
[To appear in: L. Sterling (ed): Proceedings of the Twelfth International Conference

on Logic Programming - ICLP’95, Tokyo, Japan. MIT Press, 1995.]

Type inferencing for polymorphic
order-sorted logic programs

Christoph Beierle

FernUniversität Hagen

Fachbereich Informatik

Bahnhofstr. 48

D-58084 Hagen, Germany

christoph.beierle@fernuni-hagen.de

Abstract

The purpose of this paper is to study the problem of complete type infer-
encing for polymorphic order-sorted logic programs. We show that previous
approaches are incomplete even if one does not employ the full power of the
used type systems. We present a complete type inferencing algorithm that
covers the polymorphic order-sorted types in PROTOS-L, a logic program-
ming language that allows for polymorphism as in ML and for hierarchically
structured monomorphic types.

1 Introduction

It has often been argued that the lack of types in logic programming is
a disadvantage from a software engineering point of view. There are now
many different approaches for introducing types in logic programming, for
an overview see [11]. In this paper we consider polymorphic types combined
with order-sorted types, i.e. types which are hierarchically ordered. Poly-
morphism for logic programming was first suggested in [10]; for extensions
of this approach to order-sorted types see [4], [6], [13], [8], [3].

In all of these approaches, a precondition for the well-definedness of the
semantics of a typed logic program is that the program is well-typed. Thus,
(static) type checking of programs is a precondition for the semantics to
work properly, and usually type checking comes with the type inferencing
done automatically to at least some degree. The purpose of this paper is
to study the problem of complete type inferencing for polymorphic order-
sorted logic programs. However, among the different approaches to type
inferencing in logic programming (e.g. [9, 15, 14, 13, 8]) there are only a
few dealing with type inferencing in an polymorphic order-sorted setting.
Of the cited work, only [13] and [8] explicitly address this topic. However,
there are problems with both approaches. As is already pointed out in
[12, 13] the type inferencing algorithm presented there is incomplete. We
will show in this paper that the type inferencing algorithm in [8] is also
incomplete. Moreover, both problems still remain even if we consider only
typed programs that do not exploit the full power of the respective typing

1

systems. Whereas TEL [12, 13] allows explicit subtype relationships between
polymorphic types having different arities (e.g. list(α) ≤ my type(α, β)), in
[8] subtype relationships between polymorphic type are allowed only between
type constructors of the same arity. The type system of PROTOS-L [3, 1] was
derived form TEL by disallowing any explicit subtype relationship between
polymorphic type constructors. The type inferencing algorithms of both
[12, 13] and [8] are also incomplete for the PROTOS-L type system.

The type inferencing algorithm we present here covers the type system
of PROTOS-L and can easily be extended to the type system of [8].

The paper is organized as follows: In the following section, we illus-
trate the special difficulties arising in type inferencing for polymorphic order-
sorted logic programs and show the problems with previous approaches. In
Section 3, polymorphic order-sorted types and the notion of well-typed pro-
grams are precisely defined as a basis for the type inferencing algorithm T I
presented in Section 4, while Section 5 contains the corresponding correct-
ness and completeness results.

2 Motivation and related work

The combination of order-sortedness and polymorphism causes some special
difficulties. Having already derived different types for different occurrences
of the same variable within a clause, the type inferencer must then “type-
unify” these different types in order to get a consistent typing for the clause.
If this involves the instantiation of a type variable there may be different
choices from hierarchically ordered types.

Example 1 As an example, consider the type hierarchy

a
aa

!
!

!!

negint

int

nat

and the usual polymorphic type constructors list(α) and pair(α, β).
From a polymorphic predicate declaration p : list(α) and the subgoals

... X = 1 ∧ p([X|L]) ...

we might derive the simultaneous type requirements

X:nat X:α L:list(α)

since 1:nat, and the type inferencer could (prematurely) instantiate α to
nat. However, for the extended subgoal sequence

... X = 1 ∧ p([X|L]) ∧ Y = -1 ∧ p([Y|L]) ...

this type substitution is not possible. The derived type requirements

X:nat X:α L:list(α) Y:negint Y:α

are not consistent with the type instantiation α = nat, whereas α could still
be instantiated to int. 2

2

Typed logic programming with polymorphically order-sorted types as stud-
ied in [13] provides the theoretical foundations for TEL [12]. Given decla-
rations for all predicates and functors, TEL’s type inferencing component
infers the types for the variables occurring in a clause. However, as already
pointed out in [13], it is incomplete in the sense that it may fail on a clause
involving polymorphic predicates although the clause could be well-typed,
or that it computes a variable typing that is not most general. Whereas
[13] gives examples where another ordering of the literals leads to a success-
ful typing, the following example shows that for no ordering of the literals
TEL’s type inferencing algorithm succeeds although there is a well-typing.

Example 2 Consider the types as in Example 1 and a predicate with dec-
laration

member3: negint × α × list(α) × β × list(β)

For the goal

member3(X,2,[X|L],2,[Y|M]) ∧ member3(Y,2,[X|L],2,[Y|M])

as well as for the rearranged goal

member3(Y,2,[X|L],2,[Y|M]) ∧ member3(X,2,[X|L],2,[Y|M])

TEL’s type inferencing algorithm fails to generate a variable typing. How-
ever, there is a most general variable typing

{X:negint, Y:negint, L:list(int), M:list(int)}

under which both goals are well-typed. 2

Another approach to type inferencing for polymorphic order-sorted types
is presented in [8]. Its central component is the “most general type uni-
fier” (mgtu) algorithm defined in Theorem 1.1.2 of [8], which is, however,
incomplete as the following example shows.

Example 3 Consider the type hierarchy as in Example 1 and a predicate
declaration q : pair(α,α). The subgoals

q(X) ∧ X = mk pair(1,-1)

imply the simultaneous type requirements

X:pair(α, α) X:pair(nat,negint)

Then applying the mgtu algorithm to the resulting set of types

S = {pair(α,α), pair(nat,negint)}

returns a failure although {α/int} is a most general type unifier for S. 2

Note that the mgtu algorithm of Theorem 1.1.2 is of central importance
for the further development in [8]. Thus, the situation might be repaired by
replacing the proof of Theorem 1.1.2 in [8] with a correct version of the mgtu
algorithm. Unfortunately, however, no such algorithm exists since there are
finite sets of unifiable types that do not have a “most general solution” in

3

the sense of [8]. This is in contrast to Lemma 1.1.10 of [8] which is falsified
by the following counter-example.

Example 4 Let the type hierarchy of Example 1 be extended to

hhhh (((

a
aa

!
!

!!

index expr

negint

int

nat

For the set of types S = {pair(α,α), pair(nat,negint)} generated by
the two type requirements of Example 3 there are 3 different type unifiers
({α/int}, {α/index}, {α/expr}), but none of them is a most general type
unifier (in the sense of [8]). 2

Since all of the examples above do not use use any subtype relationships
between polymorphic types, the type inferencing components of the cited
approaches are still incomplete w.r.t. type systems that do not support ex-
plicit subtype relationships between polymorphic types. In the following,
we will present a complete type inferencing algorithm for such polymorphic
order-sorted type systems which is thus applicable to PROTOS-L and which
can be extended to the type system of [8].

3 Typed logic programs

3.1 Types

A type alphabet T is a finite set of type symbols each of which comes with an
arity ≥ 0. Type symbols with arity 0 are called monomorphic, type symbols
with arity strictly greater than 0 are called polymorphic. Tmono (resp. Tpoly)
is the set of all monomorphic (resp. polymorphic) type symbols. Tmono

comes with a partial order ≤; we will assume that (Tmono,≤) has a greatest
lower bound glb(s1, s2) for any two elements s1 and s2 having a lower bound
at all (this ensures unitary unification; we will, however, do not deal with
unification in this paper). Thus, since Tmono is finite also the least upper
bound lub(s1, s2) exists provided s1 and s2 have an upper bound at all.

Vtype is a set of type variables. Type is the set of types which are exactly
the terms freely generated by the type symbols T over Vtype in the usual
way, i.e.

• every type variable α is a type

• every monomorphic type symbol s (also called type constant) is a type

• if η is a polymorphic type symbol with arity n ≥ 1 and τ1, . . . , τn are
types, then η(τ1, . . . , τn) is a type.

The partial order (Tmono,≤) is extended to a partial order (Type,≤) on the
set Type of all types as follows:

4

• for any type variable α we have α ≤ α

• for any types η(τ1, . . . , τn) and η(τ ′
1
, . . . , τ ′

n) with n ≥ 1 we have

η(τ1, . . . , τn) ≤ η(τ ′
1
, . . . , τ ′

n)

iff τi ≤ τ ′
i for any i ∈ {1, . . . , n}

Thus, α 6≤ β for any α 6= β and η(. . .) 6≤ η′(. . .) for any η 6= η′.
Since types are defined as terms, we can define a type substitution as an

ordinary substitution on terms, i.e. as a morphism

ϑ : Type → Type

on the set of all type terms whose restriction to the set of type variables is
the identity almost everywhere. We will represent type substitutions by

ϑ = {α1

.
= τ1, . . . , αn

.
= τn}

where {α1, . . . , αm} is the domain of ϑ.
Notation: In the rest of this paper we assume a fixed, but arbitrary

type alphabet. We will use the following (possibly subscripted and dashed)
symbols for denoting elements taken from the respective sets:

s monomorphic type symbol
η polymorphic type symbol
ξ monomorphic or polymorphic type symbol
τ type from Type
α, β type variable
ϑ, ρ, σ type substitution

3.2 Polymorphic order-sorted signature

A polymorphic order-sorted signature (over the set Type of types) is a pair
(Func, Pred) with:

• Func is a set of function declarations of the form

f : τ1 × . . . × τn → τ0

with τi ∈ Type, n ≥ 0; τo is of the form ξ(α1, . . . , αm) with m ≥ 0 and
pairwise distinct variables αj , and for any i ∈ {1, . . . , n} all variables
of τi are contained in {α1, . . . , αm}.

• Pred is a set of predicate declarations of the form

p : τ1 × . . . × τn

with τi ∈ Type , for i ∈ {1, . . . , n}.

Since we do not consider overloading we require that Func and Pred
contain exactly one declaration for every function resp. predicate symbol.
Moreover, in order to avoid the “empty set” problem [5] we assume that for
any type there is a ground term of that type.

5

Let Var be an infinite set of variables. When considering from the type
declaration of function and predicate symbols just their number of argu-
ments, (untyped) first-order terms, literals, and formulas are freely generated
by Func and Pred over Var in the usual way.

3.3 Well-typed Logic Programs

A (type) prefix P (or a variable typing) is a finite set of the form

P = {x1 : τ1, . . . , xn : τn}

with pairwise distinct variables xi. The set dom(P) = {x1, . . . , xn} is called
the domain of P . For a type substitution ϑ we let ϑ(P) denote the prefix

{x1 : ϑ(τ1), . . . , xn : ϑ(τn)}.

In the following, we use the notation:

P type prefix
x variable from Var
t first order term built in the usual way over Func and Var

A well-typed term of type τ w.r.t. a type prefix P is defined by:

1. If x : τ is in P , then x is a well-typed term of type τ w.r.t. P .

2. If f : τ1× . . .×τn → τo is the declaration for f , σ is a type substitution,
ti is a well-typed term of type τ ′

i ≤ σ(τi) w.r.t. P for i ∈ {1, . . . , n},
then f(t1, . . . , tn) is a well-typed term of type τ w.r.t. P for τ = σ(τo).

Likewise, we define well-typed clauses w.r.t. a prefix P :

1. If p : τ1 × . . .× τn is the declaration for p, σ is a type substitution, ti is
a well-typed term of type τ ′

i ≤ σ(τi) w.r.t. P for i ∈ {1, . . . , n}, then
p(t1, . . . , tn) is a well-typed atomic formula w.r.t. P .

2. If F, F1, . . . , Fn are well-typed atomic formulas w.r.t. P then

F ← F1 ∧ . . . ∧ Fn.

is a well-typed clause w.r.t. P .

As usual, a logic program Prog is a set of clauses. Prog is well-typed if each
of its clauses is well-typed, and a clause is well-typed if it is well-typed w.r.t.
some prefix. 1

The problem of type inferencing for logic programs can thus be stated
precisely as follows:

1Note that this notion of well-typedness does not ensure the head-condition (the head
of a clause must belong to a type that is a variant - rather than an instance - of the head
predicate’s declaration). However, only some of the approaches to polymorphic order-
sorted logic programming require the head condition (e.g. [10], [13], [8]), but not all of
them (e.g. [7]). Once one has established a (most general) well-typing for a clause it is
easy to check whether the head condition is satisfied.

6

• Given a program Prog decide whether Prog is well-typed, i.e. for any
of its clauses Cl find a prefix P such that Cl is well-typed w.r.t. P.

As argued in Section 2, there are clauses that do not have a most general
well-typing in the sense that any other well-typing can be obtained from
it by further instantiation. Therefore, the type inferencing algorithm T I
presented in the next section produces a (representation of a) set of well-
typings. T I is correct and complete in the following sense: It identifies
exactly all clauses that can not be well-typed, and for any well-typing prefix
P for a clause Cl it derives a well-typing prefix P ′ such that P ′ is more
general than P , i.e. there is a type substitution ρ such that ρ(P ′) = P .

4 Type inferencing

Given a clause

Cl = Lo ← L1 ∧ . . . ∧ Ln

we must find a prefix P such that for any i = {0, . . . , n}, Li is a well-typed
atomic formula w.r.t. P . The type inferencing procedure T I to be presented
in this section will use the following notion of type constraint.

Definition 5 (type constraint) A type constraint is one of the following:
a subtype constraint: τ ≤ı τ ′

a monomorphic set constraint: α :: M
where M ⊆ Tmono. A subtype constraint is called basic if it is of the form
α ≤ı s, s ≤ı α, or α ≤ı β. A type substitution ϑ satisfies the type constraint

τ ≤ı τ ′ if ϑ(τ) ≤ ϑ(τ ′)
α :: M if ϑ(α) ∈ M

2

With this definition, the type inferencing procedure T I consists of the
following 5 steps:

1. Transform Cl into a set R of type constraints.

2. From R infer a set R′ of basic type constraints and a corresponding
type substitution ϑ.

3. Split R′ into polymorphic and monomorphic type constraints, yielding
Rpoly and Rmono.

4. Solve Rpoly by extending ϑ, yielding ϑ′.

5. Solve Rmono by

5.1 constraint propagation, yielding R′
mono,

5.2 choosing solutions for R′
mono by extending ϑ′, yielding ϑ′′.

If these steps are carried out successfully, Cl is well-typed w.r.t. the prefix

7

(1)
p(t1, . . . , tn) & M,R

t1 : τ & . . . & tn : τn & M,R

if p : τ1 × . . .× τn is a variant
of the declaration of p

(2)
f(t1, . . . , tn) : τ & M,R

t1 : τ1 & . . . & tn : τn & M, τo ≤ı τ & R

if f : τ1 × . . . × τn → τo is a
variant of the declaration of f

(3)
x : τ & M,R

M,αx ≤ı τ & R
where αx is a unique type
variable associated to x

Figure 1: Computing type constraints from terms and literals

P = {x : ϑ′′(αx) | x is a variable in Cl }

where αx is a unique type variable associated to x.
In the following five subsections, we will give precise definitions of these

five steps. Each step will be defined by a terminating set of transformation
rules that are applied exhaustively to the respective input configuration.

4.1 Computation of subtype constraints

In order to ease our notation we will use & as an associative, commu-
tative, and idempotent operator for sets. The pair (M, ∅) with M =
Lo & . . . & Ln is our starting configuration to which the transformation
rules of Figure 1 are applied.

Rule (1) introduces for every argument t of a literal a type membership
requirement of the form t:τ . The idea is that a prefix P satisfies such a
requirement if it renders t to be of a subtype of an instance of τ , i.e. if there
is ϑ and τ ′ with τ ′ ≤ı ϑ(τ) such that t is a well-typed term of type τ ′ w.r.t.
P . (c.f. the definition of well-typed atomic formula is Section 3.3).

These type membership requirements are decomposed by rule (2) into
type membership requirements for the subterms and a subtype constraint
for the type of the term according to the definition of well-typed term. Rule
(3) finally transforms the remaining type membership requirements for the
variables into corresponding subtype constraints where for every variable x
a unique associated type variable αx is introduced.

It is easy to show that the rules of Figure 1 terminate, thereby eliminating
M and yielding the pair

∅, R

where R is a set of subtype constraints.

4.2 Inferring basic subtype constraints

Input to our second set of transformation rules given in Figure 2 is the pair

8

(1)
α ≤ı α & R,ϑ

R, ϑ

(2)
τ1 ≤ı τ2 & τ2 ≤ı τ3 & R,ϑ

τ1 ≤ı τ2 & τ2 ≤ı τ3 & τ1 ≤ı τ3 & R,ϑ
if τ1 ≤ı τ3 6∈ R

(3)
α ≤ı τ & τ ≤ı α & R,ϑ

ρ(R), ρ ◦ ϑ

if α does not occur in τ and
where ρ is the type substitution
{α

.
= τ}

(4)
s1 ≤ı s2 & R,ϑ

R, ϑ
if s1 ≤ s2

(5)
s1 ≤ı α & s2 ≤ı α & R,ϑ

s ≤ı α & R,ϑ
if s = lub(s1, s2)

(6)
α ≤ı s1 & α ≤ı s2 & R,ϑ

α ≤ı s & R,ϑ
if s = glb(s1, s2)

(7)
η(τ1, . . . , τn) ≤ı η(τ ′

1
, . . . , τ ′

n) & R,ϑ

τ1 ≤ı τ ′
1

& . . . & τn ≤ı τ ′
n & R,ϑ

(8)
η(τ1, . . . , τn) ≤ı α & R,ϑ

τ1 ≤ı α1 & . . . & τn ≤ı αn & ρ(R), ρ ◦ ϑ

if α does not occur in τ1, . . . , τn

and where α1, . . . , αn are new,
pairwise distinct variables and ρ
is the type substitution {α

.
=

η(α1, . . . , αn)}

(9)
α ≤ı η(τ1, . . . , τn) & R,ϑ

α1 ≤ı τ1 & . . . & αn ≤ı τn & ρ(R), ρ ◦ ϑ

if α does not occur in τ1, . . . , τn

and where α1, . . . , αn are new,
pairwise distinct variables and ρ
is the type substitution {α

.
=

η(α1, . . . , αn)}

Figure 2: Transformation and simplification of type requirements

R, id

with id denoting the identity type substitution.
Rule (1) eliminates trivial constraints. Rule (2) computes the transitive

closure of ≤ı . Rule (3) exploits the fact that ≤ı obviously is antisymmetric
w.r.t. to any solution. Rule (4) eliminates subtype constraints between
monomorphic types that hold trivially. Rule (5) and (6) replace a common
monomorphic upper bounds (resp. lower bound) by the least upper bound
(resp. greatest lower bound). Rule (7) decomposes a subtype constraint
between complex types. Rules (8) and (9) replace a subtype constraint

9

between a type variable α and a complex type τ by an instantiation α and
a set of simplified subtype constraints involving the arguments of τ .

Let the pair

R′, ϑ

be the result of applying the rules (1) - (9) exhaustively to (R, id). A failure
condition in R′ is:

s1 ≤ı s2 if s1 6≤ s2

s1 ≤ı α & s2 ≤ı α if lub(s1, s2) does not exist
α ≤ı s1 & α ≤ı s2 if glb(s1, s2) doest not exist
η(τ1, . . . , τn) ≤ı η′(τ ′

1
, . . . , τ ′

m) if η 6= η′

η(τ1, . . . , τn) ≤ı α if α occurs in τ1, . . . , τn

α ≤ı η(τ1, . . . , τn) if α occurs in τ1, . . . , τn

Proposition 6 If R′ contains a failure condition, then there is no prefix P
such that Cl is well-typed w.r.t. P . If R′ does not contain any of the above
conditions, then R′ contains only basic type constraints and is said to be in
solved form. 2

4.3 Distinguishing polymorphic and monomorphic con-

straints

From the basic subtype constraints in R′ we can now easily determine which
type variables must be instantiated to a monomorphic type constant. This
is obviously the case for α ≤ı s or s ≤ı α, but also for every α′ with a (direct
or indirect) subtype constraint w.r.t. α. Thus, we split R′ into two dispoint
subsets Rmono and Rpoly:

• Rmono is the smallest subset of R′ with

α ≤ı s ∈ Rmono if α ≤ı s ∈ R′

s ≤ı α ∈ Rmono if s ≤ı α ∈ R′

α ≤ı α′ ∈ Rmono if α ≤ı α′ ∈ R′ and
α or α′ occurs in Rmono

• Rpoly := R′\Rmono

Proposition 7 Any well-typing for Cl must instantiate every variable oc-
curring in Rmono to a monomorphic type constant, whereas any variable
occurring in Rpoly may remain a type variable. 2

4.4 Solving polymorphic subtype constraints

We can sharpen the previous proposition with regard to the variables in
Rpoly. In fact, in any well-typing that is “most general” (in the sense that
as few as possible type variables are instantiated to type terms that are as

10

(1)
α ≤ı β & Rpoly, ϑ

ρ(Rpoly), ρ ◦ ϑ

where ρ is the type
substitution {α

.
= β}

(2)
α ≤ı α & Rpoly, ϑ

Rpoly, ϑ

Figure 3: Solving polymorphic type constraints

“small as possible”, see Section 5) every variable α in Rpoly will indeed remain
a variable, only identified with another type variable β if there is a subtype
relationship between α and β in Rpoly. Thus, the subtype requirements in
Rpoly are solved by applying the rules of Figure 3 to the pair

(Rpoly, ϑ)

Since Rpoly contains only basic type constraints between type variables we
can prove that this will always resolve all elements in Rpoly, leading to a pair
(∅, ϑ′).

4.5 Solving monomorphic subtype constraints

We are now left with the pair (Rmono, ϑ
′) where for each variable in Rmono

a monomorphic type constant from Tmono must be found such that the con-
straints in Rmono are satisfied. This process is carried out in two steps. First
the monomorphic set constraints in Rmono are propagated to all variables
as far as possible (4.5.1). Whereas so far all steps have been carried out
deterministically, the final step nondeterministically chooses monomorphic
type instantiations from the remaining possibilities (4.5.2).

4.5.1 Propagating monomorphic set constraints

For any variable α in Rmono we can safely add the initialization constraint
α :: Tmono. Therefore, the rules of Figure 4 are applied to

Rmono ∪ {α :: Tmono | α occurs in Rmono} (*)

Rules (1) and (2) evaluate a subtype restriction between a type variable
and a monomorphic constant. Two monomorphic set constraints for the
same type variable can be simplified to a single one by taking the respective
intersection (rule (3)). Rule (4) allows to sharpen the monomorphic set
constraints of two variables that must be instantiated to subtypes of each
other: If α ≤ı α′ then the set M of possible type constants for α can be
restricted to those elements for which there is some supertype in the set M ′

of possible type constants for α′. More formally, the set descriptions used in
rule (4) are defined by

11

(1)
α ≤ı s & R

α :: {s′ ∈ Tmono | s′ ≤ s} & R

(2)
s ≤ı α & R

α :: {s′ ∈ Tmono | s ≤ s′} & R

(3)
α :: M & α :: M ′ & R

α :: (M ∩ M ′) & R

(4)
α :: M & α′ :: M ′ & α ≤ı α′ & R

α :: M|≤M ′ & α′ :: M ′
|≥M

& α ≤ı α′ & R

if M 6= M|≤M ′ or
M ′ 6= M ′

|≥M

Figure 4: Propagating monomorphic set constraints

M|≤M ′ := {s ∈ M | ∃s′ ∈ M ′.s ≤ s′}
M|≥M ′ := {s ∈ M | ∃s′ ∈ M ′.s ≥ s′}

Let R′
mono be the result of applying these rules exhaustively to (*). A failure

condition in R′
mono is of the form

α :: ∅

since there is no possible instantiation for α.

Proposition 8 If R′
mono contains a failure condition, then there is no prefix

P such that Cl is well-typed w.r.t. P . 2

Therefore, for the last step let us assume that R′
mono does not contain a

failure condition.

4.5.2 Choosing monomorphic types

We have now obtained the pair (R′
mono, ϑ

′) where R′
mono contains a

monomorphic set restriction α :: M for every variable α occurring in it, to-
gether with subtype constraints of the form α1 ≤ı α2. This pair (R′

mono, ϑ
′)

represents a set of solutions to our type inferencing problem: Instantiating
any such α by an element of its associated set M such that the subtype
constraints are satisfied yields a well-typing prefix for Cl. Moreover, this
pair is a minimal representation of all (most general) well-typings of Cl in
the following sense: For any such α :: M we can select any s ∈ M and still
yield a well-typing under this selection.

Therefore, whereas all previous steps of T I were carried out deterministi-
cally, the final inferencing step non-deterministically chooses a type variable
together with a possible monomorphic type constant by applying the rule of
Figure 5 successively to the pair

12

(1)
α :: {s1, . . . , sn} & Rmono, ϑ

R′
mono, ρ ◦ ϑ

where ρ is the type substitution {α
.
= s},

s is any of monomorphic types s1, . . . , sn,
and R′

mono results from ρ(Rmono) by ex-
haustively applying the rules of Figure 4

Figure 5: Choosing monomorphic type instantiations

R′
mono, ϑ

′

Exhaustively applying the propagation rules of Figure 4 after each selection
ensure that no failure condition will be generated.

Proposition 9 During the propagation of constraints initiated by the selec-
tion rule in Figure 5 no failure condition of the form α :: ∅ will be generated.
2

Thus, applying the selection rule terminates with a pair (∅, ϑ′′). ϑ′′ is said to
be a type substitution generated by the type inferencing algorithm T I, and

Pϑ′′ := {x : ϑ′′(αx) | x is a variable in Cl }

is a prefix inferred by T I.

Example 10 For the goal in Example 2, T I infers the type prefix

{X:negint, Y:negint, L:list(int), M:list(int)}

2

Example 11 Consider the situation of Example 4. After execution of step
5.1 in T I the set R′

mono contains

α :: {int, index, expr}

and thus each of {X:int}, {X:index}, and {X:expr} is a prefix inferred by
T I. 2

5 Correctness and completeness of type inferenc-

ing

We will now precisely state our correctness and completeness results for the
type inferencing procedure T I. Due to lack of space the complete proofs
can not be given here, but are given in the full version of this paper [2]. The
proofs use the propositions given in the previous section; the termination
proof is by induction on the involved terms.

We assume the notation of the previous section; in particular for
Cl, R, R′, Rpoly, Rmono, ϑ, ϑ′ and ϑ′′.

Theorem 12 (Correctness of successful derivations) If no failure
condition occurs, then Cl is well-typed w.r.t. to the prefix Pϑ′′.

13

Theorem 13 (Correctness of derivation failures) If a failure condi-
tion occurs, then there is no prefix P such that Cl is well-typed w.r.t. P .

Theorem 14 (Termination/Completeness of type inferencing)
The type inferencing algorithm always terminates, i.e. each of the steps 1
to 5 terminates if all preceding steps have been carried out successfully.

The three theorems above imply the correctness and completeness of
T I. However, we can even prove a stronger completeness result. The com-
pleteness result above says that whenever there is a well-typing prefix P
then T I will derive a type substitution and thus some well-typing prefix P ′.
The strong completeness of T I ensures that for any such P T I derives a
well-typing prefix P ′ such that P ′ is more general than P .

Theorem 15 (strong completeness) If there is a prefix P such that Cl
is well-typed w.r.t. P then T I derives a type substitution ϑP such that Cl is
well-typed w.r.t. PϑP

and there is a type substitution ρ such that ρ(PϑP
) = P .

6 Conclusions and further work

In this paper we have studied automatic type inferencing for polymorphic
order-sorted logic programs. After pointing out the difficulties with previous
approaches we have presented a complete type inferencing algorithm for this
problem. Whereas we addressed the correctness and completeness issues,
we did not deal with efficiency or complexity matters in this paper. For
instance, in an implementation of T I one would look for an efficient repre-
sentation of the monomorphic set constraints α :: M . An obvious choice for
the representation of M would be the representation by its lower and upper
bounds. Another aspect not yet studied in this paper that needs further
investigation is the relationship of our approach to the work on polymorphic
type inference done for functional programming languages.

Acknowledgements

I would like to thank Gregor Meyer for his comments on previous versions
of this paper as well as the anonymous referees for their valuable hints.

References

[1] C. Beierle. Concepts, implementation, and applications of a typed logic
programming language. In C. Beierle and L. Plümer, editors, Logic
Programming: Formal Methods and Practical Applications, Studies in
Computer Science and Artificial Intelligence, chapter 5, pages 139–167.
Elsevier Science B.V./North-Holland, Amsterdam, Holland, 1995.

14

[2] C. Beierle. Type inferencing for logic programming with polymorphic
order-sorted types. Informatik-Bericht, FB Informatik, FernUniversität
Hagen, 1995. (to appear).

[3] C. Beierle and G. Meyer. Run-time type computations in the War-
ren Abstract Machine. Journal of Logic Programming, 18(2):123–148,
February 1994.

[4] R. Dietrich and F. Hagl. A polymorphic type system with subtypes for
Prolog. In Proceedings of the 2nd European Symposium on Program-
ming, Lecture Notes in Computer Science, pages 79–93, Berlin, 1988.
Springer-Verlag.

[5] J.A. Goguen and J. Meseguer. Remarks on Remarks on Many-Sorted
Equational Logic. In Bulletin of the EATCS , number 30, 1986.

[6] M. Hanus. Horn clause programs with polymorphic types: Semantics
and resolution. In Proceedings TAPSOFT’89. Springer-Verlag, 1989.

[7] M. Hanus. Logic programming with type specifications. In F. Pfenning,
editor, Types in Logic Programming. MIT Press, 1992.

[8] P. M. Hill and R. W. Topor. A semantics for typed logic programs. In
F. Pfenning, editor, Types in Logic Programming. MIT Press, 1992.

[9] P. Mishra. Towards a theory of types in Prolog. In Proceedings of the
1984 Symposium on Logic Programming, pages 289–298, Atlantic City,
New Jersey, 1984.

[10] A. Mycroft and R. A. O’Keefe. A polymorphic type system for Prolog.
Artificial Intelligence, 23:295–307, 1984.

[11] F. Pfenning. Types in Logic Programming. MIT Press, Cambridge, MA,
1992.

[12] G. Smolka. TEL (Version 0.9), Report and User Manual. SEKI-Report
SR 87-17, FB Informatik, Universität Kaiserslautern, 1988.

[13] G. Smolka. Logic Programming over Polymorphically Order-Sorted
Types. PhD thesis, FB Informatik, Univ. Kaiserslautern, 1989.

[14] J. Xu and D. S. Warren. A type inference system for Prolog. In K. A.
Bowen and R. A. Kowalski, editors, Proceedings of the Fifth Interna-
tional Conference and Symposium on Logic Programming, pages 604–
619, Seattle, Washington, August 1988. MIT PRESS.

[15] J. Zobel. Derivation of polymorphic types for Prolog programs. In
J.-L. Lassez, editor, Proceedings of the Fourth International Confer-
ence on Logic Programming, pages 817–838, Melbourne, May 1987. MIT
PRESS.

15

