
COMMUNICATIONS OF THE ACM April 2000/Vol. 43, No. 4 109

c

Friedrich Steimann

Abstract Class Hierarchies,
Factories, and Stable Designs

Much of the debate about
the general aptness of
class hierarchies is rooted

in the different objectives taxon-
omists and implementers are
thought to pursue. Designers of
conceptual hierarchies tend to
embrace Aristotle’s principle of
genus et differentiae leading to a
taxonomic hierarchy of categories
or types [7], while those with

implementation in mind focus
on the reuse of class definitions
and polymorphism as made pos-
sible by subclassing and inheri-
tance. This has led to an
extensive discussion (see [1, 4, 5,
8]) as to whether Square should
be a subclass of Rectangle or vice
versa, a dilemma that is, of
course, precedential in character.

Despite the different perspec-

tives there appears to be a broad
consensus that, in principle at
least,

• both a conceptual type and a
class (as a programming con-
struct) are intensions the exten-
sions of which are sets of
instances; and

• the extensions of subtypes are
subsets of the extensions of

their supertypes, so that the
instances of a subtype can occur
wherever instances of its super-
types are expected (principle of
substitutability).

Depending on the program-
ming language, the latter may not
be the case for class hierarchies so
that conceptual type hierarchies
and class hierarchies are not gen-
erally isomorphic to each other
[6]. However, as Grosberg right-
fully observed [4], the discrepan-
cies can easily be resolved by
adhering to one simple rule: by
requiring that only the leaf classes
can have instances.

Abstract Class
Hierarchies
This rule is not as arbitrary as it
may seem. In fact, it only para-
phrases a common constraint on
subtyping, namely that the
extension of a supertype is totally
covered by the extensions of its
subtypes, thus rendering the
supertype a mere abstraction. For
example, applied to the class
hierarchy of Figure 1a, it is
implied that all instances of type
Person must either be an instance
of class Female or of class Male.

Following this principle, the
Rectangle/Square dilemma is
resolved as shown in Figure 1b),
where OtherRectangle denotes
the set of rectangles that are not
squares. Surely, this is going to
affront many system modelers
and most implementers: why
waste the name Rectangle for an
abstract class which cannot have
instances, and why introduce an
additional class oddly named
OtherRectangle which will create
most of the instances of Rectan-
gle? First, not having class Other-
Rectangle is a bit like having
classes Person and Female, but

not Male. Second, OtherRectan-
gle could, of course, just as well
be named NonSquareRectan-
gle—the point here is there is
always a sibling class that holds
the remainder otherwise assigned
to the superclass. And third,

when creating a particular rec-
tangle, its clients need not see or
know about (unless they desire
to) the distinction between
Square and OtherRectangle—
they simply resort to a factory.

Factories
A factory is an object-oriented
programming construct provid-
ing for the creation of instances
without specifying their concrete
classes. Factories come in many
different guises, the most com-
mon of which have been stereo-
typed in the form of design
patterns [2, 3]. Here we think of
a factory as an abstract class

whose creator methods (called
factory methods) return instances
of its concrete subclasses. In the
geometrical shape example,
squares and (nonsquare) rectan-
gles might be created by calls to
factory methods of class Shape as
shown in Figure 2.

The clients of the hierarchy,
cognizant only of class Shape,
will not know or need not care
about the actual type of the
instance they get, but neverthe-
less (through dynamic binding)
receive all the benefits of the dif-
ferent, possibly optimized imple-
mentations of methods for classes
Square and OtherRectangle, such
as the calculation of the area.

One may object: what if I
stretch a square in one dimen-

sion? Does that not imply
instance migration? Well, what if
I shear a rectangle? Indeed,
stretching and shearing should be
viewed and implemented as what
they actually are: mathematical
operations that return new
instances. In this light, every
operator is a small factory
method returning a new instance
of a class determined solely by
the operands (including the
implementor) and the operator
itself. The same principle natu-
rally applies to hierarchies of
numbers, collections, and so
forth, with plenty of opportuni-
ties to exploit the efficiency and

110 April 2000/Vol. 43, No. 4 COMMUNICATIONS OF THE ACM

Figure 1. (subclasses are indented,
leaf classes underlined).

a) Female and Male are the only
subclasses of Person

b) rectangles are either Squares
or OtherRectangles

a)Person

Female

Male

Figure 2. Calls to a factory class creating instances of
the appropriate type.

Shape.rectangle(120,60) // (width, height)

// creates a new instance of class OtherRectangle

Shape.square(80)

// creates a new instance of class Square

Shape.rectangle(80,80)

// also creates a new instance of class Square

b)Shape

Rectangle

Square

OtherRectangle

…

maintainability gains offered by a
clean partitioning of the problem
domain. For instance, depending
on its operands, the division of
two integers may return an inte-
ger or a (noninteger) fraction.

Stable Designs
While the practical benefits of
conceptually sound class hierar-
chies are still arguable, there is
another, very pragmatic reason to
enforce the rule of letting only
leaf classes have instances: it pro-
tects the rest of the class hierarchy
from ad hoc alterations made to
individual class definitions. Given
that most of the many changes
that become necessary in the
course of system evolution per-
tain to the behavior of instances
of individual classes, the propaga-
tion of these changes (through

inheritance) to other classes is not
generally desired. However, espe-
cially if class hierarchies are big
and used by many clients, the
existence of and consequences for
descendant classes are not imme-
diately realized, making inheri-
tance a mixed blessing. By
designing the class hierarchy as a
hierarchy of abstract classes and
by letting its clients manipulate
only the concrete classes attached
as leaves, the effect of modifica-
tions needing to be made by the
clients is always confined to the
instances of single classes. The
need for a (partial) redesign of the
class hierarchy because of practi-
cal requirements is thus greatly
reduced.

Freidrich Steimann (steimann@

acm.org) is a research assistant at the Universität

Hannover, Germany.

References
1. Baclawski, K. and Indurkhya, B. The notion

of inheritance in object-oriented program-
ming. Commun ACM 37, 9 (Sept. 1994),
118–119.

2. Cooper, J.W. Using design patterns. Com-
mun ACM 41, 6 (Jun. 1998), 65–68.

3. Gamma, E., Helm, R., Johnson, R. and Vlis-
sides, J. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley,
Reading, Mass. 1995.

4. Grosberg, J.A. Comment on considering
‘class’ harmful. Commun. ACM 36, 1 (Jan.
1993), 113–114.

5. Halbert, DC. O’Brien, P.D. Using types and
inheritance in object-oriented programming.
IEEE Softw. 4, 5 (May 1987), 71–79.

6. LaLonde, WR and Pugh, JR. Subclassing π
subtyping π is-a. J. Object-Oriented Program.
(Jan. 1991), 57–62.

7. Sowa, J.F. Conceptual Structures: Information
Processing in Mind an Machine. Addison-
Wesley, Reading, Mass., 1984.

8.Winkler, J.F.H. Objectivism: ‘class’ consid-
ered harmful. Commun. ACM 35, 8 (Aug.
1992), 128–130.

© 2000 ACM 0002-0782/00/0400 $5.00

c

COMMUNICATIONS OF THE ACM April 2000/Vol. 43, No. 4 111

