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Abstract. We develop a high-level ASM specification for the Condor

system that provides powerful methods and tools for managing know-
ledge represented by conditionals. Thereby, we are able to elaborate cru-
cial interdependencies between different aspects of knowledge represen-
tation, knowledge discovery, and belief revision. Moreover, this specifi-
cation provides the basis for a stepwise refinement development process
of the Condor system based on the ASM methodology.

1 Introduction

Commonsense and expert knowledge is most generally expressed by rules, con-
necting a precondition and a conclusion by an if-then-construction. If-then-rules
are more formally denoted as conditionals, and often they occur in the form of
probabilistic (quantitative) conditionals like “Students are young with a prob-
ability of (about) 80 % ” and “Singles (i.e. unmarried people) are young with
a probability of (about) 70 % ”, where this commonsense knowledge can be ex-
pressed formally by {(young|student)[0.8], (young|single)[0.7]}. In another set-
ting, qualitative conditionals like (expensive|Mercedes)[n] are considered where
n ∈ N indicates a degree of plausibility for the conditional “Given that the car
is a Mercedes, it is expensive”.

The crucial point with conditionals is that they carry generic knowledge
which can be applied to different situations. This makes them most interesting
objects in Artificial Intelligence, in theoretical as well as in practical respect.
Within the Condor project (Conditionals - discovery and revision), we develop
methods and tools for discovery and revision of knowledge expressed by con-
ditionals. Our aim is to design, specify, and develop the ambitious Condor

system using Abstract State Machines, based on previous experiences with the
ASM approach and using tools provided by the ASM community.

Figure 1 provides a bird’s-eye view of the Condor system. Condor can
be seen as an agent being able to take rules, evidence, queries, etc., from the
environment and giving back sentences he believes to be true with a degree of
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Fig. 1. A bird’s-eye view of the Condor-Systems

certainty. Basically, these degrees of belief are calculated from the agent’s current
epistemic state which is a representation of his cognitive state at the given time.
The agent is supposed to live in a dynamic environment, so he has to adapt
his epistemic state constantly to changes in the surrounding world and to react
adequately to new demands.

In this paper, we develop a basic ASM, denoted by CondorASM, providing
the top-level functionalities of the Condor system as they are indicated by the
buttons in Figure 1. Using this ASM, we are not only able to decribe precisely
the common functionalities for dealing with both quantitative and qualitative
approaches. We also work out crucial interdependencies between e.g. inductive
knowledge representation, knowledge discovery, and belief revision in a condi-
tional setting. Moreover, CondorASM provides the basis for a stepwise refine-
ment development process of the Condor system.

The rest of this paper is organized as follows: In Section 2, we provide a
very brief introduction to qualitative and quantitative logics. In Section 3, the
universes of CondorASM and its overall structure are introduced, while in
Section 4 its top-level functions are specified. Section 5 contains some conclu-
sions and points out further work. In Appendix A, we summarize the universes,
functions, constraints, and transition rules for CondorASM that are developed
throughout this paper.



2 Background: Qualitative and Quantitative Logic in a
Nutshell

We start with a propositional language L, generated by a finite set Σ of
atoms a, b, c, . . .. The formulas of L will be denoted by uppercase roman letters
A,B,C, . . .. For conciseness of notation, we will omit the logical and -connector,
writing AB instead of A ∧ B, and barring formulas will indicate negation, i.e.
A means ¬A. Let Ω denote the set of possible worlds over L; Ω will be taken
here simply as the set of all propositional interpretations over L and can be
identified with the set of all complete conjunctions over Σ. ω |= A means that
the propositional formula A ∈ L holds in the possible world ω ∈ Ω.

By introducing a new binary operator |, we obtain the set (L | L) = {(B|A) |
A,B ∈ L} of conditionals over L. (B|A) formalizes “if A then B” and establishes
a plausible, probable, possible etc connection between the antecedent A and
the consequent B. Here, conditionals are supposed not to be nested, that is,
antecedent and consequent of a conditional will be propositional formulas.

To give appropriate semantics to conditionals, they are usually considered
within richer structures such as epistemic states. Besides certain (logical) know-
ledge, epistemic states also allow the representation of preferences, beliefs, as-
sumptions etc of an intelligent agent. Basically, an epistemic state allows one
to compare formulas or worlds with respect to plausibility, possibility, necessity,
probability etc.

Well-known qualitative, ordinal approaches to represent epistemic states are
Spohn’s ordinal conditional functions, OCFs, (also called ranking functions)
[Spo88], and possibility distributions [BDP92], assigning degrees of plausibility,
or of possibility, respectively, to formulas and possible worlds. In such qualita-
tive frameworks, a conditional (B|A) is valid (or accepted), if its confirmation,
AB, is more plausible, possible etc. than its refutation, AB; a suitable degree of
acceptance is calculated from the degrees associated with AB and AB.

In a quantitative framework, most appreciated representations of epistemic
states are provided by probability functions (or probability distributions) P :
Ω → [0, 1] with

∑
ω∈Ω P (ω) = 1. The probability of a formula A ∈ L is given

by P (A) =
∑
ω|=A P (ω), and the probability of a conditional (B|A) ∈ (L | L)

with P (A) > 0 is defined as P (B|A) =
P (AB)
P (A)

, the corresponding conditional

probability. Note that, since L is finitely generated, Ω is finite, too, and we only
need additivity instead of σ-additivity.

3 The formal framework of CondorASM

3.1 Universes

On a first and still very abstract level we do not distinguish between qualitative
and quantitative conditionals. Therefore, we use Q as the universe of qualitative
and quantitative scales.



The universe Σ of propositional variables provides a vocabulary for denoting
simple facts. The universe Ω contains all possible worlds that can be distin-
guished using Σ. FactU is the set of all (unquantified) propositional sentences
over Σ, i.e. FactU consists of all formulas from L. The set of all (unquantified)
conditional sentences from (L | L) is denoted by RuleU .

The universe of all sentences without any qualitative or quantitative measure
is given by

SenU = FactU ∪ RuleU
with elements written as A and (B|A), respectively. Additionally, SimpleFactU
denotes the set of simple facts Σ ⊆ FactU , i.e. SimpleFactU = Σ.

Analogously, in order to take quantifications of belief into account, we intro-
duce the universe SenQ of all qualitative or quantitative sentences by setting

SenQ = FactQ ∪ RuleQ

whose elements are written as A[x] and (B|A)[x], respectively, where A,B ∈
FactU and x ∈ Q. For instance, the measured conditional (B|A)[x] has the
reading if A then B with degree of belief x. The set of measured simple facts is
denoted by SimpleFactQ ⊆ FactQ.

The universe of epistemic states is given by EpState ⊆ {Ψ | Ψ : Ω → Q}.
We assume that each Ψ ∈ EpState uniquely determines a function (also denoted
by Ψ) Ψ : SenU → Q. For instance, in a probabilistic setting, for Ψ = P : Ω →
[0, 1] we have P (A) =

∑
ω|=A P (ω) for any unquantified sentence A ∈ SenU .

Finally, there is a binary satisfaction relation (modelled by its characteristic
function in the ASM framework) |=Q ⊆ EpState×SenQ such that Ψ |=Q S means
that the state Ψ satisfies the sentence S . Typically, Ψ will satisfy a sentence like
A[x] if Ψ assigns toA the degree x (“in Ψ , A has degree of probability / plausibility
x”).

In this paper, our standard examples for epistemic states are probability
distributions, but note that the complete approach carries over directly to the
ordinal framework (see eg. [KI01a]).

Example 1. In a probabilistic setting, conditionals are interpreted via condi-
tional probability. So for a probability distribution P , we have P |=Q (B|A) [x]
iff P (B|A) = x (for x ∈ [0, 1]).

3.2 Overall structure

In the CondorASM, the agent’s current epistemic state is denoted by the con-
trolled nullary function1

currstate : EpState
The agents beliefs returned to the environment can be observed via the controlled
function

believed sentences : P(SenQ)
1 For a general introdcution to ASMs and also to stepwise refinement using ASMs

see e.g. [Gur95] and [SSB01]; in particular, we will use the classification of ASM
functions – e.g. into controlled or monitored functions – as given in [SSB01].



input type monitored nullary function

P(SenQ) : rule base
new information
assumptions

P(SenU ) : queries
goals

P(FactQ) : evidence

P(SimpleFactU ) : diagnoses

EpState : stored state
distribution

RevisionOp : rev op

Fig. 2. Monitored function in CondorASM

with P(S) denoting the power set of S.
As indicated in Figure 1, there are seven top-level functions that can be

invoked, ranging from initialization of the system to the automatic discovery of
conditional knowledge (CKD). Thus, we have a universe

WhatToDo = { Initialization,Load,Query,Revision,
Diagnosis,What-If-Analysis,CKD }

The nullary interaction function

do : WhatToDo

is set by the environment in order to invoke a particular function and is reset by
CondorASM on executing it.

The appropriate inputs to the top-level functions are modelled by monitored
nullary functions set by the environment. For instance, simply querying the sys-
tem takes a set of (unquantified) sentences from SenU , asking for the degree
of belief for them. Similarly, the What-If-Analysis realizes hypothetical reason-
ing, taking a set of (quantified) sentences from SenQ as assumptions, together
with a set of (unquantified) sentences from SenU as goals, asking for the degree
of belief for these goals under the given assumptions. Figure 2 summarizes all
monitored functions serving as inputs to the system; their specific usage will be
explained in detail in the following section along with the corresponding top-level
functionalities.

4 Top-level Functions in the Condor-System

4.1 Initialization

In the beginning, a prior epistemic state has to be built up on the basis of which
the agent can start his computations. If no knowledge at all is at hand, simply



the uniform epistemic state, modelled by the nullary function

uniform : EpState

is taken to initialize the system. For instance, in a probabilistic setting, this
corresponds to the uniform distribution where everything holds with probability
0.5.

If, however, default knowledge or a set of probabilistic rules is at hand to
describe the problem area under consideration, an epistemic state has to be
found to appropriately represent this prior knowledge. To this end, we assume
an inductive representation method to establish the desired connection between
sets of sentences and epistemic states. Whereas generally, a set of sentences allows
a (possibly large) set of models (or epistemic states), in an inductive formalism
we have a function

inductive : P(SenQ)→ EpState

such that inductive(S) selects a unique, “best” epistemic state from all those
states satisfying S. Starting with the no-knowledge representing state uniform
can be modelled by providing the empty set of rules since the constraint

uniform = inductive(∅)

must hold.
Thus, we can initialize the system with an epistemic state by providing a

set of (quantified) sentences S and generating a full epistemic state from it by
inductively completing the knowledge given by S. For reading in such a set S,
the monitored nullary function rule base : P(SenQ) is used:

if do = Initialization
then currstate := inductive(rule base)

do := undef

Selecting a “best” epistemic state from all all those states satisfying a set of
sentences S is an instance of a general problem which we call the representation
problem (cf. [BKI02a]). There are several well-known methods to model such an
inductive formalism, a prominent one being the maximum entropy approach.

Example 2. In a probabilistic framework, the principle of maximum entropy as-
sociates to a set S of probabilistic conditionals the unique distribution P ∗ =
MaxEnt(S) that satisfies all conditionals in S and has maximal entropy, i.e.,
MaxEnt(S) is the (unique) solution to the maximization problem

maxH(P ′) = −
∑
ω

P ′(ω) logP ′(ω) (1)

s.t. P ′ is a probability distribution with P ′ |= S.

The rationale behind this is that MaxEnt(S) represents the knowledge given
by S most faithfully, i.e. without adding information unnecessarily (cf.
[Par94,PV97,KI98]).



We will illustrate the maximum entropy method by a small example.

Example 3. Consider the three propositional variables a - being a student, b -
being young, and c - being unmarried. Students and unmarried people are mostly
young. This commonsense knowledge an agent may have can be expressed prob-
abilistically e.g. by the set S = {(b|a)[0.8], (b|c)[0.7]} of conditionals. The Max-
Ent-representation P ∗ = MaxEnt(S) is given in the following table2:

ω P ∗(ω) ω P ∗(ω) ω P ∗(ω) ω P ∗(ω)

abc 0.1950 abc 0.1758 abc 0.0408 abc 0.0519
abc 0.1528 abc 0.1378 abc 0.1081 abc 0.1378

4.2 Loading an epistemic state

Another way to initialize the system with an epistemic state is to load such a
state directly from the environment (where it might have been stored during a
previous run of the system; this could be modelled easily by an additional top-
level function). Therefore, there is a monitored nullary function stored state :
EpState which is used in the following rule:

if do = Load
then currstate := stored state

do := undef

4.3 Querying an epistemic state

The function
belief : EpState× P(SenU )→ P(SenQ)

is the so-called belief measure function which is subject to the condition

belief (Ψ,S) = {S[x] | S ∈ S and Ψ |=Q S[x]}

for every Ψ ∈ EpState and S ⊆ SenU . For a given state Ψ , the call belief (Ψ, S)
returns, in the form of measured sentences, the beliefs that hold with regard to
the set of basic sentences S ⊆ SenU . The monitored function queries : P(SenU )
holds the set of sentences and is used in the rule:

if do = Query
then believed sentences := belief (currstate, queries)

do := undef

Example 4. Suppose the current epistemic state is currstate = MaxEnt(S)
from Example 3 above, and our query is “What is the probability that un-
married students are young?”, i.e. queries = {(b|ac)}. The system returns
belief (currstate, queries) = {(b|ac)[0.8270]}, that is, unmarried students are sup-
posed to be young with probability 0.8270.
2 MaxEnt(S) has been computed with the expert system shell SPIRIT

[RKI97a,RKI97b]; cf. http://www.fernuni-hagen.de/BWLOR/spirit.html



4.4 Revision of Conditional Knowledge

Belief revision, the theory of dynamics of knowledge, has been mainly concerned
with propositional beliefs for a long time. The most basic approach here is the
AGM-theory presented in the seminal paper [AGM85] as a set of postulates out-
lining appropriate revision mechanisms in a propositional logical environment.
This framework has been widened by Darwiche and Pearl [DP97a] for (qualita-
tive) epistemic states and conditional beliefs. An even more general approach,
unifying revision methods for quantitative and qualitative representations of
epistemic states, is described in [KI01a]. The crucial meaning of conditionals
as revision policies for belief revision processes is made clear by the so-called
Ramsey test [Ram50], according to which a conditional (B|A) is accepted in an
epistemic state Ψ , iff revising Ψ by A yields belief in B:

Ψ |= (B|A) iff Ψ ∗A |= B (2)

where ∗ is a belief revision operator (see e.g. [Ram50,BG93]).
Note, that the term “belief revision” is a bit ambiguous: On the one hand,

it is used to denote quite generally any process of changing beliefs due to in-
coming new information [Gär88]. On a more sophisticated level, however, one
distinguishes between different kinds of belief change. Here, (genuine) revision
takes place when new information about a static world arrives, whereas updating
tries to incorporate new information about a (possibly) evolving, changing world
[KM91]. Expansion simply adds new knowledge to the current beliefs, in case
that there are no conflicts between prior and new knowledge [Gär88]. Focusing
[DP97b] means applying generic knowledge to the evidence present by choos-
ing an appropriate context or reference class. Contraction [Gär88] and erasure
[KM91] are operations inverse to revision and updating, respectively, and deal
with the problem of how to “forget” knowledge. In this paper, we will make use
of this richness of different operations, but only on a surface level, without going
into details. The explanations given above will be enough for understanding the
approach to be developed here. An interested reader may follow the mentioned
references. For a more general approach to belief revision both in a symbolic and
numerical framework, cf. [KI01a]. The revision operator ∗ used above is most
properly looked upon as a revision or updating operator. We will stick, however,
to the term revision, and will use it in its general meaning, if not explicitly stated
otherwise.

The universe of revision operators is given by

RevisionOp = {Update,Revision,Expansion,Contraction,Erasure,Focusing }

and the general task of revising knowledge is realized by a function

revise : EpState× RevisionOp× P(SenQ)→ EpState

A call revise(Ψ, op,S) yields a new state where Ψ is modified according to the
revision operator op and the set of sentences S. Note that we consider here belief



revision in a very general and advanced form: We revise epistemic states by sets
of conditionals – this exceeds the classical AGM-theory by far which only deals
with sets of propositional beliefs.

The constraints the function revise is expected to satisfy depend crucially on
the kind of revision operator used in it and also on the chosen framework (ordinal
or e.g. probabilistic). Therefore, we will merely state quite basic constraints here,
which are in accordance with the AGM theory [AGM85] and its generalizations
[DP97a,KI01a].

The first and most basic constraint corresponds to the success postulate in be-
lief revision theory: if the change operator is one of Update,Revision,Expansion,
the new information is expected to be present in the posterior epistemic state:

revise(Ψ,Revision,S) |=Q S
revise(Ψ,Update,S) |=Q S

revise(Ψ,Expansion,S) |=Q S

Furthermore, any revision process should satisfy stability – if the new information
to be incorporated is already represented in the present epistemic state, then no
change shall be made:

If Ψ |=Q S then:
revise(Ψ,Revision,S) = Ψ

revise(Ψ,Update,S) = Ψ

revise(Ψ,Expansion,S) = Ψ

Similarly, for the deletion of information we get:

If not Ψ |=Q S then:
revise(Ψ,Contraction,S) = Ψ

revise(Ψ,Erasure,S) = Ψ

To establish a connection between revising and retracting operations, one
may further impose recovery constraints:

revise(revise(Ψ,Contraction,S),Revision,S) = Ψ

revise(revise(Ψ,Erasure,S),Update,S) = Ψ

A correspondence between inductive knowledge representation and belief re-
vison can be established by the condition

inductive(S) = revise(uniform,Update, S). (3)

Thus, inductively completing the knowledge given by S can be taken as revising
the non-knowledge representing epistemic state uniform by updating it to S.

In CondorASM, revision is realized by the rule



if do = Revision
then currstate := revise(currstate, rev op, new information)

do := undef

where the monitored functions rev op : RevisionOp and new information :
P(SenQ) provide the type of revision operator to be applied and the set of
new sentences to be taken into account, respectively.

Example 5. In a probabilistic framework, a powerful tool to revise (more ap-
propriately: update) probability distributions by sets of probabilistic condition-
als is provided by the principle of minimum cross-entropy which generalizes
the principle of maximum entropy in the sense of (3): Given a (prior) distri-
bution, P , and a set, S, of probabilistic conditionals, The MinEnt-distribution
PME = MinEnt(P,S) is the (unique) distribution that satisfies all constraints in
S and has minimal cross-entropy with respect to P , i.e. PME solves the mini-
mization problem

minR(P ′, P ) =
∑
ω

P ′(ω) log
P ′(ω)
P (ω)

(4)

s.t. P ′ is a probability distribution with P ′ |= S

If S is basically compatible with P (i.e. P -consistent, cf. [KI01a]), then PME

is guaranteed to exist (for further information and lots of examples, see
[Csi75,PV92,Par94,KI01a]). The cross-entropy between two distributions can be
taken as a directed (i.e. asymmetric) information distance [Sho86] between these
two distributions. So, following the principle of minimum cross-entropy means
to revise the prior epistemic state P in such a way as to obtain a new distribu-
tion which satisfies all conditionals in S and is as close to P as possible. So, the
MinEnt-principle yields a probabilistic belief revision operator, ∗ME , associating
to each probability distribution P and each P -consistent set S of probabilistic
conditionals a revised distribution PME = P ∗ME S in which S holds.

Example 6. Suppose that some months later, the agent from Example 3 has
changed his mind concerning his formerly held conditional belief (young|student)
– he now believes that students are young with a probability of 0.9. So an
updating operation has to modify P ∗ appropriately. We use MinEnt-revision to
compute P ∗∗ = revise(P ∗,Update, {(b|a)[0.9]}). The result is shown in the table
below.

ω P ∗∗(ω) ω P ∗∗(ω) ω P ∗∗(ω) ω P ∗∗(ω)

abc 0.2151 abc 0.1939 abc 0.0200 abc 0.0255
abc 0.1554 abc 0.1401 abc 0.1099 abc 0.1401

It is easily checked that indeed, P ∗∗(b|a) = 0.9 (only approximately, due to
rounding errors).



4.5 Diagnosis

Having introduced these first abstract functions for belief revision, we are already
able to introduce additional functions. As an illustration, consider the function

diagnose : EpState× P(FactQ)× P(SimpleFactU )→ P(SimpleFactQ)

asking about the status of certain simple facts D ⊆ SimpleFactU = Σ in a
state Ψ under the condition that some particular factual knowledge S (so-called
evidential knowledge) is given. It is defined by

diagnose(Ψ,S, D) = belief (revise(Ψ,Focusing,S), D)

Thus, making a diagnosis in the light of some given evidence corresponds to
what is believed in the state obtained by adapting the current state by focusing
on the given evidence.

Diagnosis is realized by the rule

if do = Diagnosis
then believed sentences := diagnose(currstate, evidence, diagnoses)

do := undef

where the monitored functions evidence : P(FactQ) and diagnoses :
P(SimpleFactU ) provide the factual evidence and a set of (unquantified) facts
for which a degree of belief is to be determined.

Example 7. In a probabilistic framework, focusing on a certain evidence is usu-
ally done by conditioning the present probability distribution correspondingly.
For instance, if there is certain evidence for being a student and being unmarried
– i.e. evidence = {student∧unmarried[1]} – and we ask for the degree of belief of
being young – i.e. diagnoses = {young} – for currstate = P ∗ from Example 3,
the system computes

diagnose(P ∗, {student ∧ unmarried[1]}, {young}) = {young[0.8270]}

and update believed sentences to this set. Thus, if there is certain evidence for
being an unmarried student, then the degree of belief for being young is 0.8270.

4.6 What-If-Analysis: Hypothetical Reasoning

There is a close relationship between belief revision and generalized nonmono-
tonic reasoning described by

R |∼ Ψ S iff Ψ ∗ R |=Q S

(cf. [KI01a]). In this formula, the operator ∗may be a revision or an update oper-
ator. Here, we will use updating as the operation to study default consequences.
So, hypothetical reasoning carried out by the function

nmrupd : EpState× P(SenQ)× P(SenU )→ P(SenQ)



can be defined by combining the belief -function and the revise-function:

nmrupd(Ψ,Sq,Su) = belief (revise(Ψ,Update,Sq),Su)

The assumptions Sq used for hypotherical reasoning are being hold in the
monitored function assumptions : P(SenQ) and the sentences Su used as goals
for which we ask for the degree of belief are being hold in the monitored function
goals : P(SenU ). Thus, we obtain the rule

if do = What-If-Analysis
then believed sentences := nmrupd(currstate, assumptions, goals)

do := undef

Example 8. With this function, hypothetical reasoning can be done as is il-
lustrated e.g. by “Given P ∗ in Example 3 as present epistemic state – i.e.
currstate = P ∗ –, what would be the probability of (b|c) – i.e. goals = {(b|c)}
–, provided that the probability of (b|a) changed to 0.9 – i.e. assumptions =
{(b|a)[0.9]} ?” Condor’s answer is believed sentences = {(b|c)[0.7404]} which
corresponds to the probability given by P ∗∗ from Example 6.

4.7 Conditional Knowledge Discovery

Conditional knowledge discovery is modelled by a function

CKD : EpState→ P(SenQ)

that extracts measured facts and rules from a given state Ψ that hold in that
state, i.e. Ψ |=Q CKD(Ψ). More significantly, CKD(Ψ) should be a set of “inter-
esting” facts and rules, satisfying e.g. some minimality requirement. In the ideal
case, CKD(Ψ) yields a set of measured sentences that has Ψ as its “designated”
representation via an inductive representation formalism inductive. Therefore,
discovering most relevant relationships in the formal representation of an epis-
temic state may be taken as solving the inverse representation problem (cf.
[KI00,BKI02b]):

Given an epistemic state Ψ find a set of (relevant) sentences S that has
Ψ as its designated representation, i.e. such that inductive(S) = Ψ .

The intended relationship between the two operations inductive and CKD can
be formalized by the condition

inductive(CKD(Ψ)) = Ψ

which holds for all epistemic states Ψ .
This is the theoretical basis for our approach to knowledge discovery. In

practice, however, usually the objects knowledge discovery techniques deal with
are not epistemic states but statistical data. We presuppose here that these data
are at hand as some kind of distribution, e.g. as a frequency distribution or



an ordinal distribution (for an approach to obtain possibility distributions from
data, cf. [GK97]). These distributions will be of the same type as epistemic states
in the corresponding framework, but since they are ontologically different, we
prefer to introduce another term for the arguments of CKD-functions:

distribution : EpState

if do = CKD
then believed sentences := CKD(distribution)

do := undef

For instance, in a quantitative setting, Ψ may be a (rather complex) full
probabilistic distribution over a large set of propositional variables. On the other
hand, CKD(Ψ) should be a (relatively small) set of probabilistic facts and condi-
tionals that can be used as a faithful representation of the relevant relationships
inherent to Ψ , e.g. with respect to the MaxEnt-formalism (cf. Section 4.1). So,
the inverse representation problem for inductive = MaxEnt reads like this: Find
a set CKD(Ψ) such that Ψ is the uniquely determined probability distribution
satisfying Ψ = MaxEnt(CKD(Ψ)).

We will illustrate the basic idea of how to solve this inverse MaxEnt-problem
by continuing Example 3.

Example 9. The probability distribution we are going to investigate is P ∗ from
Example 3. Starting with observing relationships between probabilities like

P ∗(abc) = P ∗(abc),

P ∗(abc)
P ∗(abc)

=
P ∗(abc)
P ∗(abc)

,

P ∗(abc)
P ∗(abc)

=
P ∗(abc)
P ∗(abc)

,

the procedure described in [KI01b] yields the set Su = {(b|a), (b|c)} of unquanti-
fied (structural) conditionals not yet having assigned any probabilities to them.
Associating the proper probabilities (which are directly computable from P ∗)
with these structural conditionals, we obtain

S = CKD(P ∗) = {(b|a)[0.8], (b|c)[0.7]}

as a MaxEnt-generating set for P ∗, i.e. P ∗ = MaxEnt(S). In other words, the
probabilistic conditionals

(young|student)[0.8],
(young|unmarried)[0.7]

that have been generated from P ∗ fully automatically, constitute a consise set
of uncertain rules that faithfully represent the complete distribution P ∗ in an
information-theoretically optimal way. So indeed, we arrived at the same set of
conditionals we used to build up P ∗ in Example 3. Thus, in this case we have

CKD(MaxEnt(S)) = S



But note, that in general, CKD(P ) will also contain redundant rules so that only

CKD(MaxEnt(S)) ⊇ S

will hold.

5 Conclusions and Further Work

Starting from a bird’s-eye view of the Condor system, currently being under
construction within our Condor project, we developed a high-level ASM spec-
ification for a system that provides powerful methods and tools for managing
knowledge represented by conditionals. Thereby, we were able to elaborate cru-
cial interdependencies between different aspects of knowledge representation,
knowledge discovery, and belief revision.

Whereas in this paper, we deliberately left the universe Q of quantitative
and qualitative scales abstract, aiming at a broad applicability of our approach,
in a further development step we will refine CondorASM by distinguishing
quantitative logic (such as probabilistic logic) and qualitative approaches (like
ordinal conditional functions). In vertical refinement steps, we will elaborate the
up to now still abstract functions like belief and revise by realizing them on
lower-level data structures, following the ASM idea of stepwise refinement down
to executable code.
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A Appendix: Universes, functions, constraints, and
transition rules for CondorASM

A.1 Universes

universe typical element

Σ a simple fact
Ω ω complete conjunction over Σ
Q x measure, degree of belief

SimpleFactU = Σ a (unquantified) simple fact
FactU A (unquantified) fact
RuleU (B|A) (unquantified) conditional, rule
SenU = FactU ∪ RuleU (unquantified) sentences

SimpleFactQ a[x] quantified simple fact
FactQ A[x] quantified fact
RuleQ (B|A)[x] quantified conditional, rule
SenQ = FactQ ∪ RuleQ quantified sentences

EpState Ψ epistemic state
WhatToDo domain of actions to be performed
RevisionOp op domain of revision operators

A.2 Static functions

|=Q : EpState× SenQ → Bool

uniform : EpState

inductive : P(SenQ)→ EpState

belief : EpState× P(SenU )→ P(SenQ)

revise : EpState× RevisionOp× P(SenQ)→ EpState

diagnose : EpState× P(FactQ)× P(Σ)→ P(SenQ)

nmrupd : EpState× P(SenQ)× P(SenU )→ P(SenQ)

CKD : EpState→ P(SenQ)

A.3 Dynamic functions

1. Controlled functions:

function arity

currstate : EpState current epistemic state
believed sentences : P(SenQ) believed sentences w.r.t. current action



2. Monitored functions:

function arity

rule base : P(SenQ) set of rules for initialization

stored state : EpState epistemic state for loading

queries : P(SenU ) unquantified sentences for querying

new information : P(SenQ) set of new rules for revision
rev op : RevisionOp revison operator

evidence : P(FactQ) evidence for diagnosis
diagnoses : P(SimpleFactU ) possible diagnoses to be checked

assumptions : P(SenQ) assumptions for hypoth. reasoning
goals : P(SenU ) goals for hypothetical reasoning

distribution : EpState distribution for conditional
knowledge discovery

3. Interaction functions:

function arity

do : WhatToDo current action to be performed

A.4 Constraints

belief (Ψ,S) = {S[x] | S ∈ S and Ψ |=Q S[x]}

uniform = inductive(∅)

revise(Ψ,Revision,S) |=Q S
revise(Ψ,Update,S) |=Q S

revise(Ψ,Expansion,S) |=Q S

If Ψ |=Q S then:
revise(Ψ,Revision,S) = Ψ

revise(Ψ,Update,S) = Ψ

revise(Ψ,Expansion,S) = Ψ

If not Ψ |=Q S then:
revise(Ψ,Contraction,S) = Ψ

revise(Ψ,Erasure,S) = Ψ



revise(revise(Ψ,Contraction,S),Revision,S) = Ψ

revise(revise(Ψ,Erasure,S),Update,S) = Ψ

inductive(S) = revise(uniform,Update, S).

diagnose(Ψ,S, D) = belief (revise(Ψ,Focusing,S), D)

nmrupd(Ψ,Sq,Su) = belief (revise(Ψ,Update,Sq),Su)

inductive(CKD(Ψ)) = Ψ

A.5 Transition rules

if do = Initialization
then currstate := inductive(rule base)

do := undef

if do = Load
then currstate := stored state

do := undef

if do = Query
then believed sentences := belief (currstate, queries)

do := undef

if do = Revision
then currstate := revise(currstate, rev op, new information)

do := undef

if do = Diagnosis
then believed sentences := diagnose(currstate, evidence, diagnoses)

do := undef

if do = What-If-Analysis
then believed sentences := nmrupd(currstate, assumptions, goals)

do := undef

if do = CKD
then believed sentences := CKD(distribution)

do := undef


