
Patterns of Mobile Interaction

Jörg Roth

University of Hagen, 58084 Hagen, Germany

Abstract: The design of systems for mobile scenarios covers a wide range of issues, ranging from mobile networking to user interface design
for mobile devices. Mobile applications often run distributed on several connected devices, used by many users simultaneously.
Considering all issues related to mobile scenarios, a designer might be overwhelmed. As a solution, we propose a specific kind of design
patterns which we call mobility patterns, derived from successful mobile applications. They allow a designer to re-use design elements as
building blocks in their own designs. After describing the idea of mobility patterns, we give a brief overview of patterns we have identified
so far. Two patterns are described in more detail with the help of our research platforms QuickStep and Pocket DreamTeam.

Keywords: Application design; Design patterns; Mobile computing; Mobile interaction

1. Introduction

Mobile computing fundamentally differs from
desktop computing. Compared to desktop com-
puters, mobile devices (e.g. PDAs, mobile
phones and digital cameras) have low computa-
tional power, small memory and often no mass
storage. Communication links to other mobile
devices or to a stationary network are usually
wireless, and thus are often unstable with low
bandwidth.

These aspects highly influence how users
interact with mobile systems. Often, users
interacting with a mobile system interact with
other users (e.g. using mobile phones). In
contrast to traditional applications, users often
interact with more than one computer or device
at the same time. For example, in using a PDA
for browsing the Internet, a user may have to set
up a wireless connection using a mobile phone.

2. Patterns

Having several users and several devices in a
system design, a designer has to consider several
problem areas. To give some examples:

. A single application has to be developed in a
distributed manner, i.e. parts have to be
identified which run independently on differ-
ent devices.

. Due to the poor availability, bandwidth and
reliability of mobile connections, we have to
solve network problems.

. Security (e.g. privacy, integrity and authenti-
city) is an important issue. Data in mobile
scenarios are often confidential [1], but
wireless communication is very insecure.

. When designing user interfaces for mobile
devices, especially for heterogeneous envinon-
ments, we have to consider the special user
requirements as well as the capabilities of the
devices involved [1,2].

Often, a design focuses on a specific problem area
and neglects others. Especially in the complex
field of mobile computing, neglecting problems
can cause an entire design to fail. On the other
hand, taking into account all the issues in early
design stages may overwhelm a designer or a
design team.

As a possible solution, we propose a tool that
can be successfully used in different scenarios:
design patterns. Patterns are derived from success-
ful software designs and can be re-used as
building blocks for new designs. In our approach,
we use a specific kind of design patterns we call
mobility patterns. Mobility patterns cover problem
areas we find very often in mobile scenarios. We
grouped related patterns to pattern classes using a
pattern hierarchy (Fig. 1). The white boxes
represent the patterns, the grey boxes represent
pattern classes.

Mobility patterns are not only applicable for
mobile scenarios, but some patterns appear very
often in mobile application projects, thus they
are good candidates for new projects.

282

Ownership and Copyright
Springer-Verlag London Ltd 2002
Personal and Ubiquitous Computing (2002) 6:282–289

3. Example Patterns

To describe patterns, we followed established
description formats [3]. Each description con-
tains the sections: Pattern Name, Synopsis,
Context, Forces, Solution, Consequences, Examples,
Related Patterns and Classes. From the proposed
description used in object-oriented software
development, we replaced the section Implemen-
tation by Examples. It is difficult to give a tangible
implementation for a specific mobility pattern –
a list of good examples is more useful. In
addition, we added the section Classes, which
indicates how to integrate a pattern into the
pattern hierarchy. Pattern classes offer additional
structuring information to the designer, thus
problems and solutions related to a specific
pattern can be classified more easily. Compared
to more formal approaches [4], mobility patterns
have a strongly informal characteristic. To give

an impression of mobility patterns, we present
two patterns: Synchronisation and Remote Proxy.

3.1. Example 1: The synchronisation
pattern

Synopsis: identical data is stored on different
devices or computers, which are weakly con-
nected. Several users apply data changes to
different devices, often simultaneously.

Context: consider two users carrying around
databases stored in their PDAs, originally copied
from a central server. While travelling, they are
only rarely connected to their home database.

Forces: identical data stored at different loca-
tions tends to run out of sync, when users apply
modifications on their locally stored data and
device are only rarely connected.

Solution: each device or computer provides a
sync engine (Fig. 2).

283

Fig. 1. The pattern hierarchy.

Fig. 2. Communication in the synchronisation pattern.

Patterns of Mobile InteractionPatterns of Mobile Interaction

Each sync engine

. keeps track of modifications applied to local
data;

. exchanges modifications with corresponding
databases on other devices whenever they re-
connect; and

. detects conflicts and realises a conflict resolu-
tion strategy.

Sync engines communicate with each other via
sync interfaces. Note that Fig. 2 only shows a
sample scenario; two mobile devices could also
synchronise their data.

Consequences: we can use this pattern when-
ever data stored on different devices has not to
be strongly up to date. However, users should be
aware that other users could change the same
data simultaneously, which may cause conflicts
later.

Since connected devices have to effectively
compare their local changes, only data that can
be stored in tables or lists is suitable for this
pattern. Ideally, changes are logged for every
field in a record. Weakly structured data must be
compared record by record, which increases the
probability for unwanted conflicts. This pattern
is not suitable for continuous data such as audio
or video.

Examples: SyncML (http://www.syncml.org) is a
framework for data synchronisation in mobile
scenarios. Palms Hotsync allows a user to
synchronise a palm device with one or more
desktop PCs. We present another example, the
QuickStep platform, below.

Related Patterns: VirtualPresence

Classes: MobileData

3.2. Example 2: The remote proxy
pattern

Synopsis: a device does not have the capability
to perform a requested task. It connects to
another device with higher computational
power, which acts as a delegate.

Context: consider a user browsing the web with
a handheld device. The screen resolution of such
a device is currently very poor, thus elements
such as graphics and tables are difficult to
display. In addition, rendering complex elements
requires many computational resources, which
are often unavailable on such a device.

Forces: a user who requests a specific task

. wants to save network bandwidth,

. wants to save computational resources (e.g.
memory) on the local device, and

. expects appropriate input/output behaviour
according to the locally available capabilities.

If the end-user’s device itself offers network
services to other computers, these computers are
not interested in the specific device properties.
In contrast, they expect the same behaviour (e.g.
the same communication protocol) as if the
device has full server capabilities. In particular,
we do not want to change established protocols
such as file transfer protocols or network file
system protocols to access the mobile device.

Solution: the device does not connect directly to
the network, but asks another device or compu-
ter to perform these tasks. This other computer,
called the proxy,

. accepts service requests from other devices,

. connects to the actual service provider and
performs the requested tasks,

. processes the results, and

. sends them back to the initiating device.

Figure 3(a) shows a traditional communication
between one computer and a network. The
network represents the set of involved corre-
sponding hosts, i.e. those hosts that either offer
services to the specific host or use services from
the specific host.

Figure 3(b) shows the communication infra-
structure according to the remote proxy pattern.
The application is spread over two devices called
the client and the proxy. We identified the
following entities:

. The client is the end-user’s device, thus the
client must contain at least the user interface
of the application. Other parts of the applica-
tion may reside on the client due to
performance considerations.

. The proxy runs the demanding parts of the
application, e.g. heavy computation tasks.
Usually, the proxy is a stationary host,
which runs without user interaction. A user
interface is only necessary for administration
and configuration. A specific computer can be
a proxy for more than one client. The relation
between proxy and client may change dyna-
mically.

284

Jörg Roth

. The public interface is the communication
interface between proxy and network. The
interface has to be identical to the interface
presented in Fig. 3(a). From the network’s
view, it is not possible to distinguish the proxy
architecture from a single device.

. The client accesses the proxy via the proxy
interface. The interface has not to be public
since other hosts of the network do not use it.
As the client is often a mobile device and the
proxy is stationary, the communication be-
tween client and proxy is usually wireless.

Consequences: this pattern is a general pattern
and useful in various mobile scenarios. Very
often, devices used by the end-users have only
poor capabilities. Nevertheless, users want to
execute demanding tasks. As the greatest benefit,
we do not have to change the public interface.
The rest of the network remains unmodified, i.e.
we can use the same infrastructure and protocols.
In this pattern however, there are two crucial
points:

. The proxy itself: in the case of failure, task
execution is disabled, even if the requesting
device and the service provider are on-line.

. The communication link between the re-
questing device and proxy: if this link is
broken, the task cannot be performed, even if
the proxy has successfully executed the task.
Cache mechanisms may be integrated into the
client to reduce the effects of weak connec-
tions. If the client as well as the proxy

maintain the same data (e.g. inside caches),
the application has to provide concurrency
control mechanisms to achieve consistent
states of distributed data.

Obviously, the proxy must have more capabil-
ities than the end-user’s device. As the proxy
provides a specific service, a mobile device must
be able to find the proxy inside the network. This
leads to the following consequences:

. A proxy must have a fixed network address or
the mobile device can, with help of a service
discovery mechanism, resolve the network
address.

. The proxy has to be on-line whenever a
mobile devices requests services.

. Currently, a proxy is usually a traditional
workstation, not a mobile device.

Examples: Browse-it [5] allows a handheld user
to browse the web without struggling with device
limitations such as screen resolution. The proxy
pre-processes web pages, downscales graphics and
pre-computes the appropriate layout. As a result,
the amount of data transferred to the handheld
devices is drastically reduced, and the devices are
relieved from heavy rendering tasks.

Another example, Pocket DreamTeam, is
presented below.

Related Patterns: LocalProxy, PushObject,
RequestObject.

Classes: ServiceUsage, MobileService.

285

Fig. 3. Direct communication vs. remote proxy pattern.

Patterns of Mobile InteractionPatterns of Mobile Interaction

4. Patterns in Research
Platforms

The idea of mobility patterns heavily influ-
enced our research platforms QuickStep and
Pocket DreamTeam. Figure 4 shows screenshots
of sample applications. Both platforms allow
mobile users to share data among a group. For
example, users could share dates and timetables
(Fig. 4(a)) or edit collaboratively shared free-
hand sketches (Fig 4(b)). QuickStep uses the
synchronisation pattern, Pocket DreamTeam is
based on the remote proxy pattern. The different
patterns lead to completely different architec-
tures and thus to different platform character-
istics.

4.1. QuickStep

The QuickStep platform [1,6] (Fig. 4(a)) sup-
ports developers of mobility-aware collaborative
handheld applications. They can use commu-
nication, collaboration and dialogue primitives
provided by the platform, and can concentrate
on application-specific details. A developer can
integrate predefined awareness widgets into an
application with a few lines of code. We can
summarise the QuickStep approach as follows:

. QuickStep supports applications with well-
structured, record oriented data, as being used
by built-in software for handheld devices (e.g.
for to-do lists, memos, telephone lists). Quick-
Step was explicitly not designed for supporting
multimedia data, graphical oriented applica-
tions or continuous data streams.

. QuickStep mainly supports synchronous col-
laboration. We used the term relaxed synchro-
nous collaboration to indicate that devices are
not synchronised when they are disconnected.

. QuickStep provides awareness widgets for
collaboration awareness as well as context
awareness.

. QuickStep comes along with a generic server
application, which supports arbitrary client
applications without modifying or re-config-
uring the server.

. The QuickStep architecture ensures privacy of
individual data.

Figure 5 presents the QuickStep architecture.

The computational power of handhelds and the
network bandwidths are very low as compared
with desktop environments. To reduce network
traffic and to perform as many computations as
possible on a server, we developed a combined
mirroring and caching mechanism that we
designed according to the synchronisation pat-
tern. Each handheld has its own local database,
which contains the records of the application.
Only the owner can add, change or remove local
records. The QuickStep server has a copy of each
local database, the mirror database. The mirror
databases are incrementally updated each time a
handheld device re-connects to the server. To
view data when mobile devices are disconnected,
a local copy of other users’ mirror database exists
on the handhelds, called the cache database.
Since the amount of data of all mirror databases
might be too big for the handheld, a selector set
by the application reduces the number of cache
entries.

286

Fig. 4. (a) QuickStep and (b)DreamTeam.

a b

Jörg Roth

Each server stores the local data of mobile
user in wireless communication range (e.g.
infrared or WLAN range). To cover a wider
area, servers can be connected. We applied the
synchronisation pattern to each ‘hop’, e.g.
between handheld and server and between two
servers. Whenever a mobile user modifies the
local database, this change will eventually reach
all other mobile devices in the covered area.

4.2. Pocket DreamTeam

Pocket DreamTeam [7] (Fig. 4(b)) is the
PalmOS version of our groupware platform
DreamTeam [8]. The DreamTeam environment
allows the developer to develop synchronous
collaborative applications (e.g. collaborative
diagram tools, text editors, shared web browsers)
like single user applications, without struggling
with network details or synchronisation algo-
rithms. DreamTeam was originally developed for
PCs or workstations running Java. It is based on a
fully decentralized architecture without the need
for a central server. Shared data are distributed
among the group members using an automatic
replication mechanism.

When we finished the implementation of the
desktop variant of DreamTeam, we planned to
develop a handheld version, which should meet
the following requirements:

. The handheld version and the desktop version
of DreamTeam should run inside the same
network. It should be possible to form
arbitrary sessions of handheld and desktop
users, e.g. with only handheld users, only
desktop users or a mixture.

. The original desktop variant of DreamTeam
should still run without any changes. The

DreamTeam runtime system contains approx.
125,000 lines of Java code. About 20 colla-
borative applications have been developed so
far. Any modifications of the original Dream-
Team core were not under discussion.

. We did not have the goal to run original
DreamTeam applications on handheld de-
vices. Since handheld devices differ funda-
mentally from desktop computers, it is not
reasonable to follow the desktop usage para-
digms based on, for example, overlapping
windows with graphics. We accepted the re-
implementation of some parts of DreamTeam
for handheld devices. However, we wanted to
keep the amount of new developments as
small as possible.

Since PalmOS does not provide some necessary
services to run the full DreamTeam platform,
Pocket DreamTeam uses the remote proxy
pattern. Since most of the work is done by the
(desktop) proxy application, the Pocket Dream-
Team program is very small (some Kbytes)
compared to the original DreamTeam platform
(some hundreds Kbytes).

Figure 6 presents the Pocket DreamTeam
architecture. The boxes on the right-hand side
represent desktop DreamTeam systems. They
remain unmodified and use the traditional
DreamTeam protocol to communicate to other
systems, including the mobile ones. We divide
the overall network into two segments: a mobile
segment, which contains the mobile device and
the wireless connection, and a stationary seg-
ment, which contains traditional DreamTeam
systems, the proxy and the core network.

Since the proxy resides in the stationary
segment, it can act as a placeholder whenever
the mobile device gets disconnected. Moreover,

287

Fig. 5. The QuickStep architecture.

Patterns of Mobile InteractionPatterns of Mobile Interaction

it hosts heavy computation tasks, which the
mobile device is not able to run.

4.3. Comparison

QuickStep and Pocket DreamTeam are typical
platforms based on mobility patterns. Mobility
patterns strongly influence a design of the
platforms on an informal level, and do not
restrict the design process.

The remote proxy pattern provides an archi-
tectural decomposition of applications, and is
especially suitable for mobile devices with low
computational power. Mobile devices can trans-
fer heavy tasks to stationary proxies, which act as
a placeholder to the network. As the major
disadvantage, we identified the communication
link between client and proxy, which is usually a
wireless connection with poor network perfor-
mance.

The synchronisation pattern, on the other
hand, is especially suitable for weak connected
devices. While they are disconnected, mobile
devices have to store a considerable amount of
data locally. In addition, we have to develop a
sync engine for all involved devices and
computers. As an advantage, mobile applications
according to the synchronisation pattern can run

independently from stationary hosts for a con-
siderable time.

5. More Mobility Patterns

Table 1 lists some more mobility patterns we
have identified so far. We provide only a brief
synopsis and an overview of examples.

6. Benefits

Using mobility patterns has many advantages.
Primarily, patterns are a tool to describe designs.
Using the proposed pattern names, a designer
can precisely express which building blocks are
used for a specific system, thus misunderstanding
is more unlikely.

As described above, mobile applications cover
a wide range of issues. Designers tend to ‘abstract
away’ or forget consequences of specific design
aspects, thus possibly build systems which are not
runnable. As a second benefit, patterns come
along with a list of implications and conse-
quences. A designer knows the pros and cons of a
specific pattern.

As a third benefit, patterns allow a designer to

288

Fig. 6. The DreamTeam architecture.

Table 1. A list of more mobility patterns

Pattern Synopsis Examples

VirtualPresence Pieces of data are virtually present to other devices and can be
accessed or modified according to the access rules of the host.

Windows CE remote file access,
Coda [9]

RequestObject A device requests a specific object (e.g. a web page) from another device. WAP
PushObject A device sends a specific object without request. SMS, OBEX
LocalProxy A local instance provides an interface to a local or remote service. Locally running web proxy
OneWayStream One-way transmission of audio or video data. Video on demand, UMTS
Conversational Two-way transmission of audio or video data. GSM, DECT, Bluetooth audio
VirtualWindow A device presenting a window or desktop of another device or computer. Pebbles [10], PalmVNC
CannedCode A device sends code, which is executed on another device. The code

has not to be executable on the sender’s device.
WMLscript, web filters

Sensing A device receives continuous sensor data (e.g. location) from other devices. GPS

Jörg Roth

re-use successful designs. Re-using software on
lower levels (e.g. with software components) fails
due to the heterogeneity of the networks and
devices involved. With mobility patterns, we can
re-use at least the design of a successful
application.

The current pattern hierarchy does not claim
to be complete. In future, we want to complete
our collection of mobility patterns. For this, we
analyse existing mobile computing applications
and frameworks.

References

1. Roth J, Unger C. Using handheld devices in synchronous
collaborative scenarios. 2nd international symposion on
handheld and ubiquitous computing (HUC2K), Bristol,
UK (Lecture Notes in Computer Science 1927), Spring-
er-Verlag, 2000; 187–199

2. Calvary G, Coutaz J, Thevenin D. A unifying reference
framework for the development of plastic user interfaces.
8th IFIP working konference on engineering for human-
computer interaction (EHCI’01), Toronto, Canada
(Lecture Notes in Computer Science 2254), Springer-
Verlag, 2001; 173–192

3. Gamma E, Helm R, Johnson R, Vlissides J. Design
patterns: elements of reusable object-oriented software.
Addison-Wesley, 1995

4. Borchers J. A pattern approach to interaction design.
Conference proceedings on designing interactive sys-
tems: processes, practices, methods, and techniques.
Brooklyn, NY, 2000; 369–378

5. Pumatech, Browse-it for Palm Computing Platform User
Guide, Puma Technology, Inc., San Jose, CA, 2000

6. Roth J. Information sharing with handheld appliances.
8th IFIP working conference on engineering for human-
computer interaction (EHCI’01), Toronto, Canada
(Lecture Notes in Computer Science 2254), Springer-
Verlag, 2001; 263–279

7. Roth J. Mobility support for replicated real-time
applications, innovative internet computing systems
(I2CS), Kühlungsborn, Germany (Lecture Notes in
Computer Science 2346), Springer-Verlag, 2002;181–
192

8. Roth J. DreamTeam – A platform for synchronous
collaborative applications. AI & Society 2000; 14(1):
98–119

9. Kistler JJ, Satyanarayana M. Disconnected operation in
the Coda file system. ACM Transactions on Computer
Systems 1992; 10(1): 3–25

10. Myers BA, Stiel H, Gargiulo R. Collaboration using
multiple PDAs connected to a PC. Proceedings ACM
1998 conference on computer supported cooperative
work 1998; 285–294

Correspondence to: J. Roth, Department of Computer Science,
University of Hagen, 58084 Hagen, Germany. Email:
Joerg.Roth@fernuni-hagen.de

289

Patterns of Mobile InteractionPatterns of Mobile Interaction

