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Abstract:  We provide a mathematical specification of an extension of Warren’s Abstract Machine for
executing Prolog to type-constraint logic programming and prove its correctness. Our aim is to provide
a full specification and correctness proof of a concrete system, the PROTOS Abstract Machine (PAM),
an extension of the WAM by polymorphic order-sorted unification as required by the logic programming
language PROTOS-L.

In the first part of the paper, we keep the notion of types and dynamic type constraints rather abstract
to allow applications to different constraint formalisms like Prolog III or CLP(R). This generality permits
us to introduce modular extensions of Borger’s and Rosenzweig’s formal derivation of the WAM. Since
the type constraint handling is orthogonal to the compilation of predicates and clauses, we start from
type-constraint Prolog algebras with compiled AND/OR structure that are derived from Borger’s and
Rosenzweig’s corresponding compiled standard Prolog algebras. The specification of the type-constraint
WAM extension is then given by a sequence of evolving algebras, each representing a refinement level,
and for each refinement step a correctness proof is given. Thus, we obtain the theorem that for every
such abstract type-constraint logic programming system L, every compiler to the WAM extension with an
abstract notion of types which satisfies the specified conditions, is correct.

In the second part of the paper, we refine the type constraints to the polymorphic order-sorted types of
PROTOS-L. This allows us to develop a detailed, yet due to the use of evolving algebras, mathematically
precise account of the PAM’s compiled type constraint representation and solving facilities, and to extend
the correctness theorem to compilation on the fully specified PAM.
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1 Introduction

Recently, Gurevich’s evolving algebra approach ([Gur88]) has not only been used for the description
of the (operational) semantics of various programming languages (Modula-2, Occam, Prolog, Prolog
II1, Smalltalk, Parlog, C; see [Gur91]), but also for the description and analysis of implementation
methods: Borger and Rosenzweig ([BR91, BR92b, BR92a]) provide a mathematical elaboration of
Warren’s Abstract Machine ([War83], [AK91]) for executing Prolog. The description consists of
several refinement levels together with correctness proofs, and a correctness proof w.r.t. Borger’s
phenomenological Prolog description ([Bér90a, Bor9ob).

In this paper we demonstrate how the evolving algebra approach naturally allows for mod-
ifications and extensions in the description of both the semantics of programming languages as
well as in the description of implementation methods. Based on Borger and Rosenzweig’s WAM
description we provide a mathematical specification of a WAM extension to type-constraint logic
programming and prove its correctness. Note that thereby our treatment can be easily extended
to cover also all extra-logical features (like the Prolog cut) whereas the WAM correctness proof of
[Rus92] deals merely with SLD resolution for Horn clauses.

The extension of logic programming by types requires in general not only static type check-
ing, but types are also present at run time (see e.g. [MO84], [GM8&6], [NM88], [Han88], [Han91],
[Smo89]). For instance, if there are types and subtypes, restricting a variable to a subtype repre-
sents a constraint in the spirit of constraint logic programming. PROTOS-L ([Bei92], [BBM91])
is a logic programming language that has a polymorphic, order-sorted type concept (similar to
the slightly more general type concept of TEL [Smo88]) and a complete abstract machine im-
plementation, called PAM ([BMS91], [BM94]) that is an extension of the WAM by the required
polymorphic order-sorted unification. Our aim is to provide a full specification and correctness
proof of the concrete PAM system.

In the first part of this paper, we keep the notion of types and dynamic type constraints
rather abstract to allow applications to different constraint formalisms. Since the type constraint
handling is orthogonal to the compilation of predicates and clauses, we start from type-constraint
Prolog algebras with compiled AND/OR structure that are derived from Borger’s and Rosenzweig’s
corresponding compiled standard Prolog algebras. The specification of the type-constraint WAM
extension is then given by a sequence of evolving algebras, each representing a refinement level.
For each refinement step a correctness proof is given. As final result of Part I of this paper we
obtain the theorem: For every such abstract type-constraint logic programming system L and for
every compiler satisfying the specified conditions, compilation from L to the the WAM extension
with an abstract notion of types is correct.

Although our description in Part I is oriented towards type constraints, it is modular in the
sense that it can be extended to other constraint formalisms, like Prolog IIT [Col90] or CLP(R)
[JL87], [TMSY90], as well. For instance, in [BS95] a specification of the CLAM, an abstract
machine for CLP(R), is given along these lines, together with a correctness proof for CLP(R)
compilation. [Bei94] extends the work reported here by studying a general implementation scheme
for CLP(X) and designing a generic extension WAM(X) of the WAM. Nevertheless, in order to
avoid proliferation of different classes of evolving algebras, we will already speak here in Part 1
in terms of PROTOS-L and PAM algebras (instead of type-constraint Prolog and type-constraint
WAM algebras).

In Part II we refine the type constraints to the polymorphic order-sorted types of PROTOS-L,
again in several refinement steps. This allows us to develop a detailed, yet due to the use of
the evolving algebras, mathematically precise account of the PAM’s compiled type constraint
representation and solving facilities, and to prove its correctness w.r.t. PROTOS-L which we obtain
as the final correctness theorem.

This paper was written in 1992/93 and revises and extends our work presented in [BB91] and
[BB92]. Tt is organized as follows: Part I consists of Sections 2 - 5. Section 2 introduces an



abstract notion of (type) constraints and defines PROTOS-L algebras with compiled AND/OR
structure, the starting point of our development. This already includes the treatment of indexing
and switching instructions which on this level of abstraction carry over from the WAM to the
PAM. Section 3 introduces the representation of terms. The stack representation of environments
and choicepoints is given in Section 4 which also contains the “Pure PROTOS-L” theorem stating
the correctness of the PAM algebras developed so far w.r.t. the PROTOS-L algebras of Section 2.
Various WAM optimizations that are also present in the PAM (environment trimming, last call
optimization, initialization “on the fly” of temporary and permanent variables) are described in
Section 5. The notions of type constraint and constraint solving have been kept abstract through
all refinement levels so far; thus, the development carried out in Part I applies to any type system
satisfying the given abstract conditions.

Part II consists of the Sections 6 - 8. Section 6 introduces the representation and constraint
solving of monomorphic, order-sorted type constraints. Section 7 contains some type-specific opti-
mizations of the PAM, which yields a situation where the WAM comes out as a special case of the
PAM for any program not exploiting the advantages of dynamic type constraints. Section 8 gives
a detailed account of polymorphic type constraint representation and solving in the PAM.

Notation and prerequisites

In this section we first list those definitions which are necessary to the reader who is interested
only in analysis of the PAM, reading our rules as ‘pseudocode over abstract data’, and not in
checking the correctness proof (for which we rely more explicitely on the underlying methodology
of evolving algebras; for background and a definition of this notion which is due to Y. Gurevich
see [Gur9l]).

The abstract data comes as elements of (not further analysed) sets (domains, universes). The
operations allowed on universes will be represented by partial functions.

We shall allow the setup to evolve in time, by executing function updates of the form
f(t1,...,t,) := t

whose execution is to be understood as changing (or defining, if there was none) the value of
function £ at given arguments.

We shall also allow some of the universes (typically initially empty) to grow in time, by exe-
cuting updates of form

extend A by ti,...,t, with updates endextend

where updates may (and should) depend on the t;’s, setting the values of some functions on newly
created elements t; of 4.

The precise way our ‘abstract machines’ may evolve in time will be determined by a finite set
of rules of the form

if condition
then updates

where condition or guard is a boolean, the truth of which triggers simultaneous execution of all
updates listed in updates. Simultaneous execution helps us avoid coding to, say, interchange two
values.

If at every moment at most one rule is applicable (which will in this paper always be the case),
we shall talk about determinism - otherwise we might think of a daemon freely choosing the rule
to fire. The forms obviously reducible to the above basic syntax, which we shall freely use as
abbreviations, are let and if then else. The transition rule notation

if condition; | ... | condition,
then wupdates; | ... | updates,



with pairwise incompatible conditions condition; stands for the obvious set of n transition rules

if condition;
then wupdates;

if conditions
then updates,

if condition,
then updates,

We will also use the |-notation to separate alternative parts within more complex rule conditions
and the corresponding update parts. For instance, the rule notation

if 0K
& code(p) = call(BIP)
& BIP =
true | fail | cut
then
succeed | backtrack | b := ct’(e)

| | succeed

deals with the built-in predicates true, fail, and cut and stands for the three rules

if OK
& code(p) = call(BIP)
& BIP = true

then
succeed

if 0K
& code(p) = call(BIP)
& BIP = fail

then
backtrack

if 0K
& code(p) = call(BIP)
& BIP = cut
then
b := ct’(e)
succeed

Also, we will often introduce abbreviations of the form a = term. For instance, in the rules just
given we used the three abbreviations

succeed = p :=p + 1 backtrack = if b = nil
then stop := -1
OK = stop = 0 else p := p(b)

We shall assume that we have the standard mathematical universes of booleans, integers, lists
of whatever etc. (as well as the standard operations on them) at our disposal without further
mention. We use usual notations, in particular Prolog notation for lists.

Here are some more remarks on the formal background for the reader who is interested to follow
our proofs.



Definition. An evolving algebra is a pair (A, R) where A is a first-order heterogeneous algebra with
partial functions and possibly empty domains, and R is a finite system of transition rules. The
transition rules are of form

if condition then updates

where condition 1s a boolean expression of the signature of A and updates is a finite sequence of
updates of one of the following three forms:

function update : f(t1,...,t,) =1

where f is a function of & and ¢;,...,¢,,¢ are terms in the signature of A.
universe extension : extend A by ¢1,...,t, with updates endextend
where t1,...,%, are variables possibly occurring in function updates updates (standing for

elements of A).

update schema : FORALL { =1;,...,ts DO updates(i) ENDFORALL
where ¢, and t5 are numerical terms and updates(i) are updates (with parameter 7).

The meaning of rules and updates execution is as explained above. We intend an update schema
to denote an algebra update obtained by first evaluating ¢; and ¢ to numbers n; and ns and then
executing updates(i) for all i € {ny,...,n2} in parallel. This construct, which does not appear in
Gurevich’s original definition in [Gur91] is obviously reducible to rules with function updates.

Every evolving algebra (A, R) determines a class of structures called algebras or states of (4,R).
Within such classes we will have a notion of initial and termeinal algebras, expressing initial resp.
final states of the target system. We are essentially interested only in those states which are
reachable from inital states by R. In our refinement steps we typically construct a more concrete
evolving algebra (B, S) out of a given more abstract evolving algebra (4,R) and relate them by a
(partial) proof map F mapping states B of (B, S) to states F(B) of (4,R), and rule sequences R of
R to rule sequences F(R) of S, so that the following diagram commutes:

B B’

In accordance to terminology used in abstract data type theory [EM89] we call F also an
abstraction function.

We shall consider such a proof map to establish correctness of (B, S) with respect to (4,R) if F
preserves initiality, success and failure (indicated by the value of a special 0-ary function stop) of
states, since in that case we may view successful (failing) concrete computations as implementing
successful (failing) abstract computations.

We can consider such a proof map to establish completeness of (B,S) with respect to (4,R) if
every terminating computation in (4,R) is image under F of a terminating computation in (B, S),
since in that case we may view every successful (failing) abstract computation as implemented by
a successful (failing) concrete computation.

In case we establish, in the above sense, both correctness (as we will do explicitly on every
of our refinement steps) as well as completeness (which follows from all our refinement steps by
straightforward observations) we may speak of operational equivalence of evolving algebras.



PART I: Adding type constraints to Prolog and the WAM

2 PROTOS-L Algebras with compiled AND / OR struc-
ture

2.1 An abstract notion of type constraints

The basic universes and functions in PROTOS-L algebras dealing with terms and substitutions
can be taken directly from the standard Prolog algebras ([Bor90a], [Bor90b]). In particular, we
have the universes TERM and SUBST of terms and substitutions with a function

subres: TERM x SUBST — TERM

yielding subres(t,s), the result of applying s to t.

To be able to talk about (type constraints of) variables involved in substitutions we introduce
a new universe

VARIABLE C TERM

Since in PROTOS-L unification on terms is subject to type constraints on the involved variables,
we have to distinguish between equating terms and satisfying type constraints for them. For this
purpose we introduce a universe

EQUATION C TERM x TERM

whose elements are written as t; =ts. Substitutions are then supposed to be (represented by)
finite sets of equations of the form {X; =t1, ..., X, =t,} with pairwise distinct variables X;. The
domain of such a substitution is the set of variables occurring on the left hand sides. (Note: If you
want to have the logically correct notion of substitution - with occur check -, you should add the
condition that no X; occurs in any of the t;.)

For a formalization of type constraints for terms - in the spirit of constraint logic programming
- we introduce a new abstract universe TYPETERM, disjoint from TERM and containing all
typeterms, of which we only assume that it comes with a special constant TOP € TYPETERM.
Type constraints are given by the universe

TYPECONS C TERM x TYPETERM

whose elements are written as t :tt. A set P C TYPECONS is called a prefiz if it contains only
type constraints of the form X:tt where X € VARIABLE and at most one such pair for every
variable is contained in P. The domain of P is the set of all variables X such that X:tt is in P for
some tt. We denote by TYPEPREFIX the universe of all type prefixes.

Constraints are then defined as equations or type constraints, i.e.

CONSTRAINT C EQUATION U TYPECONS

Let CSS denote the set of all sets of constraints together with nil € CSS denoting an inconsistent
constraint system.

The unifiability notion of ordinary Prolog is now replaced by a more general (for the moment
abstract) constraint solving function:

solvable: CSS — BOOL
telling us whether the given constraint system is solvable or not. Every (solution of a) solvable

constraint system can be represented by a pair consisting of a substitution and a type prefix. Thus,
we introduce a function



solution: CSS — SUBST x TYPEPREFIX U {nil}

where solution(CS) = nil iff solvable(CS) = false. For the trivially solvable empty con-
straint system we have

solution(f) = (0,0)

and the functions

subst_part: CSS — SUBST
prefixpart: CSS — TYPEPREFIX

are the two obvious projections of solution. As an integrity constraint we assume

solution({t:TOP}) = (0,0)

i.e., TOP is used to represent a trivially solvable type constraint.

These are the only assumptions we make about the universe TYPETERM until we introduce
a special representation for it in Section 6. Thus, the complete development up to Section 5
(i.e. Part T of this paper) applies to any concept of (type) constraints that exhibits the minimal
requirements stated so far.

Having refined the notions of unifiability and substitution to constraint solvability and (solvable)
constraint system, respectively, we can now also refine the related notion of substitution result to
terms with type constrained variables. The latter involves three arguments:

1. a term t to be instantiated,
2. type constraints for the variables of t given by a prefix Pt , and

3. a constraint system CS to be applied.

Since a CS-solution consists of an ordinary substitution s¢g together with variable type constraints
Pcg via solution(CS) = (s¢g, Peg), the result of the constraint application can be introduced
by

conres(t, Py, CS) = (t1, P1)

as a pair consisting of the instantiated term t; and type constraints Py for the variables of ;. For
this function

conres: TERM x TYPEPREFIX x CSS —
TERM x TYPEPREFIX U {nil}

we impose the following integrity constraints:

vVt € TERM, Py € TYPEPREFIX, CS € CSS

if solvable(Py U CS) then
conres(t, Py, CS) = (%1, Pyp)
where:
t; = subres(t, subst_part(CS))
P, = prefix.part(Py U CS)|var(ty)

else

conres(t, Py, CS) = nil

where P/|var(t’) is obtained from P’ by eliminating the type constraints for all variables not oc-
curring in t’.

P\X will be an abbreviation for P domain(P)\{X}- the prefix obtained from P by eliminating (if
present) the constraint for X.

Thus, the condition that a constraint system €S “can be applied” to a term t with its variables
constrained by Py means that Pg is compatible with CS| i.e. solvable(CS U Pt) = true.



2.2 Compilation

As already mentioned, our starting point in this paper are PROTOS-L algebras with compiled
AND/OR structure. This is motivated by the fact that the type constraint mechanism is orthogonal
both to the compilation of the predicate structure (OR structure) as well as to the compilation of
the clause structure (AND structure). Leaving the notion of terms and substitutions as abstract as
in 2.1, we can use the compiled AND/OR structure development for Prolog in [BR91], [BR92b] also
for PROTOS-L: Essentially we just have to replace substitutions by the more general constraint
systems, and have to take care of a clause constraint when resolving a goal.

In a PROTOS-L algebra a program is a pair consisting of a definition context and a sequence
of clauses

PROGRAM C DEFCONTEXT x CLAUSE~"

The definition context contains declarations of types, type constructors, etc. and will be refined in
Part II. For prog = (defc,db) € PROGRAM we will write x € prog for both x € defc and
x € db when it is clear from the context whether x is e.g. a type declaration or a list of clauses.
A clause, depicted as

{P} H<—- G, & ... & Gy,.

is an ordinary Prolog clause together with a set P of type constraints for (all and only) the variables
occurring in the clause head and body. As in [BS91] we use three obvious projection functions

clhead: CLAUSE — LIT
clbody: CLAUSE — LIT*
clconstraint: CLAUSE — TYPEPREFIX

where LIT is the universe of literals. Literals as used in ordinary logic programming are (non-
negated) atomic first-order formulas. An element of the universe GOAL also comes with a type
prefix and 1s written as
{P} G & ... & G,.
We assume a universe INSTR of instructions containing
{unify(H), add_constraint(P), call(G),
allocate, deallocate, proceed, true, fail, cut,
tryme_else(N), try(L), retryme_else(l), retry(L), trustme, trust(lL),
switch on term(i,Lv,Ls), switch on structure(i,T) |

i € NAT, H, ¢ € TERM, P € TYPEPREFIX,
N, L, Lv, Ls € CODEAREA, T € (ATOM x NAT x CODEAREA)*}

Here, add_constraint is a new instruction not occurring in the WAM that adds a clause constraint
to the current set of constraints accumulated so far. The universe ATOM contains the constant
and function symbols; elements of ATOM are used in the switch_on_structure instruction in
order to allow indexing over the top-level function symbol of an argument. Later on, further
instructions will be added to INSTR..!

For the compilation of clauses we have a function

compile: CLAUSE — INSTR*

compile({P} H <= G, & ... & G,) =
[allocate, add_constraint(P), unify(H),
call(Gy),

call(G,),
deallocate, proceed]

INote that in this paper we do not consider a special representation for constants or lists. These are present in
the PAM, and could be added to our formal treatment without difficulty. For instance, switch_on_term would get
an additional argument for the constant case.



Compiled programs are “stored” in a universe CODEAREA which comes with functions

+,-: CODEAREA — CODEAREA
code: CODEAREA — INSTR

where + and its inverse - yield a linear structure on CODEAREA and code(1) gives the instruc-
tion “stored” in 1. The function

unload: CODEAREA — INSTR~”

unload(Ptr) = if code(Ptr) = proceed
then [proceed]
else [code(Ptr)|unload(Ptr+)]

is an auxiliary function. We say that Ptr € CODEAREA points to code for a clause C1 if
unload(Ptr) = compile(Cl)
The function

procdef: LIT x CSS x PROGRAM — CODEAREA

yields a pointer Ptr = procdef(G,Cs,Prog) that points to a chain chain(Ptr) of clauses con-
taining all candidate clauses for resolving G in Prog under the constraint system Cs, i.e.:

vV Cl € Prog .
((V P € chain(procdef(G,Cs,Prog)) . P does not point to code for Cl)
=

solvable({g=rename(clhead(Cl),i)} U Cs
U rename(clconstraint(Cl),i)) = false)

where 1 € NAT is chosen such that rename(GC,1i) renames all variables in a goal or constraint
GC to new variables. For the auxiliary function chain

chain: CODEAREA — CODEAREA*

we assume for an activator literal act

chain(Lv) if code(Ptr) = switchoon_term(i,Lv,Ls)
and is_var(X;)
chain(Ls) if code(Ptr) = switchoon_term(i,Lv,Ls)
chain(Ptr) = and is_struct(X;)
chain(select(T,f,a)) if code(Ptr) = switch_on_structure(i,T)
and £ = functor(X;) and a = arity(X;)
chain; (Ptr) otherwise

flattenl[chain;(Ptr),chain;(N)] if code(Ptr) = tryme_else(lN)
or code(Ptr) = retryme_else(l)
flatten[chain;(C),chain;(Ptr+)] if code(Ptr) = try(C)

chain; (Ptr) = or code(Ptr) = retry(C)
chain; (Ptr+) if code(Ptr) = trust._me
chain;(C) if code(Ptr) = trust(C)
[Ptr] otherwise

where X; = arg(act,i), functor, arity, and arg are the term analyzing functions, and is_var

and is_struct are true for variables and compound terms, respectively. Furthermore, the
switch_on_structure parameter T could be thought of as a hash table, with select(T,f,a)
= ptif (£,a,pt) € T.



2.3 Choicepoints and Environments

Executing AND/OR compiled PROTOS-L programs requires two stacks where w.r.t. the Prolog
case we replace the substitution part by a constraint system. STATE is a universe to store the
choicepoints and comes with functions

nil: — STATE

cs: STATE — CSS accumulated constraint system
p: STATE — CODEAREA program pointer

cp: STATE — CODEAREA continuation pointer

e: STATE — ENV environment

b: STATE — STATE backtracking point

vi: STATE — NAT renaming index for variables
ct: STATE — STATE cut point

The universe ENV of environments comes with functions
nil: — ENV

ce: ENV — ENV continuation environment
cp’: ENV — CODEAREA continuation pointer

ct’: ENV — STATE cut point

vi’: ENV — NAT renaming index for variables

As in the WAM, STATE and ENV are embedded into a single STACK
STATE, ENV C STACK
-: STACK — STACK

with a common bottom element nil. tos(b,e) denotes the top of the stack which will always be
the maximum of b and e.

2.4 Initial State

To hold the current status of the machine there are some 0-ary functions which correspond to their
unary counterparts above. Given the PROTOS-L goal {P} G; & ... & G, we have the following
initial values:

cs € CSS cs = 0

p € CODEAREA unload(p) = [add_constraint(P),
call(Gy),...,call(G,),
proceed]

cp € CODEAREA cp = pt++

e ¢ ENV vi’(e)=0, ct’(e)=nil, ce(e)=nil

b € STATE b = nil

vi € NAT vi = 0

ct € STATE ¢t = nil

The literals of the initial PROTOS-L goal, as well as all intermediate goals that will be con-
structed during program executing, can be recovered via the continuation pointer. For code(cp-)
= ¢all(G) (which will always be the case as long as there is still something to do) we have in
particular

act = subres(rename(G,vi’(e)),substpart(cs))

which is called the current activator.

The 0-ary function prog € PROGRAM holds all declarations and clauses of the program
(which in this paper will always be constant since we do not consider database operations like
assert or retract). Finally, stop € {-1,0,1} indicates whether the machine has stopped with
failure, is still running, or has stopped with success.



2.5 Transition rules

The transition rules are as in the Prolog case with the substitution component being replaced by a
constraint system, and with the following extension to the unify rule and the new add_constraint

instruction:
| add_constraint |
if 0K if 0K
& code(p) = unify(H) & code(p) = add_constraint(P)
then then
if solvable(cs U {act =rename(H,vi)}) if solvable(cs U rename(P,vi))
then cs := ¢s U {act =rename(H,vi)} then cs := c¢s U rename(P,vi)
vi = vi + 1 succeed
succeed else Dbacktrack

else backtrack

The condition OK is an abbreviation for stop = 0, i.e., the machine is operating in normal mode
and no stop condition has been encountered. All abbreviations as well as the complete set of
transition rules are given in Appendix A.
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3 Term representation

The representation of terms and substitutions in the WAM can be introduced in several steps.
Following the development in [BR92b] we first introduce the treatment of the low-level run-time
unification (but leaving the details of type constraint solving as an abstract update to be refined
later), followed by the term constructing and analyzing put and get instructions. In particular, the
WAM-specific optimizations of environment trimming, last call optimization, or the initialization
of temporary and permanent variables are postponed until we have established the correctness
of the first refinement level with respect to the PROTOS-L algebras with compiled AND/OR
structure in Section 2. The major derivation from the real PAM code in Sections 3 and 4 will
be our simplifying assumption that all variables are permanent and are initialized on allocation
to free unconstrained variables. Under this assumption the variables receive their initial type
restrictions, derived statically by the compiler, immediately after allocation. This is achieved by a
new (auxiliary) put_constraint instruction which will be dropped again later (in Section 5).

3.1 Universes and Functions

For the representation of terms we use the pointer algebra

(DATAAREA; +, -; val)

with DATAAREA C MEMORY, where
+, - : DATAAREA — DATAAREA

connect the locations in DATAAREA and are inverse to each other. In the codomain of the
function

val: DATAAREA — PO + MEMORY + SYMBOLTABLE

we use the universe SYMBOLTABLE in order to connect a function symbol to its arity and
type. It comes with functions

atom: SYMBOLTABLE — ATOM
arity: SYMBOLTABLE — NAT
entry: ATOM x NAT — SYMBOLTABLE

of which we assume entry(atom(s),arity(s)) = s for any s € SYMBOLTABLE and
atom(entry(f,n)) = f, arity(entry(f,n)) = n for any atom f with arity n.
The functions tag and ref are defined on the universe PO of “PROTOS-L objects”

tag: PO — TAGS
ref: PO — DATAAREA + TYPETERM

where, because of the type constraint treatment, a new tag VAR for indicating free variables is
introduced into the universe

TAGS = {REF, STRUC, VAR}

Special tags for representing constants, lists, built-in integers, etc. are also present in the PAM, but
in this paper we consider them as optimizations that can be added later on without any difficulties.
The tag FUNC from [BR92b] is not included since it is not needed.

The codomain of ref contains the universe TYPETERM since we will keep the type term
representation abstract here; it will be refined later (see Section 6).

As in [BR92b] we use some abbreviations for dealing with locations 1 € DATAAREA:

tag (1) = tag(val(l))
ref(1l) = ref(val(l))
1; «— 1o = val(l;) := val(lsy)
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1 — <t,r> = tag(l) := ¢t

ref(l) :=r
unbound(l) = tag(l) = VAR
mk_unbound (1) = mk_unbound(1l,TOP)
mk_unbound(1l,tt) = tag(l) := VAR

insert_type(l,tt)
insert_type(l,tt) = ref(l) := tt

where the last four abbreviations deal with the typed variable representation and where tt €
TYPETERM. Note that an unconstrained free variable gets the trivial type restriction TOP,
representing no restriction at all (c.f. Section 2.1).

In addition to the (partial) dereferencing and term reconstructing functions from the WAM
case we now also assume a function that recovers the type constraints for all variables occurring
in a term. Of these functions

deref: DATAAREA — DATAAREA
term: DATAAREA — TERM
typeprefix: DATAAREA — TYPEPREFIX

we assume for 1 € DATAAREA:

deref(l) — deref(ref(1)) if tag(;l.) = REF
1 otherwise
mk_var (1) if unbound (1)
term(deref (1)) if tag(1l) = REF
_ fla;,...,a,) if tag(1l) = STRUC and
tern(1) = f = atom(val(ref(1)))
n = arity(val(ref(1)))
a; = term(ref(1)+1i)
mk_var(l) :ref (1) if unbound (1)
typeprefix(deref(l)) if tag(l) = REF
typeprefix(l) = Py U ... UP, if tag(1l) = STRUC and
n = arity(val(ref(1)))
P, = typeprefix(ref(1l)+i)

where make var(1l) € VARIABLE is a unique variable assigned to 1. Note that the condition
term(1l) € TERM now implies various consistency properties like:

if unbound (1) then ref(l1) € TYPETERM

if tag(l) € {REF, STRUC} then ref(l) € DATAAREA
term(1l) € TERM
typeprefix(l) € TYPEPREFIX

if tag(l) = STRUC then val(ref(1)) € SYMBOLTABLE
term(ref(1)+i) € TERM
typeprefix(ref(1)+i) € TYPEPREFIX

with i € {1,...,arity(val(ref(1)))}.

3.2 Unification

Lowlevel unification in the PAM can be carried out as in the WAM (see [AK91]) if we refine the
bind operation into one that takes into account also the type constraints of the variables ([BMS91],
[BM94]). The bind operation may thus also fail and initiate backtracking if the type constraints
are not satisfied. Thus, we can use the treatment of unification as described in [BR92b], while
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leaving the bind operation abstract for the moment, not only in order to postpone the discussion
of occur check and trailing but also to stress the fact that the bind operation will take care of the
type constraints for the variables.

To be more precise, the DATAAREA subalgebra
(PDL; pdl, nil; +, —; ref’)
with pdl, nil € PDL and
ref’: PDL— DATAAREA
is the push down list used for lowlevel unification, containing all pairs of (addresses of) terms still
to be unified, with
left = ref’(pdl) right = ref’(pdl-)
being the current pair of terms. Unification is triggered by the update

unify(l;,1ls) = ref’(nil++) := 14
ref’(nil+) := 1-
pdl := nil++
what_to_do := Unify

The 0-ary function
what todo € {Unify, Run}

will be used in the guard of all following rules in the form of conditions like

UNIF OK & what_to_do = Unify
RUN OK & what to.do = Run

Unification is carried out by unification rules as in [BR92b] (see appendix B.1) where for the
abstract bind update we impose the following modified

BINDING CONDITION 1: For any 1;, 15, 1 € DATAARRA, with term resp. term’
values of term(1l) and with prefix resp. prefix’ values of type prefix (1) before resp. after
execution of bind(1;,15), we have if unbound(1l;) holds:

LET ¢S = {mkwvar(l;) = term(1ly)} U typeprefix(l;)
U typeprefix(ls)

If solvable(CS) = true

then (term’, prefix’) = conres(term, prefix, CS)

else backtrack update will be executed.

With this generalized binding assumption we obtain the following modified

UNIFICATION LEMMA: If pdl-- = nil, term(left), term(right) € TERM, and
typeprefix(left), type prefix(right) € TYPEPREFIX, the effect of setting what_to_do
to Unify, for any 1 € DATAAREA such that term(1) € TERM and typeprefix(l) €
TYPEPREFIX is as follows:

Let term resp. term’ be the values of term(1) and prefix resp. prefix’ be the values of
type_prefix(l) when setting what_to_do to Unify and when what_to_do has been set back to
Run again, respectively. Then we have:

LET ¢S = {term(left) = term(right)} U type prefix(left)
U typeprefix(right)

If solvable(CS) = true

then (term’, prefix’) = conres(term, prefix, CS)

else backtrack update will be executed.

Proof: The proof of the Unification Lemma is by induction on the size of the terms to be unified,
relying on our generalized Binding Condition. m

13



3.3 Putting of terms

As in the WAM, run time structures are created in the subalgebra of DATAAREA
(HEAP; h, boh; +, —; val)

where h, boh € HEAP represent the top resp. the bottom element of the heap. We use nextarg
€ HEAP to point to the next argument when anyalyzing a structure on the heap. Furthermore,
we Now assume

DATAAREA + CODEAREA C MEMORY
where CODEAREA is as in Section 2.2 but where INSTR now contains

put_value(y,,x;)
put_structure(f,x;)
get_value(y,,x;)
get_structure(f,x;)
unify _value(y,)

unify variable(x,)
put_constraint(y,,tt)

with n,j,i € NAT, £ € SYMBOLTABLE, tt € TYPETERM, y, € DATAAREA|
x; = x(i), where x: NAT — AREGS and AREGS C DATAAREA. Note that
put_constraint(y,,tt) is a new instruction used for inserting a type restriction into a heap
location. Instead of having a pair (fn,a) € ATOM x NAT we use £ = entry(fn,a) in the
code.

The code developed in Section 1.2 of [BR92b] for constructing terms in body goals uses put
instructions which assume that, for all variables Y; of the term t to be built on the heap, there
is already a term denoting y; € DATAAREA available. Since this means in particular that no
variables are created during this process, we can use (with the obvious modification mentioned
above) the same put instructions (i.e. put_value, unify value in Write mode, put_structure)
for the compilation of a body goal (see Appendix B.2 and B.3). Furthermore, we may assume that
for the variables Y; we have no type constraints to formalize here because they have already been
associated to the corresponding location y; (i.e. the variable term(y;) which is - up to renaming -
equal to Y;. This gives us the following

PUTTING LEMMA: If all variables occurring in a term t € TERM are among {Y1,...,Y;},
and if forn € {1, ..., 1}, y, € DATAAREA with

term(y,) € TERM
typeprefix(y,) € TYPEPREFIX

and X; is a fresh variable, and CS is the constraint system consisting of the substitution associating
every Y, with term(y,) and of the union of the type constraints type prefix(y,), i.e.

¢s = U, {Yn=term(y,)} U typeprefix(y,)
then the effect of setting p to
load(append(put_code(X; = t), More))

with subsequent fresh indices generated by the term normal form function nf; (Appendix B.2)
being non-top level, is that the pair

(term(x;), typeprefix(x;))
at the moment of passing to More, gets value of
conres(t, 0, CS)

Proof: The proof follows by induction over the size of the involved terms, observing that no type
related actions like variable creation or variable binding is involved here. ®
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3.4 Getting of terms

Unlike putting of terms that does not involve unification, the getting of terms does involve unifi-
cation where parts of it are compiled into the getting instructions (like get_structure followed by
a sequence of unify instructions) and the remaining unification tasks are handled by the lowlevel
unify procedure.

The get_value, unify value, and unify variable instructions are as in the WAM case (see
Appendix B.4 and B.5). Note that we need unify variable both in Read and Write mode which
is controlled by the O-ary function mode € {Read, Write}. In [BR92b] unify variablein Write
mode is introduced only as an optimization for variable initialization “on the fly”, but when the
machine enters Write mode in get_structure, unify variable will be executed for the auxil-
iary substructure descriptors X; generated by the term normal form function nf, (Appendix B.2).
Since we do not have to consider type contraints for such X;, it suffices to initialize them to a free
variable without any type restriction. Thus, for the generation of a heap variable in Write mode
of unify _variable we use

mk_heap var(l) = mk_unbound(h)
bind(1,h)
h := ht

When unify variable will be used for “on the fly” initialization of typed variables, we will have
to consider an additional type initialization parameter (c.f. Section 5).

The first get_structure rule for PROTOS-L is as in the WAM case, covering the situation
where x; in get_structure(f,x;) is bound to a non-variable term (Appendix B.4). When x; is
unbound, it must be bound to a newly created term with top-level symbol £. Whereas in the WAM
this will always succeed, in the PAM case the type constraint of x; must be taken into account.
Indeed, what is happening here is the binding of a variable X with a type constraint, say tt, to a
term t starting with £. In abstract terms this amounts to solving the constraint system

{X=t, X:tt}

We still want to leave the details of variable binding abstract here; what is of interest for this special
case occurring in get_structure is which type constraints stemming from tt and (the declaration
of) £ must be propagated onto the argument terms of t = £(...). Therefore, we introduce the
function

propagate list: SYMBOLTABLE x TYPETERM
— TYPETERM* U {nil}

yielding for arguments entry(f,n) and tt the list of type terms the arguments of £ must satisfy.
To be more precise, we have the following integrity constraint:

propagate list(entry(f,n),tt) = (tt1,...,tt,)
it

prefix-part ({£(Xy,...,%X,) :tt}) = {Xi1 Bty e, Xttty

where {i1,...,i5} C {1,...,n},and for j € {1,...,n}\{41,...,4;} we have tt; = TOP.
If the constraint system {£(X;,...,X,) :tt} is not solvable, no propagation is possible, and if it

reduces to the trivially solvable empty constraint system, propagate list yields a list containing
only TOP. Thus we introduce the abbreviations

solution({f(Xy,
solution({f(Xy,

can_propagate(entry(f,n),tt)
trivially propagates(entry(f,n),tt)

[T

= nil
= 0

LX)ttt ))
LX)ttt ))

| Get-Structure-2 |

if RUN
& code(p) = get_structure(f,x;)
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& unbound(deref(x;))
& can_propagate(f,ref(deref(x;)))

= true | = false
& trivially propagates(f,ref(deref(x;))) |
= true | = false |
then
h «— <STRUC,h+> | backtrack
bind(deref(x;),h) |
val(h+) := f |
h := h++ I
mode := Write | nextarg := h++ |
| mk_unbounds(h+,propagate 1ist(f,ref(deref(x;))) |
| mode := Read |
succeed [

For 1 € DATAAREA and tt,...,t, € TYPETERM, the update

mk_unbounds (1, (tty,...,tt,)) = FORALL i = 1,...,n DO
mk_unbound (1+1i,tt;)
ENDFORALL

puts n type restricted variables at the locations 1+1,...,1+n on the heap. When this update is
executed in the rule above the machine continues in read mode so that the subsequent n unify
instructions take into account these type restrictions.

GETTING LEMMA: If all variables occurring in a term t € TERM are among {Y1,...,Y},
and if forn € {1,...,1}, y, € DATAAREA with

unbound (y,)
ref(y,) € TYPETERM

and X; 1s a fresh variable with x;, € DATAAREA and

term(x;) € TERM
typeprefix(x;) € TYPEREFIX

and CS 1s the constraint system consisting of the equation t=term(x;) together with
type_prefix(x;) and the union of the type constraints type prefix(y,), i.e.

€S = {t=term(x;)} U typeprefix(x;) U (J, typerprefix(y,)
then the effect of setting p to
load(append(get _code(X; = t), More))

for any 1 EDATAAREA with term = term(1) € TERM and typeprefix = type_prefix(1l)
€ TYPEPREFIX being the values before execution, is as follows:

If solvable(CS) = true then p reaches More without backtracking and the pair
(term(1l), typeprefix(1l))
at the moment of passing to More, gets value of
conres(term, typeprefix, CS)

else backtracking will occur before p reaches More.

Proof: The proof follows by induction on the size of the involved terms. Observe that similar to
the Putting Lemma no real variable creation occurs: When an auxiliary variable Xj (generated by
nfy) is created on the heap via unify variable in Write mode, its <VAR TOP> initialization will be
overwritten by a subsequent get_structure instruction corresponding to the subterm represented
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by Xj,. Note also that if CS is solvable, then conres(term, typeprefix, CS) # nil because CS U
typeprefix is also solvable since the intersection between typeprefix and any type_prefix(y,)
is already contained in CS. ®

In order to uphold the

HEAP VARIABLES CONSTRAINT: No heap variable points outside the heap, i.e. for any
1 € HEAP with boh <1 < h and tag(l) = REF, we have boh < ref(1l) < h.

the instruction unify local value in Write mode creates a new heap variable for a so-called local
variable (cf. B.5):

local(l) = unbound(l) & 1 € HEAP & NOT(boh < 1 < h)
For a discussion of local variables see [AK91] or [BR92b]. In the PROTOS-L case the type restric-

tion of the local variable must be taken into account which is done by the binding update in our
mk_heap_variable abbreviation. Thus, the HEAP VARIABLES CONSTRAINT as well as the

HEAP VARIABLES LEMMA: If the put_code and get_code functions generate
unify local value instead of unify value for all occurrences of local variables, then the exe-

cution of put_seq and get_seq preserve the HEAP VARTABLES CONSTRAINT [BR92b].

carries over to the PROTOS-L case, provided we ensure

BINDING CONDITION 2: The bind update preserves the HEAP VARIABLES CON-
STRAINT.

3.5 Putting of Constraints

In this section we will still keep the type constraint representation abstract, while specifying the
conditions about the constraint handling code (for realization of add_constraint of Section 2) in
order to prove a theorem corresponding to the Pure Prolog Theorem of [BRI2b] (see 4).
The compile function will be refined using
put_constraint seq({¥;:tty,...,Y,:tt,}) = [put_constraint(y;,tt1),

B

put_constraint(y,,tt,)]

for which we use the new instruction put_constraint(y,,tt) (where tt € TYPETERM) and
the following rule:

| Put-Constraint |

if RUN

& code(p) = put_constraint(l,tt)
then

insert_type(l,tt)

succeed

The update for inserting a type restriction has still the straightforward definition given in 3.1
(i.e. ref (1) := tt), but will be refined later when we introduce a representation of type terms.
In any case it must satisfy the following

TYPE INSERTING CONDITION: For any 1;, 1 € DATAARRA, with term resp. term’
values of term(1l) and with prefix resp. prefix’ values of type prefix (1) before resp. after
execution of insert_type(l;,tt) we have if unbound(1;) holds:

(term’, prefix’) = conres(term, prefix\{mkvar(l;)}, {mkvar(l;):tt})

For the definition given above the type inserting condition is obviously satisfied.
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4 PAM Algebras

4.1 Environment and Choicepoint Representation

The stack of states and environments of PROTOS-L algebras with compiled AND/ OR structure
of Section 2 are now represented by a subalgebra of DATAAREA

(STACK; bos; +, —; val)

with bos € STACK representing the bottom element corresponding to nil in Section 2. The
concrete memory layout can be done as in the WAM [BR92b] (see Appendix B.6) since the only
type-related action is in the allocation of n free variable cells in the rule for Allocate: This
situation is covered by our modified mk_unbound abbreviation that assigns the trivial TOP type
restriction to each such initialized variable:

if 0K if 0K
& code(p) = allocate(n) & code(p) = deallocate
then then
e := tos(b,e) e := val(ce(e))
val(ce(tos(b,e))) := e cp := val(cp(e))
val(cp(tos(b,e))) := cp succeed

FORALL i = 1,...,n DO

mk _unbound (y;(tos(b,e)))
ENDFORALL
succeed

4.2 Trailing

As is standard practice in the WAM, we assume that HEAP < STACK < AREGS and the
WAM binding discipline:

BINDING CONDITION 3: If unbound(l;) and unbound(1ls) and bind(1l;,1,) does not
initiate backtracking, then after executing bind(1;,15) the higher location will be bound to the
lower one.

Together, these conditions imply BINDING CONDITION 2 and also the

STACK VARIABLES PROPERTY: Every stack variable 1 points either to the heap or to a
lower location of the stack, i.e. ref(1) € HEAP with boh <1 < h, or ref(1) € STACK with
bos <1 < tos(b,e).

Whereas BINDING CONDITION 3 and the STACK VARIABLES PROPERTY are exactly as in
the WAM case [BR92b], for trailing variable bindings also the type restrictions must be taken into
account in the PAM. Since variables in the PAM carry a type restriction represented in the ref
value of a location - which is updated when binding the variable -, the type restriction must be
saved upon binding and recovered upon backtracking. Strictly speaking, it would be sufficient to
save only the ref value of a location; however, for use in a later refinement -when we will introduce
different tags for free variables - we also trail the tag of a location. Therefore, in the DATAAREA
subalgebra

(TRAIL, tr, botr; +, —; ref’)

with tr, botr € TRAIL being the top and bottom elements, the codomain of the function
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ref": TRAIL — DATAAREA x PO

records also the complete val decoration. The trail update, to be executed when changing the
value of a location 1 during binding is then:

trail(l) = ref " (tr) := (1, val(l))
tr = tr+

Note that this is a non-optimized version of the trailing operation; we could have also used a condi-
tional trailing governed by the condition boh < 1 < h & 1 < hb OR bos < 1 < tos(b,e)
& 1 < b.

For t € TRAIL with ref”"(t) = (1, v) we use the following abbreviation for the two obvi-
ous projections on ref” (t):

location(t) = 1 value(t)

Il
<

Upon backtracking we must now unwind the trail

backtrack = p := val(p(b))
unwind trail
unwind_trail = FORALL t = tr-,...,tr(b) DO
location(t) «— value(t)
ENDFORALL

where value(t) retrieves the previous tag and type restriction of location(t).

We still leave the binding update abstract, but pose the following

TRAILING CONDITION: Let 1;, 15, 1 € DATAAREA. If val(1l) before execution of
bind(1l;,1,) is different from val(l) after successful execution of bind(1;,12), then the location
1 has been trailed with trail(1).

Note that due to the update on the type restrictions of a variable the trailing of both locations
1; and 1; may be triggered by bind(1;,12); moreover, if e.g. 1» denotes a polymorphic term
containing variables these variables also have to be trailed if they get another type restriction in
the binding process (see Sections 6.1 and 6.5).

4.3 Pure PROTOS-L theorem

In order to establish a correctness proof of compilation to PAM algebras developed so far from
PROTOS-L algebras with compiled AND/OR structure of Section 2, we can generalize the ” Pure
Prolog Theorem” of [BRI2b] to our case. We will thus construct a function F (c.f. Section 1) from
the PROTOS-L algebras to the PAM algebras. We will also first ignore cutpoints (¢t, ct?’) which
are not needed for pure PROTOS-L, as well as variable renaming indices (vi, vi’) since as in the
WAM case the renaming is ensured by the offsets in the stack and the heap. Further, all names of
universes and functions on Section 2 will get an index 1. For the function compile dealing with
the term representing algebras we have

compile({P} H <= G, & ... & G,) =
flatten([allocate(r), put_constraint seq(P), get_seq(H),
call_seq(Gy),

call_seq(Gy),
deallocate, proceed])

The abstraction function F maps PAM rules to PROTOS-L rules in the obvious way. It is defined
via a mapping between instruction sequences (which directly correspond to rule sequences). For
instance, with respect to unification and type constraint solving we have
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call_seq(G) — call(G)

get_seq(H) — unify(H)

put_constraint _seq(P) — add_constraint(P)
This correspondence also defines a (partial) function

codepointer: CODEAREA x CODEAREA;

by mapping e.g. the beginning of get_seq(H) to the location labelled with unify (H). Furthermore,
we establish the functions

css: TRAIL — CSS;

subst: TRAIL — SUBST;

choicepoint: STACK — STATE;

env: STACK — ENV;

term: DATAAREA x TRAIL — TERM;

typeprefix: DATAAREA x TRAIL — TYPEPREFIX,

where we have added - w.r.t. the WAM case in [BR92b] - the functions css and typeprefix in
order to construct the correspondence between the constraint representations. Viewing an element
of STATE; (resp. ENV) as a tuple of its ¢s, p, cp, e, b (resp. cp’, ce) values, these functions
are defined by:

term(1,1;) yields the value term(1l) would take after having unwound
the trail down to 1;

typeprefix(1,1;) yields the value type prefix(1l) would take after having
unwound the trail down to 1;

css(1y) = Upoir<iciy imkvar(location(l))=term(location(1),1,)}
U typeprefix(location(1l),1s)

subst(1;) = subst_part(css(ly))

choicepoint(lb) = ( css(val(tr(lb))),

codepointer(val(p(1lb))),
codepointer(val(cp(1lb))),
env(val(e(1b))),
choicepoint(val(b(1b))) )
env(le) = { codepointer(val(cp(le))),
env(val(ce(le))) )

The 0-ary functions are defined by

cs; = css(tr)

p1 = codepointer(p)

cp1 = codepointer(cp)

e = env(e)

b; = choicepoint(b)
Furthermore, for the current activator act; of 2.4 we have for code(cp-) = call(g,m,r) the
correspondence

act; = g(term(xy),...,term(xy,))

Correctness Theorem 1 (PURE PROTOS-L THEOREM): Compilation from the
PROTOS-L algebras with compiled AND/OR structure (of Section 2) to the PAM algebras devel-

oped so far (and thus satisfying all the conditions explicitely stated above) is correct.

Proof: For the proof it suffices to show that for any PAM algebra A and any transition rule
sequence R such that F(4) and F(R) is defined, the diagram
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F(R)
F(a) F(Aa)

commutes. This follows by case analysis, relying on the conditions and lemmas established so far.
In particular, w.r.t. type constraints we observe the fact that allocate allocates a new variable
location (with TOP restriction) for every variable occurring in the clause. These locations are
used by the put_constraint instructions, so that the preconditions for the TYPE INSERTING

CONDITION hold. =
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5 Additional WAM optimizations in the PAM

5.1 Environment Trimming and Last Call Optimization

Environment trimming and last call optimization (LCO) are among the most prominent optimiza-
tions in the WAM,; for a discussion we refer to [AK91] and [BR92b]. The necessary ARGUMENT
REGISTERS PROPERTY as formulated in [BR92b] can be ensured by the compiler by generating
a put_unsafe_value(y,,x;) instruction instead of put _value(y,,x;) for each unsafe occurrence
of Y,. This instruction is executed by the rule:

| Put-Unsafe-Value

if RUN
& code(p) = put_unsafe value(y,,x;)
& deref(y,) < e | deref(y,) > e

then
x; <« deref(y,) | mk_heapvar(deref(y,))
| x; — <REF,h>
succeed

Note that the condition deref(y,) > e implies unbound(deref(y,)). Thus, in case of
y» being unsafe, a new variable is created on the heap, referenced by both y, and x;. Unlike in
Prolog, in PROTOS-L the type restriction of y; must be copied to the new heap variable - this
is already taken into account by the bind update in our mk_heap_var abbreviation introduced in
Section 3.4. Therefore, following the argumentation in [BR92b], we can savely assume that the
compiler enforces environment trimming and also last call optimization (LCO). Thus, every call
instruction gets an additional parameter n where n is the number of variables that are still needed
in the environment. LCO then means that the instruction sequence

Call(g,a,0), Deallocate, Proceed
is replaced by
Deallocate, Execute(g,a)

which disregards the current environment before calling the last subgoal of a clause.

5.2 Initializing Temporary and Permanent Variables

Up to now, when allocating an environment, we have allocated r value cells in that environ-
ment, where r is the number of variables occurring in the clause. A sequence of r corresponding
put_constraint(y;,tt;) instructions initialized the type restriction on the variables y; to tt;
found in the clause’s type prefix.

However, as explained in [BMS91], the first occurrence of a variable in a PROTOS-L clause
is sufficient to consider the statically available type restriction. (The specialized instructions of
[BMS91, BM94] for variables with monomorphic, polymorphic, or with no type restriction will
be introduced as an optimization in Section 7.) Both temporary and permanent variables can be
initialized “on the fly”; for a discussion of the classification of variables into temporary and per-
manent ones which was introduced by [War83] we refer to [AK91] and [BR92b]. Thus, we modify
our compile function such that for a temporary variable, Y,, y, is replaced by fresh X;, x;, and
such that

get_variable
put_variable
unify _variable

instructions are generated for the first occurrence of a variable, replacing the so-far used get _value,
put_value (resp. put_unsafe value), and unify_value instructions, respectively.
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Put-1 (X variable) Put-2 (Y variable)

if RUN if RUN

& code(p) = put_variable(x;,x;,tt) & code(p) = put_variable(y,,x;,tt)
then then

mk_unbound(h,tt) mk_unbound(y,,tt)

x; «— <REF,h> x; < <REF,yn>

X; < <REF,h> succeed

succeed

When initializing a temporary variable with put_variable, a new heap cell must be allocated,
which is not the case when initializing a permanent variable, provided that put_unsafe variable
and unify local_value instructions are used properly. This, however, has already been verified
(see Section 5.1). In both cases, the mk_unbound(1,tt) update corresponds to the mk_unbound(1)
update for that variable carried out previously during allocation, and the insert _type(1l,tt) up-
date carried out by the put_constraint instruction immediately after allocation (c.f. 3.5). There-
fore, since the put_variable instruction corresponds to the first occurrence of the variable X;
resp. Y,, we can savely drop its initialization during allocation and its complete put_constraint

instruction.
if RUN

& code(p) = get_variable(l,x;,tt)
then

mk_unbound(1,tt)

bind(1,x;)

succeed

Whereas in the WAM case the get_variable instruction always succeeds, in the PROTOS-L case
we have to check that the clause’s type restriction tt for x; is satisfied. This is achieved by setting
1 to an unbound variable, inserting the type term tt as its type restriction, and binding 1 and
x;. The latter is sufficient as the binding update will do the binding only if the type restrictions
are satisfied; otherwise it will fail and initiate backtracking (c.f. the BINDING CONDITION of
Section 3.2).

unify_variable

if RUN
& code(p) = unify _variable(l,tt)
& mode = Read | mode = Write
then
mk_unbound(1,tt) | mk_unbound(h,tt)
bind(1,nextarg) | 1 +— <REF,h>
nextarg := nextarg+| h := h+
succeed

The instruction unify variable in Read mode has to make sure that the incoming argument
satisfies the type restriction, which - as in get_variable - is achieved by a bind update. In Write
mode, the type restriction has just to be inserted into a new heap cell.

As argued above for put_variable, the initialization of a free value cell during allocation as well
as the put_constraint instruction can also be dropped for all variables initialized by get _variable
or unify_variable, which leads us to the
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INITIALIZATION LEMMA: Given 1 > e, the instruction put_variable(l,x;,tt)
(get _variable(l,x;,tt), unify variable(l,tt), resp.) is equivalent to initializing 1
to unbound with mk_unbound(l), executing put_constraint(l,tt), and then executing
put_unsafe value(l,x;) (getvalue(l,x;), unify local value(l), resp.). For a permanent
variable Y,,, the instruction put_variable(y,,x;,tt) is equivalent to initializing y, to unbound
with mk_unbound(y, ), executing put_constraint(y,,tt), and then executing put_value(y,,x;).

Thus, the rule for allocate looses its initialization update, and the compile function is modified
such that no put_constraint instruction is generated any more. Moreover, the argumentation of
Section3.2 and 3.2 of [BRI2b] can be applied to our modified setting, implying also the correctness
of special compilation of facts and chain rules where no environment needs to be allocated at all.

5.3 Switching instructions and the Cut

The PAM contains all switching instructions known from the WAM, and since no type specific
considerations have to be taken into account, their treatment in the evolving algebra approach in
[BR92b] carries over to the PAM as well. Thus, compared to the compiled AND/OR structure
(Sect. 2 and Appendix A) the indexing and choicepoint handling rules now also get the predicate
arity n as an additional parameter, and the choicepoint information is not attached to a newly
created stack element, but by reusing and “overwriting” elements on the stack (see B.7). However,
in PROTOS-L additionally a switch on the type restriction of a variable is possible (see Section
7.2).

For the establishment of the Pure PROTOS-L Theorem we had deliberately left out the built-
in predicate cut. Since there 1s no interdependence between cut and the type constraints of
PROTOS-L, the cut treatment of Prolog carries over to our case as well [BR92a]: We could either
extend every environment by a cutpointer, to be set and restored just as in Section 2, or we could
allocate an extra (permanent) variable in those environments containig a so-called deep cut. This
extra variable would then be set immediately after allocation, and its value would be assigned to
the backtracking pointer b when a cut is encountered (see also [AK91]).

5.4 Main Theorem of Part 1

Putting everything together developed so far, we obtain

Correctness Theorem 2 (Main Theorem of Part I): Compilation from PROTOS-L algebras
to the PAM algebras developed so far is correct. Thus, since we kept the notion of types abstract,
for every such type-constraint logic programming system L and for every compiler satisfying the
specified conditions, compilation to the WAM extension with this abstract notion of types is correct.

Thus, any type system satisfying the minimal preconditions on the solution function stated
in Section 2.1 is covered by the development above.
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PART II: Polymorphic, order-sorted type constraints

6 PAM algebras with monomorphic type constraints

6.1 Binding

We are now ready for a first refinement of the binding update which will take into account the bind
direction, occur check, and trailing, while the type constraints still remain abstract. We introduce
two new 0-ary functions argl, arg2 € DATAAREA which will hold the locations given to the
binding update, and extend the values of what_to_do by {Bind_direction, Bind} indicating that
we have to choose the direction of the binding resp. do the binding itself. The new 0-ary function
return_from bind will take values of the domain of what_to_do, indicating where to return when
the binding is finished. (Remember that the binding update is used in different places, e.g. in the
unify update or in the creation of a new heap variable).

For 1,,1, € DATAAREA the binding update and some new abbreviations are defined by

bind(1;,13) = argl := 1
arg2 := 1o
return from bind := what_to_do
what_to_do := Bind direction

what_to_do := return from_ bind
OK & what to_do = Bind

ref (tr) := (1;, val(ly))
ref " (tr+):= (15, val(ls))

tr = tr++

bind_success
BIND
trail(l;,1s)

In order to reset also the constant what_to_do upon backtracking, we refine the backtrack update
to

backtrack = p := val(p(b))
unwind_trail
what_to_do := Run

For unbound (1) there are two alternative conditions on the update occur _check(1l;,1-), depend-
ing on whether the unification should perform the occur check (which is required for being logically
correct) or not (which is done in most Prolog implementations for efficiency reasons):

OCCUR CHECK CONDITION: If no occur check should take place then the update
occur _check(1l;,1:) is empty; otherwise it has the following effect: If mk_var(1l;) is among the
variables of term(1,) then the backtrack update will be executed.

We will leave the occur check update abstract, and all correctness proofs are thus implicitly
parameterized by the decision whether i1t actually performs the occur check or not.

Bind-1 (Bind-Direction)

if OK
& what_to_do = Bind_direction
& unbound(argl)

& (NOT (unbound(arg2)) | unbound(arg2)
or | &
arg2 < argl) | arg2 > argl | argl = arg2

then
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what _to_do := Bind | what to_do := Bind | bind_success
| argl := arg2 |
| arg2 := argl |

When binding two unbound variables their type constraints must be ‘joined’. For this pur-
pose we introduce the function

inf: TYPETERM x TYPETERM — TYPETERM

which yields the infimum of two type terms, which may also be BOTTOM € TYPETERM. TOP
and BOTTOM can be thought of as ‘maximal’ and ‘minimal’ type terms. As integrity constraints we
have

inf (TOP,tt) = inf(tt,TOP) = tt

inf (BOTTOM,tt) = inf(tt,BOTTOM) = BOTTOM
solution({t:BOTTOM}) = nil

solution({X:tt;, X:tto}) = solution({X:inf(tt;,tt2)})

for any t € TERM and tt; € TYPETERM.

Bind-2 (Bind-Var-Var)

if  BIND
& unbound(arg?2)
& LET inf = inf(ref(argl),ref(arg2))
& inf # BOTTOM | inf = BOTTOM
& inf # ref(arg2) | inf = ref(arg2) |
then
trail(argl,arg2) | trail(argl) backtrack

|
insert type(arg2,inf) | |
argl « <REF,arg2> |
|

bind_success

When binding an unbound variable to a non-variable term, the type restriction of the variable
must be propagated to the variables occurring in the term. As a special case this situation already
occured in get_structure(f,x;) when the dereferenced value of x; is a type-restricted variable.
In that situation where the term was still to be built upon the heap, we ensured the propagation
by writing arity(f) free value cells on the heap with appropriate type restrictions and continuing
in read mode; the actual propagation was then achieved by the immediately following sequence of
unify instructions. In the general case occurring in the binding rules, the arguments of the term
are not just variables but arbitrary terms. However, as we will not go into the details of type
constraint solving here, we assume an abstract propagate update satisfying the following:

PROPAGATION CONDITION: For any 17, 12, 1 € DATAARRA, with termresp. term’
values of term(1l), with prefix resp. prefix’ values of type prefix(1l), and with val resp.
val’ values of val(1l), before resp. after execution of propagate(1l;,1s) we have if unbound(1,),
ref(1;) € TYPETERM, tag(1l;) = STRUC, and term(1l;) € TERM:

LET ¢S = {term(1l,):ref(1,)}

if solvable(CS) = true

then (a) (term’, prefix’) = conres(term, prefix, CS)
(b) if val # val’ then the location 1 will be trailed

else  backtrack update will be executed

With this update at hand the third binding rule is
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Bind-3 (Bind-Var-Struc)

if  BIND
& NOT (unbound(arg2))
then
trail(argl)
argl < <REF,arg2>
occur_check(argl,arg2)
propagate(argl,arg2)

BINDING LEMMA 1: The bind rules are a correct realization of the binding update of Section
3.2, i.e. the BINDING CONDITIONS 1 and 3 (and thus also 2), the TRAILING CONDITION as
well as the STACK VARIABLES PROPERTY are preserved.

Proof: The proof for the update bind(1;,15) is by case analysis and induction on the size of
term(1l:), relying on the integrity conditions for the infimum function on type terms when binding
one type-restricted variable to another one (Bind-2), resp. on the Propagation Condition when
binding a variable to a non-variable term (Bind-3). m

6.2 Monomorphic, order-sorted types

Before introducing a representation for type terms we introduce some new functions and universes
that are related to TYPETERM. Note that until now we have kept TYPETERM indeed
abstract; it 1s only in this section that we come to some more specific type term characteristics
such as monomorphic and polymorphic type terms. However, following our principle of stepwise
refinement of the PAM development, we first deal only with monomorphic type constraints solving,
while the details of polymorphic type constraint handling will still be kept abstract in this section.

On the universes TYPETERM and SYMBOLTABLE we introduce the functions

is_top: TYPETERM — BOOL
ismonomorphic: TYPETERM — BOOL
is_polymorphic: TYPETERM — BOOL
with their obvious meaning. The function
target_sort: SYMBOLTABLE — SORT
yields the target sort of a constructor, where SORT is a new universe, representing sort names.
It comes with a function
subsort: SORT x SORT — BOOL
defining the order relation on the monomorphic sorts (and being undefined on the polymorhic sorts
[Bei90]), respectively.  For the refinement of type constraint handling we assume two functions
sort_glb: SORT x SORT — SORT
poly-inf: TYPETERM x TYPETERM — TYPETERM

that refine the inf function (from 6.1) in the sense that for any tt;, tto € TYPETERM

sort_glb(tty, tts) if is_monomorphic(tty)
inf (6, ,t6,) — . . a.nd iSJnonomo:thic(ttz)
poly_inf(tty, tta) if is_polymorphic(tty)

and is_polymorphic(tts)
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For constraint solving involving a monomorphic type term s and t = £(...) € TERM we have
the integrity constraint

0 if subsort(target_sort(f),s)
nil otherwise

solution({t:s}) = {

1.e. the solvability of a monomorphic type constraint depends solely on the subsort relationship
between the required sort and the target sort of the top-level constructor of the term. It will turn
out that this suffices for the refinement of monomorphic type constraint handling.

6.3 Representation of types

For the PAM representation of typeterms we introduce a pointer algebra, similar to DATAAREA,
which will be used for the representation of both monomorphic types and polymorphic type terms
(for the latter see Section 8):

(TYPEAREA; ttop, tbottom, TOP; +, —-; tval)

ttop, tbottom, TOP: — TYPEAREA
+, -—: TYPEAREA — TYPEAREA
tval: TYPEAREA — TO

The functions ttag and tref are defined on the universe of “type objects” TO

ttag: TO — TTAGS
tref: TO — SORT + TYPEAREA

with the tags for type terms given by (to be extended later)
{ S_TOP, SMONO, SPOLY } C TTAGS

Similar as done before, we abbreviate ttag(tval(l)) and tref(tval(l)) by ttag(l) and
tref(1). As integrity constraints we have

if ttag(l) = SMONO then tref(l) € SORT
is_monomorphic(tref(1l))
if ttag(l) = SPOLY then is_polymorphic(tref(l))

where the auxiliary function

typeterm: TYPEAREA — TYPETERM

satisfies the constraints

typeterm(l) = TOP if ttag(l) = S_TOP
typeterm(l) = tref(1l) if ttag(l) = S_MONO

We refine the PAM algebras of Section 5 by replacing the universe TYPETERM by its rep-
resenting universe TYPEAREA. The codomain of the ref function (from 3.1) now contains
TYPEAREA, and in the integrity constraints of 3.1 as well as in the definition of type prefix
the case for unbound (1) now contains typeterm(ref (1)) instead of ref(1). The three abstract
functions is_top, is monomorphic, and is_polymorphic defined on TYPETERM are defined
on TYPEAREA by just looking at the type tag; for 1 € DATAAREA we therefore use the
following abbreviations:

top(1) = tag(l) = VAR & ttag(ref(l)) = S_TOP
monomorphic(l) = tag(l) = VAR & ttag(ref(l)) = S_MONO
polymorphic(l) = tag(l) = VAR & ttag(ref(l)) = S_POLY
sort(1) = typeterm(ref(1l)) if monomorphic(l)
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6.4 Initialization of type constrained variables

In the PAM algebras developed so far the update insert type(1l,t) is used - as part of the
mk_unbound update - in the variable initialization instructions get _variable, put_variable, and
unify variable (Section 5.2). (Its use in the multiple mk_unbounds update in get _structure will
be refined in Section 6.6 below). This update is now refined by

insert_type(l,tt) = if is top(tt)
then insert top(1l)
else if is monomorphic(tt)
then insert_mono(l,tt)
else insert poly(l,tt)
insert_top(l) = ref(l) := ttop
ttag(ttop) := S_TOP
ttop := ttop+
ref(l) := ttop
ttag(ttop) := S_MONO
tref (ttop) S
ttop := ttop+

insert_mono(l,s)

where we use a new type area location when inserting a monomorphic sort s (resp. TOP) as restric-
tion for location 1 € DATAAREA. ?

Similarly, the insertion of polymorphic type terms by insert_poly(1l,tt) will be handled in
Section 8. As we want to leave the details of polymorphic type constraint solving still abstract
here, we pose the following

POLYMORPHIC TYPE INSERTION CONDITION: For any 1;, 1 € DATAARRA,
with term resp. term’ values of term(1) and with prefix resp. prefix’ values of type prefix(1)
before resp. after execution of insert poly(l;,tt), we have if unbound(l;) and tt €
TYPETERM with is_polymorphic(tt):

(term’, prefix’) = conres(term, prefix\mkvar(l,), {mkvar(l;):tt})

TYPE INSERTION LEMMA: The refinement of the insert_type update satisfies the TYPE
INSERTING CONDITION of 3.5.

Proof: By straightforward case analysis for TOP, monomorphic and polymorphic type restrictions;

for the latter the POLYMORPHIC TYPE INSERTION CONDITION is used. =

6.5 Binding of type constrained variables

We refine the binding rules of Section 6.1 according to the type term representation. Rule Bind-1
remains unchanged, whereas the rule Bind-2 for binding two variables is replaced by the following
four rules:

Bind-2a (Bind-TOP-Any)

if  BIND
& top(argl)
& unbound(arg2)) | NOT (unbound(arg2))

?Note that deliberately we have left out the re-use of type area locations. For trailing, we have to preserve
old type restrictions to be recovered upon backtracking. However, locations that will not be reached any more
by backtracking can be re-used, just as e.g. memory on the local stack or on the heap is freed for re-use upon
backtracking. In the current PAM implementation the type area is embedded into the heap so that the same
mechanism for allocating and deallocating can be used. However, other realizations are also possible, and we will
not elaborate this topic in this paper.
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then
trail(argl)
argl < <REF,arg2>
bind_success | occur_check(argl,arg2)

Bind-2b (Bind-Var-TOP)

if  BIND
& monomorphic(argl) OR polymorphic(argil)
& top(arg2)
then
trail(argl,arg2)
argl < <REF,arg2>
arg2 «— argl
bind_success

Bind-2c¢ (Bind-Mono-Mono)

if  BIND
monomorphic(argl)
monomorphic(arg?2)
LET glb = sort _glb(sort(argl),sort(arg2))
glb # BOTTOM | glb = BOTTOM
& glb # sort(arg2) | glb = sort(arg2) |
then
trail(argl,arg2) | trail(argl)
insert_type(arg2,glb) |
argl < <REF,arg2>

& & &

| backtrack
[
[
[

bind_success

Bind-2d (Bind-Poly-Poly)

if  BIND
& polymorphic(argl)
& polymorphic(arg2)
then
trail(argl)
argl < <REF,arg2>
poly_infimum(argl,arg2)

The only still abstract update in these rules is the poly_infimum(1,,15) update used when
binding two polymorphically restricted variables, for which we require the following

POLYMORPHIC INFIMUM CONDITION: For any 1;, 12, 1 € DATAAREA, with
term resp. term’ values of term(1l), with prefix resp. prefix’ values of type_prefix(1l), and
with val resp. val’ values of val(l), before resp. after execution of poly_infimum(1l;,1,) we
have if for i = 1,2 unbound(l;), polymorphic(1;), and typeterm(ref(l;)) € TYPETERM:

LET ¢S = {mk_var(ly) :poly_inf(typeterm(l;),typeterm(l;))}
if solvable(CS) = true
then (a) (term’, prefix’) = conres(term, prefix, CS)
(b) if val # val’ then the location 1 will be trailed
else  backtrack update will be executed

30



Rule Bind-3 of Section 6.1 for binding a variable to a non-variable structure is replaced by
the rules Bind-2a above (which already covers the case that the variable has no type restriction,
denoted by TOP) and the two new rules

Bind-3a (Bind-Mono-Struc)

if  BIND
& monomorphic(argl)
& NOT (unbound(arg2))
& subsort(target sort(ref(arg2)),sort(argl))
= true | = false
then
trail(argl) | backtrack
argl < <REF,arg2> |
occur check(argl,arg2) |

Bind-3b (Bind-Poly-Struc)

if  BIND
& polymorphic(argl)
& NOT (unbound(arg2))
then
trail(argl)
argl < <REF,arg2>
occur_check(argl,arg2)
poly_propagate(argl,arg2)

The abstract update poly_propagate(li,1ls) must satisfy the

POLYMORPHIC PROPAGATION CONDITION which is obtained from the PROPA-
GATION CONDITION of 6.1 by adding is_polymorphic(1l;) as an additional precondition and
replacing ref(1;) by typeterm(ref(1;)).

BINDING LEMMA 2: The refined binding rules are a correct realization of the binding rules
of Section 6.1 and thus also of the binding update of 3.2.

Proof: Following the proof of the BINDING LEMMA in 6.1 we have to show that the rules Bind-
2a - Bind-2d and Bind-3a - Bind-3b are correct realizations of the inf function used in Bind-2 and
of the propagate update used in Bind-3. This follows by straightforward case analysis for TOP,
monomorphic, and polymorphic type restrictions: For TOP, we use its property that it is ‘maximal’
w.r.t. inf and that the propagate update can not have any effect since any TOP restriction trivially
holds (Section 2.1). For the monomorphic case we conclude from the last integrity constraint given
in Section 6.2 that the propagate update is either empty or fails immediately due to the subsort
test, implying that the different cases correctly simulate this situation. For the polymorphic case
the POLYMORPHIC INFIMUM and POLYMORPHIC PROPAGATION CONDITIONS are used.

6.6 Getting of structures

We refine the get_struture rules of Section 3.4 according to the type term representation. Rule
Get-Structure-1 remains unchanged, whereas the rule Get-Structure-2 for the case that x; is an
unbound variable is replaced by the following two rules:
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Get-Structure-2a

if RUN
& code(p) = get_structure(f,x;)
& monomorphic(deref (x;))
& NOT ( subsort(target sort(f),sort(deref(x;))) )

then
backtrack
| Get-Structure-2b
if RUN
& code(p) = get_structure(f,x;)
& top(deref (x;)) | polymorphic(deref (x;))

OR I
(monomorphic(deref(x;)) & |
subsort(target sort(f), |
sort(deref(x;))) |
then
h — <STRUC,h+>
bind(deref(x;),h)
val(h+) := f

h := h++ [ h := h + arity(f) + 2
mode := Write | nextarg := h++
| mode := Read
| FORALL i = 1,...,arity(f) DO
[ mk_unbound (h+i)
| ENDFORALL
| poly propagate(h+,deref(x;))
succeed

Thus, the only remaining abstract update is in the case when x; is a polymorphically restricted
variable; this case in Get-Structure-2b is reduced to the more general update poly propagate
already introduced in the previous subsection.

CORRECTNESS OF GET-STRUCTURE REFINEMENT: The refined Get-Structure
rules are a correct realization of the rules of Section 3.4, i.e. the GETTING LEMMA stills holds
for the refined type term representation.

Proof: As in the proof of the BINDING LEMMA 2 in the previous subsection we can apply a
straightforward case analysis for TOP, monomorphic, and polymorphic type restrictions: For TOP, we
observe that always both conditions can_propagate(f,TOP) and trivially propagates(f,TOP)
used in the Get-Structure rule of 3.4 hold. For monomorphic type restrictions, the propagation
reduces again to the subsort test. For the polymorphic case the POLYMORPHIC PROPAGATION
CONDITION ensures that exactly the type restrictions given by the propagate 1ist function used
in 3.4 are propagated onto the arguments of the structure. m

Whereas we have now introduced a representation for type terms and rules for monomor-
phic type constraint solving, some details of polymorphic type constraint solving are
still abstract, namely the three updates insert poly(l,tt), poly-infimum(l;,l;), and
poly.propagate(l;,1ls) which will be refined in Section 8.
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7 PAM Optimizations

7.1 Special representation for typed variables

Many of the type related rules introduced above - in particular the get-structure and the binding
rules - apply only if the involved variable has no type restriction at all (i.e. TOP), or a monomorphic,
or a polymorphic type restriction, respectively. In the spirit of the WAM’s tagged architecture it
is thus sensible to distinguish these three different cases efficiently by special tags [BMS91]. The
tag VAR is therefore replaced by the three tags FREE, FREE M, FREE P.

Moreover, in the representation of monomorphic sorts one can also easily save a type area
location by letting the ref value of a data area location point directly to SORT. Therefore, we
extend the codomain of the function ref (see 3.1) to include also SORT. Let 1 € DATAAREA;
instead of

val(l) = <VAR,t> and tval(t) = <S_MONO,s>
we will just have
val(l) = <FREEM,s>
and instead of
val(l) = <VAR,t> and ttag(t) = S_TOP
we will just have
tag(l) = FREE
This motivates the following modified abbreviations:
mk_unbound (1) = tag(l) := FREE
mk_unbound mono(1l,s) = tag(l) := FREEM
ref(l) := s

mk_unbound poly(1l,tt)

tag(l) := FREEP
insert poly(1l,tt)
if is_top(tt)
then mk_unbound (1)
elseif is monomorphic(tt)
then mk_unbound mono(1l,tt)
else mk_unbound poly(l,tt)

mk_unbound(1,tt)

unbound (1) = tag(l) € {FREE, FREEM, FREEP}

top(1) = tag(l) = FREE

monomorphic(l) = tag(l) = FREEM

polymorphic(l) = tag(l) = FREEP

sort(1) = ref(1l) if monomorphic(l)

The integrity constraint for the case unbound (1) of Section 3.1 is replaced by

if tag(l) = FREEM then ref(l) € SORT

if tag(l) = FREEP then ref(l) € TYPEAREA
typeterm(ref(1)) € TYPETERM
is_polymorphic(typeterm(ref(1)))

and in the definition of type_prefix the case for unbound(1) is refined to

mk_var(1l) : TOP if tag(1l) = FREE

mk_var(l) :ref(l) if tag(1l) = FREEM
typeprefix(l) =

mk var(l) :typeterm(ref (1)) if tag(1l) = FREEP
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Every time a new variable is created, this refined representation of variables will be taken into
account by one of the specialized mk_unbound updates introduced above; for instance in the Get-
Structure-2b rule (Section 6.6).

Similarly, the rules for initializing variables (Section 5.2) are modified as explained in the fol-
lowing. In order to take advantage of the refined variable representation we modify the compile
function such that each instruction of the form

get_variable(l,x;,tt)
is replaced by one of the three new instructions

get _free(l,x;)
getmono(l,x;,tt)
get poly(l,x;,tt)

depending on whether is_top(tt), is_monomorphic(tt), or is_polymorphic(tt) holds. Like-
wise, all put_variable and unify variable instructions are replaced by the instructions

put free(l,x;) unify free(1)
put mono(l,x;,tt) unify mono(l,tt)
put_poly(l,x;,tt) unify poly(l,tt)

respectively. Note that these new instructions always correspond to the first occurrence of a
variable in a clause and are thus responsible for the correct type initialization of that variable.

Put-1 (X variable)

if RUN
& code(p) =
put free(x;,x;) | putmono(x;,x;,s) | put_poly(x;,x;,tt)
then
mk _unbound (h) | mk_unbound mono(h,s) | mk_unbound poly(h,tt)

x; < <REF,h>
X; — <REF,h>

h := h+
succeed
Put-2 (Y variable)
if RUN
& code(p) =
put free(y,,x;) | putmono(y,,x;,s) | put_poly(y,,x;,tt)
then
mk _unbound(y,) | mk_unbound mono(y,,s)| mk_unbound poly(y,,tt)
xj — <REF,y,>
succeed
Get (Variable)
if RUN
& code(p) =
get free(l,x;) | getmono(l,x;,s) | getpoly(l,x;,tt)
then
1 — x5 | mk_unbound mono(1l,s)| mk_unbound poly(l,tt)
| bind(1,x;) | bind(1,x;)
succeed
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Unify (Read Mode)

if RUN
& code(p) =
unify free(l) | unifymono(l,s) unify poly(l,tt)
& mode = Read
then
1 — <REF,nextarg> | mk_unbound mono(l,s) | mk_unbound poly(l,tt)
| bind(1l,nextarg) | bind(1l,nextarg)
nextarg := nextarg+
succeed
Unify (Write Mode)
if RUN
& code(p) =
unify free(l) | unify mono(l,s) unify poly(l,tt)
& mode = Write
then
mk _unbound (h) | mk_unbound mono(h,s) | mk_unbound poly(h,tt)
1 — <REF,h>
h := ht
succeed

CORRECTNESS OF REFINED VARIABLE REPRESENTATION: The PAM algebras
with the refined variable representation are correct with respect to the PAM algebras constructed
in Section 6.

Proof: The only type inserting update of 6.4 that is still used is insert_poly for which the POLY-
MORPHIC TYPE INSERTION CONDITION ensures the TYPE INSERTTION CONDITION. In-
serting TOP and monomorphic type restrictions for variables obviously has the same effect asin 6.4.
Trailing still works fine since in 4.2 we trailed the complete val decoration of a data area location
- including its tag - and restored it upon backtracking. With these two main observations the
proof follows by case analysis for the three different kinds of type restrictions. Showing that each
variable is initialized properly is straightforward, and the correct treatment of the thus refined
variable representation in all relevant rules (in particular the binding rules) is ensured directly
by our modified abbreviations that refer to a variable’s representation, like monomorphic(1l) or
sort(l). m

7.2 Switch on Types

As opposed to the WAM, in the PAM also a switch on the subtype restriction of a variable is
possible (c.f. 5.3) which increases the determinancy detection abilities. Since only monomorphic
types can have explicitly defined subtypes there are two switch-on-term instructions. (Note that
in this paper we did not introduce special representations for constants, lists, or built-in integers;
they are, however, present in the PAM and could be added to our treatment without difficulties,
which would lead to additional parameters in the following instructions.)

| Switch-on-poly-term |

if RUN

& code(p) = switch_on poly term(i,Lfree,Lstruc)

& tag(deref(x;)) € {FREE, FREEP} | tag(deref(x;)) = STRUC
then

p := Lfree | p := Lstruc
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The switch_ on poly_term instruction is as the WAM switch_on_term instruction (c.f. B.7)
except that the variable may carry a polymorphic type restriction, which however does not lead
to the exclusion of any clauses, since in PROTOS-L no explicit subtype relationships are allowed
between polymorphic types [Bei90].

| Switch-on-mono-term

if RUN
& code(p) = switch_on mono_term(i,Lfree,Lfreem,Lstruc)
& tag(deref(x;)) =
FREE | FREEM | STRUC
then
p := Lfree | p := Lfreem | p := Lstruc

In the switch_on mono_term instruction we distinguish the two cases for a FREE variable and
a FREE M variable. In the first case again no clauses can be excluded form further consideration,
but in the second case only those clauses that are compatible with x;’s subtype restriction have to
be taken into account. The latter is achieved by setting the program counter p to a label where a
switch_on_sort instruction will exploit x;’s subtype restriction:

Switch-on-sort

if RUN

& code(p) = switch_ on sort(i,Table)
then

p :=select,,;(Table,sort(deref (x;)))

where Table is a list of pairs of the form SORT x CODEAREA , and select;,.:(Table,s)
yields the location ¢ such that (s,c) is in Table.
In order to establish a correctness proof for the extended switching instructions we must extend
the assumptions on the compiler stated in 2.2. The defintion of chain is changed so that the two
cases for switch_on_term are replaced by

chain(Lf) if code(Ptr) = switch_on_poly term(i,Lf,Ls)
and is_top(X;) or is_polymorphic(X;)
chain(Ls) if code(Ptr) = switch_on_poly term(i,Lf,Ls)
and is_struct(X;)
chain(Lf) if code(Ptr) = switch_on mono_term(i,Lf,Lfm,Ls)
and is_top(X;)
chain(Ptr) = chain(Lfm) if code(Ptr) = switch_on mono_term(i,Lf,Lfm,Ls)
and is_monomorphic(X;)
chain(Ls) if code(Ptr) = switch_on mono_term(i,Lf,Lfm,Ls)
and is_struct(X;)
chain(select,,+(T,s)) if code(Ptr) = switch_on_sort(i,T)
and s = sort(X;)

SWITCHING LEMMA: Switching extended to types preserves correctness.

Proof: By case analysis using the extended chain definition, and relying on the correctness of the
other building blocks of the determinancy detection mechanism (like try, retry, trust, etc.)
which remain unchanged. =

Note that the special representation of typed variables introduced in this section lead to the
situation that the type extension in the PAM is indeed orthogonal to the WAM. Any untyped
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program is carried out in the PAM with the same efficiency as in the WAM: Adding the trivial
one-sorted type information to such a program reveals that the PAM code will contain only the
FREE-case for variables. Apart form the minor difference of representing a free (unconstrained)
variable not by a selfreference (as in the WAM) but by a special tag, the generated and executed
code 1s thus exactly the same for both the WAM and the PAM. On the other hand, any typed
program exploiting e.g. the possibilities of computing with subtypes can take advantage of the type
constraint handling facilities in the PAM which would have to be simulated by additional explicit
program clauses in an untyped version.
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8 Polymorphic type constraint solving

In this section polymorphic type constraint handling is refined by refining the three updates
insert_poly(l,tt), poly_infimum(1l;,12), and poly propagate(li,1ls) that have been left ab-
stract so far.

8.1 Representation of polymorphic type terms

For the representation of polymorphic type terms we introduce an additional function on SORT

sort_arity: SORT — NAT

yielding the arity of a polymorphic sort (which must be 0 in the case of a monomorphic sort). The
relationship between the declaration part of the program prog (see 2.1 and 2.4) and the functions
on SORT is regulated by the following integrity constraints: For each function declaration of the
form

f: dy ... d, — s(ay,...,qn)

withm, n > 0, pairwise distinct (type) variables o; that occurin dy,...,dy, and each tt = s(...)
€ TYPETERM the following holds:

target _sort(entry(f, m)) = s
arity(entry(f, m)) = m

sort_arity(s) = n
is_monomorphic(tt)
is_polymorphic(tt)

true iff n=20
true iff n>0

Let use illustrate these integrity constraints by some examples. Consider the three function decla-
rations

succ: nat — nat
cons: o x list(a) — list(a)
mk_pair: « x § — pair(a, )

Then we have e.g. the following relationships:

target_sort(entry(succ,1)) = nat
target_sort(entry(cons,2)) = list
target_sort(entry(mk.pair,2)) = pair
arity(entry(succ,1)) =1
arity(entry(cons,2)) =
arity(entry(mk pair,2) = 2
sort_arity(nat) = 0
sort_arity(list) = 1
sort_arity(pair) = 2
is_monomorphic(nat) = true
is_polymorphic(list(1list(y))) = true

Since the type terms required at run time are represented in TYPEAREA  we add two new
tags S_REF and S_BOTTOM to the set of type tags, yielding

TTAGS = { S_TOP, S_BOTTOM, S_MONO, S_REF, S_POLY }

where S_REF corresponds to the subterm reference STRUC used in DATAAREA for ordinary terms.
Together with the additional integrity constraints
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if tag(l)

S_REF then tref(l) € TYPEAREA
ttag(tref(l)) = S_POLY

if tag(l) = S.POLY then tref(l) € SORT

is_polymorphic(typeterm(1))

the function

typeterm: TYPEAREA — TYPETERM

introduced in Section 6.3 is now completely defined by

TOP if ttag(l) = S_TOP
BOTTOM if ttag(l) = S_BOTTOM
tref(l) if ttag(l) = S_MONO
typeterm(1l) = typeterm(tref (1)) if ttag(l) = SREF
s(ay,...,a,) if ttag(l) = S_POLY and
s = tref(l)
n = sort_arity(tref(l))
a; = typeterm(tref(1l)+i)

8.2 Creation of polymorphic type terms

We introduce a representation of polymorphic type terms occurring as arguments of the instruc-
tions in CODEAREA such that they can easily be loaded into TYPEAREA . For this purpose,
we extend the compile function such that every polymorphic type term tt occurring in any of
the generated PAM instructions introduced so far (i.e. put_, get_, unify variable, respectively
their refinements put_free, put_mono etc., see Section 7) is replaced by

compile_type(tt) € (TTAG x (SORT + NAT))*

Note that just for simplicity reasons this list representation abstracts away from the actual rep-
resentation used in the PAM where the tagged type term representation occurring in the code is
embedded into CODEAREA | mapping the list structure to the +-structure of CODEAREA.

The function inverse to compile_type is defined by

TOP if head (L) = <S_TOP, .>
BOTTOM if head (L) = <S_BOTTOM, .>
s if head(L) = <S_MONO, s>

decompile_type(tail(...(tail(L))...)) if head(L) = <S_REF,m>
decompile type(L) = —_

m—times
s(ay,...,a,) if head(L) = <S_POLY, s> and

n = sort_arity(tref(l))
a; = decompile type(tail(...(tail(L))...))
—_————

i—times
and the integrity constraint we impose is
decompile type(compile type(tt)) = tt

for any type term tt € TYPETERM.

Using compile_type(tt) instead of tt itself passes this refined argument to the update
mk_unbound. Since the update mk_unbound is defined in terms of insert_type which in turn
is defined in terms of insert_poly for the polymorphic case, we only have to adapt the - until now
- abstract update insert _poly (Section 6.4). Tt is now defined by
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insert poly(1l,L) = ref(l) := ttop
FORALL j = 1,...,length(L) DO
tval(ttop+j-1) := offset(ttop+j-1,nth(j,L))
ENDFORALL
ttop := ttop + length(L)
where
<tag, tl+k> if tag = S_REF

< >) = .
offset(tl, <tag,k>) { <tag, k> otherwise

POLYMORPHIC TYPE INSERTION LEMMA: The representation of type terms and the
update defined above are a correct realization of the insert_poly update of Section 6.4, i.e. the
POLYMORPHIC TYPE INSERTION CONDITION is satisfied.

Proof: The list representation generated by the function compile_type reflects exactly the struc-
ture of the representation of type terms in TYPEAREA  the only difference being that a sub-
(type-)term pointer in TYPEAREA (with tag S_REF) is realized by an integer offset in the list
representation. This representation difference is taken into account in the definition of insert _poly
given above by adding the offset to the current TYPEAREA location in the S_REF case. B

8.3 Polymorphic infimum

In order to refine the still abtract update poly_infimum(1l;,15) used in the Bind-2d rule of Sec-
tion 6.5 to the infimum computation of polymorphic type terms as they occur in PROTOS-L, we
need to know whether a type term is empty or not. For instance, given the standard notions of
list(«ay) and pair(ag,as), 1ist (BOTTOM) is not empty since it can be instantiated to the empty
list nil, while pair (BOTTOM, INTEGER) is empty since there is no pair without a first component.
The property that a type tt is not empty is formalized by the abbreviation

inhabited(tt) = solution({X:tt}) # nil
where X € VARIABLE. Thus, from the conditions on the solution function in 6.1

we have e.g. inhabited(BOTTOM) = false, inhabited(TOP) = true, and furthermore
inhabited(list (BOTTOM)) = true, inhabited(pair (BOTTOM, INTEGER)) = false.

We pose three additional integrity conditions. The first one requires that there are no ‘empty’
(monomorphic) sorts:

is _monomorphic(s) =- inhabited(s)
The second integrity constraint says that the infimum of polymorphic type terms is computed

from the infimum of the argument types, and that it is always BOTTOM if we have different poly-
morphic types:

poly_inf(s(tty,...,tt,),s’(tt1’,...,tt,°)

s(poly_inf(tty,tt1’),...,(polyinf(tt,,tt,’)) ifs=s’
and
= inhabited(s(polydinf (tty,tt1’),...,polydinf(tt,,tt,’)))

BOTTOM otherwise

For the third integrity constraint we introduce a new abstract function
instmodus: SORT x BOOL* — BOOL

which tells whether terms of a given sort can be instantiated, depending only on the emptiness of
the argument types, but not on the arguments themselves. This function specifies the ‘instantia-

tion modi’ for a polymorphic sort, 1.e. which type arguments of s may be BOTTOM so that s can
still be instantiated. For instance, we have
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inst_modus(list, [falsel) = true
inst modus(pair, [false, truel) = false

since

solution({X:1ist(BOTTOM)}) # nil
solution({X:pair(BOTTOM,INTEGER)}) = nil

and thus

inhabited(list (BOTTOM)) = true
inhabited(pair (BOTTOM, INTEGER)) = false.

The general condition on inst_modus is

inst_modus(s, [by,...,b,]1) = true
= ((Wie€e{l,...,n} . b = true = inhabited(tt;) )
= inhabited(s(tty,...,tt,)) )

For the realization of the poly_inf function in the PAM we introduce a new universe P_NODE
that comes with a tree structure realized by the functions

proot, pcurrent: P_NODE
p-father: P NODE — P_NODE
p-sons: P_NODE — P_NODE*

where p_current is used to navigate through the tree. Each node in the P_NODE tree represents
an infimum computation task for two type terms given as arguments, and it will be eventually be
marked with the result. Thus, we have the three labelling functions

p-argl, p_arg2: P_NODE — TYPEAREA
presult: P NODE — TYPEAREA

When a P_NODE element p represents the computation of the infimum of two polymorphic type
terms typeterm(p.argl(p)) = s(tty,...,tt,) and typeterm(p_arg2(p)) = s(tt1’,...,tt,°),
then the n required computations of the infimum of the tt; and tt;’> will correspond to the n
nodes in the list p_sons(p). The P_NODE label

p_status: P_NODE — {expand, expanded}

indicates for each node whether the son nodes for it have still to be generated or not. The until
now abtract update poly_infimum(1l;,15) for 1;, 1, € DATAAREA is then defined by

poly_infimum(1l;,1s) = p-argl(proot) := ref(l;)
p-arg2(proot) := ref(ls)
p-status(proot) := expand
p-current := p_root
preturn_arg := 1p
11 what_to_do := polymorphic_infimum

It initializes the P_NODE tree containing just the root node. Additionally, it sets the new 0-ary
function

preturnarg : DATAAREA

which holds the location where the result of the polymorphic infimum computation will be written
to when it has been finished.

11 what to.do € {none, polymorphic_infiumum, polymorphic_propagation}

is also a new O0-ary function that is added to the initial PAM algebras. Its initial value
is none, indicating that no specific [ow-level actions have to be performed. All rules intro-
duced so far get 11 what_to_do = none as an additional precondition; thus the definition of
the poly_infimum(1l;,15) update just given blocks the applicability of all previous rules, until
11 what_to_do has been set back again to the value none by one of the rules to be introduced
below. These new rules in turn will be guarded by the precondition
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POLY-INF = OK & 1l what to_do = polymorphic_infimum

(Note that such a scheme has been used before with the 0-ary function what_to._do, separating
e.g. the binding and unification rules from all other rules.) Resetting of 11_what_to_do is done by
means of the following abbreviation that holds for t1 € TYPEAREA and that is also used for
the returning of values in intermediate stages of the polymorphic infimum computation:

preturn(tl) = if p_current # p_root

thenp result(p_current) := tl
p-current := p_father(p_current)
else 11 _what_to_do := none

if ttag(tl) = S_BOTTOM
then backtrack
else bind success
if ref(preturnarg) # tl
then trail(p_return._arg)
ref(p_return_arg) := tl

Note that the last if-then conditional is an optimization over the unconditional updates in the
then-part since in case the return argument location p_return_arg already contains the required
value we neither have to update nor to trail it.

Additionally, the following abbreviations will be used:

pargl = p_argi(p_current)
parg2 = p._arg2(p_current)
ttagl = ttag(pargl)
ttag2 = ttag(parg2)
trefl = tref(pargl)
tref2 = tref(parg2)

If either of the two type term arguments of p_current is TOP or BOTTOM, no son nodes have to be
created and the result can be determined immediately since it is given by one of the two arguments.

Polymorphic Infimum 1 (S_TOP, S BOTTOM)

if  POLY-INF
& p_status(p_current) = expand

& (ttagl = S_TOP | (ttagl = S_BOTTOM
OR | OR
ttag2 = S_BOTTOM) | ttag2 = S_TOP)
then
p-status(p_current) := expanded
p-return(parg?2) | preturn(pargl)

Also in the case of monomorphic types no son nodes have to be created.

Polymorphic Infimum 2 (S_MONO)

if POLY-INF
& p_status(p_current) = expand
& ttagl = S MONO & ttag2 = S_MONO
& subsort(trefl, | subsort(tref2, | sort_glb(trefi,tref2) | sort_glb(trefl,tref2)

tref2) | trefl) | = BOTTOM | + BOTTOM
then
p-status(p_current) := expanded
preturn(pargl) | preturn(parg2)| make_s bottom | make_s mono(
| | | sort_glb(trefl,tref2))
[ | preturn(ttop) | preturn(ttop)
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where for s € SORT the allocation of new type locations in TYPEAREA is achieved by

make_s mono(s) = ttag(ttop) := S_MONO
tref(ttop) := s
ttop := ttop+
make s _bottom = ttag(ttop) := S_BOTTOM
ttop := ttop+

If p_current points to a node with S_POLY tagged arguments for the first time (i.e. its status is
expand), sort_arity(tref(p.argl(p_current))) new son nodes are created and labelled accord-
ingly (c.f. the integrity condition on poly_inf given above). p_current is set to the first of the
new sons, and the new function

prest_calls: P_NODE — P_NODE*

is set to the remaining son nodes, indicating that these nodes still have to be visited by p_current.

Polymorphic Infimum 3 (S_POLY-1)

if  POLY-INF
& p_status(p_current) = expand
& ttagl = S POLY & ttag2 = S_POLY
then
p-status(p_current) := expanded
LET n = sort_arity(trefl)
extend P_NODE by temp(1),...,temp(n)
where p_argi(temp(i)) := pargl + i
p-arg2(temp(i)) := parg2 + i
p-father(temp(i)) := p_current

p-sons(pcurrent) := [temp(1l),...,temp(n)]

p-status(temp(i)) := expand

p-current := temp(1)

prest_calls(p_current) := [temp(2),...,temp(n)]
endextend

When p_current points to a node with S_POLY tagged arguments for the second or a later time
(i.e. its status is expanded) and there are still sons to be visited (i.e. prest_calls(p_current))
# [1), then p_current is set to the next son.

Polymorphic Infimum 4 (S_POLY-2)

if  POLY-INF
& p_status(p_current) = expanded
& ttagl = S_POLY & ttag2 = S_POLY
& prest_calls(p_current) # []

then
p-current := head(prest_calls(p_current))
prest_calls(pcurrent) := tail(prest_calls(p_current))

When p_current points to a node with S_POLY tagged arguments for the second or a
later time and all sons have already been visited (i.e. prest_calls(p_current)) = []), then all
sub-computations for this node have been completed and the result is returned.

Polymorphic Infimum 5 (S_POLY-3)

if  POLY-INF
& p_status(p_current) = expanded
& ttagl = S_POLY & ttag2 = S_POLY
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& prest_calls(p_current) = []

& subtype(1) | subtype(2) | NOT (is_inhabited) | is_inhabited
then
preturn(pargl) | preturn(parg2) | make_s bottom | write_poly_term
[ | preturn(ttop) | preturn(ttop)

The three new abbreviations in the last rule are given by

subtype (i) = FOR ALL k = 1,...,sort_arity(trefl)
parg: + k = presult(nth(k,psons(p_current)))

write poly_term = tval(ttop) := tval(pargl)

FOR ALL k = 1,...,sort_arity(trefl) DO
tval(ttop + k) := tval(presult(nth(k,psons(p_current))))

ENDFORALL
ttop := ttop + sort_arity(trefl) + 1

is_inhabited = instmodus(trefi, [tby,...,tb,])

where in the last abbreviation n = sort_arity(trefl),and fork = 1,...,n
tby = ttag(presult(nth(k,psons(p-current)))) # S_BOTTOM

The subtype conditions in the above rule represent an optimization analogously to the subsort
optimization in the S_MONO case (rule Polymorphic Infimum 2): only if the result differs from one
of the two input arguments a new TYPEAREA location has to be returnd.

If p_current points to a node with S_REF tagged arguments for the first time (i.e. its status
is expand), a single new son node labelled with the respective referenced type area locations is
created.

Polymorphic Infimum 6 (S_REF-1)

if  POLY-INF
& p_status(p_current) = expand
& ttagl = SREF & ttag2 = SREF
then
p-status(p_current) := expanded
extend P_NODE by temp
where p_argi(temp) := trefl
p-arg2(temp) tref2
p-father(temp) := p_current

p-sons(p_current) := [temp]

p-status(temp) := expand

p-current := temp
endextend

When p_current points to a node with S_REF tagged arguments for the second time (i.e.
its status is expanded), then the sub-computations for its single son node has been completed and
the result is returned.

Polymorphic Infimum 7 (S_REF-2)

if  POLY-INF
& p_status(p_current) = expanded
& ttagl = SREF & ttag2 = S_REF
& LET res = presult(head(psons(p_current)))
& res = trefl | res = tref2 | ttag(res) = SBOTTOM | ttag(res) # S_BOTTOM
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then
preturn(pargl) | preturn(parg2) | preturn(res) | make s ref(res)
| | | preturn(ttop)

where for t1 € TYPEAREA the new abbreviation in the last rule is given by

S_REF
tl

make s ref(tl) = ttag(ttop)
tref (ttop)
ttop := ttop+

POLYMORPHIC INFIMUM LEMMA: The polymorphic infimum rules given above are a
correct realization of the poly_infimum(1l;,15) update of Section 6.5.

Proof: We have to show that the polymorphic infimum rules represent a correct realization of
the poly_inf function on TYPETERM that is used in PROTOS-L (and which was introduced
as an abtract function in Section 6.2). Taking the integrity constraints given for inf, sort_glb,
and poly_inf in 6.1, 6.2, and 8.1 the proof follows by case analysis and induction on the sizes
of typeterm(ref(1ly)) and typeterm(ref(l,)). Note that the TRAILING CONDITION is also
satisfied since in p_return(tl) the location p_return_arg (which had been set to 1) is trailed if
its value is to be changed. =

8.4 Propagation of polymorphic type restrictions

The still abtract update poly_propagate(l;,1s) is used in the Bind-3b rule of Section 6.5 and in
the Get-Structure-2b rule of Section 6.6. We refine this update to the propagation of polymorphic
type constraints as they occur in PROTOS-L.

Let us start with an example. Consider the polymorphic declaration for 1ist(a) with con-
structors

nil: — list(a)
cons: « X list(a) — list(a)

and assume monomorphic types NAT and INTEGER with subsort(NAT,INTEGER) = true. Then
solving the unification (or binding) constraint

X=cons(Y,L)

in the presence of the type prefix
{X:1ist(NAT), Y:INTEGER, L:1list(INTEGER)}

generates the type constraint

cons(Y,L) :1ist (NAT)

under the same type prefix. Thus, the update poly propagate(l;,12) would be called with
term(1ls) = cons(Y,L) and typeterm(ref(1l;)) = 1list(NAT).

More generally, the arguments of the term referenced by 1, (in the example Y: INTEGER and
L:1ist(INTEGER)) must be restricted to the respective argument domains of the top-level func-
tor £ of term(1ly) (here: cons) where each type variable in an argument domain in the dec-
laration of £ (here: cons: o x list(a) — list(a)) is replaced by the respective argument
of typeterm(ref(1ly)) (here: replacing o by NAT, which yields cons: NAT x 1list(NAT) —
list (NAT)).

This can be achieved in two steps: TFirst, a new term f£(Xy,...,%X5) (in the example:
cons(Xy,X2)) is created with appropriately type-restricted new variables X; (here: X; :NAT and
X5 :1ist (NAT)), and second, this new term is unified with term(l;). Thus, in the example the
type constraint cons(Y,L) :1ist (NAT) represented by poly_propagate(l;,1s) would be reduced
to the unification problem
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cons(X;,Xs) =cons(Y,L)

with type-constrained new variables X; and Xs. (In fact, this is a slight simplification of the
representation over the actual PAM implementation where the top-level functor (here: cons) would
not be generated since it is not needed; instead, the binding of the n argument variables of the
new term can be called directly.)

For the general refinement of the polymorphic porpagation we assume as an integrity condition

solution({f(t1,...,tm) :s(tty,...,tt,)}) = solution({f(ty,...,tm) =f(X1,. .., Xn),
X; :subres(d;,subst), ...,
X, : subres(d,,,subst)})
where the X; are new variables, £ has declaration
f: d ... dy, — s(ay,...,an) € prog
and subst is the substitution (on type terms)
subst = Uper, Ly fox =)
(c.f. [Bei90], [BMS91], [BM94]). Note that since s(tty,...,tt,) can not contain any type vari-
ables, also in subres(d;,subst) all type variables will have been replaced by ground type terms.

For the SYMBOLTABLE representation of the argument domains d; in a function decla-
ration of the form given above we assume a compiled form similar to the representation of type
terms in CODEAREA used in 8.2. We assume that the compiler numbers the variables in
s(ay,...,qan) from left to right, and use the additional tag S_VAR such that <S_VAR,k> represents
the k-th variable ay. Thus, the de-compilation of type terms in 8.2 is extended by

decompile_type(L) = aj if head(L) = <S_VAR,k>

The function

constr.arg: SYMBOLTABLE x NAT
— ((TTAG + {S_VAR}) x (SORT + NAT))*

returns the argument domains d; for a constructor. For instance, given the above list(«) decla-
ration, we have

[<S_VAR, 1>]
[<S_POLY,list>, <S_VAR,1>]

constr_arg(entry(cons,2),1)
constr_arg(entry(cons,2),2)

More generally, for j € {1,...,m} we impose the integrity constraint
decompile_type(constr_arg(entry(f,n),j)) = d;
For the refinement of poly propagate we add three new (O-ary functions to our initial PAM
algebras: pp-t € DATAAREA, representing a reference to the term t to be retricted, pp_tt €

TYPEAREA, a reference to the type term tt of the restriction, and pp_i € NAT, an index for
the argument positions {1,...,m}. The update

poly.propagate(l;,13) = ppt := 1y
pp-tt := ref(1ly)
pp-i :=1

h « <STRUC,h+>

val(h+) := ref(l,)

h := h++

1l what_to.do := polymorphic_propagate

sets the three new 0-ary functions to their initial value, starts the generation of the new term
by writing the top level functor on the heap, and blocks the applicability of all previous rules by
updating 11 _what _to_do. The following three polymorphic propagation rules are guarded by the
condition POLY-PROP and use the abbreviations hi (for the heap location of the i-th argument of
the term to be generated) and pp_f (for its top-level functor):
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POLY-PROP 0K & 11 _what to_do = polymorphic_propagate

hi =h +ppi-1
pp-£ = ref(pp-t)
The first two propagation rules generate the argument variables Xy ... X,,. If there is still a variable

to be generated (pp-i < arity(pp-f)) and the (pp_i)th argument domain in the declaration of
pp-£ is not a type variable, then a variable with the respective type restriction is generated.

Polymorphic Propagation 1

if POLY-PROP
& pp-i < arity(pps£)
& head(constr arg(ppf,pp-i)) =

<S_TOP, .> | <S_MONO, s> | <S_POLY, .>
then
tag(hi) := FREE | tag(hi) := FREEM | tag(hi) := FREEP
| ref(hi) := s | insert_poly(hi,
[ [ constr_arg(pp-f,pp-i),
I I pp-tt)

ppi :=ppi + 1

The update insert poly(1,L,t1) is derived from its 2-argument counterpart in 8.2 by
additionally substituting the (representation of the) type variable o by the (representation of the)
k-th argument of typeterm(tl):
insert poly(1l,L,tl) = ref(l) := ttop
FORALL j = 1,...,length(L) DO
tval(ttop+j-1) := offset&substitute(ttop+j-1, nth(j,L), t1)

ENDFORALL
ttop := ttop + length(L)

where
<tag, tl’+k> if tag = S_REF
offset&substitute(tl’, <tag,k>, tl) = tval(tl+k) if tag = S_VAR
<tag, k> otherwise

If there is still a variable to be generated (pp-i < arity(pp_f)) and the (pp-i)th argument
domain in the declaration of pp_f is a type variable (say, «y), then the variable to be written
on the heap must get the k-th type argument of typeterm(pp.-tt) as its type restriction (i.e.
tref(pp-tt + k)). If the latter is BOTTOM, backtrack update is executed since «y :BOTTOM is an
inconsistent type constraint (see 6.1).

| Polymorphic Propagation 2 |

if  POLY-PROP
& pp-i < arity(pps£)
& head(constr. arg(ppf,pp-i)) = <S_VAR, k>
& ttag(pp-tt + k) =
S_TOP | S_MONO | S_POLY | S_BOTTOM
then
tag(hi) := FREE | tag(hi) := FREEM | tag(hi) := FREE_P | backtrack
[ ref(hi) := tref(pptt + k) [
pp-i := pp-i + 1 |

The third propagation rule is applied when all argument variables have been written on
the heap (pp-i > arity(ppf)). It is responsible for the unification of the term to be restricted
(pp-t) with the newly generated term (referenced by h).
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Polymorphic Propagation 3

if  POLY-PROP
& pp-i > arity(pp1)
then
h := h + arity(ppS£)
11 _what _to.do := none
propagate unify(h,pp-t)

with the abbreviations

propagate unify(l;,1s) = if still unifying
then push on unify stack(l;,13)
else unify(l;,1s)

still unifying what _to_do = Bind & return from bind = Unify

ref’ (pdl++) := 1
ref’ (pdl+) := 1,
pdl := pdl++
what_to_do := Unify

push_on unify stack(1l;,1s)

Thus, if the machine is still in unifying mode, the update propagate unify(1;,1,) just pushes
the two locations to be unified onto the push down list PDL used for unification; otherwise the
update unify(1;,1;) initializing unification is executed (see 3.2).

POLYMORPHIC PROPAGATION LEMMA: The polymorphic propagation rules given
above are a correct realization of the poly propagate(1li,1s2) update of Section 6.5.

Proof: By induction on the number of arguments in typeterm(l;) we can show that, from the
time when 11 _what_to_do is set to polymorphic_propagate to the time when the rule Polymor-
phic Propagation 3 is being executed, a term of the form £(X,...,X,,) is created on the heap.
The rules Polymorphic Propagation 1 and 2 as well as the update insert_poly(1,L,tt) ensure
that the proper type restrictions for X; are inserted, i.e. - using the notation of the solution
integrity constraint given in the beginning of this subsection - X; : subres(d;,subst). Note that if
subres(d;,subst) = BOTTOM, rule Polymorphic Propagation 2 carries out the backtrack update
since solution({t:BOTTOM}) = nil for any term t.

Thus, we are left to show that also the equation part £(t1,...,t,) = £(X1,...,%X;) 1s taken
properly into account. This exactly is ensured by the updates of rule Polymorphic Propagation 3:
By induction on the number of times the unification of the two terms to be unified will again cause a
polymorphic propagation invocation, and using the UNIFICATION LEMMA of Section 3.2, we can
show that at the time when the unification initiated by the update propagate unify(h, pp-t) has
been carried out (either with success or with failure) the post-conditions of the POLYMORPHIC
PROPAGATION CONDITION are satisfied. =

8.5 Main Theorem of Part II

Putting everything together, we obtain

Correctness Theorem 3 (Main Theorem of Part IT): Compilation from PROTOS-L algebras
to the PAM algebras with polymorphic, order-sorted type constraint handling is correct.
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A Transition rules for compiled And/Or structure

if 0K if 0K
& code(p) = allocate & code(p) = deallocate
then then
PUSH_ENV temp IN POP_ENV
cp’ (temp) := cp cp := cp’(e)
vi’(temp) := vi succeed
ct’ (temp) := ct
ENDPUSH
succeed

if 0K if 0K
& code(p) = call(G) & code(p) = unify(H)
& is_user_ defined(G) then
then if solvable(cs U {act =rename(H,vi)})
let p1 = procdef(act,cs,prog) then cs := ¢s U {act =rename(H,vi)}
if code(pl) = fail vi = vi + 1
then backtrack succeed
else p := pi else backtrack
ct := b
cp := pt
true/fail/cut | add_constraint
if 0K if 0K
& code(p) = call(BIP) & code(p) = add_constraint(P)
& BIP = then
true | fail | cut if solvable(cs U rename(P,vi))
then then cs := cs U rename(P,vi)
succeed | backtrack | b := ct’(e) succeed
| | succeed else Dbacktrack
try e _else/try trust_me/trust
if 0K if 0K
& code(p) = & code(p) =
tryme_else(N) | try(L) trustme | trust(L)
then then
PUSH_STATE temp IN fetch_state from(b)
store_state_in(temp) POP_STATE
p(temp) := N | p(temp) := p+ p:= pt | p:=L
p:= pt | p:=L
ENDPUSH
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retry _me_else/retry

if 0K
& code(p) =
retryme_else(N) | retry(L)
then
fetch state from(b)
p(d) =N
p:= pt

(b) := p+

l'p
| p:=L

| switch_on_structure |

if OK

& code(p) = switch_ on structure(i,T)
then

let x; = arg(act,i)

p := select(T,func(x;),arity(x;))

Abbreviations:
succeed = p :=p + 1

0K = stop = 0

PUSH_STATE temp IN updates ENDPUSH
= EXTEND STATE BY {emp WITH

b := {emp
b(temp) := b
temp- := tos(b,e)
updates

ENDEXTEND

POP_STATE = b := b(b)

fetch_state from(b) = cs := cs(b)
cp := cp(dh)
e := e(h)

if 0K

& code(p) = proceed

& code(cp)

= proceed | # proceed

then

stop := 1 | p := cp

| switch_on_term |

if 0K

& code(p) = switchon term(i,Lv,Ls)
& let x;, = arg(act,i)
isvar(x;) | is_struct(x;)
then
p := Lv | p :=Ls

backtrack = if b = nil
then stop := -1
else p := p(b)

PUSH_ENV temp IN updates ENDPUSH
= EXTEND ENYV BY {emp WITH

e := temp
ce(temp) := e
temp- := tos(b,e)
updates

ENDEXTEND

POPENV = e := ce(e)

store_state_in(temp) = cs(femp) := cs
cp(temp) := cp
e(temp) := e



B Transition rules for the PAM with abstract type terms
of Part I

B.1 Low level unification

Unify-1 (success)

if 0K & what todo = Unify
& pdl = nil

then
what _ to_do := Run

Unify-2 (Unify-Var-Any)

if UNIF
& unbound(dl) | NOT(unbound(dl))
| & unbound(dr))
then
bind(dl,dr) | bind(dr,dl)
pdl := pdl--

Unify-3 (Unify-Struc-Struc)

if UNIF
& NOT( unbound(dl) or unbound(dr) )
& val(ref(dl)) = val(ref(dr))
then
FORALL i = 1,...,arity(val(ref(dl))) DO
ref’ (pdl+2*arity(val(ref(dl)))-2#i) := ref(dl)+i
ref’ (pdl+2*arity(val(ref(dl)))-2#i-1) := ref(dr)+i
ENDFORALL
pdl := pdl+2*arity(val(ref(dl)))-2

Unify-4 (Unify-Struc-Struc)

if UNIF
& NOT( unbound(dl) or unbound(dr) )
& NOT( val(ref(dl)) = val(ref(dr)) )
then
backtrack
what _ to_do := Run

Abbreviations:

dr = deref(right)

dl = deref(left)

UNIF OK & what_to_do = Unify
RUN OK & what_to_do Run
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B.2 Putting and Getting Code

The code for putting (resp. getting) instructions corresponding to a body goal (resp. the clause
head) is defined using the term normal form of first order logic. Its two froms nf; (resp. nfy)
correspond to the synthesis (resp. analysis) of terms:
nfs (X;=£(s1,...,8n)) = flatten([nfi(Z1=s1),...,0f; (Zn=spn), X;i=t(Z1,...,Z,)])
nfy (X;=1t(s1,...,85)) = flatten([X;=f(Z1,...,Zp), nfy(Z1=s1),...,0fa(Zm=5,)])

The function put_instr (resp. get_instr) of a normalized equation is defined by the following
table, where j stands for an arbitrary ‘top level’ index (corresponding to the input X;=t for term
normalization) and k for a ‘non top level” index (corresponding to an auxiliary variable introduced
by normalization itself):

=Y, — [zzz_value(y,,x;]
Xr=Y, — [unify value(y,)]
Xi=1t(Z1,...,2,) — [zzz_structure(entry(f,a),x;), unify ., (z1),...,unify ., (z4)]

where zzz stands for put (resp. get), y; € DATAAREA, x;, € AREGS, and with

unify value(Y,) if Z; = Y, and zzz = put
ity (zi) = unify _value(X) %f Z; = X and zzz = put
unify _value(y,) ifZ; = Y, and zzz = get
unify variable(Xy) if Z; = X; and zzz = get

The function put_code (resp. get_code) is defined by flattening the result of mapping put_instr

(resp. get_instr) along nf, (X;=t) (resp. nf; (X;=t)). The function put_seq (resp. get_seq) spec-

ifies how a body goal (resp. clause head) of the form g(s1,...,8m) is compiled:
rrz_seq(g(si,...,sm)) = flatten([zzzcode(X1=s1),...,zzz_code(Xn=5,)]1)

with ‘top level’ j = 1,...,m.

Additionally, for the HEAP VARIABLES LEMMA and the proof of the “Pure PROTOS-L
theorem” in 4 we assume that the put_code and get_code functions generate unify local_value
instead of unify value for all occurrences of local variables, and that

call seq(g(s1,...,s;)) — flatten([putseq(g(si,...,s;)),call(g,k,r)])
with {Yy,...,Y,} being all variables occurring in the clause.

Additional compiler assumptions are given in Section b for the optimizations introduced there
(environment trimming, LCO, variable initialization “on the fly”, etc.).
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B.3 Putting of terms

put_structure

if RUN if RUN
& code(p) = put_value(l,x;) & code(p) = put_structure(f,x;)
then then
x; — 1 h «— <STRUC,h+>
succeed X; «— <STRUC,h+>
val(h+) := f
|Put-Unsafe-Value| h := h++
if RUN mode := write
& code(p) = put_unsafe value(y,,x;) succeed
& deref(y,) < e | deref(y,) > e
then
x; <« deref(y,) | mk_heapvar(deref(y,))
| x; — <REF,h>
succeed
“On the fly” initialization (Sec. 5.2):
Put-1 (X variable) Put-2 (Y variable)
if RUN if RUN
& code(p) = put_variable(x;,x;,tt) & code(p) = put_variable(y,,x;,tt)
then then
mk_unbound(h,tt) mk_unbound(y,,tt)
x; «— <REF,h> x; < <REF,yn>
X; < <REF,h> succeed

succeed

B.4 Getting of terms

if RUN

& code(p) = get_value(l,x;)
then

unify(1,x;)

succeed

Get-Structure-1

if RUN
& code(p) = get_structure(f,x;)
& tag(deref(x;)) = STRUC
& val(ref(deref(x;))) = £ | val(ref(deref(x;))) # £

then
nextarg := ref(deref(x;))+ | backtrack
mode := Read
succeed
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Get-Structure-2

if RUN
& code(p) = get_structure(f,x;)

& unbound(deref(x;))
& can_propagate(f,ref(deref(x;)))
= true | = false
& trivially propagates(f,ref(deref(x;))) |
= true | = false |
then
h <« <STRUC,h+> | backtrack
bind(deref(x;),h)
val(h+) := f |
h := h++ I
mode := Write | nextarg := h++ |
| mk_unbounds(h+,propagate 1ist(f,ref(deref(x;))) |
| mode := Read |
succeed [

“On the fly” initialization (Sec. 5.2):

get_variable

if RUN

& code(p) = get_variable(l,x;,tt)
then

mk_unbound(1,tt)

bind(1,x;)

succeed

B.5 Unify instructions

Unify Variable

if RUN
& code(p) = unify variable(1l)
& mode = Read | mode = Write
then
mk _unbound (1) | mk_unbound(h)
bind(1,nextarg) | 1 +— <REF,h>
nextarg := nextarg+| h := h+
succeed
if RUN
& code(p) = unify._value(l)
& mode = Read | mode = Write
then
unify(l,nextarg) | h «— 1
nextarg := nextarg+| h := h+
succeed

56



Unify Local Value

if RUN
& code(p) = unify local value(l)
& mode = Read | mode = Write
| & NOT(local(deref(1))) | local(deref(l))
then
unify(l,nextarg) | h — deref(1) | mk_heap_var(deref(1l))
nextarg := nextarg+| h := h+
succeed

“On the fly” initialization (Sec. 5.2):

unify_variable

if RUN
& code(p) = unify _variable(l,tt)
& mode = Read | mode = Write
then
mk_unbound(1,tt) | mk_unbound(h,tt)
bind(1,nextarg) | 1 +— <REF,h>
nextarg := nextarg+| h := h+
succeed

B.6 Environment and Choicepoint Representation

The entries of the environment frame are stored in STACK at fixed offsets from the environment
pointer e (ignoring cut points at this stage, but see 5.3). In particular, the environment also
contains the variables yi,...,y, where n is the second parameter of the last call being executed
(which is accessible via cp-):

ce(l) =1+1
cp’ (1) =1+2
Vi = e+ 2+ 1 (1 < i< stackoffset(cp) )
y: (1) =1+2+ (1 < i< stackoffset(val(cp’(1))) )
stack_offset(l) = n if code(1l-) = call(g,a,n)
tos(b,e) = if b < e
then e + 2 + stackoffset(cp)
else b

Similarly, the choicepoint information is stored in STACK at fixed offsets from the backtracking
pointer b. The choicpoint also contains the argument registers x1,...,x; of the current goal:

h(1)
tr(l)
p(1)
b(1)
cp(1)
e(1)
X
hb(1)

1

|
g W N

-5 -1
val(h(b))

HHHE e
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B.7 Indexing and Switching

try e _else/try

if RUN
& code(p) =
tryme_else(N,n) | try(L,n)
then
LET newdb = tos(b,e) + n + 6
b := newdb
val(b(newb)) := Db
store_state_in(new b,n)
val(p(newd)) := N | val(p(newdb)) :=p+
p:= pt lp := L
trust_me_else/trust
if RUN
& code(p) =
trustme(n) | trust(L,n)
then
fetch state_from(b,n)
b := val(b(b))
p:= pt | p:=L
Abbreviations:
store_statein(#,n) = FORALL i = 1,...,n
val(x; (¢) := x;
ENDFORALL
val(e(?)) := e
val(cp(?)) := cp
val(tr(?)) := tr
val(h(?)) := h
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retry _me_else/retry

if RUN
& code(p) =
retryme_else(N,n) | retry(L,n)
then
fetch_state from(b,n)
val(p(b)) := N | val(p(b)) := p+
p:= p+ | p:=L
| switch_on_term |
if RUN
& code(p) = switchon term(i,Lv,Ls)
& tag(deref(x;)) =
VAR | = STRUC
then
p:=Lv | p:=1Ls
| switch_on_structure |
if RUN

& code(p) = switch on structure(i,T)
then
p:

select(T,val(ref(deref(x;))))

fetch state from(f,n) = FORALL i = 1,...,n

x; = val(x; (1))
ENDFORALL
e := val(e(t))
cp := val(cp(?))
tr := val(tr(?))
h := val(h(?))



