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Abstract. A high-level ASM specification of Condor, a system pro-
viding powerful methods for managing beliefs induced by general con-
ditionals, is refined to qualitative conditional logics, leading to an ASM
implementation. The semantics of this logic are given by ordinal condi-
tional functions (OCFs) ordering worlds according to their plausibility.
OCFs are used to represent the epistemic state of an agent carrying out
knowledge management tasks like answering queries, performing diagno-
sis and hypothetical reasoning, or revising and updating its own state of
belief in the light of new information. The ASM methodology allows us
to precisely describe these knowledge management operations and clarify
various subtleties.

1 Introduction

The aim of the Condor system is to provide powerful methods and tools for
managing beliefs induced by general conditionals. Figure 1 provides a bird’s-eye
view of the Condor system. Condor can be seen as an agent being able to
take rules, pieces of evidence, queries, etc., from the environment and giving
back sentences it believes to be true with a degree of certainty. Basically, these
degrees of belief are calculated from the agent’s current epistemic state which is
a representation of its cognitive state at the given time. The agent is supposed to
live in a dynamic environment, so it has to adapt its epistemic state constantly
to changes in the surrounding world and to react adequately to new demands
(cf. [1], [9]).

In [4] we developed a high-level ASM specification CondorASM for the
system. Thereby, we were able to elaborate crucial interdependencies between
different aspects of knowledge representation, knowledge discovery, and belief
revision. However, in [4], we deliberately left various universes and functions
of CondorASM abstract, aiming at a broad applicability of our approach. In
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particular, by leaving the universe Q of quantitative and qualitative scales ab-
stract, the specification applies to conditionals in both quantitative logic (such as
probabilistic logic [24, 25]) and qualitative approaches (like ordinal conditional
functions [27]).

In this paper, we will refine CondorASM to qualitative conditionals whose
semantics is given by ordinal conditional functions (OCFs) ordering possible
worlds according to their plausibility. In the resulting CondorASMO, OCFs
are used to represent the epistemic state of an agent carrying out knowledge
management tasks like answering queries, performing diagnosis and hypothet-
ical reasoning, or revising and updating its own state of belief in the light of
new information. The ASM methodology allows us to precisely describe these
knowledge management operations and clarify various subtleties. Moreover, by
carrying out all required refinement steps, we arrived at an operational model [23]
that has been impemented in XASM [2]. For instance, all example computations
given in this paper have been carried out by the CondorASM implementation
given in [23].

The rest of this paper is organized as follows: In Section 2, we recall the
basics of qualitative conditional logics and fix our notation, and in Section 3,
the formal framework of CondorASMO is introduced. Section 4 summarizes
the overall structure of CondorASMO and decribes the realization of all its
top-level functions in the OCF framework. Section 5 contains some conclusive
remarks and points out further work.

2 Qualitative Conditional Logic

We start with a propositional language L, generated by a finite set Σ of
atoms a, b, c, . . .. The formulas of L will be denoted by uppercase roman letters
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A, B, C, . . .. For conciseness of notation, we will omit the logical and -connector,
writing AB instead of A ∧ B, and barring formulas will indicate negation, i.e.
A means ¬A. Let Ω denote the set of possible worlds over L; Ω will be taken
here simply as the set of all propositional interpretations over L and can be
identified with the set of all complete conjunctions over Σ. ω |= A means that
the propositional formula A ∈ L holds in the possible world ω ∈ Ω.

By introducing a new binary operator |, we obtain the set (L | L) = {(B|A) |
A, B ∈ L} of conditionals over L. (B|A) formalizes “if A then B” and establishes
a plausible, probable, possible etc connection between the antecedent A and
the consequent B. Here, conditionals are supposed not to be nested, that is,
antecedent and consequent of a conditional will be propositional formulas.

A conditional (B|A) is an object of a three-valued nature, partitioning the
set of worlds Ω in three parts: those worlds satisfying AB, thus verifying the
conditional, those worlds satisfying AB, thus falsifying the conditional, and those
worlds not fulfilling the premise A and so which the conditional may not be
applied to at all. This allows us to represent (B|A) as a generalized indicator
function going back to [10] (where u stand for unknown or indeterminate):

(B|A)(ω) =







1 if ω |= AB

0 if ω |= AB

u if ω |= A

To give appropriate semantics to conditionals, they are usually considered within
richer structures such as epistemic states. Besides certain (logical) knowledge,
epistemic states also allow the representation of preferences, beliefs, assumptions
etc of an intelligent agent. Basically, an epistemic state allows one to compare
formulas or worlds with respect to plausibility, possibility, necessity, probability
etc.

Well-known qualitative, ordinal approaches to represent epistemic states are
Spohn’s ordinal conditional functions, OCFs, (also called ranking functions) [27],
and possibility distributions [6], assigning degrees of plausibility, or of possibility,
respectively, to formulas and possible worlds. In such qualitative frameworks, a
conditional (B|A) is valid (or accepted), if its confirmation, AB, is more plausible,
possible etc. than its refutation, AB; a suitable degree of acceptance is calculated
from the degrees associated with AB and AB.

3 The formal framework of CondorASMO

After introducing the universes of CondorASMO, we point out crucial aspects
of revising epistemic states and describe the main properties of the central notion
of c-revision as developed in [22].

3.1 Universes

The universe Σ of propositional variables provides a vocabulary for denoting
simple facts. The universe Ω contains all possible worlds that can be distin-
guished using Σ. FactU is the set of all (unquantified) propositional sentences
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over Σ, i.e. FactU consists of all formulas from L. The set of all (unquantified)
conditional sentences from (L | L) is denoted by RuleU .

The universe of all sentences without any qualitative or quantitative measure
is given by

SenU = FactU ∪ RuleU

with elements written as A and (B|A), respectively. Additionally, SimpleFactU
denotes the set of simple facts Σ ⊆ FactU , i.e. SimpleFactU = Σ.

In CondorASMO, the abstract universes of quantified sentences SenQ =
FactQ ∪ RuleQ of [4] are refined to

SenO = FactO ∪ RuleO

whose elements are written as A[m] and (B|A)[m], respectively, where A, B ∈
FactU and m ∈ N. For instance, the measured conditional (B|A)[m] has the
reading if A then B with degree of belief m. The set of measured simple facts is
denoted by SimpleFactO ⊆ FactO.

Spohn [27] uses ordinal conditional functions, OCFs, (also called ranking
functions)

κ : Ω → N

to express degrees of plausibility of propositional formulas by specifying degrees
of disbeliefs of their negation. At least one world must be regarded as being
normal; therefore, κ(ω) = 0 for at least one ω ∈ Ω. Each such ranking function
can be taken as the representation of a full epistemic state of an agent. Thus,
the abstract universe EpState of [4] is refined to

EpStateO = {κ | κ : Ω → N and κ−1(0) 6= ∅}

Each κ ∈ EpStateO uniquely determines a function (also denoted by κ)

κ : SenU → N ∪ {∞}

defined by

κ(A) =
{

min{κ(ω) | ω |= A} if A is satisfiable
∞ otherwise

for sentences A ∈ FactU and by

κ((B|A)) =
{

κ(A ∧ B) − κ(A) if κ(A) 6= ∞
∞ otherwise

for conditionals (B|A) ∈ RuleU .
Later on in Sec. 4.4, when we introduce how to query the beliefs of an agent

being in an epistemic state represented by κ, we will also define the binary satis-
faction relation (modelled by its characteristic function in the ASM framework)

|=O ⊆ EpStateO × SenO

such that κ |=O (B|A)[m] means that the state κ satisfies the sentence (B|A)[m],
expressing the agent’s degree of belief m in (B|A).
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3.2 Revision of Conditional Knowledge

Belief revision, the theory of dynamics of knowledge, has been mainly concerned
with propositional beliefs for a long time. The most basic approach here is the
AGM-theory presented in the seminal paper [1] as a set of postulates outlining
appropriate revision mechanisms in a propositional logical environment. This
framework has been widened by Darwiche and Pearl [9] for (qualitative) epis-
temic states and conditional beliefs. An even more general approach, unifying
revision methods for quantitative and qualitative representations of epistemic
states, is described in [20]. The crucial meaning of conditionals as revision poli-
cies for belief revision processes is made clear by the so-called Ramsey test [26],
according to which a conditional (B|A) is accepted in an epistemic state Ψ , iff
revising Ψ by A yields belief in B:

Ψ |= (B|A) iff Ψ ∗ A |= B (1)

where ∗ is a belief revision operator (see e.g. [26, 8]).
Note, that the term “belief revision” is a bit ambiguous: On the one hand, it

is used to denote quite generally any process of changing beliefs due to incoming
new information [13]. On a more sophisticated level, however, one distinguishes
between different kinds of belief change. For instance, (genuine) revision takes
place when new information about a static world arrives, whereas updating tries
to incorporate new information about a (possibly) evolving, changing world [18].

In the following, we will present a precise ASM specification of both update
and (genuine) revision in the context of ordinal conditional functions. We will
also show how these operations can be used to realize focusing [11], i.e. applying
generic knowledge to the evidence present by choosing an appropriate context
or reference class.

3.3 C-revisions

One of the main objectives in belief revision is, informally speaking, to adopt a
state of belief to some new information while respecting the previous knowledge
as faithfully as possible. Whereas for the quantitative approach of probabilistic
logic the principle of minimum cross entropy provides an information theoretic
optimal guideline [24], the principle of conditional preservation as developed in
[20, 22] is a general framework applicable in both quantitative and qualitative
settings. By introducing the notion of conditional indifference, OCF functions
which represent a set R of conditionals and which are indifferent with respect to
them are called c-representations [22]. Furthermore, [22] introduces the concept
of c-revision for characterizing revisions satisfying the principle of conditional
preservation.

A c-revision transforms an epistemic state and a set of quantified sentences
into a new epistemic state. In order to avoid lengthy case distinctions, we assume
that all sentences are conditionals which can easily be achieved by representing
A by (A|true).

The basic idea of a c-revision is to faithfully respect the conditional structure
(cf. [22]). A characterization theorem of [22] shows that every c-revision κ ∗ R
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of an epistemic state κ and a set of rules R can be obtained by adding to each
κ(ω) values for each rule Ri ∈ R, depending on whether ω verfies or falsifies Ri.
We will now describe a procedure from [22] how to calculate such a c-revision
for any finite OCF κ and any finite consistent set R of conditionals.

The consistency of a set R = {(B1|A1), . . . , (Bn|An)} of conditionals in a
qualitative framework can be characterized by the notion of tolerance. A condi-
tional (B|A) is said to be tolerated by a set of conditionals R iff there is a world
ω such that ω verifies (B|A) (i.e. (B|A)(ω) = 1) and ω does not falsify any of
the conditionals in R (i.e. r(ω) 6= 0 for all r ∈ R). R is consistent iff there is
an ordered partition R0,R1, . . . ,Rk of R such that each conditional in Rm is
tolerated by

⋃k
j=m Rj , 0 6 m 6 k (cf. [15]). The boolean function

consistencyCheck : P(SenO) → Bool

tests the consistency of a set of conditionals.

Example 1. Suppose we have the propositional atoms f - flying, b - birds, p -
penguins, w - winged animals, k - kiwis. Let the set R consist of the following
conditionals:

R r1 : (f |b) birds fly
r2 : (b|p) penguins are birds

r3 : (f |p) penguins do not fly
r4 : (w|b) birds have wings
r5 : (b|k) kiwis are birds

The conditionals r1, r4, and r5 are tolerated by R, whereas r2 and r3 are not;
but both r2 and r3 are tolerated by the set {r2, r3}. This yields the partitioning
R0 = {r1, r4, r5}, R1 = {r2, r3} showing the consistency of R.

Now suppose that R is consistent and that a corresponding partition
R0,R1, . . . ,Rk of R is given. Then the following yields a c-revision: Set suc-
cessively, for each partitioning set Rm, 0 6 m 6 k, starting with R0, and for
each conditional ri = (Bi|Ai) ∈ Rm

κ−
i := 1 + max

ω |= AiBi

r(ω) 6= 0, ∀r ∈ Rm ∪ . . . ∪ Rk

(κ(ω) +
∑

rj ∈ R0 ∪ . . . ∪ Rm−1

rj(ω) = 0

κ−
j )

Finally, choose κ0 appropriately to make

κ∗(ω) = κ0 + κ(ω) +
∑

1 6 i 6 n

ω |= AiBi

κ−
i

an ordinal conditional function. Therefore, we get a function

cRevision : EpStateO × P(SenQ) → EpStateO

yielding a c-revison cRevision(κ,R) for any OCF κ and any consistent set of
conditionals R; more details can be found in [22], and in [23] a complete ASM
implementation is given. In the following, we will show how c-revisions can be
used for the realisation of various knowledge management functions in the Con-

dor system.
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4 CondorASMO

We will first summarize the overall structure of CondorASMO and then present
the realization of its functionality as indicated in Figure 1.

4.1 Overall structure

As in CondorASM of [4], also in CondorASMO the agent’s current epistemic
state is denoted by the controlled nullary function1currstate : EpStateO, and the
agents beliefs returned to the environment can be observed via the controlled
function believed sentences : P(SenO) with P(S) denoting the power set of S.

As indicated in Figure 1, there are seven top-level functions that can be
invoked, ranging from initialization of the system to the automatic discovery of
conditional knowledge (CKD). Thus, we have a universe

WhatToDo = { Initialization,Load,Query,Revision,

Diagnosis,What-If-Analysis,CKD }

The nullary interaction function do : WhatToDo is set by the environment in
order to invoke a particular function. We tacitly assume that do is reset to undef
by CondorASMO after each corresponding rule execution.

The appropriate inputs to the top-level functions are modelled by the follow-
ing monitored nullary functions set by the environment:

input type monitored nullary fct.

P(SenO) : rule base
new information
assumptions

P(SenU ) : queries
goals

input type monitored nullary fct.

P(FactO) : evidence

P(SimpleFactU ) : diagnoses

EpStateO : stored state

RevisionOp : rev op

For instance, simply querying the system takes a set of (unquantified) sentences
from SenU , asking for the degrees of belief for them. Similarly, the What-If-
Analysis realizes hypothetical reasoning, taking a set of (quantified) sentences
from SenO as assumptions, together with a set of (unquantified) sentences from
SenU as goals, asking for the degrees of belief for these goals under the given
assumptions. The specific usage of all monitored functions will be explained in
detail in the following section along with the corresponding top-level function-
alities.

4.2 Initialization

When creating a new agent, at first no knowledge at all might be available. We
model this situation by the nullary function uniform : EpState taken to initialize

1 For a general introdcution to ASMs and also to stepwise refinement using ASMs see
e.g. [16] and [28]; in particular, we will use the classification of ASM functions – e.g.
into controlled or monitored functions – as given in [28].
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ω κ(ω) ω κ(ω) ω κ(ω) ω κ(ω)

pbfwk 2 pbfwk 5 pbfwk 0 pbfwk 1

pbfwk 2 pbfwk 4 pbfwk 0 pbfwk 0

pbfwk 3 pbfwk 5 pbfwk 1 pbfwk 1

pbfwk 3 pbfwk 4 pbfwk 1 pbfwk 0

pbfwk 1 pbfwk 3 pbfwk 1 pbfwk 1

pbfwk 1 pbfwk 2 pbfwk 1 pbfwk 0

pbfwk 2 pbfwk 3 pbfwk 2 pbfwk 1

pbfwk 2 pbfwk 2 pbfwk 2 pbfwk 0

Fig. 2. Epistemic state κ after initialization with rule set R from Example 1

the system. In our OCF setting, this ranking function representing complete
ignorance regards all possible worlds as equally pausible, i.e. uniform(ω) = 0 for
all ω ∈ Ω.

If, however, default knowledge is at hand to describe the problem area un-
der consideration, an epistemic state has to be found to appropriately represent
this prior knowledge. To this end, in [4] we assumed an inductive representation
method to establish the desired connection between sets of sentences and epis-
temic states. Whereas generally, a set of sentences S allows a (possibly large)
set of models (or epistemic states), in an inductive formalism we have a function
inductive : P(SenQ) → EpState that selects a unique, “best” epistemic state
from all those states satisfying S.

Thus, we can initialize the system with an epistemic state by providing a
set of (quantified) sentences S and generating a full epistemic state from it by
inductively completing the knowledge given by S. Already here, we can use the
powerful concept of c-revisions for realizing the inductive function: inductive(S)
is obtained by a c-revision of the epistemic state uniform by S:

if do = Initialization
then if consistencyCheck(rule base) = false

then output(“rule base for initialization is inconsistent”)
else newRulesSinceUpdate := rule base

currstate := cRevision(uniform, rule base)

where the the monitored nullary function rule base : P(SenO) is used for reading
the set S. The role of the nullary function newRulesSinceUpdate : P(SenO) is to
keep track of all new rules that have been used to revise the agent’s epistemic
state since its last update occurred. Its purpose will become clear, when we
discuss the subtleties of update and genuine revision operations (Sec. 4.5).

Example 2. Given the rule set R from Example 1 for initialization,
CondorASMO computes the epistemic state κ as depicted in Figure 2.

Selecting a “best” epistemic state from all all those states satisfying a set of
sentences S is an instance of a general problem which we call the representation
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problem (cf. [5]). There are several well-known methods to model such an in-
ductive formalism, a prominent one being the maximum entropy approach. The
rationale behind this approach is to represent the knowledge given by S most
faithfully, i.e. without adding information unnecessarily (cf. [24, 25, 19]).
In an ordinal framework, system-Z, system-Z+ [15], or system-Z∗ [14], as well as
the lcd-functions presented in [7] can be used to build up rankings from default
knowledge; more general approaches to solve the representation problem are
described in [29] and [21].

4.3 Loading an epistemic state

As in CondorASM, also in CondorASMO we can initialize the system with
an epistemic state by loading such a state directly from the environment where
it had been stored during a previous run of the system

if do = Load
then currstate := stored state

with a corresponding monitored nullary function stored state : EpStateO.

4.4 Querying an epistemic state

In order to define the beliefs of an agent, we first refine the abstract satisfaction
relation |=Q of [4] to

|=O ⊆ EpStateO × SenO

where κ |=O (B|A)[m] expresses whether the quantified sentence (B|A)[m] is be-
lieved in epistemic state κ. The idea is that the degree of disbelief of AB (verify-
ing the unquantified conditional) should be more than m smaller than the degree
of disbelief of AB (falsifying the unquantified conditional). Thus, we have

κ |=O (B|A)[m] iff κ(AB) + m < κ(AB)

Note that for a propositional formula, κ |=O A[m] is obtained from the general
case of a conditional by viewing A as the conditional (A|true)[m] with trivial
precondition true. Thus, κ |=O A[m] iff κ |=O (A|true)[m] iff κ(A) + m < κ(A).

Obviously, if m > 0, then κ |=O (B|A)[m] implies κ |=O (B|A)[m − 1]. We
are therefore mainly interested in the maximal m such that κ |=O (B|A)[m].
Therefore, the abstract function belief of [4] is refined to the function

beliefO : EpStateO × P(SenU) → P(SenO)

subject to the condition

beliefO(κ,S) = {S[m] | S ∈ S and κ |=O S[m] and κ 6|=O S[m + 1]}

for every κ ∈ EpStateO and S ⊆ SenU .
For a given state κ, the call beliefO(κ, S) returns, in the form of measured

sentences, the beliefs that hold with regard to the set of basic sentences S ⊆
SenU . The monitored function queries : P(SenU ) holds the set of sentences and
is used in the rule:
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if do = Query
then believed sentences := belief O(currstate, queries)

For simplicity reasons, we assume that propositional sentences are represented
by conditionals with trivial precondition true so that we anly have to deal with
conditionals. Then belief O is defined by:

belief O(κ, S) ≡ resultSet := ∅;
do forall (B|A) ∈ S

let rp = apply(κ, A ∧ B)
rn = apply(κ, A ∧ B)
d = rn − rp in

if d > 0
then resultSet := resultSet ∪ {(B|A)[d − 1]}

where apply(κ, A) returns the rank κ(A) of an unquantified propositional sen-
tence A under the ordinal conditional function κ (cf. Section 3.1).

In the CondorASMO implementation developed in [23], in addition to re-
turning the believed sentences as specified by belief O, those sentences (B|A) in
S that are not believed in κ (i.e. there is no such m ∈ N with κ |=O (B|A)[m])
are printed out as an additional information for the user.

Example 3. When asked the query (f |p) (“Do penguins fly?”) in the epistemic
state κ obtained in Example 2, CondorASMO tells us that (f |p) does not
belong to the set of believed sentences; the knowledge base used for building up
κ explicitly contains the opposite rule (f |p).

On the other hand, asking (w|k) (“Do kiwis have wings?”) we get a positive
degree of belief 1: From their superclass birds, kiwis inherit the property of having
wings.

4.5 Revising and updating an epistemic state

In belief revision, one usually distinguishes between different revision operators,
such as e.g. updating an epistemic state, expanding it, or setting the focus in
it to a given set of sentences. Therefore, in the general framework of [4], we
used a universe RevisionOp of revision operators acknowledging the richness of
different revision methods. For the general task of revising knowledge we used
the abstract function

revise : EpState × RevisionOp × P(SenQ) → EpState

where a call revise(Ψ, op,S) yields a new state where Ψ is modified according to
the revision operator op and the set of sentences S.

In this section, we will refine this abstract function revise to the OCF setting
for the two most important knowledge management functions, namely update
and (genuine) revision, indicated by the revision operators Update,Revision ∈
RevisionOp. The operator Focusing will be defined for the realization of
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CondorASMO’s top-level function Diagnosis where in addition to its epistemic
state an agent has to take into account evidential facts about a particular case.

We will now focus on the sometimes subtle differences between genuine revi-
sion and updating; for a extensive discussion we refer to [22]. Essentially, genuine
revision means incorporating new information on a static snapshot of the world
(without changing generic or background knowledge). On the other hand, up-
dating allows the world to have changed (and so adjusts the epistemic state to a
possibly changed world). Thus, we can view updating as a successive process of
changing the agent’s epistemic state as new pieces of information arive. Genuine
revision, on the other hand, collects the new pieces of information and executes
simultaneous revision of the epistemic state.

In general, (κ ∗ R) ∗ S - updating κ by R and the resulting state by S -
differs from κ ∗ (R∪S) - revising κ ∗R by S. Most obviously, this is the case for
R = {(B|A)} and S = {(B|A)}. Here, updating κ by {(B|A)} will succeed as well
as updating the result with {(B|A)}, which is information being contradictory
to the first update information.

On the other hand, revising κ∗ {(B|A)} by {(B|A)} fails because revising an
epistemic state is only possible if the new piece of information is consistent with
the currently held information. For instance, multiple observations shouldn’t
contradict one another.

We now want to demonstrate how the ASM framework offers a means to
provide a very clear and precise distinction between update and revision op-
erators in a knowledge processing system. Both operators are implemented by
c-revisions of an epistemic state and a set of rules; the difference between update
and revision lies in the exact specification of the parameters of the c-revison:

updateBlock ≡
stateBeforeUpdate := currstate;
newRulesSinceUpdate := new information;
if consistencyCheck(new information) = false

then output(“new information for update is inconsistent”)
else currstate := cRevision(currstate, new information)

Thus, an update operation saves the actual current state (currstate) to state-
BeforeUpdate and initializes the set of new rules (newRulesSinceUpdate) to be
taken into account for changing the epistemic state to the the new information
as given by the monitored function new information : P(SenO). It then com-
putes the new current state by a c-revision of the actual current state and the
new information. A consistency check ensures that the information given to the
c-revision is not contradictory.

reviseBlock ≡
newRulesSinceUpdate := newRulesSinceUpdate ∪ new information;
if consistencyCheck(newRulesSinceUpdate) = false

then output(“new information for revise is inconsistent”)
else currstate := cRevision(stateBeforeUpdate, newRulesSinceUpdate)
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A revise operation, on the other hand, computes the new current state by a
c-revision of the state being valid before the last update took place and the set
of all new rules given for that last update and for all following single revision
steps. Also here, a consistency check ensures that the information given to the
c-revision is not contradictory.

Thus, in CondorASMO, update and genuine revision is realized by the rule

if do = Revision
then if rev op= Update

then updateBlock
else if rev op= Revision

then reviseBlock

where the monitored function rev op : RevisionOp provides the type of revision
operator to be applied.

Example 4. In Example 3, we illustrated the reasons for an agent with the given
epistemic state κ to believe that kiwis have wings. Suppose now that the agent
gets to know that this is false - kiwis do not possess wings - and we want the
agent to adopt this new information. This can be done either by an update
operation, in case the agent might take an evolutionary change of the world into
consideration, or by a revision operation, in case it is certain that the birds’
world has not changed. We will consider both possibilities, thereby illustrating
the difference between both operations.

The updated epistemic state κ∗
1 = κ∗ {(w|k)} is a c-revision of κ by {(w|k)}.

CondorASMO computes this c-revision κ∗
1 from κ by setting κ∗

1(ω) = κ(ω)+ 2
for any ω with ω |= kw and setting κ∗

1(ω) = κ(ω) otherwise. On the other hand,
the (genuine) revision of κ by (w|k) is more complex, as a complete new inductive
representation for the set R′ = {(f |b), (b|p), (f |p), (w|b), (b|k)} ∪ {(w|k)}, i.e. a
c-revision of uniform by R′ has to be computed: κ∗

2 = uniform ∗ R′.
While the revised state κ∗

2, by construction, still represents the five condi-
tionals that have been known before (and, of course, the new conditional), it
can be verified easily that the updated state κ∗

1 only represents the four con-
ditionals (f |b), (b|p), (f |p), and (w|b), but it no longer satisfies (b|k) because
κ∗

1(bk) = κ∗
1(bk) = 1 - since birds and wings have been plausibly related by the

conditional (w|b), the property of not having wings casts (reasonably) doubt on
kiwis being birds. This illustrates that priorly stated, explicit knowledge is kept
under revision, but might be given up under update.

4.6 Diagnosis

The process of diagnosing a particular case amounts to asking about the status
of certain simple facts D ⊆ SimpleFactU = Σ in an epistemic state Ψ under
the condition that some particular factual knowledge S (so-called evidential
knowledge) is given. Thus, an agent makes a diagnosis in the light of some given
evidence by uttering his beliefs in the state obtained by adapting his current
epistemic state by focussing on the given evidence.
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Using the belief O function as defined in Section 4.4 and again the concept of
c-revision, diagnosis in CondorASMO is realized by the rule

if do = Diagnosis
then if consistencyCheck(evidence) = false

then output(“evidence for diagnosis is inconsistent”)
else let focussedState = cRevision(currstate, evidence) in

believed sentences := belief O(focussedState, diagnoses)

where the monitored functions evidence : P(FactQ) and diagnoses :
P(SimpleFactU) provide the factual evidence and a set of (unquantified) facts
for which a degree of belief is to be determined.

Please note that the focussed epistemic state is only used for answering the
particular diagnostic questions; specifically, the agent’s current epistemic state
(currstate) it not changed.

Example 5. Continuing Example 1, we might have the evidence for a pen-
guin and want to ask for the diagnosis whether the penguin has wings. Here,
CondorASMO computes the degree of belief 1, i.e. this is a plausible diagnosis.

4.7 Hypothetical Reasoning

In diagnosis the agent’s focus is set to a set of facts. The epistemic state reflect-
ing this focus setting is obtained by an update operation on the agent’s current
epistemic state with respect to the evidential facts. On the other hand, in hy-
pothetical reasoning what-if questions of the kind “If these assumptions hold,
what does that mean for some goals?” are asked. In contrast to diagnosis, the
assumptions considered may be not only factual evidence, but general pieces of
knowledge. Also the goals may be not just simple facts, but complex sentences.
Therefore, in hypothetical reasoning we model both assumptions and goals by
general conditionals. The assumptions are expressed by quantified conditionals
and the goals by unquantified ones whose degree of belief is asked for.

Apart from these differences, our general ASM framework allows us to nicely
work out the structural similarities between diagnosis and hypothetical reason-
ing: Also the latter is achieved by querying an epistemic state that is obtained
by an update operation on the agent’s current epistemic state:

if do = What-If-Analysis
then if consistencyCheck(assumptions) = false

then output(“assumptions for what-if analysis are inconsistent”)
else let focussedState = cRevision(currstate, assumptions) in

believed sentences := belief O(focussedState, goals)

where the assumptions used for hypotherical reasoning are being hold in the
monitored function assumptions : P(SenO) and the sentences used as goals for
which we ask for the degree of belief are being hold in the monitored function
goals : P(SenU ).

13



5 Conclusions and Further Work

In this paper, we presented CondorASMO, a refinement and implementation of
CondorASM to qualitative conditionals equipped with the semantics of ordinal
conditional functions. The ASM methodology allowed us to precisely describe
sophisticated knowledge management tasks that are most prominently investi-
gated in belief revision. For instance, we could elaborate the similarities and
delicate differences between update and genuine revision operators.

CondorASMO is implemented in XASM on a Linux PC [23]. Its ASM source
code consists of approximately 30 pages, including a rudimentary interactive user
interface and providing all functionalities described in this paper. Since XASM
is no longer maintained and in order to exploit the rich functionalities of AsmL
[3, 17], we plan to port CondorASMO to AsmL for further development.

The Condor system as specified by CondorASM in [4] also provides the
functionality for generating rules from data (conditional knowledge discovery,
CKD), a process that is inverse to the inductive completion of knowledge given
by a set of rules. So far we have elaborated and implemented CKD for the
quantitive approach of probabilistic logic where probabilistic rules are generated
from a full probability distribution [12]. For the case of qualitative logics with
OCFs, the implementation of CKD from ranking functions is subject of our
current work.
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