
/Ki]

)σn ⊆
O(n) and there is exactly one T-box axiom of the form K ′′

i � Ki (case
(A)) or of the form Ki � K ′′

i (case (B)).
(A) In this case additionally

– K ′′
i � K ′

i ∈ O(n) and O
(n)
Ki

⊆ {K ′′
i � Ki} ∪ A(Ki)

– O
(n)
K′′

i
⊆ {K ′′

i � K ′
i, K

′′
i � K ′

i} ∪ (A(Ki))[Ki/K′′
i

]

– O(n) |= (A¬Ki)[Ki/K′′
i

] ∪ (AKi ∩ O
(n)
Ki

) ∪ (AKi \ O
(n)
Ki

)σn

– If O(n) |= ¬Ki(aj), then Ki(aj) /∈ Ã and
– if O(n) |= Ki(aj), then ¬Ki(aj) /∈ Ã.

(B) In this case additionally
– K ′

i � K ′′
i ∈ O(n) and O

(n)
Ki

⊆ {Ki � K ′′
i } ∪ A(Ki)

– O
(n)
K′′

i
⊆ {Ki � K ′′

i , K ′
i � K ′′

i } ∪ (A(Ki))[Ki/K′′
i

]

– O(n) |= (AKi)[Ki/K′′
i

] ∪ (A¬Ki ∩ O
(n)
Ki

) ∪ (A¬Ki \ O
(n)
Ki

)σn

– If O(n) |= ¬Ki(aj), then Ki(aj) /∈ Ã and
– if O(n) |= Ki(aj), then ¬Ki(aj) /∈ Ã.

5. If (O⊗2A)∪una(A) is consistent, then also (O⊗2A)∪una(A)∪Ã is consistent.

The proof of the 5th assertion relies on the assertions before and is done by a
model construction which completes the proof. Let M be a model of (O⊗2 A)∪
una(A). We construct a model M′ of (O ⊗2 A) ∪ una(A) ∪ Ã as follows:

– dom(M′) = dom(M) = D; M′(a) = M(a) for all constants a;
– M′(R) = M(R) for all role symbols R; M′(K ′

i) = M(K ′
i) for all i ∈ I ′n

– M′(Ki) =




M(Ki) if i /∈ I ′n
M(K ′

i) \ {M(ai) | ¬Ki(aj) ∈ Ã} if i ∈ I ′n \ I ′′n and
Ki � K ′

i ∈ O(n)

M(K ′
i) ∪ {M(ai) | Ki(aj) ∈ Ã} if i ∈ I ′n \ I ′′n and

K ′
i � Ki ∈ O(n)

D \ {M(aj) | ¬Ki(aj) ∈ Ã} if i ∈ I ′′n

– M′(K ′′
i ) =

{M(K ′
i) \ {M(ai) | ¬Ki(aj) ∈ Ã} if K ′′

i � K ′
i ∈ O(n)

M(K ′
i) ∪ {M(ai) | Ki(aj) ∈ Ã} if K ′

i � K ′′
i ∈ O(n)

The theorem does not state success to be fulfilled with respect to a sequence A,
i.e., it is not generally the case that Ã ⊆ O ⊗2 A, but it states that a weakening
of success is true in the sense that O⊗2A is at least compatible with Ã. But note
that the interpretation of concept symbols that are subject to two revisions (Ki

with i ∈ I ′′n) solely depends on A and is completely independent of the original
ontology. Therefore, further investigations on the behavior of the more complex
operators of type 2 are called for.

As a corollary of the theorem the stability of ⊗2 results.
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Corollary 1. Let O be a consistent ontology and A an infinite sequence of
literals containing a finite amount of different literals. Then if for all j ∈ IN
O(j) ∪ una(A) is consistent, there is a step i ∈ IN such that

O⊗2(i+m) = O⊗2(i) for all m ∈ IN.

5 Related Work

Among the approaches that deal with belief-revision techniques to solve problems
from the field of semantic integration, [12] and especially [13] are most closely
connected to our approach.

The idea of reinterpreting concepts is similar to the idea of weakening A-
box axioms in [13] adapted from [12]. The authors of [13] describe operators
for revising a consistent DL knowledge base KB by a another knowledge base
KB′ that contains at least one A-box axiom involved in the inconsistency. In the
refined version of the operator, sentences of KB that are in conflict with those
in KB′ are replaced by some weakened versions. The leading idea behind the
weakening strategy is to consider the cases that lead to the conflict as exceptions.

The main differences between [12], [13] and our approach are that our conflict
resolution is done by weakening a concept rather than by weakening sentences of
the knowledge base. We focus on literals as triggering information whereby the
construction of [12], [13] handles knowledge bases consisting of more complex
sentences. We consider iterated applications on a sequence of literals while [12],
[13] consider the revision with a set of sentences. Finally our conflict resolution
involves a language extension that makes it possible to preserve the old ontology
(knowledge base) and declare relations between the old and the new concepts.

6 Conclusion

The analysis of the type-2 operators yields restricted conservativity results and
a stability theorem (for the weak version ⊗2). The property of (restricted) con-
servativity in the inconsistency case is a form of informational conservativity as
mentioned in the discussion of rationality postulates9 for revision operators; this
property offers the possibility to use the operators in those areas of information
processing that include refinement as a main operation.10

The property of being stable makes the behavior of the (weak) operators
of type 2 predictable. Coming back to the intended application scenario of an
information processing system IPS with the embedded operator ⊗2, this means
that if we want a predictable behavior of the IPS, we should at least demand
two conditions to be fulfilled in the scenario: 1) There should be only finitely
many different literals in the sequence A of triggering literals. 2) The sequence A
should be consistent. Scenarios in which both conditions are likely to be fulfilled
9 [14], p. 52–61.

10 See [10] for a discussion of refinement.
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are those in which A stems from a single sender whose knowledge base (ontology)
is consistent. Scenarios in which A consists of trigger information from different
senders consistency of A is likely not to be fulfilled. For those scenarios type-1
operators could be more appropriate than type-2 operators.

Theorem 1 only asserts compatibility of O ⊗2 A and Ã but not success for
the whole sequence A (in the sense that Ã ⊆ O ⊗2 A). This weakness could
be compensated by equipping an IPS with an additional memory in which all
literals of A are stored and put into O⊗2A after the last literal of A was received.

Example 2 demonstrated the importance of (local) unique name assumptions
without which stability is not warranted, and in fact the theorem presupposes
the unique name assumption una(A). So a correctly working IPS would have to
check the violation of the UNA and report it. (But this is not handled yet).

Appendix: Proofs

Proof of Prop. 1. Let ◦1 ∈ {�1,⊗1} and K ′ /∈ L.
If β is a sentence in L and O |= β, then also O ◦1 α |= β, because O ⊆ O ◦1 α.

Now suppose that O �|= β for β ∈ L. We show the proposition for positive literals
α = K(a). We have to show that O◦1K(a) �|= β. By assumption, there is a model
M |= O∪¬β over L. Define M′ for the language L′ = L∪{K ′} as an extension
of M with dom(M) = dom(M′), M′(S) = M(S) for all symbols S different
from K ′ and M′(K ′) = M(K) ∪ {M(a)}. Then M′ |= O �1 K(a) ∪ {¬β} and
M′ |= O⊗1 K(a)∪{¬β} because per definition O�1 K(a) = O∪{K � K ′, K ′ �
K � mscO(a), K ′(a)} and O ⊗1 K(a) = O ∪ {K � K ′, K ′(a)} and:
M′ |= O ∪ {¬β}, because K ′ /∈ L and M′ is the same as M for all symbols in
L, and M |= O ∪ {¬β};
M′ |= (K � K ′) ∧ (K ′ � K � mscO(a)) ∧ (M′ |= K ′(a)) (construction of M′).
The proof for negative literals α = ¬K(a) is done similarly by constructing a
new model M′ from a model M |= O∪{¬β} setting M′(K ′) = M(K)\{M(a)}.

Proof of Prop. 2. The proofs for the assertions in which ◦2 is mentioned,
i.e. (11), (14), (15), (18), will be done by proving it either for �2 or for ⊗2. The
proof for the other operator then follows as a corollary using Obs. 1.

In the proofs the substitution σ = [K/L, K ′/K] will be used. Because of
the fact that O ⊆ (O �2 K(a))σ (see Obs. 1.6), the transformations of the mod-
els constructed in the proofs will be more readable. We will use the fact that
for all formulas F that do not contain L, F has a satisfying model iff Fσ has one.

Proof of (11): First assume O∪{a �= c} |= K(c). Then also O◦2K(a)∪{a �= c} |=
K ′(c) and since K ′ � K ∈ O ◦2 K(a) also O ◦2 K(a)∪ {a �= c} |= K(c). Now let
M be a model of O ◦2 K(a). If M(a) �= M(c), then M |= a �= c, and M |= K(c)
follows. If, on the other hand, M(a) = M(c), then because of K(a) ∈ O ◦2 K(a)
also M(c) ∈ M(K) results, i.e., M |= K(c).

Now assume O ∪ {a �= c} �|= K(c). Let M be a model of O ∪ {a �= c,¬K(c)}.
Consequently M(a) �= M(c) and M(c) /∈ M(K). We have to show O�2 K(a) �|=
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K(c). Applying the substitution σ to both sides of the entailment results in the
task to show

O ∪ {L(a), K � L, L � K � mscO(a)} �|= L(c) (19)

Construct a new model M′ over L′′ = L ∪ {L} from M as follows: dom(M′) =
dom(M), M′(S) = M(S) for all symbols S ∈ L and M′(L) = M(K) ∪
{M(a)}. Then M′ is a model of O ∪ {¬K(c)} and additionally a model of
{L(a), K � K, L � K �mscO(a),¬L(c)} showing (19). Applying Obs. 1.3 results
in O ⊗2 K(a) �|= K(c).

Proof of (12): First assume O |= ¬K(c) and O |= ¬mscO(a)(c). Then O �2

K(a) |= ¬K ′(c) and because of ((K � ¬mscO(a)) � K ′) ∈ O �2 K(a) also
O �2 K(a) |= (¬K � mscO(a))(c) so that O �2 K(a) |= ¬K(c).

Now we want to show, if O �|= ¬K(c), then O �2 K(a) �|= ¬K(c) and if
O �|= ¬mscO(a)(c), then O �2 K(a) �|= ¬K(c).
Assume O �|= ¬K(c). Let M be a model of O ∪ {K(c)} and construct M′ as
an extension of M with M′(L) = M(K) ∪ {M(c)}. Then M′(c) ∈ M′(L) and
M′ |= (O �2 K(a))σ and so also M′ |= (O �2 K(a) ∪ {K(c)})σ resulting in
O �2 K(a) �|= ¬K(c).
Assume O �|= ¬mscO(a)(c). Let M be a model of O ∪ {mscO(a)(c)}. Construct
M′ as an extension of M by setting M′(L) = M(K)∪ {M(a),M(c)}. Then as
above M′ |= (O �2 K(a) ∪ {K(c)})σ and O �2 K(a) �|= ¬K(c) results.

Proof of (13): Let M |= O ⊗2 K(a); then the new model M′ defined by
dom(M′) = dom(M), M′(S) = M(S) for all symbols S different from K and
M′(K) = dom(M) is a model of O ⊗2 K(a) and of K(c). (Remember that
K ′ � K and K(a) are the only formula of O ⊗2 K(a) that involve K.)

Proof of (14): As K, K ′ /∈ β we have βσ = β. First assume O |= β. We have to
show O ◦2 K(a) |= β. Applying σ this reduces to showing (O ◦2 K(a))σ |= β. But
this is the case because of O ⊆ (O ◦2 K(a))σ and the monotonicity of |=.

Now assume O ◦2 K(a) |= β for �2 in place of ◦2, i.e., applying σ again
suppose that the following entailment holds:

O ∪ {L(a), K � L, L � K � mscO(a)} |= β (20)

Let M be a model over L(O ∪{β}) of O. Extend M to M′ by setting M′(L) =
M(K) ∪ {M(a)}. Then M′ |= O ∪ {L(a), K � L, L � K � mscO(a)} and hence
M′ |= β. As M is the reduct of M′ to L(O ∪ {β}) also M |= β. We have shown
the assertion that if O �2 K(a) |= β, then O |= β. The assertion for ⊗2 in place
of �2 follows with Obs. 1.3.

The proofs of (15), (16) and (18) are similar. For (15) and (18) one constructs
M′ from a model M |= O∪{a �= c, K(c)} by setting M′(L) = M(K)\ {M(a)}.
For the proof of (16) one constructs the extension M′

1 of M1 |= O ∪ {K(c)} by
setting M′

1(L) = M1(K) \ {M1(a)}. And one constructs the extension M′
2 of

M2 |= O ∪ {mscO(a)(c)} by setting M′
2(L) = M2(K) \ {M2(a),M2(c)}.
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Proof of (17): Let M |= O ⊗2 ¬K(a); then the new model M′ defined by
dom(M′) = dom(M), M′(S) = M(S) for all symbols S different from K and
M′(K) = ∅ is a model of O ⊗2 K(a) and of ¬K(c).

Acknowledgments. We want to thank the anonymous reviewers whose valu-
able comments we tried to integrate in the last version of the article.
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Abstract. FIPA ACL speech acts are the core of ontology based communication
between two agents in a multi agent system (MAS). We formulate the content of
an ACL Message in W3Cs OWL-DL as ontological encoding of the content field
and use the tableau reasoner RACER for validation. If validated, the contents
can be added directly into receiver agents Knowledge Base (KB), respectively
its T-Box/A-Box. What if the sender agent has extended his T-Box before so that
terminology used in the message content is unknown to the receiver? What if the
message content is referring to concepts that have been extended with additional
restrictions in the receiver T-Box?
We draw up a solution based on finding semantic ‘agreement’ between the T-Box
of the sender and the T-Box of the receiver.

Key words: OWL-DL, FIPA ACL, content language, agent, T-Box, merging

1 Introduction

In recent years, software agents (abbr. agents) have become a well studied and fre-
quently applied implementation technique for distributed systems. From a users per-
spective, agents enable innovative capabilities like proactivity, reactivity, social ability
and autonomy. For research work in AI, such agents build systems that are considered
as multi agent systems (MAS).

One characteristic of agents in a MAS is the capability to communicate with each
other, which enables social abilities. A specific language protocol was defined for com-
munication, the FIPA Agent Communication Language (FIPA ACL). A FIPA ACL con-
formant message contains a certain set of parameters: The sender, the intended receiver
and a conversation ID to identify the message uniquely are given. A performative pa-
rameter is set to specify the type of communicative act. The definitions for perfor-
matives are influenced by the Conversation Acts Theory [15], which classifies natural
language utterances with respect to their role in a discourse. Besides these parame-
ters that contain metainformation for the communication protocol, every message has
a content field, which contains the actual information and can be seen as the payload
of the message. The format of the content is not specified, although there are several
proposals for content languages. The FIPA SL Content Language Specification [6] pro-
poses a very expressive language, which unfortunately comes at the price of making the
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interpretation of an incoming message very complex and even allows the formulation
of undecidable message contents. One main criticism of FIPA ACL is the fact that the
semantics of a message is somewhat spread between the performative and the content.
E.g., the performative request– which is intended to request the receiver to perform
some action – might contain a complete ACL message in its content field that should be
forwarded to another agent under certain circumstances. Also, the definitions of some
performatives require a certain minimum expressivity of the content language used. In
[13], we motivate our approach to use OWL-DL [9] as content language in FIPA mes-
sages. OWL-DL is designated to describe the concepts in the emerging Semantic Web.
It has clearly defined and decidable semantics, while its expressivity is sufficient for a
lot of tasks. Two agents that talk to each other using this language will be able to use
all the tools that are already available or will be built to deal with OWL-DL. Since the
OWL-DL-encoded content holds the semantics, a small subset of FIPA ACL performa-
tives is sufficient for communication. Currently, we support the performatives inform
and query-ref , the algorithm using this performatives is described in section 2.

In this paper, we focus on agent-agent-communication with respect to its social
ability in terms of cooperativity and autonomy. For communication, formal ontologies
are used to provide the concepts, that are required to interpret the “content words“ of
the messages.

There is more than one definition of the term “ontology“. We take a OWL-DL doc-
ument as a formal ontology and follow [2] to use it setting up a Knowledge Base (KB).
In addition, we use the definition of a knowledge based agent given by [12], accord-
ing to which an agent uses its KB containing theorems to reason about the application
domain. Combining these two approaches, each agent of an MAS holds a KB based
on the domain ontology (application ontology) formulated in OWL-DL. Unlike other
knowledge representation languages, OWL-DL builds on the RDF format.

2 Setting: OWL-DL and agent-agent-comunication

In [13], we describe a method for using OWL-DL as a FIPA content language. We in-
troduce a separate OWL-DL KB for each agent. Using OWL-DL not only for message
contents but also for the representation of the knowledge of the agents avoids unneces-
sary translations between different knowledge representation languages when message
contents are transferred into the KB.

Here, an agent’s KB consists of separate representations for the T-Box, which holds
the domain specification, and the A-Box, where assertions about the current state of the
world are stored. The DIG interface [3] is employed to access an OWL-DL reasoner
like RACER [11], in order to do A-Box-T-Box-reasoning for inference and consistency
checks.

While there are no restrictions on the use of OWL-DL in the T-Box part, the A-Box
representation is simplified by disallowing class membership assertions in anonymous
concepts like restrictions. Instead, membership in restrictions can only be asserted indi-
rectly by referencing a named concept that is defined as a subset of the restriction inside
the T-Box. This restriction of A-Box expressivity might seem undesirable for some, but
it greatly simplifies the task of understanding the meaning of an A-Box.

101



2.1 Communication model

In general, the communication model in [13] enables agents to use OWL-DL as a con-
tent language for exchanging information about the current state of the world. More
specifically, the performatives query-ref and inform (see [5] for the definition of FIPA
performatives) are used to exchange A-Box assertions. According to [5], the contents
of inform messages are propositions. Applied to OWL-DL as a content language this
means that the A-Box assertions in the content field of a message are taken as sentences
stating that all those assertions are true.

query-ref messages are supposed to contain referential expressions that specify
which propositions should be contained in the content of an inform message sent in
reply to the query-ref messages. Thus, an OWL-DL document contained in the content
field of such a query-ref message contains temporary concepts, each of which repre-
sents a referential expression. These concepts define necessary and sufficient criteria
for concept membership. The actual A-Box assertions referenced by these concepts are
those assertions that describe one or more individuals that can be identified to be a
member of those concepts.

In the following we will focus on a pair of two agents of a MAS that are trying to
transfer some of the knowledge from the A-Box of the first agents KB to the KB of the
other agent. As we will see, this sometimes makes it necessary to change the T-Boxes
of one or even both of the agents. Knowledge transfer is done by performing an inform
speech act, as described in [13]. The agents will be identified as the sender and the
receiver, based on which part they act in the execution of that initial inform speech act,
even if subsequent messages might be sent in the opposite direction.

2.2 Dynamic OWL-DL T-Boxes

The T-Box contains concept and role definitions, e.g. Animal v LivingMatter1 or
(∃born− by.>) v Animal and> v (∀born− by.Animal)2. In contrast, the A-Box con-
tains only membership definitions like e.g. DOGCLAIRE123 : Animal3.

Animal v ¬(∃use.Photosynthesis t Plant t Fungus) (1)

Plant v ¬Fungus (2)

Animal v LivingMatter (3)

Fig. 1. A T-Box defining animals

A dynamic OWL-DL T-Box is a T-Box where it is allowed to add (expand) or re-
move/replace (contract/revise/update) expressions. The T-Box expressions in figure 1

1 This expression defines that the concept Animal is a subconcept of the concept LivingMatter
2 The two expressions in conjunction define that the domain of the role born− by has the con-

cept Animal as domain and range, which means that Animal could only be born− by Animal.
3 DOGCLAIRE123 is an instance of Animal
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define the concept of an animal as a biologist would define it nowadays. Let expres-
sion 3 be seen as a stable (not changing, invariant) part of the T-Box. Figure 2 shows

Animal v ∀eat.(Animal t Plant) (4)

Animal v = 1 eat (5)

Fig. 2. T-Box expression added to make the definition of animals more precise

one of the possibilities of expressions that could be added to the T-Box from Figure 1. As
stated in subsection 2.1, there are multiple (two) agents with separate KBs and there-
fore separate T-Boxes. Parallel to the T-Box presented in Figure 2, a second dynamic
T-Box (belonging to the second agent) including the expressions from Figure 1 and the
expressions shown in Figure 3 exists. These two T-Boxes are not in conflict with each

Animal v ∃need.Oxygen (6)

Fig. 3. A second T-Box expression added to precise the definition of animals

other so that they can easily be merged by extending one with the other. This simple

Animal v ¬(∃use.Photosynthesis t Plant t Fungus) (7)

Plant v ¬Fungus (8)

Animal v LivingMatter (9)

Animal v ∀eat.(Animal t Plant) (10)

Animal v = 1 eat (11)

Animal v ∃need.Oxygen (12)

Fig. 4. The merged T-Box defining animals

example (Figure 4) shows that two T-Boxes that have been concurrently extended could
easily be merged if there is no conflict.

In [13] it was assumed that the T-Boxes of the agents involved are identical. Now
we increase the flexibility in that we divide the T-Box into a stable part (expression 3,
stable in both agents, see subsection 2.3) and a dynamic part, that is changed in both
KBs in parallel.
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In OWL-DL the Open World Assumption (OWA) holds. Thus, it holds in our setting
for both agents. This situation gives room for independent expansions of the T-Boxes of
the communicating agents. This is further supported by the RDF base of OWL-DL, in
which all names are URIs, so that collision free new names can be introduced without
central coordination. But even if we assume that the KBs of both agents have to be
internally consistent all the time and that all their concepts have to be satisfiable. So,
concepts/roles are changed/expanded in a monotonic way. The same applies to T-Boxes
in which an existing expression has been replaced with a different one in at least one of
the T-Boxes. In Figure 5 an example of an independently changed T-Box is given. Here,

Animal v ¬∃use.Photosynthesis u ¬(Plant t Fungus) (13)

Plant v ¬Fungus (14)

Animal v LivingMatter (15)

Animal v ∀eat.Fungus (16)

Animal v = 1 eat (17)

Animal v ∃need.Oxygen (18)

Fig. 5. A T-Box conflicting with figure 4

expression 16 conflicts with expression 10 in Figure 4. This example will be used to
demonstrate the process of merging.

To explain the merge algorithm, the example stated in 2.2 is described in detail: Both
agents are aware of the introduced concepts Animal, Plants and Fungus being disjoint.
Additionally they know about the role eat. We ignore here the expressions about the
need for Oxygen, the Photosynthesis and the relation to LivingMatter (subconcept) to
simplify matters. For this example we reduce the two KBs to the ones shown in figure 6
and 7.

Animal v ¬(Plant t Fungus) (19)

Plant v ¬Fungus (20)

Animal v ∀eat.Fungus (21)

Animal v = 1 eat (22)

Fig. 6. Senders T-Box
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Animal v ¬(Plant t Fungus) (23)

Plant v ¬Fungus (24)

Animal v ∀eat.(Animal t Plant) (25)

Animal v = 1 eat (26)

Fig. 7. Receivers T-Box

2.3 Stable part of the T-Boxes: Common Grounding

The already mentioned expression 3 in example 5 represents a stable, invariant part of
all T-Boxes of all agents (sender and receiver). We divide a T-Box in three different
parts:

1. A stable (not changing) part of the T-Box
2. A dynamic part, where concepts (included in agents KB) change over time
3. A completely free part, where concepts are defined, that are not shared with other

agents.

A stable part (1) can be used for concepts and roles that are defined at an imported OWL-
DL ontology. To ensure stability, we have to restrict: (1) New concepts/roles (dynamic
part) are not equivalent to imported, invariant ones. A concept of the dynamic part is
not a superconcept of an imported one. Since equality between concepts (≡) can be
seen as a pair of subconcept relations, like A v B and B v A, this restriction disallows
equality relations. (2) It is not allowed to change expressions that define these imported
concepts/roles.

So, agents may use these concepts and roles as a “Common Ground“ (shared knowl-
edge). Therefore, the concepts defined as Common Ground should be limited to a set
of abstract, general definitions (reference/fundamental ontologies). In addition to this
invariant part of the T-Box there also exist shared, but changeable concepts and roles
(part 2). The merge process works on this part of the T-Box. Finally there might by a
third part of the T-Box (part 3). The definitions here are “private“and are not shared to
others. For this paper we simplify this part: we leave this last part empty.

3 Merging process

We follow [8] and [4] when we define the ‘merging of ontologies’ as the creation of an
unified ontology from two already existing ontologies with an overlapping part. As al-
ready stated above, agents exchange knowledge by sending A-Box expressions (knowl-
edge about individuals). If the corresponding T-Box expressions of these individuals are
known, the receiving agent tries to integrate these individuals into its A-Box. If there are
A-Box consistency conflicts, an ‘A-Box-updater’ should reconstruct consistency by e.g.
contracting A-Box expressions. In [14] an algorithm for revising the receivers A-Box
with the content of incoming inform messages is introduced. Since this algorithm only
affects the A-Box of the receiver and does not contract any knowledge from the T-Box,
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Fig. 8. Communication between sender and receiver agent about needed definitions

it would be unable find a solution if the message content is inconsistent with the T-Box
of the receiver. In this case the algorithm described here can be applied to find a shared
understanding of the names mentioned in the inform message.

In figure 3 the receiver tries to insert an A-Box expression (individual; here x), but
due to additional needed T-Box expressions, it demands the sender using a query-ref
(here c is a concept). The answer (inform) contains the T-Box expressions c, d, s and r
(c, d concepts; s, r roles). In general the answer consists of all T-Box expressions needed
by the concept/role definition (co/ro for short). Now, the receiver merges these T-Box
expressions with its T-Box. Afterwards, feedback consisting of merged concept and role
expressions (c, d, r, s) is sent to the sender using an inform. Another communication act
is needed if the feedback itself interferes with other parts of the T-Box or A-Box of the
sender.

In our example (Figure 6) the sender informs the receiver about an individual from
its KB, which is an Animal only eating Fungus. This individual can not be integrated by
the receiver, since its KB only knows about Animals, that eat Plants or Animals. The
receivers T-Box additionally restricts that Fungus is a disjoint concept from Plants and
Animals.

Now, we throw a glance at the T-Box expressions the original sender must add to its
inform (with the co/ro):

– equivalent concepts/roles
– superconcepts/-roles
– disjoint concepts/roles
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– roles and concepts used in the definition of the co/ro

The last line of this list results in a recursion that only stops at>,⊥ or at datatype values.
The stable Common Ground described in subsection 2.3 can be used as an additional
termination condition in order to reduce runtime complexity.

3.1 Concept and role names

A first step to make the incoming inform message content processable is to separate the
received part of the sender T-Box from the receiver T-Box by temporarily introducing
two new names for each of the concepts and roles that occur in both T-Boxes. This
can be done without risking name conflicts by using the hierarchical structure of URIs
together with the unique names of the different agents as prefixes4. Additionally the
receiver agent adds version numbers (timestamps) to these names (and the names of
the sender respectively) to distinguish them from already generated ones (by repeated
communication and merging). The mapping between the old names and the pair of
new names is stored and then applied to the T-Box and A-Box of the receiver (with
the receiver prefix) as well as to the known part of the senders T-Box and the message
content (with the sender prefix) in a search and replace operation. After these new names
are introduced the two T-Boxes can be safely joined into one (receiver side). So far the
pairs of new names in the receiver T-Box are not related at all. A relation between the
new names is established by adding the old name of such a pair as a shared superconcept
(or superproperty) of both of them. In the following a set of two new names related
to the matching original name will be referred to as a concept/role triangle. Another
possibilities relating old and new names are described in subsection 5.1.

In our example this results in the T-Box shown in Figure 9. Expression 35 inserts
the old name as superconcept of senders animal (S_Animal) and expression 42 the
superrole to the receivers role eat (r_eat). The expressions between 35 and 42 do this
for all concepts that appeared in both initial T-Boxes.

3.2 Recovering shared concept definitions

After the introduction of these new subconcepts any new knowledge an agent might
have previously acquired about a common concept is effectively lost. This is caused
by the fact that only the concept membership assertions currently found in the A-Box
can go through the replacement process, while subsequent messages will only reference
either the old name or the new name of the communication partner. None of these names
would allow that agent to apply his previously acquired knowledge (initially about the
original concept) to individuals found in those messages.

In order to minimize this loss our algorithm now searches for unnecessary concept
(and role) triangles. These are identified by additionally asserting that both new names
are equivalent to the old name and then checking KB consistency and concept satisfia-
bility.

4 A name of a concept/role encoded in OWL-DL is an URI consisting of scheme, host, path and
fragment. The name of the agent which owns the KB is used in the host name of this URI.
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S_Animal v ¬(S_Plant t S_Fungus) (27)

S_Plant v ¬S_Fungus (28)

S_Animal v ∀s_eat.S_Fungus (29)

S_Animal v = 1 s_eat (30)

R_Animal v ¬(R_Plant t R_Fungus) (31)

R_Plant v ¬R_Fungus (32)

R_Animal v ∀r_eat.(R_Animal t R_Plant) (33)

R_Animal v = 1 r_eat (34)

S_Animal v Animal (35)

R_Animal v Animal (36)

S_Fungus v Fungus (37)

R_Fungus v Fungus (38)

S_Plant v Plant (39)

R_Plant v Plant (40)

s_eat v eat (41)

r_eat v eat (42)

Fig. 9. Name-expanded T-Box

These checks are done by querying an OWL-DL reasoner. In preparation for these
queries the temporary T-Box and A-Box are both translated into DIG 1.1 syntax and then
told into a new reasoner instance. The queries run on this new reasoner instance are:

consistency The first step is a check for consistency. DIG 1.1 does not define a query
type for consistency checks. In RACER 1.9, however, consistency of a KB can be
determined with the (proprietary) query <asks><consistentKB/></asks>.

satisfiability As already mentioned in 2.2, besides the consistency of the KB, each
of the defined concepts must be satisfiable. This is checked with queries of the
following pattern:
<asks><satisfiable>[Concept]<satisfiable/></asks>
(DIG 1.1, understood by RACER).

Based on these checks, our algorithm determines which new concepts and roles can
be merged back into their original names and which have to remain separate. Those
new names that are allowed to be equivalent with their original names are then replaced
with the original name, based on the stored mapping between the original URIs and the
newliy introduced ones. Obviously it is not possible to merge all new concepts/roles
back into their original counterpart, because in that case the initial inconsistency that
triggered the execution of this algorithm would not have occurred.

Since conflicts can also be the result of one concept being made more specific in
one T-Box and a different, but related concept being made more specific in the other
T-Box, interdependencies between different pairs of new names can occur that lead to
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one pair only being consistently mergable if certain other pairs are not merged. That
is why different combinations of merged and separated concepts/roles have to be ex-
amined. Because ideally only few of the new names would remain, we ignore those
combinations of merged concepts/roles that are contained in a different combination.
Finding maximal subsets is a well studied step of belief revision algorithms e.g. [10,
page 170ff].

Searching for these combination is computationally expensive since it requires many
consistency and satisfiability checks. Effort is reduced by two rather straight forward
optimizations. One is to reuse reasoner instances if after a successful test with a given
set of equality assertions a test with additional equality assertions is needed. In this
case the existing reasoner instance can be extended with the additional assertions and
the next consistency/satisfiability check can be run without reloading the whole KB.

The other one is to skip combinations that are contained in a previously found so-
lution, which can be explained with the following little example: Let us consider the
case that one possible solution is to merge concepts A, B and C while D and E will be
kept separate. Now if the next combination to be checked is to merge A and B while
C, D and E are kept separate, this second combination will be consistent as well and
therefore does not need to be checked.

After the maximal subsets of mergable name pair combinations have been found,
a choice has to be made. Here we are following the naming introduced in the AGM
theory (the Partial Meet hierarchy, ranging from Full Meet to Maxichoice, as described
in [1, 7]), even though the elements of the sets between which the choice is made are not
propositional sentences but mergable concepts and roles. This is not the only difference,
because even the worst case (Full Meet) would not result in a total loss of knowledge,
but merely in the creation of more subconcepts and roles than absolutely necessary.

Since subsequent computationally expensive steps are applied to the remaining un-
merged name pairs later in our algorithm (see 3.3), it is favorable to choose a single
combination of mergable triples. This relates our algorithm to Maxichoice contraction.
Maxichoice contraction is often criticized for keeping too much knowledge that might
be wrong, but in our case the A-Box content of the receiver KB and the incoming in-
form message is taken as additional input during the search, which implicitly rules out
combinations that do not match actual observations stored in the A-Boxes.

In our example, combinations of the four pairs of possible equivalence expressions
shown in Figure 10 are examined, which, all taken together, would result in an incon-
sistent KB. If the result of adding a combination of these expressions to the KB from
Figure 9 is consistent, the combination represents a potential possible solution. Each of
these valid combinations, that is not a subset of another potential possible solution, is
considered a maximal possible solution.

Our algorithm applied to this example will generate two maximal possible solutions:
one in which the equivalences from {44, 45, 46} are true and one in which {43, 44, 45}
are true. There are other solutions, like {43, 44}, but these are not maximal and are
therefore not considered. In the following the first solution will be further examined.
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S_Animal ≡ Animal ≡ R_Animal (43)

S_Plant ≡ Plant ≡ R_Plant (44)

S_Fungus ≡ Fungus ≡ R_Fungus (45)

s_eat ≡ eat ≡ r_eat (46)

Fig. 10. Combination options

3.3 Finding common parts in the remaining unmerged concepts

Once a combination has been chosen, it has to be applied. Instead of adding the found
equivalency expressions to the T-Box, the original names are put back into all T-Box and
A-Box expressions where they had previously been replaced with one of the new names.
This makes the subconcept and subproperty relations that were introduced between the
old names and the now removed new names redundant, so they are removed from the
T-Box. Since we chose solution 43, Plant, Fungus and eat will be merged. This results

Plant v ¬Fungus (47)

S_Animal v ¬(Plant t Fungus) (48)

R_Animal v ¬(Plant t Fungus) (49)

S_Animal v = 1 eat (50)

S_Animal v ∀eat.Fungus (51)

R_Animal v = 1 eat (52)

R_Animal v ∀eat.(R_Animal t Plant) (53)

S_Animal v Animal (54)

R_Animal v Animal (55)

Fig. 11. Partially merged T-Box

in the T-Box shown in figure 11.
After the pairs of new names that can be completely merged have been removed, the

remaining concept and role triangles are further examined in order to find expressions
specifying one of the two newly introduced subconcepts (or subroles) that can as well
be applied to the superconcept (or superrole) without causing an inconsistency. This is
done in a similar way as the search for equality combinations.

Here, the expressions describing the subconcepts/subroles of a triangle are focused.
The expressions of a subset are temporarily rewritten using the original name (the name
of the superconcept/superrole of the triangle) instead of the new name. If the KB ist
consistent, the subset is a possible solution. The resulting set of expression combina-
tions is then used as the input for a search for maximal subsets following the same steps
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as the search described in subsection 3.2. This results in a set of expressions that can be
moved to the superconcept/superrole without making the KB inconsistent.

This does not result in new knowledge, because the moved expressions were ei-
ther part of one (or both) of the original T-Boxes, or are at least closer to the orig-
inals than the new versions. Instead, the found expressions are those of the expres-
sions related to original names of concepts or roles, that do not have to be ‘pushed
down’ to the newly created subconcepts (or subroles). In order to avoid unnecessary
redundant T-Box expressions, the now redundant versions (those relating to the old
names) of the expressions from the result set are then removed from the T-Box. If,
on one side of the triangle, all examined expressions can be rewritten using the original
name, the new name can be completely dropped, including the generated ‘triangle leg’
generatedSubUri v originalUri.

Back to our example we now examine the remaining separated (not merged) concept
Animal. The expressions that have to be considered for the concept triangle consisting of
the superconcept Animal and the two generated subconcepts S_Animal and R_Animal
are the expressions 48, 49, 50, 51, 52, and 53 from 11. These have to be searched for
possible combinations, which results in only one maximal possibility. This is keeping
51 and 53 in their old form (the expressions that are referencing the subconcept) and
replacing 48, 49, 50 and 52 with the corresponding expressions using the original name
Animal. This can result in pairs of identical expressions (e.g. the original name versions
of 48 and 49) which are of course only inserted once into the T-Box.

Plant v ¬Fungus (56)

Animal v ¬(Plant t Fungus) (57)

Animal v = 1 eat (58)

S_Animal v ∀eat.Fungus (59)

R_Animal v ∀eat.(R_Animal t Plant) (60)

S_Animal v Animal (61)

R_Animal v Animal (62)

Fig. 12. Final merged T-Box

As already mentioned before, it is possible that some of the introduced new names
can be dropped beause all of the expessions on their side of their triangle can be rewrit-
ten using the original name. In our example both subconcepts, S_Animal and R_Animal,
are each used in one remaining expression, so both new subconcepts have to remain.

3.4 Informing the communication partner

The final step is to inform the original sender about the changes made. The sender
then has to do the appropriate replacements in his own KB. This can result in further
inconsistencies, since the receiver was not able to verify the changes made so far against
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the A-Box of the sender. In this case, the sender has to run the algorithm a second time,
so that consistency with his whole KB is checked, not just with the parts he sent to
the receiver. Since this second run of our algorithm will not make any existing concept
definitions more specific, the result is a pair of T-Boxes that are open enough to be
consistent with the A-Boxes of both agents. Lastly, the resulting final changes have to
be sent to the receiver of the original message.

4 The algorithm

1: initialize uriMapping {the mapping from each original URI to the pair of generated URIs
for sender and receiver}

2: initialize new temporary KB tempTBoxr with new names
3: initialize new temporary KB tempTBoxs with new names
4: tempTBox := tempTBoxr ∪ tempTBoxs

5: build triangles in tempTBox
6: tempABox := copy of receiver ABox with with new names
7: tempMessage := copy of message content ABox with new names
8: initialize new trianglesets
9: for all trianglesToKeep in all subsets of uriMapping do

10: for all concept or role in uriMapping not in trianglesToKeep do
11: add Cs ≡ C ≡ Cr or Rs ≡ R ≡ Rr respectively
12: end for
13: check consistency/satisfiability of tempTBox, tempABox, tempMessage
14: if consistency/satisfiability check successful then
15: add trianglesToKeep to trianglesets
16: end if
17: end for
18: remove non minimal subsets from trianglesets
19: solution := a set selected in the choice operation from trianglesets {implemented: random

maxichoice of smallest sets of trianglesets}
20: for all mapping uris, urir , urioriginal from uriMapping not in solution do
21: replace urir → urioriginal in tempTBox, tempABox
22: replace uris → urioriginal in tempTBox, tempMessage
23: remove resulting redundant urioriginal v urioriginal

24: end for
25: for all mapping uris, urir , urioriginal in solution do
26: {search additional parts of knowledge about the URI that both agents can agree on, not yet

a complete search}
27: expressionSet := any expression from tempTBox defining uris or urir
28: remove the generated sentences uris v urioriginal and urir v urioriginal from expressionSet
29: initialize subExpressionsets as a set of subsets of expressionSet
30: for all expressionsForNewUri all subsets of expressionSet do
31: for all expression in expressionSet not in expressionsForNewUri do
32: rewrite expression with uris and urir replaced with urioriginal

33: end for
34: check consistency/satisfiability of tempTBox, tempABox, tempMessage
35: if consistency/satisfiability check successful then
36: add expressionsForNewUri to subExpressionsets
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37: end if
38: end for
39: remove non minimal subsets from subExpressionsets
40: expressionSolution := a set selected in the choice operation from subExpressionsets

{implemented: random maxichoice again}
41: for all expression2 from expressionSet not in expressionSolution do
42: rewrite expression2 with uris and urir replaced with urioriginal

43: end for
44: if expressionSolution contains no expression about urir then
45: replace urir with urioriginal in tempTBox and tempABox
46: check consistency/satisfiability of tempTBox, tempABox, tempMessage
47: remove resulting redundant urioriginal v urioriginal

48: if consistency/satisfiability check successful then
49: undo replace urir with urioriginal

50: end if
51: end if
52: if expressionSolution contains no expression about uris then
53: replace uris with urioriginal in tempTBox and tempMessage
54: check consistency/satisfiability of tempTBox, tempABox, tempMessage
55: remove resulting redundant urioriginal v urioriginal

56: if consistency/satisfiability check successful then
57: undo replace uris with urioriginal

58: end if
59: end if
60: end for

5 Discussion and conclusion

The algorithm introduced in this paper has one major advantage. It will always return
a T-Box that is consistent. The T-Box containing renamed concepts and roles, is always
compatible with the merged A-Box and does not lack any previously available implicit
knowledge after all occurrences of the original in the A-Box have been updated. Both
agents can still use their own definitions by using the subconcepts and and subroles
created for them. Likewise they are not only able to understand the common part of the
concept and role definitions if their communication parter subsequently sends messages
referencing the partner’s subconcepts and subroles, but can also benefit from additional
implications of those names since their definitions are known as well. Furthermore,
compatible extensions made to the TBox of one agent can shared without constructing
new subconcept and subroles,

5.1 An alternative triangle

Unifying the non-conflicting expressions (shown in section 2.2) is a correct merge so-
lution. We restrict the change possibilities in each agent to monotonic ones. The su-
perconcept is the result of more general versions of the initial concepts. It contains the
common expressions as well as the nonconflicting ones. This will change the original
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concept, but it will always include all individuals matching one of the two conflicting
definitions.

In our example, every animal from both conflicting T-Boxes is still an animal after-
wards (due to the fact that S_animal and R_animal are subconcepts of it).

An alternative way to build a triangle is to add the union of the newly built subcon-
cepts to the superconcept:

SuperConcept ≡ SubConcept1 t SubConcept2 (63)

Additionally the subconcepts are defined as intersection between the conflicting expres-
sions and the superconcept:

SubConcept ≡ SuperConcept1 u ConflExp1 u ConfExp2... (64)

The alternatives to build the triangle differs in that the superconcept is partitioned
into only this two subconcepts. So, individuals of the superconcept have to be in one
of the subconcepts. In contrast to this, the triangle built in subsection 3.1 allows other
subconcepts, e.g. T_animal v Animalu¬(R_animaltS_animal), but expressions (63)
and (64) restrict the subconcept to S_animal and R_animal. As one easily can see, the
correctness of the solution is preserved, since none of the original T-Boxes would have
allowed an instance of animal not matching the definitions that now apply to either
R_animal or S_animal. Figure 13 shows this alternative applied to the example from
the previous sections. One argument to add expressions like (63) and (64) is that it

Plant v ¬Fungus (65)

Animal v ¬(Plant t Fungus) (66)

Animal v = 1 eat (67)

S_animal ≡ (Animal u ∀eat.Fungus) (68)

R_animal ≡ (Animal u ∀eat.(R_animal t Plant)) (69)

Animal ≡ S_Animal t R_Animal (70)

Fig. 13. Integration alternative

contains the semantic of both original T-Boxes in terms of ‘All animals I know are like
this’(a sentence both agents can say).

A disadvantage of this alternative appears if more than one merge situation occur.
If so, the union in the superconcept triggers the creation of ‘middle’ concepts. Using
the original triangle alternative, a second merging process with another more specific
concept will generate only one new subconcept, since the superconcept is generalized
allowing other subclasses. Using the alternative, the union is the conflicting expression
and needs to be moved to a newly built subconcept. The other newly built subconcept
of the triangle is the one generated for the incoming concept. The superconcept is the
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union of these concepts. Two new concepts were added. So, in some situations the
alternative builds more concepts.

Another disadvantage of adding expressions like (63) and (64) is that they were not
contained in the original T-Boxes. Once merged, the concept with the original URI will
always contain a union. So, the common name can not be generalized to its original
state, since the added expression will not be removed by our algorithm. Therefore,
recovery as defined in [7] is not possible.

Also, this alternative way of defining triangles can not yet be applied to roles, since
in OWL DL 1.0 the union constructor can only be used with concepts.

To make this more obvious, we will compare the alternatives in an example. We
consider three Agents A,B and C having disjunct concepts identified by the same URI.

original : X v > (71)

AgentA : X v (= 1 R) (72)

AgentB : X v (= 2 R) (73)

AgentC : X v (= 3 R) (74)

Fig. 14. Agents view on X

Now agent A and B communicate and merge X. This results in figure 15. X is not

XA ≡ X u (= 1 R) (75)

XB ≡ X u (= 2 R) (76)

X ≡ XA t XB (77)

Fig. 15. Agents A and B merge

the original concept, because of (77). Next step is agent C communicating with agent
A. X can not be merged since the union permitts a cardinality of 3. The resulting T-Box
is shown in figure 16.

The difference to the other way to build the triangles is, that concepts the XAB is
not generated. The concept identified by the original URI, here X, is genralized to its
original state. The results can be seen in figure 17

5.2 Further work

Section2.3 introduced the idea to divide the T-Box into multiple parts in which different
levels of change are allowed to happen. The comments of the reviewers of this paper
lead to an ongoing work/discussion in our group on this topic.
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XA ≡ XAB u (= 1 R) (78)

XB ≡ XAB u (= 2 R) (79)

XAB ≡ X u (XA t XB) (80)

XC ≡ X u (= 3 R) (81)

X ≡ XAB t XC (82)

Fig. 16. Agents A and C merge

XA v (= 1 R) (83)

XA v X (84)

XB v (= 2 R) (85)

XB v X (86)

XC v (= 3 R) (87)

XC v X (88)

Fig. 17. Using other triangle alternative

5.3 Conclusion

The paper presented an algorithm that merges T-Boxes in agent-agent-communication.
Even though we have to evaluate this approach with different possible merge problems,
we think that the handling of the dynamicalised T-Boxes adds important flexibility to
agents using this algorithm.
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