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1 IntroductionRecently, Gurevich's evolving algebra approach ([Gur88]) has not only been used for the descriptionof the (operational) semantics of various programming languages (Modula-2, Occam, Prolog, PrologIII, Smalltalk, Parlog, C; see [Gur91]), but also for the description and analysis of implementationmethods: B�orger and Rosenzweig ([BR91, BR92b, BR92a]) provide a mathematical elaboration ofWarren's Abstract Machine ([War83], [AK91]) for executing Prolog. The description consists ofseveral re�nement levels together with correctness proofs, and a correctness proof w.r.t. B�orger'sphenomenological Prolog description ([B�or90a, B�or90b].In this paper we demonstrate how the evolving algebra approach naturally allows for mod-i�cations and extensions in the description of both the semantics of programming languages aswell as in the description of implementation methods. Based on B�orger and Rosenzweig's WAMdescription we provide a mathematical speci�cation of a WAM extension to type-constraint logicprogramming and prove its correctness. Note that thereby our treatment can be easily extendedto cover also all extra-logical features (like the Prolog cut) whereas the WAM correctness proof of[Rus92] deals merely with SLD resolution for Horn clauses.The extension of logic programming by types requires in general not only static type check-ing, but types are also present at run time (see e.g. [MO84], [GM86], [NM88], [Han88], [Han91],[Smo89]). For instance, if there are types and subtypes, restricting a variable to a subtype repre-sents a constraint in the spirit of constraint logic programming. PROTOS-L ([Bei92], [BBM91])is a logic programming language that has a polymorphic, order-sorted type concept (similar tothe slightly more general type concept of TEL [Smo88]) and a complete abstract machine im-plementation, called PAM ([BMS91], [BM94]) that is an extension of the WAM by the requiredpolymorphic order-sorted uni�cation. Our aim is to provide a full speci�cation and correctnessproof of the concrete PAM system.In the �rst part of this paper, we keep the notion of types and dynamic type constraintsrather abstract to allow applications to di�erent constraint formalisms. Since the type constrainthandling is orthogonal to the compilation of predicates and clauses, we start from type-constraintProlog algebras with compiled AND/OR structure that are derived from B�orger's and Rosenzweig'scorresponding compiled standard Prolog algebras. The speci�cation of the type-constraint WAMextension is then given by a sequence of evolving algebras, each representing a re�nement level.For each re�nement step a correctness proof is given. As �nal result of Part I of this paper weobtain the theorem: For every such abstract type-constraint logic programming system L and forevery compiler satisfying the speci�ed conditions, compilation from L to the the WAM extensionwith an abstract notion of types is correct.Although our description in Part I is oriented towards type constraints, it is modular in thesense that it can be extended to other constraint formalisms, like Prolog III [Col90] or CLP(R)[JL87], [JMSY90], as well. For instance, in [BS95] a speci�cation of the CLAM, an abstractmachine for CLP(R), is given along these lines, together with a correctness proof for CLP(R)compilation. [Bei94] extends the work reported here by studying a general implementation schemefor CLP(X) and designing a generic extension WAM(X) of the WAM. Nevertheless, in order toavoid proliferation of di�erent classes of evolving algebras, we will already speak here in Part Iin terms of PROTOS-L and PAM algebras (instead of type-constraint Prolog and type-constraintWAM algebras).In Part II we re�ne the type constraints to the polymorphic order-sorted types of PROTOS-L,again in several re�nement steps. This allows us to develop a detailed, yet due to the use ofthe evolving algebras, mathematically precise account of the PAM's compiled type constraintrepresentation and solving facilities, and to prove its correctness w.r.t. PROTOS-L which we obtainas the �nal correctness theorem.This paper was written in 1992/93 and revises and extends our work presented in [BB91] and[BB92]. It is organized as follows: Part I consists of Sections 2 - 5. Section 2 introduces an1



abstract notion of (type) constraints and de�nes PROTOS-L algebras with compiled AND/ORstructure, the starting point of our development. This already includes the treatment of indexingand switching instructions which on this level of abstraction carry over from the WAM to thePAM. Section 3 introduces the representation of terms. The stack representation of environmentsand choicepoints is given in Section 4 which also contains the \Pure PROTOS-L" theorem statingthe correctness of the PAM algebras developed so far w.r.t. the PROTOS-L algebras of Section 2.Various WAM optimizations that are also present in the PAM (environment trimming, last calloptimization, initialization \on the 
y" of temporary and permanent variables) are described inSection 5. The notions of type constraint and constraint solving have been kept abstract throughall re�nement levels so far; thus, the development carried out in Part I applies to any type systemsatisfying the given abstract conditions.Part II consists of the Sections 6 - 8. Section 6 introduces the representation and constraintsolving of monomorphic, order-sorted type constraints. Section 7 contains some type-speci�c opti-mizations of the PAM, which yields a situation where the WAM comes out as a special case of thePAM for any program not exploiting the advantages of dynamic type constraints. Section 8 givesa detailed account of polymorphic type constraint representation and solving in the PAM.Notation and prerequisitesIn this section we �rst list those de�nitions which are necessary to the reader who is interestedonly in analysis of the PAM, reading our rules as `pseudocode over abstract data', and not inchecking the correctness proof (for which we rely more explicitely on the underlying methodologyof evolving algebras; for background and a de�nition of this notion which is due to Y. Gurevichsee [Gur91]).The abstract data comes as elements of (not further analysed) sets (domains, universes). Theoperations allowed on universes will be represented by partial functions.We shall allow the setup to evolve in time, by executing function updates of the formf(t1,: : :,tn) := twhose execution is to be understood as changing (or de�ning, if there was none) the value offunction f at given arguments.We shall also allow some of the universes (typically initially empty) to grow in time, by exe-cuting updates of formextend A by t1,: : :,tn with updates endextendwhere updates may (and should) depend on the ti's, setting the values of some functions on newlycreated elements ti of A.The precise way our `abstract machines' may evolve in time will be determined by a �nite setof rules of the formif conditionthen updateswhere condition or guard is a boolean, the truth of which triggers simultaneous execution of allupdates listed in updates. Simultaneous execution helps us avoid coding to, say, interchange twovalues.If at every moment at most one rule is applicable (which will in this paper always be the case),we shall talk about determinism - otherwise we might think of a daemon freely choosing the ruleto �re. The forms obviously reducible to the above basic syntax, which we shall freely use asabbreviations, are let and if then else. The transition rule notationif condition1 | : : : | conditionnthen updates1 | : : : | updatesn2



with pairwise incompatible conditions conditioni stands for the obvious set of n transition rulesif condition1then updates1if condition2then updates2: : :if conditionnthen updatesnWe will also use the |-notation to separate alternative parts within more complex rule conditionsand the corresponding update parts. For instance, the rule notationif OK& code(p) = call(BIP)& BIP =true | fail | cutthensucceed | backtrack | b := ct'(e)| | succeeddeals with the built-in predicates true, fail, and cut and stands for the three rulesif OK& code(p) = call(BIP)& BIP = truethensucceedif OK& code(p) = call(BIP)& BIP = failthenbacktrackif OK& code(p) = call(BIP)& BIP = cutthenb := ct'(e)succeedAlso, we will often introduce abbreviations of the form a � term. For instance, in the rules justgiven we used the three abbreviationssucceed � p := p + 1OK � stop = 0 backtrack � if b = nilthen stop := -1else p := p(b)We shall assume that we have the standard mathematical universes of booleans, integers, listsof whatever etc. (as well as the standard operations on them) at our disposal without furthermention. We use usual notations, in particular Prolog notation for lists.Here are some more remarks on the formal background for the reader who is interested to followour proofs. 3



De�nition. An evolving algebra is a pair (A; R) where A is a �rst-order heterogeneous algebra withpartial functions and possibly empty domains, and R is a �nite system of transition rules. Thetransition rules are of form if condition then updateswhere condition is a boolean expression of the signature of A and updates is a �nite sequence ofupdates of one of the following three forms:function update : f(t1; : : : ; tn) := twhere f is a function of A and t1; : : : ; tn; t are terms in the signature of A.universe extension : extend A by t1; : : : ; tn with updates endextendwhere t1; : : : ; tn are variables possibly occurring in function updates updates (standing forelements of A).update schema : FORALL i = t1; : : : ; t2 DO updates(i) ENDFORALLwhere t1 and t2 are numerical terms and updates(i) are updates (with parameter i).The meaning of rules and updates execution is as explained above. We intend an update schemato denote an algebra update obtained by �rst evaluating t1 and t2 to numbers n1 and n2 and thenexecuting updates(i) for all i 2 fn1,: : : ,n2g in parallel. This construct, which does not appear inGurevich's original de�nition in [Gur91] is obviously reducible to rules with function updates.Every evolving algebra (A; R) determines a class of structures called algebras or states of (A; R).Within such classes we will have a notion of initial and terminal algebras, expressing initial resp.�nal states of the target system. We are essentially interested only in those states which arereachable from inital states by R. In our re�nement steps we typically construct a more concreteevolving algebra (B; S) out of a given more abstract evolving algebra (A; R) and relate them by a(partial) proof map F mapping states B of (B; S) to states F(B) of (A; R), and rule sequences R ofR to rule sequences F(R) of S, so that the following diagram commutes:F(B) -F(R) F(B0)F 6B - B06FRIn accordance to terminology used in abstract data type theory [EM89] we call F also anabstraction function.We shall consider such a proof map to establish correctness of (B; S) with respect to (A; R) if Fpreserves initiality, success and failure (indicated by the value of a special 0-ary function stop) ofstates, since in that case we may view successful (failing) concrete computations as implementingsuccessful (failing) abstract computations.We can consider such a proof map to establish completeness of (B; S) with respect to (A; R) ifevery terminating computation in (A; R) is image under F of a terminating computation in (B; S),since in that case we may view every successful (failing) abstract computation as implemented bya successful (failing) concrete computation.In case we establish, in the above sense, both correctness (as we will do explicitly on everyof our re�nement steps) as well as completeness (which follows from all our re�nement steps bystraightforward observations) we may speak of operational equivalence of evolving algebras.4



PART I: Adding type constraints to Prolog and the WAM2 PROTOS-L Algebras with compiled AND / OR struc-ture2.1 An abstract notion of type constraintsThe basic universes and functions in PROTOS-L algebras dealing with terms and substitutionscan be taken directly from the standard Prolog algebras ([B�or90a], [B�or90b]). In particular, wehave the universes TERM and SUBST of terms and substitutions with a functionsubres: TERM � SUBST ! TERMyielding subres(t,s), the result of applying s to t.To be able to talk about (type constraints of) variables involved in substitutions we introducea new universeVARIABLE � TERMSince in PROTOS-L uni�cation on terms is subject to type constraints on the involved variables,we have to distinguish between equating terms and satisfying type constraints for them. For thispurpose we introduce a universeEQUATION � TERM � TERMwhose elements are written as t1 := t2. Substitutions are then supposed to be (represented by)�nite sets of equations of the form fX1 := t1, : : : , Xn := tng with pairwise distinct variables Xi. Thedomain of such a substitution is the set of variables occurring on the left hand sides. (Note: If youwant to have the logically correct notion of substitution - with occur check -, you should add thecondition that no Xi occurs in any of the tj .)For a formalization of type constraints for terms - in the spirit of constraint logic programming- we introduce a new abstract universe TYPETERM, disjoint from TERM and containing alltypeterms, of which we only assume that it comes with a special constant TOP 2 TYPETERM.Type constraints are given by the universeTYPECONS � TERM � TYPETERMwhose elements are written as t :tt. A set P � TYPECONS is called a pre�x if it contains onlytype constraints of the form X : tt where X 2 VARIABLE and at most one such pair for everyvariable is contained in P. The domain of P is the set of all variables X such that X : tt is in P forsome tt. We denote by TYPEPREFIX the universe of all type pre�xes.Constraints are then de�ned as equations or type constraints, i.e.CONSTRAINT � EQUATION [ TYPECONSLet CSS denote the set of all sets of constraints together with nil 2 CSS denoting an inconsistentconstraint system.The uni�ability notion of ordinary Prolog is now replaced by a more general (for the momentabstract) constraint solving function:solvable: CSS ! BOOLtelling us whether the given constraint system is solvable or not. Every (solution of a) solvableconstraint system can be represented by a pair consisting of a substitution and a type pre�x. Thus,we introduce a function 5



solution: CSS ! SUBST � TYPEPREFIX [ fnilgwhere solution(CS) = nil i� solvable(CS) = false. For the trivially solvable empty con-straint system we havesolution(;) = (;,;)and the functionssubst part: CSS ! SUBSTprefix part: CSS ! TYPEPREFIXare the two obvious projections of solution. As an integrity constraint we assumesolution(ft : TOPg) = (;,;)i.e., TOP is used to represent a trivially solvable type constraint.These are the only assumptions we make about the universe TYPETERM until we introducea special representation for it in Section 6. Thus, the complete development up to Section 5(i.e. Part I of this paper) applies to any concept of (type) constraints that exhibits the minimalrequirements stated so far.Having re�ned the notions of uni�ability and substitution to constraint solvability and (solvable)constraint system, respectively, we can now also re�ne the related notion of substitution result toterms with type constrained variables. The latter involves three arguments:1. a term t to be instantiated,2. type constraints for the variables of t given by a pre�x Pt , and3. a constraint system CS to be applied.Since a CS-solution consists of an ordinary substitution sCS together with variable type constraintsPCS via solution(CS) = (sCS, PCS), the result of the constraint application can be introducedby conres(t, Pt, CS) = (t1, P1)as a pair consisting of the instantiated term t1 and type constraints P1 for the variables of t1. Forthis functionconres: TERM � TYPEPREFIX � CSS !TERM � TYPEPREFIX [ fnilgwe impose the following integrity constraints:8 t 2 TERM, Pt 2 TYPEPREFIX, CS 2 CSS .if solvable(Pt [ CS) then conres(t, Pt, CS) = (t1, P1)where:t1 = subres(t, subst part(CS))P1 = prefix part(Pt [ CS)jvar(t1)else conres(t, Pt, CS) = nilwhere P0jvar(t0) is obtained from P0 by eliminating the type constraints for all variables not oc-curring in t0.PnX will be an abbreviation for Pjdomain(P)nfXg, the pre�x obtained from P by eliminating (ifpresent) the constraint for X.Thus, the condition that a constraint system CS \can be applied" to a term t with its variablesconstrained by Pt means that Pt is compatible with CS, i.e. solvable(CS [ Pt) = true.6



2.2 CompilationAs already mentioned, our starting point in this paper are PROTOS-L algebras with compiledAND/OR structure. This is motivated by the fact that the type constraint mechanism is orthogonalboth to the compilation of the predicate structure (OR structure) as well as to the compilation ofthe clause structure (AND structure). Leaving the notion of terms and substitutions as abstract asin 2.1, we can use the compiled AND/OR structure development for Prolog in [BR91], [BR92b] alsofor PROTOS-L: Essentially we just have to replace substitutions by the more general constraintsystems, and have to take care of a clause constraint when resolving a goal.In a PROTOS-L algebra a program is a pair consisting of a de�nition context and a sequenceof clauses PROGRAM � DEFCONTEXT � CLAUSE�The de�nition context contains declarations of types, type constructors, etc. and will be re�ned inPart II. For prog = (defc,db) 2 PROGRAM we will write x 2 prog for both x 2 defc andx 2 db when it is clear from the context whether x is e.g. a type declaration or a list of clauses.A clause, depicted asfPg H <-- G1 & : : : & Gn.is an ordinary Prolog clause together with a set P of type constraints for (all and only) the variablesoccurring in the clause head and body. As in [BS91] we use three obvious projection functionsclhead: CLAUSE ! LITclbody: CLAUSE ! LIT�clconstraint: CLAUSE ! TYPEPREFIXwhere LIT is the universe of literals. Literals as used in ordinary logic programming are (non-negated) atomic �rst-order formulas. An element of the universe GOAL also comes with a typepre�x and is written asfPg G1 & : : : & Gn.We assume a universe INSTR of instructions containingfunify(H), add constraint(P), call(G),allocate, deallocate, proceed, true, fail, cut,try me else(N), try(L), retry me else(N), retry(L), trust me, trust(L),switch on term(i,Lv,Ls), switch on structure(i,T) ji 2 NAT, H, G 2 TERM, P 2 TYPEPREFIX,N, L, Lv, Ls 2 CODEAREA, T 2 (ATOM � NAT � CODEAREA)�gHere, add constraint is a new instruction not occurring in the WAM that adds a clause constraintto the current set of constraints accumulated so far. The universe ATOM contains the constantand function symbols; elements of ATOM are used in the switch on structure instruction inorder to allow indexing over the top-level function symbol of an argument. Later on, furtherinstructions will be added to INSTR.1For the compilation of clauses we have a functioncompile: CLAUSE ! INSTR�compile(fPg H <-- G1 & : : : & Gn) =[allocate, add constraint(P), unify(H),call(G1),: : :call(Gn),deallocate, proceed]1Note that in this paper we do not consider a special representation for constants or lists. These are present inthe PAM, and could be added to our formal treatment without di�culty. For instance, switch on term would getan additional argument for the constant case. 7



Compiled programs are \stored" in a universe CODEAREA which comes with functions+,-: CODEAREA ! CODEAREAcode: CODEAREA ! INSTRwhere + and its inverse - yield a linear structure on CODEAREA and code(l) gives the instruc-tion \stored" in l. The functionunload: CODEAREA ! INSTR�unload(Ptr) = if code(Ptr) = proceedthen [proceed]else [code(Ptr)|unload(Ptr+)]is an auxiliary function. We say that Ptr 2 CODEAREA points to code for a clause Cl ifunload(Ptr) = compile(Cl)The functionprocdef: LIT � CSS � PROGRAM ! CODEAREAyields a pointer Ptr = procdef(G,Cs,Prog) that points to a chain chain(Ptr) of clauses con-taining all candidate clauses for resolving G in Prog under the constraint system Cs, i.e.:8 Cl 2 Prog .((8 P 2 chain(procdef(G,Cs,Prog)) . P does not point to code for Cl))solvable(fg := rename(clhead(Cl),i)g [ Cs[ rename(clconstraint(Cl),i)) = false)where i 2 NAT is chosen such that rename(GC,i) renames all variables in a goal or constraintGC to new variables. For the auxiliary function chainchain: CODEAREA ! CODEAREA�we assume for an activator literal actchain(Ptr) = 8>>>>>>>><>>>>>>>>: chain(Lv) if code(Ptr) = switch on term(i,Lv,Ls)and is var(Xi)chain(Ls) if code(Ptr) = switch on term(i,Lv,Ls)and is struct(Xi)chain(select(T,f,a)) if code(Ptr) = switch on structure(i,T)and f = functor(Xi) and a = arity(Xi)chain1(Ptr) otherwisechain1(Ptr) = 8>>>>>>>><>>>>>>>>: flatten[chain1(Ptr),chain1(N)] if code(Ptr) = try me else(N)or code(Ptr) = retry me else(N)flatten[chain1(C),chain1(Ptr+)] if code(Ptr) = try(C)or code(Ptr) = retry(C)chain1(Ptr+) if code(Ptr) = trust mechain1(C) if code(Ptr) = trust(C)[Ptr] otherwisewhere Xi = arg(act,i), functor, arity, and arg are the term analyzing functions, and is varand is struct are true for variables and compound terms, respectively. Furthermore, theswitch on structure parameter T could be thought of as a hash table, with select(T,f,a)= pt if (f,a,pt) 2 T. 8



2.3 Choicepoints and EnvironmentsExecuting AND/OR compiled PROTOS-L programs requires two stacks where w.r.t. the Prologcase we replace the substitution part by a constraint system. STATE is a universe to store thechoicepoints and comes with functionsnil: ! STATEcs: STATE ! CSS accumulated constraint systemp: STATE ! CODEAREA program pointercp: STATE ! CODEAREA continuation pointere: STATE ! ENV environmentb: STATE ! STATE backtracking pointvi: STATE ! NAT renaming index for variablesct: STATE ! STATE cut pointThe universe ENV of environments comes with functionsnil: ! ENVce: ENV ! ENV continuation environmentcp': ENV ! CODEAREA continuation pointerct': ENV ! STATE cut pointvi': ENV ! NAT renaming index for variablesAs in the WAM, STATE and ENV are embedded into a single STACKSTATE, ENV � STACK-: STACK ! STACKwith a common bottom element nil. tos(b,e) denotes the top of the stack which will always bethe maximum of b and e.2.4 Initial StateTo hold the current status of the machine there are some 0-ary functions which correspond to theirunary counterparts above. Given the PROTOS-L goal fPg G1 & : : : & Gn we have the followinginitial values:cs 2 CSS cs = ;p 2 CODEAREA unload(p) = [add constraint(P),call(G1),: : :,call(Gn),proceed]cp 2 CODEAREA cp = p++e 2 ENV vi'(e)=0, ct'(e)=nil, ce(e)=nilb 2 STATE b = nilvi 2 NAT vi = 0ct 2 STATE ct = nilThe literals of the initial PROTOS-L goal, as well as all intermediate goals that will be con-structed during program executing, can be recovered via the continuation pointer. For code(cp-)= call(G) (which will always be the case as long as there is still something to do) we have inparticular act � subres(rename(G,vi'(e)),subst part(cs))which is called the current activator.The 0-ary function prog 2 PROGRAM holds all declarations and clauses of the program(which in this paper will always be constant since we do not consider database operations likeassert or retract). Finally, stop 2 f-1,0,1g indicates whether the machine has stopped withfailure, is still running, or has stopped with success.9



2.5 Transition rulesThe transition rules are as in the Prolog case with the substitution component being replaced by aconstraint system, and with the following extension to the unify rule and the new add constraintinstruction: unifyif OK& code(p) = unify(H)thenif solvable(cs [ fact := rename(H,vi)g)then cs := cs [ fact := rename(H,vi)gvi := vi + 1succeedelse backtrack add constraintif OK& code(p) = add constraint(P)thenif solvable(cs [ rename(P,vi))then cs := cs [ rename(P,vi)succeedelse backtrackThe condition OK is an abbreviation for stop = 0, i.e., the machine is operating in normal modeand no stop condition has been encountered. All abbreviations as well as the complete set oftransition rules are given in Appendix A.
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3 Term representationThe representation of terms and substitutions in the WAM can be introduced in several steps.Following the development in [BR92b] we �rst introduce the treatment of the low-level run-timeuni�cation (but leaving the details of type constraint solving as an abstract update to be re�nedlater), followed by the term constructing and analyzing put and get instructions. In particular, theWAM-speci�c optimizations of environment trimming, last call optimization, or the initializationof temporary and permanent variables are postponed until we have established the correctnessof the �rst re�nement level with respect to the PROTOS-L algebras with compiled AND/ORstructure in Section 2. The major derivation from the real PAM code in Sections 3 and 4 willbe our simplifying assumption that all variables are permanent and are initialized on allocationto free unconstrained variables. Under this assumption the variables receive their initial typerestrictions, derived statically by the compiler, immediately after allocation. This is achieved by anew (auxiliary) put constraint instruction which will be dropped again later (in Section 5).3.1 Universes and FunctionsFor the representation of terms we use the pointer algebra(DATAAREA; +, -; val)with DATAAREA � MEMORY, where+, - : DATAAREA ! DATAAREAconnect the locations in DATAAREA and are inverse to each other. In the codomain of thefunction val: DATAAREA ! PO + MEMORY + SYMBOLTABLEwe use the universe SYMBOLTABLE in order to connect a function symbol to its arity andtype. It comes with functionsatom: SYMBOLTABLE ! ATOMarity: SYMBOLTABLE ! NATentry: ATOM � NAT ! SYMBOLTABLEof which we assume entry(atom(s),arity(s)) = s for any s 2 SYMBOLTABLE andatom(entry(f,n)) = f, arity(entry(f,n)) = n for any atom f with arity n.The functions tag and ref are de�ned on the universe PO of \PROTOS-L objects"tag: PO ! TAGSref: PO ! DATAAREA + TYPETERMwhere, because of the type constraint treatment, a new tag VAR for indicating free variables isintroduced into the universeTAGS = fREF, STRUC, VARgSpecial tags for representing constants, lists, built-in integers, etc. are also present in the PAM, butin this paper we consider them as optimizations that can be added later on without any di�culties.The tag FUNC from [BR92b] is not included since it is not needed.The codomain of ref contains the universe TYPETERM since we will keep the type termrepresentation abstract here; it will be re�ned later (see Section 6).As in [BR92b] we use some abbreviations for dealing with locations l 2 DATAAREA:tag(l) � tag(val(l))ref(l) � ref(val(l))l1  l2 � val(l1) := val(l2)11



l  <t,r> � tag(l) := tref(l) := runbound(l) � tag(l) = VARmk unbound(l) � mk unbound(l,TOP)mk unbound(l,tt) � tag(l) := VARinsert type(l,tt)insert type(l,tt) � ref(l) := ttwhere the last four abbreviations deal with the typed variable representation and where tt 2TYPETERM. Note that an unconstrained free variable gets the trivial type restriction TOP,representing no restriction at all (c.f. Section 2.1).In addition to the (partial) dereferencing and term reconstructing functions from the WAMcase we now also assume a function that recovers the type constraints for all variables occurringin a term. Of these functionsderef: DATAAREA ! DATAAREAterm: DATAAREA ! TERMtype prefix: DATAAREA ! TYPEPREFIXwe assume for l 2 DATAAREA:deref(l) = � deref(ref(l)) if tag(l) = REFl otherwiseterm(l) = 8>>>>>><>>>>>>: mk var(l) if unbound(l)term(deref(l)) if tag(l) = REFf(a1,: : :,an) if tag(l) = STRUC andf = atom(val(ref(l)))n = arity(val(ref(l)))ai = term(ref(l)+i)type prefix(l) = 8>>>><>>>>: mk var(l) : ref(l) if unbound(l)type prefix(deref(l)) if tag(l) = REFP1 [ : : : [ Pn if tag(l) = STRUC andn = arity(val(ref(l)))Pi = type prefix(ref(l)+i)where make var(l) 2 VARIABLE is a unique variable assigned to l. Note that the conditionterm(l) 2 TERM now implies various consistency properties like:if unbound(l) then ref(l) 2 TYPETERMif tag(l) 2 fREF, STRUCg then ref(l) 2 DATAAREAterm(l) 2 TERMtypeprefix(l) 2 TYPEPREFIXif tag(l) = STRUC then val(ref(l)) 2 SYMBOLTABLEterm(ref(l)+i) 2 TERMtype prefix(ref(l)+i) 2 TYPEPREFIXwith i 2 f1,: : :,arity(val(ref(l)))g.3.2 Uni�cationLowlevel uni�cation in the PAM can be carried out as in the WAM (see [AK91]) if we re�ne thebind operation into one that takes into account also the type constraints of the variables ([BMS91],[BM94]). The bind operation may thus also fail and initiate backtracking if the type constraintsare not satis�ed. Thus, we can use the treatment of uni�cation as described in [BR92b], while12



leaving the bind operation abstract for the moment, not only in order to postpone the discussionof occur check and trailing but also to stress the fact that the bind operation will take care of thetype constraints for the variables.To be more precise, the DATAAREA subalgebra(PDL; pdl, nil; +, -; ref')with pdl, nil 2 PDL andref': PDL! DATAAREAis the push down list used for lowlevel uni�cation, containing all pairs of (addresses of) terms stillto be uni�ed, withleft � ref'(pdl) right � ref'(pdl-)being the current pair of terms. Uni�cation is triggered by the updateunify(l1,l2) � ref'(nil++) := l1ref'(nil+) := l2pdl := nil++what to do := UnifyThe 0-ary functionwhat to do 2 fUnify, Rungwill be used in the guard of all following rules in the form of conditions likeUNIF � OK & what to do = UnifyRUN � OK & what to do = RunUni�cation is carried out by uni�cation rules as in [BR92b] (see appendix B.1) where for theabstract bind update we impose the following modi�edBINDING CONDITION 1: For any l1, l2, l 2 DATAARRA, with term resp. term'values of term(l) and with prefix resp. prefix' values of type prefix(l) before resp. afterexecution of bind(l1,l2), we have if unbound(l1) holds:LET CS = fmk var(l1) = term(l2)g [ type prefix(l1)[ type prefix(l2)If solvable(CS) = truethen (term', prefix') = conres(term, prefix, CS)else backtrack update will be executed.With this generalized binding assumption we obtain the following modi�edUNIFICATION LEMMA: If pdl-- = nil, term(left), term(right) 2 TERM, andtype prefix(left), type prefix(right) 2 TYPEPREFIX, the e�ect of setting what to doto Unify, for any l 2 DATAAREA such that term(l) 2 TERM and type prefix(l) 2TYPEPREFIX is as follows:Let term resp. term' be the values of term(l) and prefix resp. prefix' be the values oftype prefix(l) when setting what to do to Unify and when what to do has been set back toRun again, respectively. Then we have:LET CS = fterm(left) = term(right)g [ type prefix(left)[ type prefix(right)If solvable(CS) = truethen (term', prefix') = conres(term, prefix, CS)else backtrack update will be executed.Proof: The proof of the Uni�cation Lemma is by induction on the size of the terms to be uni�ed,relying on our generalized Binding Condition. 13



3.3 Putting of termsAs in the WAM, run time structures are created in the subalgebra of DATAAREA(HEAP; h, boh; +, -; val)where h, boh 2 HEAP represent the top resp. the bottom element of the heap. We use nextarg2 HEAP to point to the next argument when anyalyzing a structure on the heap. Furthermore,we now assumeDATAAREA + CODEAREA � MEMORYwhere CODEAREA is as in Section 2.2 but where INSTR now containsput value(yn,xj)put structure(f,xi)get value(yn,xj)get structure(f,xi)unify value(yn)unify variable(xn)put constraint(yn,tt)with n,j,i 2 NAT, f 2 SYMBOLTABLE, tt 2 TYPETERM, yn 2 DATAAREA,xi � x(i), where x: NAT ! AREGS and AREGS � DATAAREA. Note thatput constraint(yn,tt) is a new instruction used for inserting a type restriction into a heaplocation. Instead of having a pair (fn,a) 2 ATOM � NAT we use f = entry(fn,a) in thecode.The code developed in Section 1.2 of [BR92b] for constructing terms in body goals uses putinstructions which assume that, for all variables Yi of the term t to be built on the heap, thereis already a term denoting yi 2 DATAAREA available. Since this means in particular that novariables are created during this process, we can use (with the obvious modi�cation mentionedabove) the same put instructions (i.e. put value, unify value in Write mode, put structure)for the compilation of a body goal (see Appendix B.2 and B.3). Furthermore, we may assume thatfor the variables Yi we have no type constraints to formalize here because they have already beenassociated to the corresponding location yi (i.e. the variable term(yi) which is - up to renaming -equal to Yi. This gives us the followingPUTTING LEMMA: If all variables occurring in a term t 2 TERM are among fY1,: : : ,Ylg,and if for n 2 f1, : : :, lg, yn 2 DATAAREA withterm(yn) 2 TERMtype prefix(yn) 2 TYPEPREFIXand Xi is a fresh variable, and CS is the constraint system consisting of the substitution associatingevery Yn with term(yn) and of the union of the type constraints type prefix(yn), i.e.CS = Sn fYn := term(yn)g [ type prefix(yn)then the e�ect of setting p toload(append(put code(Xi = t), More))with subsequent fresh indices generated by the term normal form function nfs (Appendix B.2)being non-top level, is that the pair(term(xi), type prefix(xi))at the moment of passing to More, gets value ofconres(t, ;, CS)Proof: The proof follows by induction over the size of the involved terms, observing that no typerelated actions like variable creation or variable binding is involved here.14



3.4 Getting of termsUnlike putting of terms that does not involve uni�cation, the getting of terms does involve uni�-cation where parts of it are compiled into the getting instructions (like get structure followed bya sequence of unify instructions) and the remaining uni�cation tasks are handled by the lowlevelunify procedure.The get value, unify value, and unify variable instructions are as in the WAM case (seeAppendix B.4 and B.5). Note that we need unify variable both in Read and Write mode whichis controlled by the 0-ary function mode 2 fRead, Writeg. In [BR92b] unify variable in Writemode is introduced only as an optimization for variable initialization \on the 
y", but when themachine enters Write mode in get structure, unify variable will be executed for the auxil-iary substructure descriptors Xi generated by the term normal form function nfa (Appendix B.2).Since we do not have to consider type contraints for such Xi, it su�ces to initialize them to a freevariable without any type restriction. Thus, for the generation of a heap variable in Write modeof unify variable we usemk heap var(l) � mk unbound(h)bind(l,h)h := h+When unify variable will be used for \on the 
y" initialization of typed variables, we will haveto consider an additional type initialization parameter (c.f. Section 5).The �rst get structure rule for PROTOS-L is as in the WAM case, covering the situationwhere xi in get structure(f,xi) is bound to a non-variable term (Appendix B.4). When xi isunbound, it must be bound to a newly created term with top-level symbol f. Whereas in the WAMthis will always succeed, in the PAM case the type constraint of xi must be taken into account.Indeed, what is happening here is the binding of a variable X with a type constraint, say tt, to aterm t starting with f. In abstract terms this amounts to solving the constraint systemfX := t, X : ttgWe still want to leave the details of variable binding abstract here; what is of interest for this specialcase occurring in get structure is which type constraints stemming from tt and (the declarationof) f must be propagated onto the argument terms of t = f(: : :). Therefore, we introduce thefunction propagate list: SYMBOLTABLE � TYPETERM! TYPETERM� [ fnilgyielding for arguments entry(f,n) and tt the list of type terms the arguments of f must satisfy.To be more precise, we have the following integrity constraint:propagate list(entry(f,n),tt) = (tt1,: : :,ttn)i�prefix-part(ff(X1,: : :,Xn) : ttg) = fXi1 : tti1,: : :, Xik : ttikgwhere fi1,: : :,ikg � f1,: : :,ng, and for j 2 f1,: : :,ngnfi1,: : :,ikg we have ttj = TOP.If the constraint system ff(X1,: : :,Xn) :ttg is not solvable, no propagation is possible, and if itreduces to the trivially solvable empty constraint system, propagate list yields a list containingonly TOP. Thus we introduce the abbreviationscan propagate(entry(f,n),tt) � solution(ff(X1,: : :,Xn) : ttg) 6= niltrivially propagates(entry(f,n),tt) � solution(ff(X1,: : :,Xn) : ttg) = ;Get-Structure-2if RUN& code(p) = get structure(f,xi) 15



& unbound(deref(xi))& can propagate(f,ref(deref(xi)))= true | = false& trivially propagates(f,ref(deref(xi))) |= true | = false |thenh  <STRUC,h+> | backtrackbind(deref(xi),h) |val(h+) := f |h := h++ |mode := Write | nextarg := h++ || mk unbounds(h+,propagate list(f,ref(deref(xi))) || mode := Read |succeed |For l 2 DATAAREA and tt1,: : : ,tn 2 TYPETERM, the updatemk unbounds(l,(tt1,: : :,ttn)) � FORALL i = 1,: : :,n DOmk unbound(l+i,tti)ENDFORALLputs n type restricted variables at the locations l+1,: : :,l+n on the heap. When this update isexecuted in the rule above the machine continues in read mode so that the subsequent n unifyinstructions take into account these type restrictions.GETTING LEMMA: If all variables occurring in a term t 2 TERM are among fY1,: : :,Ylg,and if for n 2 f1,: : :,lg, yn 2 DATAAREA withunbound(yn)ref(yn) 2 TYPETERMand Xi is a fresh variable with xi 2 DATAAREA andterm(xi) 2 TERMtype prefix(xi) 2 TYPEREFIXand CS is the constraint system consisting of the equation t := term(xi) together withtype prefix(xi) and the union of the type constraints type prefix(yn), i.e.CS = ft := term(xi)g [ type prefix(xi) [ Sn type prefix(yn)then the e�ect of setting p toload(append(get code(Xi = t), More))for any l 2DATAAREA with term = term(l) 2 TERM and typeprefix = type prefix(l)2 TYPEPREFIX being the values before execution, is as follows:If solvable(CS) = true then p reaches More without backtracking and the pair(term(l), type prefix(l))at the moment of passing to More, gets value ofconres(term, typeprefix, CS)else backtracking will occur before p reaches More.Proof: The proof follows by induction on the size of the involved terms. Observe that similar tothe Putting Lemma no real variable creation occurs: When an auxiliary variable Xk (generated bynfa) is created on the heap via unify variable in Write mode, its <VAR,TOP> initialization will beoverwritten by a subsequent get structure instruction corresponding to the subterm represented16



by Xk. Note also that if CS is solvable, then conres(term, typeprefix, CS) 6= nil because CS [typeprefix is also solvable since the intersection between typeprefix and any type prefix(yn)is already contained in CS.In order to uphold theHEAP VARIABLES CONSTRAINT: No heap variable points outside the heap, i.e. for anyl 2 HEAP with boh � l < h and tag(l) = REF, we have boh � ref(l) < h.the instruction unify local value in Writemode creates a new heap variable for a so-called localvariable (cf. B.5):local(l) � unbound(l) & l 2 HEAP & NOT(boh � l < h)For a discussion of local variables see [AK91] or [BR92b]. In the PROTOS-L case the type restric-tion of the local variable must be taken into account which is done by the binding update in ourmk heap variable abbreviation. Thus, the HEAP VARIABLES CONSTRAINT as well as theHEAP VARIABLES LEMMA: If the put code and get code functions generateunify local value instead of unify value for all occurrences of local variables, then the exe-cution of put seq and get seq preserve the HEAP VARIABLES CONSTRAINT [BR92b].carries over to the PROTOS-L case, provided we ensureBINDING CONDITION 2: The bind update preserves the HEAP VARIABLES CON-STRAINT.3.5 Putting of ConstraintsIn this section we will still keep the type constraint representation abstract, while specifying theconditions about the constraint handling code (for realization of add constraint of Section 2) inorder to prove a theorem corresponding to the Pure Prolog Theorem of [BR92b] (see 4).The compile function will be re�ned usingput constraint seq(fY1 :tt1,: : :,Yr : ttrg) = [put constraint(y1,tt1),: : :,put constraint(yr,ttr)]for which we use the new instruction put constraint(yn,tt) (where tt 2 TYPETERM) andthe following rule: Put-Constraintif RUN& code(p) = put constraint(l,tt)theninsert type(l,tt)succeedThe update for inserting a type restriction has still the straightforward de�nition given in 3.1(i.e. ref(l) := tt), but will be re�ned later when we introduce a representation of type terms.In any case it must satisfy the followingTYPE INSERTING CONDITION: For any l1, l 2 DATAARRA, with term resp. term'values of term(l) and with prefix resp. prefix' values of type prefix(l) before resp. afterexecution of insert type(l1,tt) we have if unbound(l1) holds:(term', prefix') = conres(term, prefixnfmk var(l1)g, fmk var(l1) :ttg)For the de�nition given above the type inserting condition is obviously satis�ed.17



4 PAM Algebras4.1 Environment and Choicepoint RepresentationThe stack of states and environments of PROTOS-L algebras with compiled AND/ OR structureof Section 2 are now represented by a subalgebra of DATAAREA(STACK; bos; +, -; val)with bos 2 STACK representing the bottom element corresponding to nil in Section 2. Theconcrete memory layout can be done as in the WAM [BR92b] (see Appendix B.6) since the onlytype-related action is in the allocation of n free variable cells in the rule for Allocate: Thissituation is covered by our modi�ed mk unbound abbreviation that assigns the trivial TOP typerestriction to each such initialized variable:allocateif OK& code(p) = allocate(n)thene := tos(b,e)val(ce(tos(b,e))) := eval(cp(tos(b,e))) := cpFORALL i = 1,: : :,n DOmk unbound(yi(tos(b,e)))ENDFORALLsucceed
deallocateif OK& code(p) = deallocatethene := val(ce(e))cp := val(cp(e))succeed4.2 TrailingAs is standard practice in the WAM, we assume that HEAP < STACK < AREGS and theWAM binding discipline:BINDING CONDITION 3: If unbound(l1) and unbound(l2) and bind(l1,l2) does notinitiate backtracking, then after executing bind(l1,l2) the higher location will be bound to thelower one.Together, these conditions imply BINDING CONDITION 2 and also theSTACK VARIABLES PROPERTY: Every stack variable l points either to the heap or to alower location of the stack, i.e. ref(l) 2 HEAP with boh � l < h, or ref(l) 2 STACK withbos � l � tos(b,e).Whereas BINDING CONDITION 3 and the STACK VARIABLES PROPERTY are exactly as inthe WAM case [BR92b], for trailing variable bindings also the type restrictions must be taken intoaccount in the PAM. Since variables in the PAM carry a type restriction represented in the refvalue of a location - which is updated when binding the variable -, the type restriction must besaved upon binding and recovered upon backtracking. Strictly speaking, it would be su�cient tosave only the ref value of a location; however, for use in a later re�nement -when we will introducedi�erent tags for free variables - we also trail the tag of a location. Therefore, in the DATAAREAsubalgebra (TRAIL, tr, botr; +, -; ref�)with tr, botr 2 TRAIL being the top and bottom elements, the codomain of the function18



ref�: TRAIL ! DATAAREA � POrecords also the complete val decoration. The trail update, to be executed when changing thevalue of a location l during binding is then:trail(l) � ref�(tr) := (l, val(l))tr := tr+Note that this is a non-optimized version of the trailing operation; we could have also used a condi-tional trailing governed by the condition boh � l < h & l < hb OR bos � l � tos(b,e)& l < b.For t 2 TRAIL with ref�(t) = (l, v) we use the following abbreviation for the two obvi-ous projections on ref�(t):location(t) � l value(t) � vUpon backtracking we must now unwind the trailbacktrack � p := val(p(b))unwind trailunwind trail � FORALL t = tr-,: : :,tr(b) DOlocation(t)  value(t)ENDFORALLwhere value(t) retrieves the previous tag and type restriction of location(t).We still leave the binding update abstract, but pose the followingTRAILING CONDITION: Let l1, l2, l 2 DATAAREA. If val(l) before execution ofbind(l1,l2) is di�erent from val(l) after successful execution of bind(l1,l2), then the locationl has been trailed with trail(l).Note that due to the update on the type restrictions of a variable the trailing of both locationsl1 and l2 may be triggered by bind(l1,l2); moreover, if e.g. l2 denotes a polymorphic termcontaining variables these variables also have to be trailed if they get another type restriction inthe binding process (see Sections 6.1 and 6.5).4.3 Pure PROTOS-L theoremIn order to establish a correctness proof of compilation to PAM algebras developed so far fromPROTOS-L algebras with compiled AND/OR structure of Section 2, we can generalize the "PureProlog Theorem" of [BR92b] to our case. We will thus construct a function F (c.f. Section 1) fromthe PROTOS-L algebras to the PAM algebras. We will also �rst ignore cutpoints (ct, ct') whichare not needed for pure PROTOS-L, as well as variable renaming indices (vi, vi') since as in theWAM case the renaming is ensured by the o�sets in the stack and the heap. Further, all names ofuniverses and functions on Section 2 will get an index 1. For the function compile dealing withthe term representing algebras we havecompile(fPg H <-- G1 & : : : & Gn) =flatten([allocate(r), put constraint seq(P), get seq(H),call seq(G1),: : :call seq(G1),deallocate, proceed])The abstraction function F maps PAM rules to PROTOS-L rules in the obvious way. It is de�nedvia a mapping between instruction sequences (which directly correspond to rule sequences). Forinstance, with respect to uni�cation and type constraint solving we have19



call seq(G) 7! call(G)get seq(H) 7! unify(H)put constraint seq(P) 7! add constraint(P)This correspondence also de�nes a (partial) functioncodepointer: CODEAREA � CODEAREA1by mapping e.g. the beginning of get seq(H) to the location labelled with unify(H). Furthermore,we establish the functionscss: TRAIL ! CSS1subst: TRAIL ! SUBST1choicepoint: STACK ! STATE1env: STACK ! ENV1term: DATAAREA � TRAIL ! TERM1typeprefix: DATAAREA � TRAIL ! TYPEPREFIX1where we have added - w.r.t. the WAM case in [BR92b] - the functions css and typeprefix inorder to construct the correspondence between the constraint representations. Viewing an elementof STATE1 (resp. ENV1) as a tuple of its cs, p, cp, e, b (resp. cp', ce) values, these functionsare de�ned by:term(l,lt) yields the value term(l) would take after having unwoundthe trail down to lttypeprefix(l,lt) yields the value type prefix(l) would take after havingunwound the trail down to ltcss(lt) = Sbotr�l<tr fmk var(location(l)) := term(location(l),lt)g[ typeprefix(location(l),lt)subst(lt) = subst part(css(lt))choicepoint(lb) = h css(val(tr(lb))),codepointer(val(p(lb))),codepointer(val(cp(lb))),env(val(e(lb))),choicepoint(val(b(lb))) ienv(le) = h codepointer(val(cp(le))),env(val(ce(le))) iThe 0-ary functions are de�ned bycs1 = css(tr)p1 = codepointer(p)cp1 = codepointer(cp)e1 = env(e)b1 = choicepoint(b)Furthermore, for the current activator act1 of 2.4 we have for code(cp-) = call(g,m,r) thecorrespondenceact1 = g(term(x1),: : :,term(xm))Correctness Theorem 1 (PURE PROTOS-L THEOREM): Compilation from thePROTOS-L algebras with compiled AND/OR structure (of Section 2) to the PAM algebras devel-oped so far (and thus satisfying all the conditions explicitely stated above) is correct.Proof: For the proof it su�ces to show that for any PAM algebra A and any transition rulesequence R such that F(A) and F(R) is de�ned, the diagram20



F(A) -F(R) F(A')F 6A - A'6FRcommutes. This follows by case analysis, relying on the conditions and lemmas established so far.In particular, w.r.t. type constraints we observe the fact that allocate allocates a new variablelocation (with TOP restriction) for every variable occurring in the clause. These locations areused by the put constraint instructions, so that the preconditions for the TYPE INSERTINGCONDITION hold.
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5 Additional WAM optimizations in the PAM5.1 Environment Trimming and Last Call OptimizationEnvironment trimming and last call optimization (LCO) are among the most prominent optimiza-tions in the WAM; for a discussion we refer to [AK91] and [BR92b]. The necessary ARGUMENTREGISTERS PROPERTY as formulated in [BR92b] can be ensured by the compiler by generatinga put unsafe value(yn,xj) instruction instead of put value(yn,xj) for each unsafe occurrenceof Yn. This instruction is executed by the rule: Put-Unsafe-Valueif RUN& code(p) = put unsafe value(yn,xj)& deref(yn) � e | deref(yn) > ethenxj  deref(yn) | mk heap var(deref(yn))| xj  <REF,h>succeedNote that the condition deref(yn) > e implies unbound(deref(yn)). Thus, in case ofyn being unsafe, a new variable is created on the heap, referenced by both yn and xj. Unlike inProlog, in PROTOS-L the type restriction of yi must be copied to the new heap variable - thisis already taken into account by the bind update in our mk heap var abbreviation introduced inSection 3.4. Therefore, following the argumentation in [BR92b], we can savely assume that thecompiler enforces environment trimming and also last call optimization (LCO). Thus, every callinstruction gets an additional parameter n where n is the number of variables that are still neededin the environment. LCO then means that the instruction sequenceCall(g,a,0), Deallocate, Proceedis replaced by Deallocate, Execute(g,a)which disregards the current environment before calling the last subgoal of a clause.5.2 Initializing Temporary and Permanent VariablesUp to now, when allocating an environment, we have allocated r value cells in that environ-ment, where r is the number of variables occurring in the clause. A sequence of r correspondingput constraint(yj,ttj) instructions initialized the type restriction on the variables yj to ttjfound in the clause's type pre�x.However, as explained in [BMS91], the �rst occurrence of a variable in a PROTOS-L clauseis su�cient to consider the statically available type restriction. (The specialized instructions of[BMS91, BM94] for variables with monomorphic, polymorphic, or with no type restriction willbe introduced as an optimization in Section 7.) Both temporary and permanent variables can beinitialized \on the 
y"; for a discussion of the classi�cation of variables into temporary and per-manent ones which was introduced by [War83] we refer to [AK91] and [BR92b]. Thus, we modifyour compile function such that for a temporary variable, Yn, yn is replaced by fresh Xi, xi, andsuch that get variableput variableunify variableinstructions are generated for the �rst occurrence of a variable, replacing the so-far used get value,put value (resp. put unsafe value), and unify value instructions, respectively.22



Put-1 (X variable)if RUN& code(p) = put variable(xi,xj,tt)thenmk unbound(h,tt)xi  <REF,h>xj  <REF,h>succeed Put-2 (Y variable)if RUN& code(p) = put variable(yn,xj,tt)thenmk unbound(yn,tt)xj  <REF,yn>succeedWhen initializing a temporary variable with put variable, a new heap cell must be allocated,which is not the case when initializing a permanent variable, provided that put unsafe variableand unify local value instructions are used properly. This, however, has already been veri�ed(see Section 5.1). In both cases, the mk unbound(l,tt) update corresponds to the mk unbound(l)update for that variable carried out previously during allocation, and the insert type(l,tt) up-date carried out by the put constraint instruction immediately after allocation (c.f. 3.5). There-fore, since the put variable instruction corresponds to the �rst occurrence of the variable Xiresp. Yn, we can savely drop its initialization during allocation and its complete put constraintinstruction. get variableif RUN& code(p) = get variable(l,xj,tt)thenmk unbound(l,tt)bind(l,xj)succeedWhereas in the WAM case the get variable instruction always succeeds, in the PROTOS-L casewe have to check that the clause's type restriction tt for xj is satis�ed. This is achieved by settingl to an unbound variable, inserting the type term tt as its type restriction, and binding l andxj. The latter is su�cient as the binding update will do the binding only if the type restrictionsare satis�ed; otherwise it will fail and initiate backtracking (c.f. the BINDING CONDITION ofSection 3.2). unify variableif RUN& code(p) = unify variable(l,tt)& mode = Read | mode = Writethenmk unbound(l,tt) | mk unbound(h,tt)bind(l,nextarg) | l  <REF,h>nextarg := nextarg+| h := h+succeedThe instruction unify variable in Read mode has to make sure that the incoming argumentsatis�es the type restriction, which - as in get variable - is achieved by a bind update. In Writemode, the type restriction has just to be inserted into a new heap cell.As argued above for put variable, the initialization of a free value cell during allocation as wellas the put constraint instruction can also be dropped for all variables initialized by get variableor unify variable, which leads us to the 23



INITIALIZATION LEMMA: Given l > e, the instruction put variable(l,xj,tt)(get variable(l,xj,tt), unify variable(l,tt), resp.) is equivalent to initializing lto unbound with mk unbound(l), executing put constraint(l,tt), and then executingput unsafe value(l,xj) (get value(l,xj), unify local value(l), resp.). For a permanentvariable Yn, the instruction put variable(yn,xj,tt) is equivalent to initializing yn to unboundwith mk unbound(yn), executing put constraint(yn,tt), and then executing put value(yn,xj).Thus, the rule for allocate looses its initialization update, and the compile function is modi�edsuch that no put constraint instruction is generated any more. Moreover, the argumentation ofSection3.2 and 3.2 of [BR92b] can be applied to our modi�ed setting, implying also the correctnessof special compilation of facts and chain rules where no environment needs to be allocated at all.5.3 Switching instructions and the CutThe PAM contains all switching instructions known from the WAM, and since no type speci�cconsiderations have to be taken into account, their treatment in the evolving algebra approach in[BR92b] carries over to the PAM as well. Thus, compared to the compiled AND/OR structure(Sect. 2 and Appendix A) the indexing and choicepoint handling rules now also get the predicatearity n as an additional parameter, and the choicepoint information is not attached to a newlycreated stack element, but by reusing and \overwriting" elements on the stack (see B.7). However,in PROTOS-L additionally a switch on the type restriction of a variable is possible (see Section7.2).For the establishment of the Pure PROTOS-L Theorem we had deliberately left out the built-in predicate cut. Since there is no interdependence between cut and the type constraints ofPROTOS-L, the cut treatment of Prolog carries over to our case as well [BR92a]: We could eitherextend every environment by a cutpointer, to be set and restored just as in Section 2, or we couldallocate an extra (permanent) variable in those environments containig a so-called deep cut . Thisextra variable would then be set immediately after allocation, and its value would be assigned tothe backtracking pointer b when a cut is encountered (see also [AK91]).5.4 Main Theorem of Part IPutting everything together developed so far, we obtainCorrectness Theorem 2 (Main Theorem of Part I): Compilation from PROTOS-L algebrasto the PAM algebras developed so far is correct. Thus, since we kept the notion of types abstract,for every such type-constraint logic programming system L and for every compiler satisfying thespeci�ed conditions, compilation to the WAM extension with this abstract notion of types is correct.Thus, any type system satisfying the minimal preconditions on the solution function statedin Section 2.1 is covered by the development above.
24



PART II: Polymorphic, order-sorted type constraints6 PAM algebras with monomorphic type constraints6.1 BindingWe are now ready for a �rst re�nement of the binding update which will take into account the binddirection, occur check, and trailing, while the type constraints still remain abstract. We introducetwo new 0-ary functions arg1, arg2 2 DATAAREA which will hold the locations given to thebinding update, and extend the values of what to do by fBind direction, Bindg indicating thatwe have to choose the direction of the binding resp. do the binding itself. The new 0-ary functionreturn from bind will take values of the domain of what to do, indicating where to return whenthe binding is �nished. (Remember that the binding update is used in di�erent places, e.g. in theunify update or in the creation of a new heap variable).For l1,l2 2 DATAAREA the binding update and some new abbreviations are de�ned bybind(l1,l2) � arg1 := l1arg2 := l2return from bind := what to dowhat to do := Bind directionbind success � what to do := return from bindBIND � OK & what to do = Bindtrail(l1,l2) � ref�(tr) := (l1, val(l1))ref�(tr+):= (l2, val(l2))tr := tr++In order to reset also the constant what to do upon backtracking, we re�ne the backtrack updateto backtrack � p := val(p(b))unwind trailwhat to do := RunFor unbound(l1) there are two alternative conditions on the update occur check(l1,l2), depend-ing on whether the uni�cation should perform the occur check (which is required for being logicallycorrect) or not (which is done in most Prolog implementations for e�ciency reasons):OCCUR CHECK CONDITION: If no occur check should take place then the updateoccur check(l1,l2) is empty; otherwise it has the following e�ect: If mk var(l1) is among thevariables of term(l2) then the backtrack update will be executed.We will leave the occur check update abstract, and all correctness proofs are thus implicitlyparameterized by the decision whether it actually performs the occur check or not.Bind-1 (Bind-Direction)if OK& what to do = Bind direction& unbound(arg1)& (NOT (unbound(arg2)) | unbound(arg2)or | &arg2 < arg1) | arg2 > arg1 | arg1 = arg2then 25



what to do := Bind | what to do := Bind | bind success| arg1 := arg2 || arg2 := arg1 |When binding two unbound variables their type constraints must be `joined'. For this pur-pose we introduce the functioninf: TYPETERM � TYPETERM ! TYPETERMwhich yields the in�mum of two type terms, which may also be BOTTOM 2 TYPETERM. TOPand BOTTOM can be thought of as `maximal' and `minimal' type terms. As integrity constraints wehave inf(TOP,tt) = inf(tt,TOP) = ttinf(BOTTOM,tt) = inf(tt,BOTTOM) = BOTTOMsolution(ft : BOTTOMg) = nilsolution(fX : tt1, X : tt2g) = solution(fX : inf(tt1,tt2)g)for any t 2 TERM and tti 2 TYPETERM. Bind-2 (Bind-Var-Var)if BIND& unbound(arg2)& LET inf = inf(ref(arg1),ref(arg2))& inf 6= BOTTOM | inf = BOTTOM& inf 6= ref(arg2) | inf = ref(arg2) |thentrail(arg1,arg2) | trail(arg1) | backtrackinsert type(arg2,inf) | |arg1  <REF,arg2> |bind success |When binding an unbound variable to a non-variable term, the type restriction of the variablemust be propagated to the variables occurring in the term. As a special case this situation alreadyoccured in get structure(f,xi) when the dereferenced value of xi is a type-restricted variable.In that situation where the term was still to be built upon the heap, we ensured the propagationby writing arity(f) free value cells on the heap with appropriate type restrictions and continuingin read mode; the actual propagation was then achieved by the immediately following sequence ofunify instructions. In the general case occurring in the binding rules, the arguments of the termare not just variables but arbitrary terms. However, as we will not go into the details of typeconstraint solving here, we assume an abstract propagate update satisfying the following:PROPAGATION CONDITION: For any l1, l2, l 2 DATAARRA, with term resp. term'values of term(l), with prefix resp. prefix' values of type prefix(l), and with val resp.val' values of val(l), before resp. after execution of propagate(l1,l2) we have if unbound(l1),ref(l1) 2 TYPETERM, tag(l2) = STRUC, and term(l2) 2 TERM:LET CS = fterm(l2) : ref(l1)gif solvable(CS) = truethen (a) (term', prefix') = conres(term, prefix, CS)(b) if val 6= val' then the location l will be trailedelse backtrack update will be executedWith this update at hand the third binding rule is26



Bind-3 (Bind-Var-Struc)if BIND& NOT (unbound(arg2))thentrail(arg1)arg1  <REF,arg2>occur check(arg1,arg2)propagate(arg1,arg2)BINDING LEMMA 1: The bind rules are a correct realization of the binding update of Section3.2, i.e. the BINDING CONDITIONS 1 and 3 (and thus also 2), the TRAILING CONDITION aswell as the STACK VARIABLES PROPERTY are preserved.Proof: The proof for the update bind(l1,l2) is by case analysis and induction on the size ofterm(l2), relying on the integrity conditions for the in�mum function on type terms when bindingone type-restricted variable to another one (Bind-2), resp. on the Propagation Condition whenbinding a variable to a non-variable term (Bind-3).6.2 Monomorphic, order-sorted typesBefore introducing a representation for type terms we introduce some new functions and universesthat are related to TYPETERM. Note that until now we have kept TYPETERM indeedabstract; it is only in this section that we come to some more speci�c type term characteristicssuch as monomorphic and polymorphic type terms. However, following our principle of stepwisere�nement of the PAM development, we �rst deal only with monomorphic type constraints solving,while the details of polymorphic type constraint handling will still be kept abstract in this section.On the universes TYPETERM and SYMBOLTABLE we introduce the functionsis top: TYPETERM ! BOOLis monomorphic: TYPETERM ! BOOLis polymorphic: TYPETERM ! BOOLwith their obvious meaning. The functiontarget sort: SYMBOLTABLE ! SORTyields the target sort of a constructor, where SORT is a new universe, representing sort names.It comes with a functionsubsort: SORT � SORT ! BOOLde�ning the order relation on the monomorphic sorts (and being unde�ned on the polymorhic sorts[Bei90]), respectively. For the re�nement of type constraint handling we assume two functionssort glb: SORT � SORT ! SORTpoly inf: TYPETERM � TYPETERM ! TYPETERMthat re�ne the inf function (from 6.1) in the sense that for any tt1, tt2 2 TYPETERMinf(tt1,tt2) = 8>><>>: sort glb(tt1; tt2) if is monomorphic(tt1)and is monomorphic(tt2)poly inf(tt1; tt2) if is polymorphic(tt1)and is polymorphic(tt2)27



For constraint solving involving a monomorphic type term s and t = f(: : :) 2 TERM we havethe integrity constraintsolution(ft : sg) = � ; if subsort(target sort(f),s)nil otherwisei.e. the solvability of a monomorphic type constraint depends solely on the subsort relationshipbetween the required sort and the target sort of the top-level constructor of the term. It will turnout that this su�ces for the re�nement of monomorphic type constraint handling.6.3 Representation of typesFor the PAM representation of typeterms we introduce a pointer algebra, similar to DATAAREA,which will be used for the representation of both monomorphic types and polymorphic type terms(for the latter see Section 8):(TYPEAREA; ttop, tbottom, TOP; +, -; tval)ttop, tbottom, TOP: ! TYPEAREA+, -: TYPEAREA ! TYPEAREAtval: TYPEAREA ! TOThe functions ttag and tref are de�ned on the universe of \type objects" TOttag: TO ! TTAGStref: TO ! SORT + TYPEAREAwith the tags for type terms given by (to be extended later)f S TOP, S MONO, S POLY g � TTAGSSimilar as done before, we abbreviate ttag(tval(l)) and tref(tval(l)) by ttag(l) andtref(l). As integrity constraints we haveif ttag(l) = S MONO then tref(l) 2 SORTis monomorphic(tref(l))if ttag(l) = S POLY then is polymorphic(tref(l))where the auxiliary functiontypeterm: TYPEAREA ! TYPETERMsatis�es the constraintstypeterm(l) = TOP if ttag(l) = S TOPtypeterm(l) = tref(l) if ttag(l) = S MONOWe re�ne the PAM algebras of Section 5 by replacing the universe TYPETERM by its rep-resenting universe TYPEAREA. The codomain of the ref function (from 3.1) now containsTYPEAREA, and in the integrity constraints of 3.1 as well as in the de�nition of type prefixthe case for unbound(l) now contains typeterm(ref(l)) instead of ref(l). The three abstractfunctions is top, is monomorphic, and is polymorphic de�ned on TYPETERM are de�nedon TYPEAREA by just looking at the type tag; for l 2 DATAAREA we therefore use thefollowing abbreviations:top(l) � tag(l) = VAR & ttag(ref(l)) = S TOPmonomorphic(l) � tag(l) = VAR & ttag(ref(l)) = S MONOpolymorphic(l) � tag(l) = VAR & ttag(ref(l)) = S POLYsort(l) � typeterm(ref(l)) if monomorphic(l)28



6.4 Initialization of type constrained variablesIn the PAM algebras developed so far the update insert type(l,t) is used - as part of themk unbound update - in the variable initialization instructions get variable, put variable, andunify variable (Section 5.2). (Its use in the multiple mk unbounds update in get structure willbe re�ned in Section 6.6 below). This update is now re�ned byinsert type(l,tt) � if is top(tt)then insert top(l)else if is monomorphic(tt)then insert mono(l,tt)else insert poly(l,tt)insert top(l) � ref(l) := ttopttag(ttop) := S TOPttop := ttop+insert mono(l,s) � ref(l) := ttopttag(ttop) := S MONOtref(ttop) := sttop := ttop+where we use a new type area location when inserting a monomorphic sort s (resp. TOP) as restric-tion for location l 2 DATAAREA. 2Similarly, the insertion of polymorphic type terms by insert poly(l,tt) will be handled inSection 8. As we want to leave the details of polymorphic type constraint solving still abstracthere, we pose the followingPOLYMORPHIC TYPE INSERTION CONDITION: For any l1, l 2 DATAARRA,with term resp. term' values of term(l) and with prefix resp. prefix' values of type prefix(l)before resp. after execution of insert poly(l1,tt), we have if unbound(l1) and tt 2TYPETERM with is polymorphic(tt):(term', prefix') = conres(term, prefixnmk var(l1), fmk var(l1) :ttg)TYPE INSERTION LEMMA: The re�nement of the insert type update satis�es the TYPEINSERTING CONDITION of 3.5.Proof: By straightforward case analysis for TOP, monomorphic and polymorphic type restrictions;for the latter the POLYMORPHIC TYPE INSERTION CONDITION is used.6.5 Binding of type constrained variablesWe re�ne the binding rules of Section 6.1 according to the type term representation. Rule Bind-1remains unchanged, whereas the rule Bind-2 for binding two variables is replaced by the followingfour rules: Bind-2a (Bind-TOP-Any)if BIND& top(arg1)& unbound(arg2)) | NOT (unbound(arg2))2Note that deliberately we have left out the re-use of type area locations. For trailing, we have to preserveold type restrictions to be recovered upon backtracking. However, locations that will not be reached any moreby backtracking can be re-used, just as e.g. memory on the local stack or on the heap is freed for re-use uponbacktracking. In the current PAM implementation the type area is embedded into the heap so that the samemechanism for allocating and deallocating can be used. However, other realizations are also possible, and we willnot elaborate this topic in this paper. 29



thentrail(arg1)arg1  <REF,arg2>bind success | occur check(arg1,arg2) Bind-2b (Bind-Var-TOP)if BIND& monomorphic(arg1) OR polymorphic(arg1)& top(arg2)thentrail(arg1,arg2)arg1  <REF,arg2>arg2  arg1bind success Bind-2c (Bind-Mono-Mono)if BIND& monomorphic(arg1)& monomorphic(arg2)& LET glb = sort glb(sort(arg1),sort(arg2))& glb 6= BOTTOM | glb = BOTTOM& glb 6= sort(arg2) | glb = sort(arg2) |thentrail(arg1,arg2) | trail(arg1) | backtrackinsert type(arg2,glb) | |arg1  <REF,arg2> |bind success | Bind-2d (Bind-Poly-Poly)if BIND& polymorphic(arg1)& polymorphic(arg2)thentrail(arg1)arg1  <REF,arg2>poly infimum(arg1,arg2)The only still abstract update in these rules is the poly infimum(l1,l2) update used whenbinding two polymorphically restricted variables, for which we require the followingPOLYMORPHIC INFIMUM CONDITION: For any l1, l2, l 2 DATAAREA, withterm resp. term' values of term(l), with prefix resp. prefix' values of type prefix(l), andwith val resp. val' values of val(l), before resp. after execution of poly infimum(l1,l2) wehave if for i = 1,2 unbound(li), polymorphic(li), and typeterm(ref(li)) 2 TYPETERM:LET CS = fmk var(l2) : poly inf(typeterm(l1),typeterm(l2))gif solvable(CS) = truethen (a) (term', prefix') = conres(term, prefix, CS)(b) if val 6= val' then the location l will be trailedelse backtrack update will be executed30



Rule Bind-3 of Section 6.1 for binding a variable to a non-variable structure is replaced bythe rules Bind-2a above (which already covers the case that the variable has no type restriction,denoted by TOP) and the two new rules Bind-3a (Bind-Mono-Struc)if BIND& monomorphic(arg1)& NOT (unbound(arg2))& subsort(target sort(ref(arg2)),sort(arg1))= true | = falsethentrail(arg1) | backtrackarg1  <REF,arg2> |occur check(arg1,arg2) | Bind-3b (Bind-Poly-Struc)if BIND& polymorphic(arg1)& NOT (unbound(arg2))thentrail(arg1)arg1  <REF,arg2>occur check(arg1,arg2)poly propagate(arg1,arg2)The abstract update poly propagate(l1,l2) must satisfy thePOLYMORPHIC PROPAGATION CONDITION which is obtained from the PROPA-GATION CONDITION of 6.1 by adding is polymorphic(l1) as an additional precondition andreplacing ref(l1) by typeterm(ref(l1)).BINDING LEMMA 2: The re�ned binding rules are a correct realization of the binding rulesof Section 6.1 and thus also of the binding update of 3.2.Proof: Following the proof of the BINDING LEMMA in 6.1 we have to show that the rules Bind-2a - Bind-2d and Bind-3a - Bind-3b are correct realizations of the inf function used in Bind-2 andof the propagate update used in Bind-3. This follows by straightforward case analysis for TOP,monomorphic, and polymorphic type restrictions: For TOP, we use its property that it is `maximal'w.r.t. inf and that the propagate update can not have any e�ect since any TOP restriction triviallyholds (Section 2.1). For the monomorphic case we conclude from the last integrity constraint givenin Section 6.2 that the propagate update is either empty or fails immediately due to the subsorttest, implying that the di�erent cases correctly simulate this situation. For the polymorphic casethe POLYMORPHIC INFIMUM and POLYMORPHIC PROPAGATION CONDITIONS are used.6.6 Getting of structuresWe re�ne the get struture rules of Section 3.4 according to the type term representation. RuleGet-Structure-1 remains unchanged, whereas the rule Get-Structure-2 for the case that xi is anunbound variable is replaced by the following two rules:31



Get-Structure-2aif RUN& code(p) = get structure(f,xi)& monomorphic(deref(xi))& NOT ( subsort(target sort(f),sort(deref(xi))) )thenbacktrack Get-Structure-2bif RUN& code(p) = get structure(f,xi)& top(deref(xi)) | polymorphic(deref(xi))OR |(monomorphic(deref(xi)) & |subsort(target sort(f), |sort(deref(xi))) |thenh  <STRUC,h+>bind(deref(xi),h)val(h+) := fh := h++ | h := h + arity(f) + 2mode := Write | nextarg := h++| mode := Read| FORALL i = 1,: : :,arity(f) DO| mk unbound(h+i)| ENDFORALL| poly propagate(h+,deref(xi))succeedThus, the only remaining abstract update is in the case when xi is a polymorphically restrictedvariable; this case in Get-Structure-2b is reduced to the more general update poly propagatealready introduced in the previous subsection.CORRECTNESS OF GET-STRUCTURE REFINEMENT: The re�ned Get-Structurerules are a correct realization of the rules of Section 3.4, i.e. the GETTING LEMMA stills holdsfor the re�ned type term representation.Proof: As in the proof of the BINDING LEMMA 2 in the previous subsection we can apply astraightforward case analysis for TOP, monomorphic, and polymorphic type restrictions: For TOP, weobserve that always both conditions can propagate(f,TOP) and trivially propagates(f,TOP)used in the Get-Structure rule of 3.4 hold. For monomorphic type restrictions, the propagationreduces again to the subsort test. For the polymorphic case the POLYMORPHIC PROPAGATIONCONDITION ensures that exactly the type restrictions given by the propagate list function usedin 3.4 are propagated onto the arguments of the structure.Whereas we have now introduced a representation for type terms and rules for monomor-phic type constraint solving, some details of polymorphic type constraint solving arestill abstract, namely the three updates insert poly(l,tt), poly infimum(l1,l2), andpoly propagate(l1,l2) which will be re�ned in Section 8.32



7 PAM Optimizations7.1 Special representation for typed variablesMany of the type related rules introduced above - in particular the get-structure and the bindingrules - apply only if the involved variable has no type restriction at all (i.e. TOP), or a monomorphic,or a polymorphic type restriction, respectively. In the spirit of the WAM's tagged architecture itis thus sensible to distinguish these three di�erent cases e�ciently by special tags [BMS91]. Thetag VAR is therefore replaced by the three tags FREE, FREE M, FREE P.Moreover, in the representation of monomorphic sorts one can also easily save a type arealocation by letting the ref value of a data area location point directly to SORT. Therefore, weextend the codomain of the function ref (see 3.1) to include also SORT. Let l 2 DATAAREA;instead of val(l) = <VAR,t> and tval(t) = <S MONO,s>we will just haveval(l) = <FREE M,s>and instead ofval(l) = <VAR,t> and ttag(t) = S TOPwe will just havetag(l) = FREEThis motivates the following modi�ed abbreviations:mk unbound(l) � tag(l) := FREEmk unbound mono(l,s) � tag(l) := FREE Mref(l) := smk unbound poly(l,tt) � tag(l) := FREE Pinsert poly(l,tt)mk unbound(l,tt) � if is top(tt)then mk unbound(l)elseif is monomorphic(tt)then mk unbound mono(l,tt)else mk unbound poly(l,tt)unbound(l) � tag(l) 2 fFREE, FREE M, FREE Pgtop(l) � tag(l) = FREEmonomorphic(l) � tag(l) = FREE Mpolymorphic(l) � tag(l) = FREE Psort(l) � ref(l) if monomorphic(l)The integrity constraint for the case unbound(l) of Section 3.1 is replaced byif tag(l) = FREE M then ref(l) 2 SORTif tag(l) = FREE P then ref(l) 2 TYPEAREAtypeterm(ref(l)) 2 TYPETERMis polymorphic(typeterm(ref(l)))and in the de�nition of type prefix the case for unbound(l) is re�ned totype prefix(l) =8>>>>>>>><>>>>>>>>: mk var(l) : TOP if tag(l) = FREEmk var(l) : ref(l) if tag(l) = FREE Mmk var(l) : typeterm(ref(l)) if tag(l) = FREE P: : : 33



Every time a new variable is created, this re�ned representation of variables will be taken intoaccount by one of the specialized mk unbound updates introduced above; for instance in the Get-Structure-2b rule (Section 6.6).Similarly, the rules for initializing variables (Section 5.2) are modi�ed as explained in the fol-lowing. In order to take advantage of the re�ned variable representation we modify the compilefunction such that each instruction of the formget variable(l,xj,tt)is replaced by one of the three new instructionsget free(l,xj)get mono(l,xj,tt)get poly(l,xj,tt)depending on whether is top(tt), is monomorphic(tt), or is polymorphic(tt) holds. Like-wise, all put variable and unify variable instructions are replaced by the instructionsput free(l,xj) unify free(l)put mono(l,xj,tt) unify mono(l,tt)put poly(l,xj,tt) unify poly(l,tt)respectively. Note that these new instructions always correspond to the �rst occurrence of avariable in a clause and are thus responsible for the correct type initialization of that variable.Put-1 (X variable)if RUN& code(p) =put free(xi,xj) | put mono(xi,xj,s) | put poly(xi,xj,tt)thenmk unbound(h) | mk unbound mono(h,s) | mk unbound poly(h,tt)xi  <REF,h>xj  <REF,h>h := h+succeed Put-2 (Y variable)if RUN& code(p) =put free(yn,xj) | put mono(yn,xj,s) | put poly(yn,xj,tt)thenmk unbound(yn) | mk unbound mono(yn,s)| mk unbound poly(yn,tt)xj  <REF,yn>succeed Get (Variable)if RUN& code(p) =get free(l,xj) | get mono(l,xj,s) | get poly(l,xj,tt)thenl  xj | mk unbound mono(l,s)| mk unbound poly(l,tt)| bind(l,xj) | bind(l,xj)succeed 34



Unify (Read Mode)if RUN& code(p) =unify free(l) | unify mono(l,s) | unify poly(l,tt)& mode = Readthenl  <REF,nextarg> | mk unbound mono(l,s)| mk unbound poly(l,tt)| bind(l,nextarg) | bind(l,nextarg)nextarg := nextarg+succeed Unify (Write Mode)if RUN& code(p) =unify free(l) | unify mono(l,s) | unify poly(l,tt)& mode = Writethenmk unbound(h) | mk unbound mono(h,s)| mk unbound poly(h,tt)l  <REF,h>h := h+succeedCORRECTNESS OF REFINED VARIABLE REPRESENTATION: The PAM algebraswith the re�ned variable representation are correct with respect to the PAM algebras constructedin Section 6.Proof: The only type inserting update of 6.4 that is still used is insert poly for which the POLY-MORPHIC TYPE INSERTION CONDITION ensures the TYPE INSERTION CONDITION. In-serting TOP and monomorphic type restrictions for variables obviously has the same e�ect as in 6.4.Trailing still works �ne since in 4.2 we trailed the complete val decoration of a data area location- including its tag - and restored it upon backtracking. With these two main observations theproof follows by case analysis for the three di�erent kinds of type restrictions. Showing that eachvariable is initialized properly is straightforward, and the correct treatment of the thus re�nedvariable representation in all relevant rules (in particular the binding rules) is ensured directlyby our modi�ed abbreviations that refer to a variable's representation, like monomorphic(l) orsort(l).7.2 Switch on TypesAs opposed to the WAM, in the PAM also a switch on the subtype restriction of a variable ispossible (c.f. 5.3) which increases the determinancy detection abilities. Since only monomorphictypes can have explicitly de�ned subtypes there are two switch-on-term instructions. (Note thatin this paper we did not introduce special representations for constants, lists, or built-in integers;they are, however, present in the PAM and could be added to our treatment without di�culties,which would lead to additional parameters in the following instructions.)Switch-on-poly-termif RUN& code(p) = switch on poly term(i,Lfree,Lstruc)& tag(deref(xi)) 2 fFREE, FREE Pg | tag(deref(xi)) = STRUCthenp := Lfree | p := Lstruc35



The switch on poly term instruction is as the WAM switch on term instruction (c.f. B.7)except that the variable may carry a polymorphic type restriction, which however does not leadto the exclusion of any clauses, since in PROTOS-L no explicit subtype relationships are allowedbetween polymorphic types [Bei90]. Switch-on-mono-termif RUN& code(p) = switch on mono term(i,Lfree,Lfree m,Lstruc)& tag(deref(xi)) =FREE | FREE M | STRUCthenp := Lfree | p := Lfree m | p := LstrucIn the switch on mono term instruction we distinguish the two cases for a FREE variable anda FREE M variable. In the �rst case again no clauses can be excluded form further consideration,but in the second case only those clauses that are compatible with xi's subtype restriction have tobe taken into account. The latter is achieved by setting the program counter p to a label where aswitch on sort instruction will exploit xi's subtype restriction: Switch-on-sortif RUN& code(p) = switch on sort(i,Table)thenp := selectsort(Table,sort(deref(xi)))where Table is a list of pairs of the form SORT � CODEAREA, and selectsort(Table,s)yields the location c such that (s,c) is in Table.In order to establish a correctness proof for the extended switching instructions we must extendthe assumptions on the compiler stated in 2.2. The de�ntion of chain is changed so that the twocases for switch on term are replaced bychain(Ptr) = 8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:
chain(Lf) if code(Ptr) = switch on poly term(i,Lf,Ls)and is top(Xi) or is polymorphic(Xi)chain(Ls) if code(Ptr) = switch on poly term(i,Lf,Ls)and is struct(Xi)chain(Lf) if code(Ptr) = switch on mono term(i,Lf,Lfm,Ls)and is top(Xi)chain(Lfm) if code(Ptr) = switch on mono term(i,Lf,Lfm,Ls)and is monomorphic(Xi)chain(Ls) if code(Ptr) = switch on mono term(i,Lf,Lfm,Ls)and is struct(Xi)chain(selectsort(T,s)) if code(Ptr) = switch on sort(i,T)and s = sort(Xi): : :SWITCHING LEMMA: Switching extended to types preserves correctness.Proof: By case analysis using the extended chain de�nition, and relying on the correctness of theother building blocks of the determinancy detection mechanism (like try, retry, trust, etc.)which remain unchanged.Note that the special representation of typed variables introduced in this section lead to thesituation that the type extension in the PAM is indeed orthogonal to the WAM. Any untyped36



program is carried out in the PAM with the same e�ciency as in the WAM: Adding the trivialone-sorted type information to such a program reveals that the PAM code will contain only theFREE-case for variables. Apart form the minor di�erence of representing a free (unconstrained)variable not by a selfreference (as in the WAM) but by a special tag, the generated and executedcode is thus exactly the same for both the WAM and the PAM. On the other hand, any typedprogram exploiting e.g. the possibilities of computing with subtypes can take advantage of the typeconstraint handling facilities in the PAM which would have to be simulated by additional explicitprogram clauses in an untyped version.
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8 Polymorphic type constraint solvingIn this section polymorphic type constraint handling is re�ned by re�ning the three updatesinsert poly(l,tt), poly infimum(l1,l2), and poly propagate(l1,l2) that have been left ab-stract so far.8.1 Representation of polymorphic type termsFor the representation of polymorphic type terms we introduce an additional function on SORTsort arity: SORT ! NATyielding the arity of a polymorphic sort (which must be 0 in the case of a monomorphic sort). Therelationship between the declaration part of the program prog (see 2.1 and 2.4) and the functionson SORT is regulated by the following integrity constraints: For each function declaration of theform f: d1 : : : dm ! s(�1,: : :,�n)with m, n � 0, pairwise distinct (type) variables �i that occur in d1,: : : ,dm, and each tt = s(: : :)2 TYPETERM the following holds:target sort(entry(f, m)) = sarity(entry(f, m)) = msort arity(s) = nis monomorphic(tt) = true i� n = 0is polymorphic(tt) = true i� n > 0Let use illustrate these integrity constraints by some examples. Consider the three function decla-rations succ: nat ! natcons: � � list(�) ! list(�)mk pair: � � � ! pair(�; �)Then we have e.g. the following relationships:target sort(entry(succ,1)) = nattarget sort(entry(cons,2)) = listtarget sort(entry(mk pair,2)) = pairarity(entry(succ,1)) = 1arity(entry(cons,2)) = 2arity(entry(mk pair,2) = 2sort arity(nat) = 0sort arity(list) = 1sort arity(pair) = 2is monomorphic(nat) = trueis polymorphic(list(list(
))) = trueSince the type terms required at run time are represented in TYPEAREA, we add two newtags S REF and S BOTTOM to the set of type tags, yieldingTTAGS = f S TOP, S BOTTOM, S MONO, S REF, S POLY gwhere S REF corresponds to the subterm reference STRUC used inDATAAREA for ordinary terms.Together with the additional integrity constraints38



if tag(l) = S REF then tref(l) 2 TYPEAREAttag(tref(l)) = S POLYif tag(l) = S POLY then tref(l) 2 SORTis polymorphic(typeterm(l))the functiontypeterm: TYPEAREA ! TYPETERMintroduced in Section 6.3 is now completely de�ned bytypeterm(l)= 8>>>>>>>>>>>>><>>>>>>>>>>>>>: TOP if ttag(l) = S TOPBOTTOM if ttag(l) = S BOTTOMtref(l) if ttag(l) = S MONOtypeterm(tref(l)) if ttag(l) = S REFs(a1,: : :,an) if ttag(l) = S POLY ands = tref(l)n = sort arity(tref(l))ai = typeterm(tref(l)+i)8.2 Creation of polymorphic type termsWe introduce a representation of polymorphic type terms occurring as arguments of the instruc-tions in CODEAREA such that they can easily be loaded into TYPEAREA. For this purpose,we extend the compile function such that every polymorphic type term tt occurring in any ofthe generated PAM instructions introduced so far (i.e. put , get , unify variable, respectivelytheir re�nements put free, put mono etc., see Section 7) is replaced bycompile type(tt) 2 (TTAG � (SORT + NAT))�Note that just for simplicity reasons this list representation abstracts away from the actual rep-resentation used in the PAM where the tagged type term representation occurring in the code isembedded into CODEAREA, mapping the list structure to the +-structure of CODEAREA.The function inverse to compile type is de�ned bydecompile type(L) = 8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>: TOP if head(L) = <S TOP,.>BOTTOM if head(L) = <S BOTTOM,.>s if head(L) = <S MONO,s>decompile type(tail(: : :(tail| {z }m�times (L)): : :)) if head(L) = <S REF,m>s(a1,: : :,an) if head(L) = <S POLY,s> andn = sort arity(tref(l))ai = decompile type(tail(: : :(tail| {z }i�times (L)): : :))and the integrity constraint we impose isdecompile type(compile type(tt)) = ttfor any type term tt 2 TYPETERM.Using compile type(tt) instead of tt itself passes this re�ned argument to the updatemk unbound. Since the update mk unbound is de�ned in terms of insert type which in turnis de�ned in terms of insert poly for the polymorphic case, we only have to adapt the - until now- abstract update insert poly (Section 6.4). It is now de�ned by39



insert poly(l,L) � ref(l) := ttopFORALL j = 1,: : :,length(L) DOtval(ttop+j-1) := offset(ttop+j-1,nth(j,L))ENDFORALLttop := ttop + length(L)where offset(tl, <tag,k>) = � <tag, tl+k> if tag = S REF<tag, k> otherwisePOLYMORPHIC TYPE INSERTION LEMMA: The representation of type terms and theupdate de�ned above are a correct realization of the insert poly update of Section 6.4, i.e. thePOLYMORPHIC TYPE INSERTION CONDITION is satis�ed.Proof: The list representation generated by the function compile type re
ects exactly the struc-ture of the representation of type terms in TYPEAREA, the only di�erence being that a sub-(type-)term pointer in TYPEAREA (with tag S REF) is realized by an integer o�set in the listrepresentation. This representation di�erence is taken into account in the de�nition of insert polygiven above by adding the o�set to the current TYPEAREA location in the S REF case.8.3 Polymorphic in�mumIn order to re�ne the still abtract update poly infimum(l1,l2) used in the Bind-2d rule of Sec-tion 6.5 to the in�mum computation of polymorphic type terms as they occur in PROTOS-L, weneed to know whether a type term is empty or not. For instance, given the standard notions oflist(�1) and pair(�1,�2), list(BOTTOM) is not empty since it can be instantiated to the emptylist nil, while pair(BOTTOM,INTEGER) is empty since there is no pair without a �rst component.The property that a type tt is not empty is formalized by the abbreviationinhabited(tt) � solution(fX : ttg) 6= nilwhere X 2 VARIABLE. Thus, from the conditions on the solution function in 6.1we have e.g. inhabited(BOTTOM) = false, inhabited(TOP) = true, and furthermoreinhabited(list(BOTTOM)) = true, inhabited(pair(BOTTOM,INTEGER)) = false.We pose three additional integrity conditions. The �rst one requires that there are no `empty'(monomorphic) sorts:is monomorphic(s) ) inhabited(s)The second integrity constraint says that the in�mum of polymorphic type terms is computedfrom the in�mum of the argument types, and that it is always BOTTOM if we have di�erent poly-morphic types:poly inf(s(tt1,: : :,ttn),s'(tt1',: : :,ttn')= 8>>><>>>: s(poly inf(tt1,tt1'),: : :,(poly inf(ttn,ttn')) if s = s'andinhabited(s(poly inf(tt1,tt1'),: : :,poly inf(ttn,ttn')))BOTTOM otherwiseFor the third integrity constraint we introduce a new abstract functioninst modus: SORT � BOOL� ! BOOLwhich tells whether terms of a given sort can be instantiated, depending only on the emptiness ofthe argument types, but not on the arguments themselves. This function speci�es the `instantia-tion modi' for a polymorphic sort, i.e. which type arguments of s may be BOTTOM so that s canstill be instantiated. For instance, we have 40



inst modus(list, [false]) = trueinst modus(pair, [false, true]) = falsesince solution(fX : list(BOTTOM)g) 6= nilsolution(fX : pair(BOTTOM,INTEGER)g) = niland thus inhabited(list(BOTTOM)) = trueinhabited(pair(BOTTOM,INTEGER)) = false.The general condition on inst modus isinst modus(s,[b1,: : :,bn]) = true) ( (8 i 2 f1,: : :,ng . bi = true ) inhabited(tti) )) inhabited(s(tt1,: : :,ttn)) )For the realization of the poly inf function in the PAM we introduce a new universe P NODEthat comes with a tree structure realized by the functionsp root, p current: P NODEp father: P NODE ! P NODEp sons: P NODE ! P NODE�where p current is used to navigate through the tree. Each node in the P NODE tree representsan in�mum computation task for two type terms given as arguments, and it will be eventually bemarked with the result. Thus, we have the three labelling functionsp arg1, p arg2: P NODE ! TYPEAREAp result: P NODE ! TYPEAREAWhen a P NODE element p represents the computation of the in�mum of two polymorphic typeterms typeterm(p arg1(p)) = s(tt1,: : :,ttn) and typeterm(p arg2(p)) = s(tt1',: : :,ttn'),then the n required computations of the in�mum of the tti and tti' will correspond to the nnodes in the list p sons(p). The P NODE labelp status: P NODE ! fexpand, expandedgindicates for each node whether the son nodes for it have still to be generated or not. The untilnow abtract update poly infimum(l1,l2) for l1, l2 2 DATAAREA is then de�ned bypoly infimum(l1,l2) � p arg1(p root) := ref(l1)p arg2(p root) := ref(l2)p status(p root) := expandp current := p rootp return arg := l2ll what to do := polymorphic infimumIt initializes the P NODE tree containing just the root node. Additionally, it sets the new 0-aryfunction p return arg : DATAAREAwhich holds the location where the result of the polymorphic in�mum computation will be writtento when it has been �nished.ll what to do 2 fnone, polymorphic infiumum, polymorphic propagationgis also a new 0-ary function that is added to the initial PAM algebras. Its initial valueis none, indicating that no speci�c low-level actions have to be performed. All rules intro-duced so far get ll what to do = none as an additional precondition; thus the de�nition ofthe poly infimum(l1,l2) update just given blocks the applicability of all previous rules, untilll what to do has been set back again to the value none by one of the rules to be introducedbelow. These new rules in turn will be guarded by the precondition41



POLY-INF � OK & ll what to do = polymorphic infimum(Note that such a scheme has been used before with the 0-ary function what to do, separatinge.g. the binding and uni�cation rules from all other rules.) Resetting of ll what to do is done bymeans of the following abbreviation that holds for tl 2 TYPEAREA and that is also used forthe returning of values in intermediate stages of the polymorphic in�mum computation:p return(tl) � if p current 6= p rootthenp result(p current) := tlp current := p father(p current)else ll what to do := noneif ttag(tl) = S BOTTOMthen backtrackelse bind successif ref(p return arg) 6= tlthen trail(p return arg)ref(p return arg) := tlNote that the last if-then conditional is an optimization over the unconditional updates in thethen-part since in case the return argument location p return arg already contains the requiredvalue we neither have to update nor to trail it.Additionally, the following abbreviations will be used:parg1 � p arg1(p current)parg2 � p arg2(p current)ttag1 � ttag(parg1)ttag2 � ttag(parg2)tref1 � tref(parg1)tref2 � tref(parg2)If either of the two type term arguments of p current is TOP or BOTTOM, no son nodes have to becreated and the result can be determined immediately since it is given by one of the two arguments.Polymorphic In�mum 1 (S TOP, S BOTTOM)if POLY-INF& p status(p current) = expand& (ttag1 = S TOP | (ttag1 = S BOTTOMOR | ORttag2 = S BOTTOM) | ttag2 = S TOP)thenp status(p current) := expandedp return(parg2) | p return(parg1)Also in the case of monomorphic types no son nodes have to be created.Polymorphic In�mum 2 (S MONO)if POLY-INF& p status(p current) = expand& ttag1 = S MONO & ttag2 = S MONO& subsort(tref1, | subsort(tref2, | sort glb(tref1,tref2) | sort glb(tref1,tref2)tref2) | tref1) | = BOTTOM | 6= BOTTOMthenp status(p current) := expandedp return(parg1) | p return(parg2)| make s bottom | make s mono(| | | sort glb(tref1,tref2))| | p return(ttop) | p return(ttop)42



where for s 2 SORT the allocation of new type locations in TYPEAREA is achieved bymake s mono(s) � ttag(ttop) := S MONOtref(ttop) := sttop := ttop+make s bottom � ttag(ttop) := S BOTTOMttop := ttop+If p current points to a node with S POLY tagged arguments for the �rst time (i.e. its status isexpand), sort arity(tref(p arg1(p current))) new son nodes are created and labelled accord-ingly (c.f. the integrity condition on poly inf given above). p current is set to the �rst of thenew sons, and the new functionp rest calls: P NODE ! P NODE�is set to the remaining son nodes, indicating that these nodes still have to be visited by p current.Polymorphic In�mum 3 (S POLY-1)if POLY-INF& p status(p current) = expand& ttag1 = S POLY & ttag2 = S POLYthenp status(p current) := expandedLET n = sort arity(tref1)extend P NODE by temp(1),...,temp(n)where p arg1(temp(i)) := parg1 + ip arg2(temp(i)) := parg2 + ip father(temp(i)) := p currentp sons(p current) := [temp(1),: : :,temp(n)]p status(temp(i)) := expandp current := temp(1)p rest calls(p current) := [temp(2),: : :,temp(n)]endextendWhen p current points to a node with S POLY tagged arguments for the second or a later time(i.e. its status is expanded) and there are still sons to be visited (i.e. p rest calls(p current))6= []), then p current is set to the next son. Polymorphic In�mum 4 (S POLY-2)if POLY-INF& p status(p current) = expanded& ttag1 = S POLY & ttag2 = S POLY& p rest calls(p current) 6= []thenp current := head(p rest calls(p current))p rest calls(p current) := tail(p rest calls(p current))When p current points to a node with S POLY tagged arguments for the second or alater time and all sons have already been visited (i.e. p rest calls(p current)) = []), then allsub-computations for this node have been completed and the result is returned.Polymorphic In�mum 5 (S POLY-3)if POLY-INF& p status(p current) = expanded& ttag1 = S POLY & ttag2 = S POLY 43



& p rest calls(p current) = []& subtype(1) | subtype(2) | NOT (is inhabited) | is inhabitedthenp return(parg1) | p return(parg2)| make s bottom | write poly term| | p return(ttop) | p return(ttop)The three new abbreviations in the last rule are given bysubtype(i) � FOR ALL k = 1,: : :,sort arity(tref1) .pargi + k = p result(nth(k,p sons(p current)))write poly term � tval(ttop) := tval(parg1)FOR ALL k = 1,: : :,sort arity(tref1) DOtval(ttop + k) := tval(p result(nth(k,p sons(p current))))ENDFORALLttop := ttop + sort arity(tref1) + 1is inhabited � inst modus(tref1,[tb1,: : :,tbn])where in the last abbreviation n = sort arity(tref1), and for k = 1,...,ntbk � ttag(p result(nth(k,p sons(p current)))) 6= S BOTTOMThe subtype conditions in the above rule represent an optimization analogously to the subsortoptimization in the S MONO case (rule Polymorphic In�mum 2): only if the result di�ers from oneof the two input arguments a new TYPEAREA location has to be returnd.If p current points to a node with S REF tagged arguments for the �rst time (i.e. its statusis expand), a single new son node labelled with the respective referenced type area locations iscreated. Polymorphic In�mum 6 (S REF-1)if POLY-INF& p status(p current) = expand& ttag1 = S REF & ttag2 = S REFthenp status(p current) := expandedextend P NODE by tempwhere p arg1(temp) := tref1p arg2(temp) := tref2p father(temp) := p currentp sons(p current) := [temp]p status(temp) := expandp current := tempendextendWhen p current points to a node with S REF tagged arguments for the second time (i.e.its status is expanded), then the sub-computations for its single son node has been completed andthe result is returned. Polymorphic In�mum 7 (S REF-2)if POLY-INF& p status(p current) = expanded& ttag1 = S REF & ttag2 = S REF& LET res = p result(head(p sons(p current)))& res = tref1 | res = tref2 | ttag(res) = S BOTTOM | ttag(res) 6= S BOTTOM44



thenp return(parg1) | p return(parg2) | p return(res) | make s ref(res)| | | p return(ttop)where for tl 2 TYPEAREA the new abbreviation in the last rule is given bymake s ref(tl) � ttag(ttop) := S REFtref(ttop) := tlttop := ttop+POLYMORPHIC INFIMUM LEMMA: The polymorphic in�mum rules given above are acorrect realization of the poly infimum(l1,l2) update of Section 6.5.Proof: We have to show that the polymorphic in�mum rules represent a correct realization ofthe poly inf function on TYPETERM that is used in PROTOS-L (and which was introducedas an abtract function in Section 6.2). Taking the integrity constraints given for inf, sort glb,and poly inf in 6.1, 6.2, and 8.1 the proof follows by case analysis and induction on the sizesof typeterm(ref(l1)) and typeterm(ref(l2)). Note that the TRAILING CONDITION is alsosatis�ed since in p return(tl) the location p return arg (which had been set to l2) is trailed ifits value is to be changed.8.4 Propagation of polymorphic type restrictionsThe still abtract update poly propagate(l1,l2) is used in the Bind-3b rule of Section 6.5 and inthe Get-Structure-2b rule of Section 6.6. We re�ne this update to the propagation of polymorphictype constraints as they occur in PROTOS-L.Let us start with an example. Consider the polymorphic declaration for list(�) with con-structors nil: ! list(�)cons: � � list(�) ! list(�)and assume monomorphic types NAT and INTEGER with subsort(NAT,INTEGER) = true. Thensolving the uni�cation (or binding) constraintX := cons(Y,L)in the presence of the type pre�xfX : list(NAT), Y : INTEGER, L : list(INTEGER)ggenerates the type constraintcons(Y,L) : list(NAT)under the same type pre�x. Thus, the update poly propagate(l1,l2) would be called withterm(l2) = cons(Y,L) and typeterm(ref(l1)) = list(NAT).More generally, the arguments of the term referenced by l2 (in the example Y : INTEGER andL : list(INTEGER)) must be restricted to the respective argument domains of the top-level func-tor f of term(l2) (here: cons) where each type variable in an argument domain in the dec-laration of f (here: cons: � � list(�) ! list(�)) is replaced by the respective argumentof typeterm(ref(l1)) (here: replacing � by NAT, which yields cons: NAT � list(NAT) !list(NAT)).This can be achieved in two steps: First, a new term f(X1,: : :,Xm) (in the example:cons(X1,X2)) is created with appropriately type-restricted new variables Xi (here: X1 : NAT andX2 : list(NAT)), and second, this new term is uni�ed with term(l2). Thus, in the example thetype constraint cons(Y,L) : list(NAT) represented by poly propagate(l1,l2) would be reducedto the uni�cation problem 45



cons(X1,X2) := cons(Y,L)with type-constrained new variables X1 and X2. (In fact, this is a slight simpli�cation of therepresentation over the actual PAM implementation where the top-level functor (here: cons) wouldnot be generated since it is not needed; instead, the binding of the n argument variables of thenew term can be called directly.)For the general re�nement of the polymorphic porpagation we assume as an integrity conditionsolution(ff(t1,: : :,tm) : s(tt1,: : :,ttn)g) = solution(ff(t1,: : :,tm) := f(X1,: : :,Xm),X1 : subres(d1,subst), : : :,Xm : subres(dm,subst)g)where the Xi are new variables, f has declarationf: d1 : : : dm ! s(�1,: : :,�n) 2 progand subst is the substitution (on type terms)subst = Sk2f1;:::;ng f�k := ttkg(c.f. [Bei90], [BMS91], [BM94]). Note that since s(tt1,: : :,ttn) can not contain any type vari-ables, also in subres(dj,subst) all type variables will have been replaced by ground type terms.For the SYMBOLTABLE representation of the argument domains dj in a function decla-ration of the form given above we assume a compiled form similar to the representation of typeterms in CODEAREA used in 8.2. We assume that the compiler numbers the variables ins(�1,: : :,�n) from left to right, and use the additional tag S VAR such that <S VAR,k> representsthe k-th variable �k. Thus, the de-compilation of type terms in 8.2 is extended bydecompile type(L) = �k if head(L) = <S VAR,k>The functionconstr arg: SYMBOLTABLE � NAT! ((TTAG + fS VARg) � (SORT + NAT))�returns the argument domains dj for a constructor. For instance, given the above list(�) decla-ration, we haveconstr arg(entry(cons,2),1) = [<S VAR,1>]constr arg(entry(cons,2),2) = [<S POLY,list>, <S VAR,1>]More generally, for j 2 f1,: : :,mg we impose the integrity constraintdecompile type(constr arg(entry(f,n),j)) = djFor the re�nement of poly propagate we add three new 0-ary functions to our initial PAMalgebras: pp t 2 DATAAREA, representing a reference to the term t to be retricted, pp tt 2TYPEAREA, a reference to the type term tt of the restriction, and pp i 2 NAT, an index forthe argument positions f1,: : : ,mg. The updatepoly propagate(l1,l2) � pp t := l2pp tt := ref(l1)pp i := 1h  <STRUC,h+>val(h+) := ref(l2)h := h++ll what to do := polymorphic propagatesets the three new 0-ary functions to their initial value, starts the generation of the new termby writing the top level functor on the heap, and blocks the applicability of all previous rules byupdating ll what to do. The following three polymorphic propagation rules are guarded by thecondition POLY-PROP and use the abbreviations hi (for the heap location of the i-th argument ofthe term to be generated) and pp f (for its top-level functor):46



POLY-PROP � OK & ll what to do = polymorphic propagatehi � h + pp i - 1pp f � ref(pp t)The �rst two propagation rules generate the argument variables X1,: : : ,Xm. If there is still a variableto be generated (pp i � arity(pp f)) and the (pp i)th argument domain in the declaration ofpp f is not a type variable, then a variable with the respective type restriction is generated.Polymorphic Propagation 1if POLY-PROP& pp i � arity(pp f)& head(constr arg(pp f,pp i)) =<S TOP, .> | <S MONO, s> | <S POLY, .>thentag(hi) := FREE | tag(hi) := FREE M | tag(hi) := FREE P| ref(hi) := s | insert poly(hi,| | constr arg(pp f,pp i),| | pp tt)pp i := pp i + 1The update insert poly(l,L,tl) is derived from its 2-argument counterpart in 8.2 byadditionally substituting the (representation of the) type variable �k by the (representation of the)k-th argument of typeterm(tl):insert poly(l,L,tl) � ref(l) := ttopFORALL j = 1,: : :,length(L) DOtval(ttop+j-1) := offset&substitute(ttop+j-1, nth(j,L), tl)ENDFORALLttop := ttop + length(L)where offset&substitute(tl', <tag,k>, tl) = 8<: <tag, tl'+k> if tag = S REFtval(tl+k) if tag = S VAR<tag, k> otherwiseIf there is still a variable to be generated (pp i � arity(pp f)) and the (pp i)th argumentdomain in the declaration of pp f is a type variable (say, �k), then the variable to be writtenon the heap must get the k-th type argument of typeterm(pp tt) as its type restriction (i.e.tref(pp tt + k)). If the latter is BOTTOM, backtrack update is executed since �k :BOTTOM is aninconsistent type constraint (see 6.1). Polymorphic Propagation 2if POLY-PROP& pp i � arity(pp f)& head(constr arg(pp f,pp i)) = <S VAR, k>& ttag(pp tt + k) =S TOP | S MONO | S POLY | S BOTTOMthentag(hi) := FREE | tag(hi) := FREE M | tag(hi) := FREE P | backtrack| ref(hi) := tref(pp tt + k) |pp i := pp i + 1 |The third propagation rule is applied when all argument variables have been written onthe heap (pp i > arity(pp f)). It is responsible for the uni�cation of the term to be restricted(pp t) with the newly generated term (referenced by h).47



Polymorphic Propagation 3if POLY-PROP& pp i > arity(pp f)thenh := h + arity(pp f)ll what to do := nonepropagate unify(h,pp t)with the abbreviationspropagate unify(l1,l2) � if still unifyingthen push on unify stack(l1,l2)else unify(l1,l2)still unifying � what to do = Bind & return from bind = Unifypush on unify stack(l1,l2) � ref'(pdl++) := l1ref'(pdl+) := l2pdl := pdl++what to do := UnifyThus, if the machine is still in unifying mode, the update propagate unify(l1,l2) just pushesthe two locations to be uni�ed onto the push down list PDL used for uni�cation; otherwise theupdate unify(l1,l2) initializing uni�cation is executed (see 3.2).POLYMORPHIC PROPAGATION LEMMA: The polymorphic propagation rules givenabove are a correct realization of the poly propagate(l1,l2) update of Section 6.5.Proof: By induction on the number of arguments in typeterm(l2) we can show that, from thetime when ll what to do is set to polymorphic propagate to the time when the rule Polymor-phic Propagation 3 is being executed, a term of the form f(X1,: : :,Xm) is created on the heap.The rules Polymorphic Propagation 1 and 2 as well as the update insert poly(l,L,tt) ensurethat the proper type restrictions for Xi are inserted, i.e. - using the notation of the solutionintegrity constraint given in the beginning of this subsection - Xi : subres(di,subst). Note that ifsubres(di,subst) = BOTTOM, rule Polymorphic Propagation 2 carries out the backtrack updatesince solution(ft : BOTTOMg) = nil for any term t.Thus, we are left to show that also the equation part f(t1,: : :,tm) := f(X1,: : :,Xm) is takenproperly into account. This exactly is ensured by the updates of rule Polymorphic Propagation 3:By induction on the number of times the uni�cation of the two terms to be uni�ed will again cause apolymorphic propagation invocation, and using the UNIFICATION LEMMA of Section 3.2, we canshow that at the time when the uni�cation initiated by the update propagate unify(h, pp t) hasbeen carried out (either with success or with failure) the post-conditions of the POLYMORPHICPROPAGATION CONDITION are satis�ed.8.5 Main Theorem of Part IIPutting everything together, we obtainCorrectness Theorem 3 (Main Theorem of Part II): Compilation from PROTOS-L algebrasto the PAM algebras with polymorphic, order-sorted type constraint handling is correct.48
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A Transition rules for compiled And/Or structureallocateif OK& code(p) = allocatethenPUSH ENV temp INcp'(temp) := cpvi'(temp) := vict'(temp) := ctENDPUSHsucceed deallocateif OK& code(p) = deallocatethenPOP ENVcp := cp'(e)succeedcallif OK& code(p) = call(G)& is user defined(G)thenlet p1 = procdef(act,cs,prog)if code(p1) = failthen backtrackelse p := p1ct := bcp := p+
unifyif OK& code(p) = unify(H)thenif solvable(cs [ fact := rename(H,vi)g)then cs := cs [ fact := rename(H,vi)gvi := vi + 1succeedelse backtracktrue/fail/cutif OK& code(p) = call(BIP)& BIP =true | fail | cutthensucceed | backtrack | b := ct'(e)| | succeed add constraintif OK& code(p) = add constraint(P)thenif solvable(cs [ rename(P,vi))then cs := cs [ rename(P,vi)succeedelse backtracktry me else/tryif OK& code(p) =try me else(N) | try(L)thenPUSH STATE temp INstore state in(temp)p(temp) := N | p(temp) := p+p:= p+ | p := LENDPUSH trust me/trustif OK& code(p) =trust me | trust(L)thenfetch state from(b)POP STATEp:= p+ | p := L
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retry me else/retryif OK& code(p) =retry me else(N) | retry(L)thenfetch state from(b)p(b) := N | p(b) := p+p:= p+ | p := L proceedif OK& code(p) = proceed& code(cp)= proceed | 6= proceedthenstop := 1 | p := cpswitch on structureif OK& code(p) = switch on structure(i,T)thenlet xi = arg(act,i)p := select(T,func(xi),arity(xi)) switch on termif OK& code(p) = switch on term(i,Lv,Ls)& let xi = arg(act,i)is var(xi) | is struct(xi)thenp := Lv | p := LsAbbreviations:succeed � p := p + 1OK � stop = 0 backtrack � if b = nilthen stop := -1else p := p(b)PUSH STATE temp IN updates ENDPUSH� EXTEND STATE BY temp WITHb := tempb(temp) := btemp- := tos(b,e)updatesENDEXTEND PUSH ENV temp IN updates ENDPUSH� EXTEND ENV BY temp WITHe := tempce(temp) := etemp- := tos(b,e)updatesENDEXTENDPOP STATE � b := b(b) POP ENV � e := ce(e)fetch state from(b) � cs := cs(b)cp := cp(b)e := e(b) store state in(temp) � cs(temp) := cscp(temp) := cpe(temp) := e
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B Transition rules for the PAM with abstract type termsof Part IB.1 Low level uni�cation Unify-1 (success)if OK & what to do = Unify& pdl = nilthenwhat to do := Run Unify-2 (Unify-Var-Any)if UNIF& unbound(dl) | NOT(unbound(dl))| & unbound(dr))thenbind(dl,dr) | bind(dr,dl)pdl := pdl-- Unify-3 (Unify-Struc-Struc)if UNIF& NOT( unbound(dl) or unbound(dr) )& val(ref(dl)) = val(ref(dr))thenFORALL i = 1,...,arity(val(ref(dl))) DOref'(pdl+2*arity(val(ref(dl)))-2*i) := ref(dl)+iref'(pdl+2*arity(val(ref(dl)))-2*i-1) := ref(dr)+iENDFORALLpdl := pdl+2*arity(val(ref(dl)))-2 Unify-4 (Unify-Struc-Struc)if UNIF& NOT( unbound(dl) or unbound(dr) )& NOT( val(ref(dl)) = val(ref(dr)) )thenbacktrackwhat to do := RunAbbreviations:dr � deref(right)dl � deref(left)UNIF � OK & what to do = UnifyRUN � OK & what to do = Run 53



B.2 Putting and Getting CodeThe code for putting (resp. getting) instructions corresponding to a body goal (resp. the clausehead) is de�ned using the term normal form of �rst order logic. Its two froms nfs (resp. nfa)correspond to the synthesis (resp. analysis) of terms:nf(Xi=Yn) = [Xi=Yn]nf(Yi=Yn) = [ ]nfs(Xi=f(s1,: : :,sm)) = flatten([nfs(Z1=s1),: : :,nfs(Zm=sm), Xi=f(Z1,: : :,Zm)])nfa(Xi=f(s1,: : :,sm)) = flatten([Xi=f(Z1,: : :,Zm), nfa(Z1=s1),: : :,nfa(Zm=sm)])The function put instr (resp. get instr) of a normalized equation is de�ned by the followingtable, where j stands for an arbitrary `top level' index (corresponding to the input Xi=t for termnormalization) and k for a `non top level' index (corresponding to an auxiliary variable introducedby normalization itself):Xj=Yn ! [xxx value(yn,xj]Xk=Yn ! [unify value(yn)]Xi=f(Z1,: : :,Za) ! [xxx structure(entry(f,a),xi), unifyxxx(z1),: : :,unifyxxx(za)]where xxx stands for put (resp. get), yi 2 DATAAREA, xi 2 AREGS, and withunifyxxx(zi) = 8>><>>: unify value(Yn) if Zi = Yn and xxx = putunify value(Xk) if Zi = Xk and xxx = putunify value(yn) if Zi = Yn and xxx = getunify variable(Xk) if Zi = Xk and xxx = getThe function put code (resp. get code) is de�ned by 
attening the result of mapping put instr(resp. get instr) along nfa(Xi=t) (resp. nfs(Xi=t)). The function put seq (resp. get seq) spec-i�es how a body goal (resp. clause head) of the form g(s1,: : :,sm) is compiled:xxx seq(g(s1,: : :,sm)) = flatten([xxx code(X1=s1),: : :,xxx code(Xm=sm)])with `top level' j = 1,: : :,m.Additionally, for the HEAP VARIABLES LEMMA and the proof of the \Pure PROTOS-Ltheorem" in 4 we assume that the put code and get code functions generate unify local valueinstead of unify value for all occurrences of local variables, and thatcall seq(g(s1,: : :,sk)) = flatten([put seq(g(s1,: : :,sk)),call(g,k,r)])with fY1,: : : ,Yrg being all variables occurring in the clause.Additional compiler assumptions are given in Section 5 for the optimizations introduced there(environment trimming, LCO, variable initialization \on the 
y", etc.).
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B.3 Putting of terms put valueif RUN& code(p) = put value(l,xj)thenxj  lsucceed Put-Unsafe-Valueif RUN& code(p) = put unsafe value(yn,xj)& deref(yn) � e | deref(yn) > ethenxj  deref(yn) | mk heap var(deref(yn))| xj  <REF,h>succeed
put structureif RUN& code(p) = put structure(f,xi)thenh  <STRUC,h+>xi  <STRUC,h+>val(h+) := fh := h++mode := writesucceed\On the 
y" initialization (Sec. 5.2):Put-1 (X variable)if RUN& code(p) = put variable(xi,xj,tt)thenmk unbound(h,tt)xi  <REF,h>xj  <REF,h>succeed Put-2 (Y variable)if RUN& code(p) = put variable(yn,xj,tt)thenmk unbound(yn,tt)xj  <REF,yn>succeedB.4 Getting of terms get valueif RUN& code(p) = get value(l,xj)thenunify(l,xj)succeed Get-Structure-1if RUN& code(p) = get structure(f,xi)& tag(deref(xi)) = STRUC& val(ref(deref(xi))) = f | val(ref(deref(xi))) 6= fthennextarg := ref(deref(xi))+ | backtrackmode := Read |succeed | 55



Get-Structure-2if RUN& code(p) = get structure(f,xi)& unbound(deref(xi))& can propagate(f,ref(deref(xi)))= true | = false& trivially propagates(f,ref(deref(xi))) |= true | = false |thenh  <STRUC,h+> | backtrackbind(deref(xi),h) |val(h+) := f |h := h++ |mode := Write | nextarg := h++ || mk unbounds(h+,propagate list(f,ref(deref(xi))) || mode := Read |succeed |\On the 
y" initialization (Sec. 5.2): get variableif RUN& code(p) = get variable(l,xj,tt)thenmk unbound(l,tt)bind(l,xj)succeedB.5 Unify instructions Unify Variableif RUN& code(p) = unify variable(l)& mode = Read | mode = Writethenmk unbound(l) | mk unbound(h)bind(l,nextarg) | l  <REF,h>nextarg := nextarg+| h := h+succeed Unify Valueif RUN& code(p) = unify value(l)& mode = Read | mode = Writethenunify(l,nextarg) | h  lnextarg := nextarg+| h := h+succeed 56



Unify Local Valueif RUN& code(p) = unify local value(l)& mode = Read | mode = Write| & NOT(local(deref(l))) | local(deref(l))thenunify(l,nextarg) | h  deref(l) | mk heap var(deref(l))nextarg := nextarg+| h := h+ |succeed\On the 
y" initialization (Sec. 5.2): unify variableif RUN& code(p) = unify variable(l,tt)& mode = Read | mode = Writethenmk unbound(l,tt) | mk unbound(h,tt)bind(l,nextarg) | l  <REF,h>nextarg := nextarg+| h := h+succeedB.6 Environment and Choicepoint RepresentationThe entries of the environment frame are stored in STACK at �xed o�sets from the environmentpointer e (ignoring cut points at this stage, but see 5.3). In particular, the environment alsocontains the variables y1,: : :,yn where n is the second parameter of the last call being executed(which is accessible via cp-):ce(l) � l + 1cp'(l) � l + 2yi � e + 2 + i ( 1 � i � stack offset(cp) )yi(l) � l + 2 + i ( 1 � i � stack offset(val(cp'(l))) )stack offset(l) � n if code(l-) = call(g,a,n)tos(b,e) � if b � ethen e + 2 + stack offset(cp)else bSimilarly, the choicepoint information is stored in STACK at �xed o�sets from the backtrackingpointer b. The choicpoint also contains the argument registers x1,: : :,xi of the current goal:h(l) � ltr(l) � l - 1p(l) � l - 2b(l) � l - 3cp(l) � l - 4e(l) � l - 5xi � l - 5 - ihb(l) � val(h(b)) 57



B.7 Indexing and Switchingtry me else/tryif RUN& code(p) =try me else(N,n)| try(L,n)thenLET new b = tos(b,e) + n + 6b := new bval(b(new b)) := bstore state in(new b,n)val(p(new b)) := N | val(p(new b)):= p+p:= p+ | p := Ltrust me else/trustif RUN& code(p) =trust me(n) | trust(L,n)thenfetch state from(b,n)b := val(b(b))p:= p+ | p := L
retry me else/retryif RUN& code(p) =retry me else(N,n) | retry(L,n)thenfetch state from(b,n)val(p(b)) := N | val(p(b)) := p+p:= p+ | p := Lswitch on termif RUN& code(p) = switch on term(i,Lv,Ls)& tag(deref(xi)) =VAR | = STRUCthenp := Lv | p := Lsswitch on structureif RUN& code(p) = switch on structure(i,T)thenp := select(T,val(ref(deref(xi))))Abbreviations:store state in(t,n) � FORALL i = 1,: : :,nval(xi(t) := xiENDFORALLval(e(t)) := eval(cp(t)) := cpval(tr(t)) := trval(h(t)) := h fetch state from(t,n) � FORALL i = 1,: : :,nxi := val(xi(t))ENDFORALLe := val(e(t))cp := val(cp(t))tr := val(tr(t))h := val(h(t))
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