
W. Karl, J. Keller (Eds.): PARS 2017
Proc. 27th PARS-Workshop

Minimizing Energy Cost in Task-Graph Execution on
Parallel Platforms

Rainer Gerhards1, Jörg Keller1

Abstract: We investigate minimization of energy cost for execution of statically scheduled task
graphs on parallel machines with frequency scaling and given deadlines, assuming that the power
profile of the processing elements and the energy price curve over time is known or can be predicted.
We present both a mixed integer linear program and a heuristic to solve this problem, using time
slots of fixed lengths and discrete frequency levels for both approaches and a fixed budget per time
slot for the heuristic. We evaluate the heuristic by comparison to cost-optimal schedules. For price
curves occurring in practice, and for deadlines not too close to the minimum makespan, the heuristic
produces about 15% more energy cost than the optimal solution.

Keywords: Static scheduling, Taskgraph, Energy Cost

1 Introduction

Task graphs are widely used as models for parallel programs [KA99], and static schedul-
ing of task graphs is used in applications ranging from high-performance computing to
real-time systems [MLK+11], e.g. to enable repeated execution of predictable workloads
in embedded systems. With the advent of frequency scaling, scheduling for energy effi-
ciency has been widely investigated. In particular, static scheduling of task graphs onto a
parallel platform with the goal to meet a deadline and minimize the energy for execution
has been investigated with both optimal and heuristic solutions [EK17]. The availability
of renewable energy, e.g. solar energy, at certain times has shifted this target, as the cost
of solar energy is often considered negligible compared to the cost of brown energy (non-
renewable sources) [GLH+11], and storing energy is costly both in terms of machinery
and loss of energy [WLLMR14]. Moreover, the price for brown energy is not necessarily
fixed: large scale consumers like large computing centres might choose a tariff with their
provider that varies over the day [CGK10]. This also influences scheduling decisions if we
consider a computing grid with resources in different time zones. These developments call
for scheduling strategies that optimize energy cost while meeting a certain deadline.

A number of works have investigated this field, but they do not work with task graphs,
sometimes focus on trading solar and brown energy, sometimes on predicting energy price,
and sometimes focus solely on heuristic solutions like follow-the-sun (exploit as much
solar energy as possible) or follow-the-moon (exploit as much cheap brown energy at
night time as possible).

1 FernUniversität in Hagen, Faculty of Mathematics and Computer Science, 58084 Hagen, Germany,
firstname.lastname@fernuni-hagen.de

We try to take a broader view and consider the following scenario: we assume that we
know the price per energy unit and time slot2 from now until the deadline, and we know the
power and performance characteristic of each processing element (PE) in the computing
platform used. We provide a mixed integer linear program (mILP) that schedules the task
graph onto the machine such that the deadline is met and and the energy cost is minimized.
Additionally, we provide a heuristic for determining the start times of tasks and scaling the
task execution frequencies per time slot, given a mapping and ordering of the tasks onto
PEs. We evaluate the heuristic by comparing simulated runtimes (and energy cost) with
optimal mILP solutions for small task graph instances from a benchmark suite [HS04].

The remainder of this article is structured as follows. In Section 2, we discuss related
work. In Section 3, we detail our computational model. In Section 4, we present the mixed
integer linear program and the heuristic. Section 5 presents our experiments and discusses
the results. In Section 6, we conclude and give an outlook to future work.

2 Related Work

We schedule static tasks graphs on homogeneous3 multi-PE systems as they model a mul-
titude of parallel applications with known structure and behavior. A static task graph is a
directed acyclic graph where the nodes represent tasks to be executed and edges represent
precedence constraints between tasks. Nodes are annotated with the expected task execu-
tion time. Edges are annotated with communication costs. A homogeneous multi-PE sys-
tem consists of multiple processing elements (PE) offering equal capabilities. A schedule
is a mapping of tasks to PEs. It is feasible iff task executions on a PE never overlap, and if
it respects precedence constraints including communication costs. Communications costs
need to be applied iff predecessor and successor task run on different PEs. The makespan
of the schedule is the finish time of the last task(s) inside the task graph. The classic
problem that assumes fixed-speed PEs is to minimize makespan, formally classified as
Pm|prec|Cmax in [GLLK79].

Modern PEs support dynamic frequency scaling from a discrete set of frequencies. With
increasing frequency, processable workload grows linearly, but power consumption grows
super-linearly. Literature often assumes that the power function grows quadratic [EK17]
or cubic [PvSU08]. So it is more energy-efficient to execute the same workload at a lower
frequency for a longer period of time. This has been studied intensely. Pruhs et al have
shown that minimum energy is consumed if running all PEs at the lowest frequency meet-
ing deadline requirements [PvSU08] (“constant power schedule”). Dorronsoro et al pro-
pose a two-layer scheduler for large-scale environments where the detail level includes
semi-dynamic decisions [DNT+14]. Eitschberger et al also propose a dynamic compo-
nent, this time used to handle faults during processing flow [EK17]. Most importantly,
they also present an mILP for optimal energy-efficient frequency scaling for static task

2 We consider a local platform for simplification, but our findings can be generalized to scenarios where the price
also depends on the place of a processing element.

3 Our methods can also be applied to heterogeneous systems, but we wanted to restrict the number of variables
to avoid interference between different effects.

graphs. There is little literature on energy cost, but a richer field of work on green data
center and optimization of renewable vs. brown energy. Prediction of renewable energy
plays an important rule. For example Giori et al include prediction processes into the ac-
tual scheduling algorithm [GLH+11]. Another idea is workload classification, usually into
time-critical and background work, which can be deferred, found for example in Lei et al
[LZL+15]. Most importantly, they work with pre-computed predictions, which is a model
we consider especially useful for static scheduling. Li et al propose a model where the
workload is opportunistically adapted to renewable energy availability [LOM17]. Even if
not explicitly spelled out, the core motivation of preferring green energy is a cost argu-
ment: either given as actual market price or CO2-emissions that shall be avoided. Green
energy depends on time of day, which is obvious for solar energy. The same holds true
for brown energy: for example Wierman et al [WLLMR14] describe “time of use”, “day
ahead” and “peak pricing” models (among others). A cost-aware scheduling model needs
to use discrete time to support these pricing models. This is common for dynamic, but not
for static schedulers. Also, these price models cannot be described by a continuous func-
tion. As such running a PE at a higher frequency during an inexpensive time period can
be less costly than running it at a low frequency during an expensive period. This turns
the static scheduling problem into a multi-goal optimization problem (makespan and cost
minimization). It also means that there is no simple guiding function to explore the solu-
tion space, in contrast to work purely focusing on minimization of energy. In our work, we
combine ideas from energy minimization with results from dynamic scheduling cost opti-
mization. We further assume that a sufficiently precise energy cost prediction is available.

3 Model

We use discrete time slots T = (t0, t1, . . .), where the duration t of all time slots ti is equal.
W.l.o.g. we use low time resolution. If finer resolution is required, one can always obtain
it by scaling both time slot duration and the rest of the model accordingly.

Let P be the set of available processing elements pi. All pi are homogeneous but can inde-
pendently be frequency-scaled. We assume a set of discrete frequencies F = (f0, . . . , fn)
with 1= f0 > f1 > .. .> fn−1 > fn = 0. Frequency 0 models a turned off PE. Let work(f)=
f · t be the units of work performed by a PE during one time slot when running at fre-
quency f . Let power(f) = f 2 be the power used when a PE is running at frequency f and
let energy(f) = power(f) · t be the energy consumed when running a PE at frequency f
for one time slot of length t. We assume a PE can be turned off and on with negligible
energy consumption and does not consume any energy while turned off. At any time ti, a
single frequency fi can be used. If needed, finer control of frequencies can be achieved by
increasing the time resolution. If a workload w < work(fk) is scheduled at frequency fk
at a time slot, then work(fk)−w processing capability remains unused. This loss can be
minimized by selecting the minimal frequency sufficient to perform w.

Let T = (D,J,C) be the task graph to be executed with deadline D, J = (j0, . . . , jn) the
individual task nodes, and C the set of edges (i, i′) representing precedence constraints:
task i must be completed before i′ can be started. Each task ji is attributed with its work-

load wi being expressed in number of time slots required to execute the task at execution
frequency 1. We ignore communication costs, so edges are not annotated with cost.

The energy price schedule R = (r0, . . . ,rm),m ≥ |T | specifies the energy price rate ri for
one unit of work performed at frequency 1, i.e. for one unit of energy, during time slot ti.
Prices are normalized to 1 = max(R). The energy cost of processing a task on a PE with
frequency f ∈ F during slot ti is energy(f) · ri. The energy cost of a task is the cost for
processing in all time slots that the task is active. The energy cost of a schedule is the sum
of its task costs.

Schedule Let S be a not necessarily optimal schedule for T , i.e. a mapping of tasks to
PEs that assigns each task a start time. In S all PEs are scheduled with maximum frequency
and makespan(S) ≤ D. Let ε be a permitted deadline extension. Deadline extensions are
supported in our model for jobs that have some flexibility in completion time, represented
by ε . This flexibility permits to gain cost savings. If the deadline is tight, scaling of tasks
is limited by the length of the critical path (CP) and free slack in non-CP tasks. Let D′ =
D · (1+ ε) be the maximum time permitted for execution. In the following, let i denote a
task ji, j denote a PE p j, k denote a frequency fk, and l denote a time slot tl .

For a schedule S of a job T = (D,J,C), let

xi, j,k,l =

{
1 if ji is executed on p j at frequency fk during time slot tl
0 otherwise

(1)

be a binary function that describes the mapping to the target system. Note that this is the
actual schedule. Let M = makespan(S) = max{l | (∃i, j,k)[xi, j,k,l = 1]}+1 be the makespan
of S (plus one because time slots start at index zero). Let D′ = bD(1+ ε)c be an extended
deadline for some ε . In the following, let l be restricted to 0 ≤ l < D′ (strict due to zero-
based indexing).

A schedule S for T is feasible iff M ≤ D′, all task precedence constraints are obeyed,
each task with a non-zero workload is mapped to one PE, a task ji mapped to a PE
p j must be executed sequentially and not be interrupted by another task or migrated to
another PE. Also, at any given time, one task is only mapped to one PE at one fre-
quency, one PE can only execute one task at one frequency, at least one PE must be
mapped (note that a turned-off PE is also mapped, but not performing actual work). Let
start(i) = min{l | (∃ j,k)[xi, j,k,l = 1]} be the first and stop(i) = max{l | (∃ j,k)[xi, j,k,l = 1]}
the last time slots in which ji is mapped. The actual workload performed up to and includ-
ing time tl is wactual(i, l) = ∑ j,k ∑

l
p=start(i)(xi, j,k,p ·work(k)). The total workload wtotal(i) =

wactual(i,stop(i)) can be slightly greater than wi because of unused processing time at the
end of the last time slot. Let wremain(i, l) = wi−wactual(i, l−1) be the workload remaining
to be done at the beginning of time slot tl . Then fsuff(i)=min{ fk | 0≤ k< |F |∧work(fk)≥
wremain(i,stop(i))} is the minimal sufficient frequency to complete task ji at tl = tstop(i). As
tl is the last time slot, remain(i, l) ≤ 1 because otherwise the work could not be com-
pleted in one time slot. As such fsuff(i) will always yield a valid frequency. Thus we have

Fig. 1: Effect of PE Static Power Consumption

loss(i) = work(fsuff(i))− remain(i,stop(i)) units of processing capacity lost by this map-
ping of S. As we have discrete frequencies, this loss is inevitable except when wi can be
expressed as a sum of products of the discrete frequencies, which is highly unlikely. With
these definitions, we can restrict the model to the minimum required workload per task via

wi ≤ wtotal(i)≤ wi + fsuff(i)≤ wi +1 (2)

The slightly relaxed upper bound wi + 1 may be used as approximation inside a mILP in
order to keep the model complexity reasonable.

Let ck,l = energy(fk) · rl be the cost of executing a task with frequency fk in time slot tl .
Then cost(S) = ∑i, j,k,l(xi, j,k,l · ck,l) is the total cost incurred for executing S.

Our goal is to create a feasible schedule S′ (either from scratch or by transforming a pre-
vious schedule S) with makespan(S′)≤ D and minimum cost.

PE Static Power Consumption While not extensively investigated in this work, we
would like to mention the effect of static power consumption on optimization. Let s be
the power consumed by a PE irrelevant of frequency. Then the frequency-related part of
power consumption needs to be considered as cubic [LSK14], resulting in power(f) =
s+(1− s) f 3, where s ∈ [0,1] and dynamic power is scaled by 1− s to normalize power
consumption in [0,1], and thus energy(f) = (s+(1−s) f 3) 1

f for a unit of workload. As can
be seen by differentiation, the energy function is still convex in f , but it is not continuously
increasing anymore over the frequency range. As can be seen in Fig. 1 the energy curve
decreases to a minimum and after that it increases. In regard to energy consumption, s
places a hard lower bound on f : for lower frequencies, we need to prolong the execution
by 1/ f . If we ignore dynamic power, power consumption for performing a single unit of
work becomes s/ f . As such, any frequency below s results in energy consumption larger
than one. A pure energy optimization problem thus is severely limited in frequency scaling
when a considerable part of PE total energy consumption is static. For example, at s = 0.5
the minimum frequency is approximately 0.825.

In cost-optimization, running at lower frequencies may still be useful. This can for exam-
ple be the case when the pricing schedule has an expensive time slot t1 followed by an

inexpensive t2 followed by an even more expensive t3. Here, it might be useful to run a
task at f = 1 during t2, but also run it at a frequency f < s during t1 if this is the only
method to avoid running at t3.

4 Cost-Optimal Scheduling and Heuristic

Integer Linear Program We present a mILP for computing a cost optimal schedule
according to the model description in Section 3. Let T = (D,J,C) be a task graph and let
D′ be an extended deadline. Let variables wi ∈R be the workload of task i and let variables
Wk ∈ R be the workload that can be processed at frequency k in one time slot. We need
|J| · |P| · |F | ·D′ binary decision variables xi, j,k,l to represent the mapping from Eq. 1. At
any time, task i must be mapped on a PE j with one frequency or not be mapped at all:
(1) ∀i, j, l : ∑k xi, j,k,l ≤ 1.
The mapping must be sufficient to execute the workload
(2) ∀i : ∑ j,k,l(xi, j,k,l ·Wk)≥ wi.
A PE must never have more than one task mapped at any time
(3) ∀ j, l : ∑i,k xi, j,k,l ≤ 1.

Let binary decision variable zi, j = 1 iff task i is mapped on PE j. If task i is mapped onto
PE j it must not be mapped onto any other PE at any frequency anytime:
(4) ∀i, j : ∀ j′ 6= j : ∑k,l xi, j′,k,l ≤ (1− zi, j) ·D′.
Further, it must be mapped to exactly one PE:
(5) ∀i : ∑ j zi, j = 1.
Let binary decision variable yi,l = 1 iff task i starts in time l. We need to ensure that each
task has only one start time:
(6) ∀i : ∑l yi,l = 1.
Further, task i must not be mapped onto a PE before its start time:
(7) ∀i, l : ∑ j,k ∑l′<l xi, j,k,l′ ≤ (∑l′′≤l yi,l′′) ·D′.
Similarly, let binary decision variable Yi,l = 1 iff task i stops at time l (this is the last time
slot in which it is executed). We need to ensure that each task has only one stop time:
(8) ∀i : ∑l Yi,l = 1.
Further, task i must not be mapped onto a PE after its stop time:
(9) ∀i, l : ∑ j,k ∑l′>l xi, j,k,l′ ≤ (∑l′′≥l Yi,l′′) ·D′.
With these definitions, the start time to task i is ∑l(l · yi,l) and the stop time is ∑l(l ·Yi,l).
We must ensure that a task starts before it ends:
(10) ∀i : 1+∑l(l · yi,l)≤ ∑l(l ·Yi,l).
Now we can define the remaining constraints for xi, j,k,l : If task i is mapped onto PE j, it
must continuously be mapped from start until end:
(11) ∑ j,k,l xi, j,k,l = 1+∑l(l ·Yi,l)−∑l(l · yi,l).
We need to enforce task precedence constraints by
(12) ∀(i, i′) ∈C : ∑l(l · yi′,l)−∑l(l ·Yi,l)> 0.
Note that the relationship must be strict because the stop time is the last time slot in which
i is mapped. We must also enforce 0 ≤ l ≤ D′, which then enforces that no start time is
lower than 0 or end time larger than D′.

From the model, let constants rl ∈ R ⊂ R be the energy price rate in time slot l, and let
constants Ek ∈R be the energy consumed in one time slot at frequency k. Our goal then is

mincost = ∑
i, j,k,l

(xi, j,k,l ·Ek · rl)

.

Heuristic The heuristics presented here use a pre-computed makespan-optimal schedule
S with all PEs running at maximum frequency, makespan M and permitted deadline ex-
tension ε ≥ 0 as basis and transforms it into a cost-minimized schedule S′ with deadline
D′ := M(1+ ε), makespan(S′) ≤ D′, PE frequencies scaled to minimize energy cost, but
PE assignments otherwise unaltered, and cost(S′) ≤ cost(S). A feasible solution always
exists: S is in the solution set and may be selected if no other feasible S′ can be obtained.

We use a common heuristic framework to conduct experiments with different algorithm
details. The framework uses the following variables:

1. B, overall cost budget for the schedule,
2. b represents overall cost budget under consideration,
3. bl represents remaining budget in time slot l,
4. rl represents energy price in time slot l,
5. xi, j,k,l represents the schedule (see equation 1),
6. D′ represents the extended deadline,
7. Jr ⊆ J tasks ready to run,
8. Jw ⊆ J tasks not yet ready to run because of precedence constraints.

An important detail problem is to ensure B is sufficiently large to create a feasible schedule
S′. Let Cm be the cost incurred by the makespan-optimal schedule S. In S, we have no
budget restrictions on each time slot. In particular, the budget per time slot can differ
greatly. Assume we enforce bl := Cm/D as maximum budget per time slot. In this case, we
may be unable to re-compute S, because it may require a budget larger than bl in some
time slots. This is even more the case if we use bl := Cm/D′, because the deadline extension
decreases budget per time slot. To avoid these kinds of problems, we heuristically use
B := σCm and choose a sufficiently large scale factor σ . In most of our experiments σ := 2
worked well. Choosing B too large may increase experiment runtime but will not affect
result optimality as we minimize cost and thus B.

The major steps in the framework are:

1. initialize all data structures
2. search the solution space

a) create mapping
i. pick task i ∈ Jr with earliest start time (based on S)

ii. assign i to the same PE it is assigned to in S

iii. scale frequencies kl , so that for all time slots l during execution of i,
power(kl) · rl ≤ bl holds

iv. adjust earliest start time of all tasks in Jw,Jr so that they reflect the new
stop time of i due to frequency scaling

v. for all tasks i′ ∈ Jw now ready to run: Jw := Jw \{i′},Jr := Jr ∪{i′}
vi. Jr := Jr \{i}

vii. continue until Jr = /0
b) evaluate mapping, continue until goal is reached

3. output the best solution

Note that the heuristic only scales frequencies but keeps the structure of original schedule
S. This is because we use the earliest start times (EST) of S and the same PE assignment.
We modify the EST of S only to adapt for the consistent execution time changes due to
frequency scaling. The PE assignment is only altered in respect to frequencies, something
not even considered in S. As such, the order of task execution and task-to-PE assignment
is kept unmodified.

Steps one and three of this algorithm are self-explanatory. They are identical for all exper-
iments. In step two, different methods are used:

The sweep search mode linearly explores the solution space in an exhaustive and stepwise
manner. It creates a number of equally-spread samples I of the solution space. It uses an
ordered set (b1,b2, . . . ,bI) := (B

I ,2
B
I , . . . , I

B
I) of individual candidate mappings. For each

b ∈ (bi) a candidate solution is computed and the best one selected as final solution. As
such, this mode offers a thorough evaluation of the solution space. Assuming a sufficiently
large I, it provides good solutions also for very rough search landscapes. It requires O(I)
runtime. This mode is also useful to investigate the structure of the solution space.

The binary search mode performs a classical binary search within 0 ≤ b ≤ B. Starting
from the highest and lowest bound, always a middle budget b is selected. For this budget, a
mapping is generated. This is compared to previous result and upper or lower budget bound
adjusted accordingly. The search is terminated when it converges towards a solution. This
method provides an O(logB) exploration of the solution space, but does not work well on
rough solutions spaces.

Different methods can be used to create the time slot assignment in step 2. The current
approach only implements a greedy mapper: When task i has been obtained, it is mapped
starting from the PE’s first available time slot and is mapped until completed. This means
that it receives priority over all other tasks which are mapped after it. Each task can only
use the remaining budget, maintained in bl . In an extreme, a single task may block all other
tasks from execution by leaving insufficient remaining budget.

5 Experiments

For our experiments, we used the 32 different task graphs from [EK17], each comprising
up to 32 tasks. They are a subset from [HS04]. For them, we have pre-computed makespan-

Fig. 2: Cost vs. Deadline Fig. 3: Search Landscape

optimal schedules for systems with 2, 4, 8, and 16 PEs, leading to a total of 128 different
test cases. All makespans were below 100 time slots. We call these schedules the set of
original schedules. In all experiments involving the heuristic, we derive a new set of sched-
ules from the original schedule set. As described in Sect. 4, these schedules have the same
structure as the original schedule, but are frequency scaled. We set the deadline D of the
original schedules to their respective (minimal) makespan. We further assume that D is not
necessarily tight and may be extended which permits us to obtain additional cost savings.
As in the rest of the paper, this results in a new deadline D′ ≥ D, which is then used in the
frequency scaling process. We call the result of this process a derived schedule. In mILP
calculation, we take the properties of the original schedule (task graph and number of PEs)
and calculate a new energy cost-optimal schedule from them4. If we compare heuristic and
mILP results, we also use the same extended deadline D′ as deadline for the mILP. Oth-
erwise the results were not comparable, because the tighter mILP schedule would force
the mILP to use higher frequencies. We used actual energy market data taken from the
European Power Exchange’s web site [Exc16] for October 19, 2016. A 100 time slot price
schedule was created by repeating that day’s data prices. For some experiments, we used
other pricing schedules. They are detailed in the experiment description.

We first investigated the cost reduction provided by the heuristic over the original schedule.
We computed the cost of the original schedule, then created the derived schedule, and
computed its cost. We used binary search and sweep mode. The heuristic usually required
less than one second to find a solution. We computed the average reduction over all 128 test
cases. We experimented with deadline extensions between 0 and 100% (Fig. 2, x axis is
deadline extension, y cost reduction). Even when keeping the original deadline, we saved
4.6% cost. This is due to non-critical path tasks which often can be frequency-scaled down
without affecting the makespan. Not surprisingly, the cost reduction curve is steeper for
the first 15% to 20% of deadline extension, but keeps growing even for large extensions.
Detail review showed that most of the saving was caused by using more time slots at slower
frequency, but a notable amount was also attributable to optimizing each task’s last time
slot based on Eq. 3.

Then, we investigated the search landscape. We used the heuristic’s sweep method to
compute schedules with increasing budget per time slot. Let Bo be the original schedule’s
4 Note that in case of a solver timeout, the result is not necessarily optimal, but for reasons given in this section

we assume it is very close to the optimum.

Fig. 4: Some Price Schedules

budget requirement. Then we derived 1000 schedules with increasing budget, where in step
s we gave a budget permission of s

500 Bo. For all feasible derived schedules, we computed
the overall cost. Note that for the reasons outlined in Sect. 4 this cost was lower than
Bo, even though the maximal budget permission was higher for the second half of the
sweep. Fig. 3 plots the average landscape of all experiment runs. As can be seen, it is quite
smooth. We also reviewed individual experiment data to verify the pattern and found them
to follow the same pattern. This experiment was initially carried out with 20% deadline
extension (D′ := 1.2D). We repeated it with zero and 5 percent deadline extension and
found the same structure. From that, we conclude that the landscape pattern is not sensitive
to the amount of deadline extension. As a related sub-experiment, we have compared the
heuristic’s sweep and binary search modes. Both did always return results very close to
each other. This also points towards a smooth landscape, as otherwise binary search would
probably have selected a local minima in a high valley. Based on both of these results, we
conclude that a heuristic can concentrate on finding an area close to the first local minimum
and then focus on exploring its local neighborhood.

We compared the heuristic with the mILP implementation. We derived schedules with the
heuristic with a 20% deadline extension and compared them to optimal cost schedules
created with the same parameters by the mILP. We used IBM CPLEX 12.7 for the mILP
implementation. The mILP had strongly varying run times depending on the task graph.
Some experiments reached optimality within less than a minute, but most experiments
timed out. We crafted an experiment that compared solution quality after 8 minute and 4
hour timeouts. Even after 4 hours about half of the experiments timed out. However, we
only saw marginal improvements between the 8 minute and the 4 hour experiments (17.1%
more cost for the heuristic vs. 17.6%). We suspect that this result is due to the smooth
search landscape. In order to be able to cover more experiment scenarios, we limited our
follow-on experiments to 8 minute timeout. We then carried out the same experiment with
5 and 50 percent deadline extension to check sensitivity to deadline extension. At 50%
extension, we noticed that the mILP did perform notably worse than in the other two
cases. This was caused by the model growth due to the larger number of time slots, which
lead to fewer optimal solutions after 8 minutes. This also means that it will be practically
impossible to increase the time resolution or compute longer running schedules, which
strengthens the point that a heuristic solution is required. If we compare the experiments
at 5 and 20 percent deadline extension, the heuristic requires a 15 respective 17 percent

higher cost than the mILP, which points to limited sensitivity to the amount of deadline
extension. We also did a brief manual review of mILP detail results and got the impression
that the solutions did considerably differ from the constant cost paradigm used inside the
heuristic. An in-depth review will be done as future work to improve the heuristic.

To investigate the power pricing schedule effect, we did several experiments at 5% dead-
line extension with 8 minutes timeout. Some pricing schedules are depicted in Fig. 4.
Again, we compared the heuristic with cost optimal solutions from the MILP. First of all,
we assumed a traditional flat pricing model (R = (1,1, . . .)). Here, the heuristic required
10% more cost than the mILP. Then we used a schedule (“Increasing”) that stayed at flat
pricing (absolute value 10) for the first n = 20 time slots, and then increased the price
by 10 for each following time slots i (R = (10, . . . ,10,20,30, . . .)). Here, the heuristic re-
quired 13% more cost. In one experiment, we used a pricing schedule (“Alternating”)
R = (5,50,5,50, . . .), specifically crafted to not work well with a constant cost approach.
As expected, the heuristic performed notably worse with a 30% increase over mILP cost.
In conclusion, the pricing schedule, except for very extreme cases, has moderate effect on
optimality. We assume this is related to the precedence constraints which limit our ability
to defer work, but need to investigate this in more depth.

Finally, we did one experiment in regard to static power consumption. We used power(f)=
0.4+0.6 f 3 for the heuristic. We investigated the cost reduction provided by the heuristic
over the original schedule. At 20% deadline extension, we only gained 4% reduction. We
assume this is due to the limited ability to scale frequencies, as outlined in section 2. In
future work, we will investigate static power consumption in more depth.

6 Conclusions

We have proposed to investigate cost-optimal static scheduling of task graphs on parallel
machines with frequency scaling when the energy price varies over time. We have pre-
sented a mixed integer linear program and a heuristic for this problem, where the heuristic
takes a classic, i.e. makespan-optimized, schedule as input and adapts frequencies and
starting times. We have evaluated the heuristic with a set of small task graphs for two
price curves and some corner cases and find that its solutions are on average 15% more
expensive in energy cost than the optimal solution.

In our future work, we plan to extend both the linear program and the heuristic to cover
more variations: the price curves could differ for different PEs (e.g. if the PEs are in dif-
ferent time zones), there might be several sources of energy with different cost, but some
sources (like solar energy) might be restricted in volume per time slot, and the PEs could
be heterogeneous in power consumption and performance. Also, the possibility to use time
slots of different lengths to reduce the number of variables shall be tested. Also, we will
investigate PE power curves which include static power, so that some power budget cannot
run all PEs in a time slot (not even at the lowest frequency). Finally, we want to explore
the possibility of a single heuristic to map tasks and scale frequencies.

References
[CGK10] Peter Cappers, Charles Goldman, and David Kathan. Demand response in US elec-

tricity markets: Empirical evidence. Energy, 35(4):1526–1535, 2010.

[DNT+14] Bernabé Dorronsoro, Sergio Nesmachnow, Javid Taheri, Albert Y Zomaya, El-
Ghazali Talbi, and Pascal Bouvry. A hierarchical approach for energy-efficient
scheduling of large workloads in multicore distributed systems. Sustainable Com-
puting: Informatics and Systems, 4(4):252–261, 2014.

[EK17] Patrick Eitschberger and Jörg Keller. Fault-Tolerant Parallel Execution of Workflows
with Deadlines. In Proc. 25th Euromicro International Conference on Parallel, Dis-
tributed, and Network-Based Processing (PDP 2017), 2017.

[Exc16] European Power Exchange. Market Data, Day Ahead Auction. http:
//www.epexspot.com/en/market-data/dayaheadauction/chart/
auction-chart/2016-10-19/DE/1d/200d, 2016. Online, last access Nov
4, 2016.

[GLH+11] Íñigo Goiri, Kien Le, Md E Haque, Ryan Beauchea, Thu D Nguyen, Jordi Guitart,
Jordi Torres, and Ricardo Bianchini. Greenslot: scheduling energy consumption in
green datacenters. In Proc. 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 20:1–20:11. ACM, 2011.

[GLLK79] Ronald L Graham, Eugene L Lawler, Jan Karel Lenstra, and AHG Rinnooy Kan. Op-
timization and approximation in deterministic sequencing and scheduling: a survey.
Annals of discrete mathematics, 5:287–326, 1979.

[HS04] Udo Hönig and Wolfram Schiffmann. A comprehensive test bench for the evaluation
of scheduling heuristics. In Proc. 16th IASTED International Conference on Parallel
and Distributed Computing and Systems (PDCS’04), pages 437–442, 2004.

[KA99] Yu-Kwong Kwok and Ishfaq Ahmad. Static Scheduling Algorithms for Allocating
Directed Task Graphs to Multiprocessors. ACM Comput. Surv., 31(4):406–471, De-
cember 1999.

[LOM17] Yunbo Li, Anne-Cécile Orgerie, and Jean-Marc Menaud. Balancing the use of bat-
teries and opportunistic scheduling policies for maximizing renewable energy con-
sumption in a Cloud data center. In Proc. 25th Euromicro International Conference
on Parallel, Distributed, and Network-Based Processing (PDP 2017), 2017.

[LSK14] Jörg Lenhardt, Wolfram Schiffmann, and Jörg Keller. Trends in Static Power Con-
sumption. In Proc. 7th Swedish Workshop Multicore Computing, 2014.

[LZL+15] Hongtao Lei, Tao Zhang, Yajie Liu, Yabing Zha, and Xiaomin Zhu. SGEESS: Smart
green energy-efficient scheduling strategy with dynamic electricity price for data cen-
ter. Journal of Systems and Software, 108:23 – 38, 2015.

[MLK+11] Yosef Masoudi, Shahriar Lotfi, Davod Karimzadgan, Farhad Fathy, and Kiomars
Abdi. Static Task Graph Scheduling in Real Time Homogenous Multiprocessor Sys-
tems Using Learning Automata. In Proc. 2011 International Conference on Commu-
nication Systems and Network Technologies (CSNT), pages 423–429. IEEE, 2011.

[PvSU08] Kirk Pruhs, Rob van Stee, and Patchrawat Uthaisombut. Speed scaling of tasks with
precedence constraints. Theory of Computing Systems, 43(1):67–80, 2008.

[WLLMR14] Adam Wierman, Zhenhua Liu, Iris Liu, and Hamed Mohsenian-Rad. Opportunities
and challenges for data center demand response. In Proc. 2014 International Green
Computing Conference (IGCC), pages 1–10. IEEE, 2014.

