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Universität Koblenz-Landau, Germany

rlaemmel@acm.org

Abstract—In the academic literature, many uses of the Object
Constraint Language (OCL) have been proposed. By contrast, the
utilization of OCL in contemporary modelling tools lags behind,
suggesting that leverage of OCL remains limited in practice.
We consider this undeserved, and present a scheme for partially
evaluating OCL expressions that allows one to capitalize on given
OCL specifications for a wide array of purposes using a single
implementation: a partial evaluator of OCL.

I. INTRODUCTION

The Object Constraint Language (OCL) [1] is a specification
language designed to be usable by stakeholders with only little
formal background. Using OCL, assertions (invariants, pre-
conditions, and postconditions) and queries can be expressed
in a form familiar to programmers acquainted with Smalltalk
and other object-functional programming languages. Being a
standard of the Object Management Group (OMG), OCL is
heavily used in other OMG standards, most prominently for
specifying the semantics of the Meta Object Facility (MOF)
[2] and the Unified Modeling Language (UML) [3]; but also
for specifying the semantics of OCL itself [1].

Most early OCL tools focused on evaluating OCL expres-
sions, e.g. to check the validity, or well-formedness, of a model
instance with respect to the constraints associated with its
model. Much to our surprise, however, we found that none of
the OCL implementations we investigated1 use OCL to check
the well-formedness of the OCL expressions they evaluate,
despite the fact that this well-formedness is specified using
OCL [1]. Given that meta-circular bootstrapping is commonly
regarded as the High Mass of language implementation, we
find this remarkable.

One might argue that the programming-language like syntax
of OCL makes it easy to manually translate OCL expressions
to expressions of the host language of a modelling tool (e.g.,
Java), obviating the need for embedding an OCL interpreter
in the tool. However, this holds only for evaluating OCL
expressions, as required for checking the validity of model
instances. For most of OCL’s other uses, which include

• checking consistency of a specification (by finding an
instance satisfying it; “strong satisfiability” or “model
finding”) [5], [6], [7], [8], [9] or, more generally, veri-
fication [10], [11];

1the UML Specification Environment USE (https://sourceforge.net/projects/
useocl/) [4], the Dresden OCL Toolkit (http://www.dresden-ocl.org), and the
implementation of the Eclipse Model Development Tools (https://projects.
eclipse.org/projects/modeling.mdt.ocl), the reference implementation of OCL

• identifying redundancy (i.e., constraints being implied by
others so that they can be removed) [7],

• validation [7] or completion [12] of partial models,
• test data and test case generation [13], [14], and
• model refactoring [15] and repair [12],

this is not sufficient: rather, OCL expressions need to be trans-
lated to other formalisms that come with powerful reasoning
mechanisms, usually some kind of logic (see Section III for
examples).

However, even if we abstract from the differences in logic
used by each particular work (which we will), we note that
the different uses of OCL still require different translations:

• model finding and test data generation require the transla-
tion of an OCL specification and the model it is associated
with to a maximally variable representation in which
neither classifier instances nor their properties are known
in advance;

• model completion2 requires a fixed representation of
the current model with variables in the places to be
completed;

• model repair requires identifying fixed parts of a model
that make it malformed, and replacing them with vari-
ables whose sought values make the model well-formed;
and

• model refactoring requires the propagation of (local)
changes through an otherwise fixed model so that neither
its well-formedness nor its semantics change.

In addition, the implementer of each translator must make
some effort to show that translation is consistent with eval-
uation, so that all found, completed, repaired, or refactored
models (or instances) are valid as judged by an OCL evaluator.
This is not self-evident if the OCL evaluator and the OCL
translator are different programs.

With our work presented here, we aim to contribute to the
more widespread use of OCL in the modeller’s toolchain.
Specifically, we make the following contributions:

• We present a systematic approach towards developing a
partial evaluator for OCL that can be used for model val-
idation, model finding, model completion, model repair,
and other possible use cases.

2Model completion, as well as model refactoring and model repair, are
actually applied to models as instances of meta-models, on which the
invariants are defined. However, our work is completely oblivious to the level
it operates on.
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Fig. 1. Model M and instance I used as a running example.

• We present a Java implementation of our OCL partial
evaluator that is built upon the Eclipse Model Develop-
ment Tools (MDT)3 infrastructure.

• We present results obtained from applying our implemen-
tation to 14 non-trivial (with up to one quarter of a million
model elements) open-source models for the purposes of
model completion and model repair, showing that it is
indeed practically feasible.

Our approach relies on the adaptation of existing recipes
in the field of partial evaluation [16], [17] to the situation
of OCL. A particular challenge is the handling of variable
path expressions that are common in OCL, but absent from
the usual target formalisms of OCL translation. Our formal
development has been mechanized in Haskell and is available
online.4

The remainder of this paper is organized as follows. In
Section II, we provide an overview of the problem, setting
the stage also for the related work discussed in Section III.
In Section IV, we briefly review regular evaluation of OCL
expressions (using big-step operational semantics), before we
develop its translation into a target formalism (an interme-
diate constraint language) by means of symbolic evaluation
(Section V). In Section VI, we show how evaluation is inter-
twined with translation, giving us our desired partial evaluator.
Section VII is dedicated entirely to the special problem of
handling variable path expressions in the context of partial
evaluation as developed thus far. Section VIII briefly sketches
our Java implementation, which serves the evaluation in Sec-
tion IX. Notes on lessons learnt and future work conclude.

NB: This work is not on formalizing OCL. Instead, it is
on using one formalization (formal semantics) of OCL to suit
different purposes, without requiring different implementations
for this. The presented coverage of OCL is not complete;
our partial evaluation, however, is orthogonal to extensions
in that it offers a scheme that can likewise be applied to
formalizations that cover OCL more completely.

II. PROBLEM STATEMENT

We state the problem we are addressing by means of a small,
artificial example. It is comprised of the OCL expression

context A inv I : self.bs->exists(b|b.c < 5) (1)

3http://www.eclipse.org/modeling/mdt/
4https://github.com/softlang/yas/tree/master/languages/BOL/Haskell/

which is formulated with reference to the model M shown in
Figure 1. Using this example, we can identify the following
problems and solutions:
• An OCL interpreter accepting (1) and the model instance
I also shown in Figure 1 as input5 will produce the value
true , by iterating over the instances of A (a1 and a2)
and the values of a1.bs (b1 and b2) and a2.bs (b3), resp.,
aggregating the truth values of the conditions bi.c < 5 as

(1 < 5 ∨ 5 < 5) ∧ (3 < 5) ≡ true

The mechanical basis of the derivation of this result will
be delivered in Section IV.

• A model finder will use the modelM of Figure 1 and the
invariant (1) to generate a constraint satisfaction problem
(CSP, not shown) solved by the assignment

[A] := {oA1 }, [B] := {oB1 }, oA1 .bs := {oB1 }, oB1 .c := 0

where [C] denotes the extension (set of instances) of
classifier C and oC1 denotes a (first) anonymous instance
(object) of C. The mechanical basis of the derivation of
this result will be delivered in Section V; note that a
model finder will eventually (via backtracking) also find
instance I of Figure 1, but only if the domain of the
property c is bounded. In fact, to ensure that the model
finder always terminates, [C] also needs to be bounded
for all classifiers C (“bounded verification” [7], [18]).
Model finding is also relevant in the context of test-data
generation on models that involve constraints [19].

• To see how (1) is used for model completion, assume
that we have I ′ identical to I of Figure 1, except that
a2.bs has not yet been assigned any of b1, b2, or b3.
Clearly, I ′, as far as it has been specified, is well-formed
according to invariant (1), but not all of its conceivable
completions are. An automatic model completion tool
will provide only the appropriate choices, which can be
derived by finding all values for a2.bs in 2[B] that satisfy
the constraint ∃b ∈ a2.bs : b.c < 5, that is, by solving
b1 ∈ a2.bs∨b3 ∈ a2.bs for the variable a2.bs (b2 is ruled
out because b2.c 6< 5). The mechanics of this derivation
will be delivered in Section VI; model completion will
be used to demonstrate the capabilities of our partial
evaluator of OCL expressions in Section IX.

• For the purpose of model repair, assume we have a
model I ′′ identical to I except that a1.bs = {b2} (check
that this renders I ′′ malformed with respect to (1)). An
automatic model repair tool would offer changing b2.c to
an integer less than 5, which can be computed by solving
the constraint b2.c < 5 for the variable b2.c. If this should
prove unsatisfactory, the tool can further offer replacing
b2 in a1.bs with either b1 or b3, or adding at least one
of the two to a1.bs. As above, these corrections can be
computed by solving the constraint ∃b ∈ a1.bs : b.c < 5
for the variable a1.bs; even greater flexibility is granted

5Actually, an OCL interpreter will typically also consumeM, to check the
well-formedness of expression (1).



by allowing new values for b1.c, ..., b3.c, too, which
amounts to solving∨

i=1,2,3

bi ∈ a1.bs ∧ bi.c < 5

(but note that any of these changes may be subject to
other constraints, which need to be considered by the
repair). The mechanics of this derivation will also be
delivered in Section VI, and model repair will also be
performed in Section IX.

• For the purpose of refactoring, we refer the reader to our
earlier work [15], which shows how well-formedness con-
ditions can be lifted to conditions sufficient for behaviour
preservation. For this, our running example is unsuited,
since we cannot associate any meaning to be preserved
with instance I of Figure 1.

Hence, we have that, depending on the specific use, the OCL
expression (1) is rendered to widely differing forms which, as
we will see in Section III, are currently obtained using very
different implementations. What we will deliver in this paper
is a single OCL treatment that covers all uses uniformly. This
treatment will be based on partial evaluation.

III. RELATED WORK

Cabot and Gogolla provide an excellent introduction to OCL
and its many uses [20]. However, despite its undeniable ver-
satility, [18] finds that OCL tools are currently not integrated
into the modeller’s tool chain.

Mapping OCL to other formalisms: As noted in the
introduction, different works use different target formalisms,
notably propositional (as in, e.g., [21]), sorted (e.g., [8]), de-
scription (e.g., [22]), first- (e.g., [6], [23], [24]), or higher-order
logic (e.g., [10], [25]); or to constraint-logic programs (e.g.,
[7]). While such mapping is, for most parts, straightforward,
the two features requiring special attention are the treatment of
navigation (or path) expressions (which includes the problem
of properties having [0, 1] and *, rather than [1, 1], multiplici-
ties), and the handling of uncertainty, amounting (since OCL
2.4) to a four-valued logic [8]. Different multiplicities can be
handled alike by a mapping that treats scalars as singleton
sets and hence unifies the representation of [0, 1], [1, 1], and *
(such as the relational logic of Alloy; but see [23], [26] for the
problems that this causes). Adding four-valued logic to address
uncertainty complicates the mapping to standard logic (which
is required by standard reasoners), but is otherwise orthogonal
to partial evaluation as we propose. A further challenge arises
when property values are variable, thereby requiring special
handling of chained property access. If the target formalism
does not support indirection through unknowns, designated
case analyses are to be introduced [15], which complicate
matters considerably (we dedicate the entire of Section VII
to this problem).

Verification: The use of OCL in verification of mod-
els has been systematically reviewed in [18]. One finding
is that performance of verification tools drops dramatically
when the models get larger. This, of course, is owing to the

exponential nature of the underlying problem, and can only
be fundamentally improved by giving up completeness or
reducing the degree of variability in the sought models. The
reduction of the combinatorial explosion plaguing translations
from OCL to SAT problems (as undertaken for model finding)
when some variable values are known in advance (specifically:
when the metamodel marks some properties as unchanging
for all instances), has also been addressed by recent work [9],
but the treatment remains cursory (although some similarities
can be identified, e.g., the use of shortcut optimizations; see
Section VI). Cabot et al. have shown how OCL expressions
can be translated to constraint-logic programs [7]; list variables
of the target language are used to model the extensions of
classes and associations where the number of elements in each
list is bounded to ensure termination. By contrast, we cast
the transformation of OCL expressions to first-order formulae
in terms of partial evaluation, without tying it to a specific
target formalism (such as SAT or SMT), let alone a concrete
implementation.

Partial evaluation: A partial evaluator (or program spe-
cializer) is a metaprogram which processes a program and
its known input (the so-called static variables), and gener-
ates a specialized program (the so-called residual program)
parameterized in the remaining input (the so-called dynamic
variables). In the residual program, computations on just
static variables are eliminated [16], [17], [27], [28], [29].
For instance, a partial evaluator presented with the program
if x>y then (1+y)/x else y and static input 0 for
y produces the residual program if x>0 then 1/x else
0.An offline specializer performs an extra binding-time anal-
ysis to distinguish eliminable versus residual constructs [29].
An online specializer makes decisions in a single pass. Our
development uses the flexible online scheme, as we did not
encounter any termination issues that would call for offline
partial evaluation. A special use case of partial evaluation
is to specialize an interpreter by a program, thereby serving
compilation [16].

Transferring the idea of partial evaluation to OCL would
mean that some or all instances (objects) and some or all of
their properties are ‘dynamic’. While a regular OCL evaluator
would return a Boolean value for checking an invariant, a
partial evaluator would thus return a formula over appropriate
instance and property variables. A central aspect of OCL
specialization concerns iteration over sets (or collections;
including quantification), which is similar to loop unrolling
in program specialization [27]. A specific challenge of OCL
is chained property access (in so-called path expressions),
informal treatise of which we find in [9], and which we treat in
terms of partial evaluation in Section VII. Partial evaluation for
OCL has already been studied in a models@runtime context
by Song et al. [30] where specialization helps with making
constraints of adaptation policies more manageable for SMT
use at runtime, without though exercising the scale of valida-
tion, finding, and completion with application to a larger-scale
problem. The simplification of OCL constraints, with focus on
redundancy, when constraints are instantiated from templates,



has also been addressed by techniques other than partial
evaluation—in particular, by rule-based approaches [31], [32].
Partial evaluation combined with simple rule-based optimiza-
tion directly provides an efficient model validation, finding,
and completion approach, as demonstrated by our implemen-
tation (Section VIII) and case study (Section IX).

Previous work by the authors: In our own prior works
([12], [15]), we showed how first-order logic specifications
paired with constraint solving can be used for model comple-
tion, model refactoring, and model repair. All three uses rely
heavily on the assumption that most properties of models are
fixed (static), and only few are variable (dynamic). However,
constraint generation was delegated to Refacola, an infrastruc-
ture developed for the constraint-based refactoring of programs
[33]. Refacola comes with its own constraint language (so-
called constraint rules, which have been used for constraint-
based refactoring from its beginnings [34] and which are
vastly different from OCL invariants) and uses elaborate
algorithms for generating only the constraints required. In the
present paper, we use OCL as our specification language and
we formalize constraint generation within the framework of
partial evaluation, thereby arriving at a systematic generation
process profiting from a long line of research done in the
context of compiler optimization. An early draft of a rule-
based translation process of OCL constraints into constraint-
satisfaction problems was presented at an OCL workshop [35],
without use of partial evaluation, though.

The evaluation scenario used in this paper (Section IX)
also served the first two authors’ recent work on repairing
malformed programs using constraint attribute grammars [36].
Attribute grammars are vaguely related to OCL expressions in
that they express equations (constraints) on attributes attached
to the nodes of a syntax tree, where the nodes correspond
to instances of the classifiers of a model, and the attributes
correspond to properties attached to the instances. However,
[36] neither used OCL, nor did it utilize partial evaluation to
generate the constraints needed.

IV. REGULAR EVALUATION

We begin the development of the partial evaluator for OCL
with departing from a regular evaluator. For reasons of brevity
and understandability, we limit the formal development here
to the OCL fragment of Figure 3; our mechanized Haskell
development covers a larger OCL subset; our implementation
(Section VIII) covers OCL up to the point needed in the case
study.

Inspired by [37], we specify regular evaluation for OCL by a
big-step operational semantics; see the deduction rules in Fig-
ure 2. OCL expressions like (1) are evaluated in the context of
an environment E which is actually of the form 〈EI , EP , EV〉,
i.e., there are three function components: EI(C) for the
extensions of classifiers C, [C] (i.e., C’s instances, a set of
objects); EP(o, p) for the values of properties p of objects o;
and EV(x) for the values of OCL variables x, i.e., iteration
variables and self.

Applied to invariant (1) and I of Figure 1, the operational
semantics assigns true , meaning that I is indeed well-formed.

V. SYMBOLIC EVALUATION

The initial assumption of setting up partial evaluation for
OCL is that the environment components EI and EP map
classifiers C and properties of objects o.p to unknowns, that
is, to designated dynamic variables with appropriate domains,
rather than to sets of instances and values, resp., as they did
for regular evaluation. We write JCK for the variable to which
C, and Jo.pK for the variable to which o.p, is mapped. We
use the term “dynamic variable” here in the sense of partial
evaluation as a variable in a program (expression) that is not
known at specialization time. By contrast, the OCL variables
mapped by EV correspond to static variables; they are known
at specialization time. Specifically, the environment EV holds
OCL variables (iteration variables and self), just as in the case
of regular evaluation.

Because of the required boundedness, we assume for each
classifier C from M a finite repository [C] = {oC1 , ..., oCn } of
instances; EI thus maps C to a variable whose domain is 2[C].
Such variables parameterize over the instances of classifiers
constituting a sought model I. Analogously, since we do not
know the values of properties, either, EP maps a property oCi .p
to a variable with a domain given by M, i.e., the domain of
p as specified by its declaration in classifier C. We write [ψ]
for the domain (set of all possible values) of a variable ψ,
and additionally for many-valued variables, bψc for the base
domain (the potential members of the set that is the value of
ψ). For instance, we write [Ja1.bsK] = 2[B] for the domain of
the variable representing a1.bs, and bJa1.bsKc = [B] for the
base domain of ψ.

Because of the introduced variables, the computations per-
formed by the regular evaluator specified in Figure 2 are no
longer feasible. For instance, as o.c maps to a variable, we
cannot compute a truth value for o.c < 5. Thus, we need to
specify a symbolic evaluator which computes terms τ rather
than values for OCL expressions and formulae Φ rather than
truth values for OCL formulae (invariants). The syntax of the
resulting formulae and terms is described in Figure 4; we refer
to the corresponding language as our Intermediate Constraint
Language (ICL).

ICL is an artefact of OCL evaluation in the presence of
variables, as opposed to an arbitrary choice made by these
authors. That is, ICL has constructs for the evaluation or
symbolic representation of various OCL constructs, e.g., <, ∧,
and ∨. OCL’s quantifiers in inv and exists are eliminated with
the help of ∈, ⇒, and = (which also have correspondences
in OCL). ICL is thus a quantifier-free, first order logic with
theories (integer, set), which is close to the formalisms used
by various technologies serving the different uses of OCL
(cf. Introduction and Section III). For the use of a particular
technology (a specific constraint or SMT solver), ICL expres-
sions may still need to be mapped to the corresponding input
languages, but compared to mapping OCL to these languages,
this mapping is a very small one.



(〈EI , EP , EV [self 7→ o]〉 ` φ ↓ bo)o∈EI(C)

E ` context C inv I : φ ↓
∧

o∈EI(C)

bo
(E-INV)

E ` e ↓ {o1, ..., on} (〈EI , EP , EV [x 7→ oi]〉 ` φ ↓ bi)1≤i≤n

E ` e->exists(x|φ) ↓ b1 ∨ ... ∨ bn
(E-EXISTS) E ` x ↓ EV(x) (E-VARACC)

E ` self ↓ EV(self) (E-SELF)
E ` e ↓ o

E ` e.p ↓ EP(o, p)
(E-PROPACC)

E ` el ↓ vl E ` er ↓ vr
E ` el < er ↓ vl < vr

(E-LT)

Fig. 2. Rules of a regular OCL evaluator (excerpt). v represents values, o objects (in fact, object ids) as a form of values, and b boolean values. Note that
expressions on the right of ↓ are expressions over the semantic domains; e.g., ‘∧’ means Boolean conjunction and ‘<’ means integer less-than. Evaluation
of these expressions is taken for granted. Also, note that we assume set-based semantics here for simplicity. In particular, the result of evaluating e in
e->exists(x|φ) is viewed as a set (as usual, receiver expressions e with multiplicity [0, 1] or [1, 1] are implicitly coerced to sets). The treatment of aggregates
would additionally require list-based semantics; see, e.g., [26] for a treatment of OCL’s collection types in the context of logic.

Inv ::= invariants:
context C inv I : φ context condition

φ ::= formulae:
e->exists(x|φ) exists

| e < e less than
e ::= expressions:

| e.p property access
| x | self variable access
| l integer literal

Fig. 3. OCL syntax (excerpt)

Φ ::= formulae:
b Boolean values

| τ < τ less than
| ¬ Φ negation
| Φ ∧ Φ conjunction
| Φ ∨ Φ disjunction
| Φ⇒ Φ implication
| o ∈ ψ membership constraint
| ψ = o equality constraint

τ ::= terms:
l integer literal

| o object (id)
| ψ dynamic variable

Fig. 4. The first-order logic (ICL) required for symbolic evaluation.

We specify symbolic evaluation for OCL by translation
semantics mapping OCL constraints to ICL; see the rules in
Figure 5. Rules (T-INV) and (T-EXISTS) state that symbolic
evaluation unrolls quantified expressions without though as-
suming that the underlying sets are known, only assuming
them to be bounded. Note how the rules for symbolic evalua-
tion parallel those for regular evaluation (Figure 2); the main
differences are that the sets of instances iterators range over
are taken from the repository of potential instances with guards
added to check their membership in variables with a power-set

domain: In the case of context C inv I : φ, the instances are
drawn from the repository [C]; in the case of e->exists(x|φ),
the instances are drawn from bψc, the potential members of
the value of ψ, where ψ is the variable to which e is evaluated.

Applied to invariant (1) and the model M of Figure 1 with
|[A]| = 2 and |[B]| = 3, we get the formula

∧
i=1,2

oAi ∈ JAK⇒
∨

j=1,2,3

oBj ∈ JoAi .bsK ∧ JoBj .cK < 5

 (2)

Note that all quantifications have been unrolled; however,
unlike for evaluation, they are not unrolled over sets derived
by prior (recursive) evaluation, but over the full domain of
variables (self and x in our example). For inv (corresponding
to universal quantification), this means that each conjunct must
be guarded with membership in the set of instances of the
context classifier (which is a variable; o ∈ EI(C) ⇒ Φo
in (T-INV)). For exists, this means that each disjunct must
be conjoined with a membership constraint (o ∈ ψ in (T-
EXISTS)), meaning that the quantified constraint is applied
only in those cases in which the object turns out to be a
member of the set according to a variable assignment.

An ICL formula with the assumed domains for the involved
variables defines a constraint satisfaction problem (CSP) [38].
A constraint or SMT solver can thus compute solutions for
ICL expressions such as (2), of which I of Figure 1 is one.

Note that, because the partial evaluatoris obtained by a
number of small-scope revisions on the regular interpreter,
we can rest confident that it is soundwith respect to regular
evaluation: assuming compositionality of the definitions, we
are permitted to reason modularly about correctness, e.g., of
the shortcut optimizations introduced next.

VI. PARTIAL EVALUATION

In a technical sense, the symbolic evaluator, as developed
thus far, is already a degenerated partial evaluator, as it caters
for dynamic variables (EI and EP ) and it constructs residual
formulae according to the ICL syntax. The symbolic evaluator



(〈EI , EP , EV [self 7→ o]〉 ` φ −→ Φo)o∈[C]

E ` context C inv I : φ −→
∧
o∈[C]

o ∈ EI(C)⇒ Φo
(T-INV)

E ` e −→ ψ (〈EI , EP , EV [x 7→ o]〉 ` φ −→ Φo)o∈bψc

E ` e->exists(x|φ) −→
∨

o∈bψc

o ∈ ψ ∧ Φo
(T-EXISTS) E ` x −→ EV(x) (T-VARACC)

E ` self −→ EV(self) (T-SELF)
E ` e −→ o

E ` e.p −→ EP(o, p)
(T-PROPACC)

E ` el −→ τl E ` er −→ τr

E ` el < er −→ τl < τr
(T-LT)

Fig. 5. Rules of a symbolic OCL evaluator (excerpt). Note that expressions on the right of −→ are symbolic computations, i.e., terms and formulae constructed
by the evaluator. Unlike for Figure 2, symbolic computations are not (immediately) evaluated. Note that the notation is overloaded. In particular, we use ‘<’
for OCL’s comparison operator, the assumed operation on integer values (in Figure 2), and the symbolic operation on terms as a form of ICL formula (in
this figure). For (T-EXISTS), the remarks on (E-EXISTS) apply accordingly. Finally, note that (T-PROPACC) makes a simplifying assumption that the receiver
expression of property access evaluates to an object; we lift this restriction in Section VII (and add the case that e evaluates to many objects in Section IX).

makes no effort however to perform actual computations,
where possible. Let us now derive a useful (proper) partial
evaluator.

A partial evaluator should use result types that subsume
those of a regular evaluator and extend them to permit gen-
eration of residuals. We note that the regular evaluator maps
expressions to either integers l or objects o. These cases are
covered by ICL’s terms τ . Further, the regular evaluator maps
OCL formulae φ to Boolean values b; these cases are covered
by ICL’s formulae Φ.

In this manner, we are ready to match on operands that
are values and to compute results that are values, while we
fall back to the symbolic cases where necessary. Thus, we
submit that all operator symbols used in deduction rules are
interpreted to behave as in the case of the regular evaluator
whenever possible. For instance:

τ1 < τ2 =

{
l1 < l2 if τ1 = l1 and τ2 = l2
τ1 <ICL τ2 otherwise

Here, we use the ICL subscript for disambiguation to express
that the symbol < is taken from ICL syntax. In the same
manner, we also set up interpretations of conjunction, disjunc-
tion, and implication. These interpretations also incorporate
common shortcut rules, thereby facilitating optimization of
residual constraints. For instance, conjunction is interpreted
on ICL’s formulae as follows:

Φ1 ∧ Φ2 =


false if Φ1 = false or Φ2 = false
Φ2 else, if Φ1 = true
Φ1 else, if Φ2 = true
Φ1 ∧ICL Φ2 otherwise

As a result, shortcut optimizations are performed along
with partial evaluation as opposed to a separate optimization,
thereby helping to keep the overall problem tractable with
regard to the size of ICL representations, as we discuss in
Section IX. Interpretations like those above, with shortcuts
included, can be implemented as “smart constructors” in the

partial evaluator, i.e., the optimizations are conducted right
when the terms are constructed.

To arrive at a useful partial evaluator for OCL, we also need
to mix the environments for regular and symbolic evaluation
as follows:
• We subdivide EI further into EI ,σ and EI ,δ , where
EI ,σ(C) maps C to a set of known (static) instances
(just like EI in the regular evaluation of Section IV),
and EI ,δ(C) maps C to a dynamic variable (just like EI
in Section V for translation).

• EP maps each object-property pair o.p to either a value
v or a variable ψ, depending on whether o.p is static or
dynamic.

• EV is the same as in Sections IV and V.
In this manner, we can deal with a partially known model
instance (comprised of static and dynamic objects with static
and dynamic properties), thereby addressing, for example,
the use case of model completion. Regular evaluation would
fail when the environment does not provide values for some
relevant classifiers or properties. Symbolic evaluation would
not fail in such cases; translation could, in theory, commence
with assuming everything to be dynamic, subject to subsequent
instantiation of the variables with known values (which may
however be restrained in practice by memory limits; see
Section IX). Partial evaluation uses known values upfront for
computing smaller residual formulae.

The deduction rules for partial evaluation are provided in
Figure 6. In fact, we only show rules for inv and exists, as the
remaining rules are the same as in the case of symbolic evalu-
ation (Figure 5), except that we assume a partially evaluating
interpretation for all ICL constructs, as discussed above. Rule
(PE-INV) splits up the conjunction for “all instances” so that
there is a part for all “known instances” (EI ,σ(C)) and a part
for “potential instances” ([EI ,δ(C)]). Only the conjuncts in the
second part need to be constrained by an extra membership
constraint.

There are two rules for exists. Rule (PE-EXISTS1) deals



(〈EI , EP , EV [self 7→ o]〉 ` φ↘ Φo)o∈(EI ,σ(C)∪[EI ,δ(C)])

E ` context C inv I : φ ↘
∧

o∈EI ,σ(C)

Φo ∧
∧

o∈[EI ,δ(C))]

o ∈ EI ,δ(C)⇒ Φo
(PE-INV)

E ` e↘ {o1, ..., on} (〈EI , EP , EV [x 7→ oi]〉 ` φ↘ Φi)1≤i≤n

E ` e->exists(x|φ) ↘ Φ1 ∨ ... ∨ Φn
(PE-EXISTS1)

E ` e↘ ψ (〈EI , EP , EV [x 7→ o]〉 ` φ↘ Φo)o∈bψc

E ` e->exists(x|φ) ↘
∨

o∈bψc

o ∈ ψ ∧ Φo
(PE-EXISTS2)

Fig. 6. Rules of a partial OCL evaluator (excerpt).

with the situation inherited from regular evaluation such that
e in e->exists(x|φ) evaluates to a set of objects whereas rule
(PE-EXISTS2) deals with the sitution that e evaluates to a
variable ψ and thus, the operands of the disjunction have
to be conjoined by membership constraints, as in the case
of symbolic evaluation. Here, we iterate over the potential
members of ψ, bψc.

For instance, in our running example, if all instances of
A and B, as well as the properties bs for all instances of
A, are fixed to the values given by I of Figure 1, while the
properties c are variable for all instances of B, we get the
residual formula

(Jb1.cK < 5 ∨ Jb2.cK < 5) ∧ (Jb3.cK < 5)

which may be used for fixing model instances violating
invariant (1) (see Section II) by changing the values of c. Al-
ternatively, if the properties bs are variable and the properties
c are fixed to the values of I, we get the residual formula

(b1 ∈ Ja1.bsK ∨ b3 ∈ Ja1.bsK) ∧ (b1 ∈ Ja2.bsK ∨ b3 ∈ Ja2.bsK)

(b2 has been dropped from the disjunctions since b2.c 6< 5)
which may be used to fix problems by adding instances of
B to bs (again, see Section II). Note that both residuals can
be further reduced by fixing properties not involved in the
problem, for instance b1.c and b3.c, or a2.bs.

VII. PATH EXPRESSIONS

In the discussion so far, we have glanced over one com-
plication: expressions of the form e.p where e evaluates to a
variable. Rule (T-PROPACC) in Figure 5 did not yet admit
this case, as we insisted that e evaluates to an object o.
The situation with such a variable receiver expression occurs
when we use chains of property accesss in so-called path
expressions with variable properties, even when starting from
a receiver that evaluates to an object. Consider, for example,
the OCL expression e.p.p′ with e evaluating to an object o,
p being a variable property, and p′ being a known property.
When evaluating e.p, we return the corresponding variable
EP(o, p) = ψ. When evaluating ψ.p′, we need to unroll ψ
and return a collection of results.

This is the essential change to be applied to the partial eval-
uator of Figure 6: expression evaluation returns a collection of
ICL terms as opposed to a single term; all uses of expression
evaluation need to be lifted to process collections. In fact, each
ICL term must be accompanied by an ICL formula stating the
guarding condition for the term to be considered.

Consider the OCL formula e.p.p′ < 42. Let us assume that
e evaluates to o, EP(o, p) = ψ, and the domain of ψ is the set
of objects o1 and o2 with EP(o1, p

′) = 41, EP(o2, p
′) = 43.

The OCL expression e.p.p′ is thus evaluated to this collection:

{〈ψ = o1, 41〉, 〈ψ = o2, 43〉}
The formulae constrains use of the term in a formulae

context. Let us complete the partial evaluation of the OCL
formulae e.p.p′ < 42. As before, we map OCL’s < to ICL’s
<, but we lift the construct to collections; the multiple terms
for the left operand are combinatorially combined with the
single term (42) for the right operand in a conjunction with
the guarding formulae in implications. Thus:

((ψ = o1)⇒ 41 < 42) ∧ ((ψ = o2)⇒ 43 < 42)

The shortcut interpretations for ICL symbols imply this sim-
plification: ψ 6= o2. Formally, the partial evaluator’s deduction
rule for property access changes as follows:

E ` e↘ ts

E ` e.p ↘ dot(E, ts, p)
(PE-PROPACC)

The operation dot on terms is defined as follows:

dot(E, ts, p) =
⋃
〈Φ,τ〉∈ts tsΦ,τ

where

tsΦ,τ =


{〈Φ, EP(o, p)〉},

if τ is of the form o
{〈Φ ∧ (ψ = o), EP(o, p)〉 | o ∈ [ψ]} ,

if τ is of the form ψ

All rules defining or using expression evaluation must be
systematically lifted to collections. For instance:

E ` self ↘ {true, EV(self)} (PE-SELF)

E ` el ↘ ts l, er ↘ tsr

E ` el < er ↘ lt(ts l, tsr)
(PE-LT)



The operation lt on terms is defined as follows:

lt(ts l, tsr) =
∧

〈Φl,τl〉∈tsl

∧
〈Φr,τr〉∈tsr

(Φl ∧ Φr)⇒ (τl < τr)

The treatment of path expressions, as described above, only
covers single-valued expressions. Many-valued expressions
necessitate some additional provisions in interpretation. In
particular, OCL’s flattening semantics must be incorporated,
as shown, e.g., in [15].

VIII. IMPLEMENTATION

Both the big-step semantics of Figure 2 and the transla-
tion rules of Figure 5 provide blueprints for straightforward
implementations of OCL interpreters and translators, resp. In
fact, with the modifications presented in Section VI, it is not
difficult to implement a partial evaluator for OCL. As a proof
of concept, we implemented the partial evaluator of Section VI
(translating to ICL) in Haskell (see Footnote 4).

For a more complete coverage of OCL (including forAll,
select, reject, collect, includes, includesAll, isEmpty, let, and
access of many-valued properties; select, reject, and collect
may also occur in path expressions), and also to be able to
evaluate our partial evaluator for OCL on a large scale, we
have also implemented it in Java. Our implementation builds
on the Eclipse OCL implementation and uses the Eclipse
Modelling Framework (EMF) for the internal representation
of models and their instances. As described before (and like
our Haskell implementation), the partial evaluator translates to
ICL; to make use of its translations, we have also implemented
a translator from ICL to Choco (http://www.choco-solver.org/),
an off-the-shelf constraint solver. This implementation is the
basis of our large-scale evaluation presented in Section IX.

IX. EXPERIMENTAL RESULTS

While the small scope hypothesis [39] suggests that for
model finding, small instances are sufficient, for literally all
other uses of OCL specifications, model instances are typically
large. Therefore, we evaluate our partial evaluator in the
context of large instances which, due to the notorious absence
of “real” models suitable for experimentation in the modelling
domain, we find in the form of open-source Java programs.

The model instances we are using are Java programs using
the Java Persistence API (JPA) [40]. The JPA is comprised of
a set of methods to be invoked for storing and retrieving object
graphs in a relational database, and a set of Java annotations
to be used for directing the mapping between objects and
rows of the database. Use of the JPA is subject to complex
conditions, the statically checkable part of which we have
extracted from the JPA standard to 76 OCL invariants and
derivation rules [41].

Two of the identified OCL invariants are shown in Figure 7;
note that both invariants do not only refer to JPA annotations
(expressed as jpa-prefixed properties of type and field decla-
rations), but also to properties of the annotated Java program
(such as a class’s constructors, their accessibility or a field’s
declared type). The UML (Ecore) modelM in whose context

the invariants and derivation rules are defined is shown in
Figure 8. Each of our subject JPA programs is an instance I of
this model, so that we can statically check these programs for
the correct use of JPA annotations (which is otherwise only
done at run-time) using our regular evaluator.

Totally evaluating our identified 76 OCL expressions on
the subject programs of Table I as described in Section IV
detects a total of 404 JPA specification violations. The time our
implementation requires for this is plotted in Figure 9, which
shows the number of expressions evaluated (in thousands, up
to 1.3 million) on the abscissa, and which contrasts this time
with that required by the original Eclipse OCL evaluator. As
can be seen, our implementation (which serves translation and
partial evaluation as well) is competitive throughout.

Totally translating them, or symbolic evaluation with the
extensions of all classifiers in EI and all properties in EP
dynamic as described in Section V, is of little interest, since
we already know that there are programs satisfying the JPA
specification (although in our sample, we have only a single
instance, below we will show how we created many more by
means of repair). Also, given that our OCL invariants do not
cover the well-formedness conditions of Java [42], we cannot
expect that the found instances are valid Java programs.

Partial evaluation as in Section VI, on the other hand,
with static EI , and all Java properties in EP static, but JPA
properties dynamic (giving us a mixed environment as in
Section VI), is useful, for instance to compute all legal JPA
annotations of a naked Java program, which serves model
completion. The results of the ensuing partial evaluations
are also summarized in Table I, which provides the number
of syntax nodes in the generated ICL expressions (under
“Model Completion”). The column labelled “without” shows
the number of nodes that would have been generated without
the shortcut optimization (smart constructors) of the ICL
operators of Section VI. Note that partial evaluation with all
properties in EP dynamic and simplifying the so-obtained
ICL expressions after substituting variables with values where
known (as considered as an alternative in Section VI), turned
out to be unfit for a comparison — we were unable to produce
numbers here, as the translation exceeded the capabilities of
our hardware.

While the partial evaluation leading us to the exclusive cov-
erage of JPA annotations exploited the fixation of properties
applied to all instances of given classifiers (e.g., all types
of fields or all names of classes), partial evaluation shows
its full potential only when changeability of properties varies
individually. This is the case, for instance, when we attempt to
repair the found errors in the use of JPA annotations. However,
for repairs of this kind, we must not only consider the con-
flicting properties as dynamic (so that constraint solving can
compute new values for them), but also the properties directly
or indirectly constraining them (cf. the example in Section II).
We have therefore applied partial evaluation to each of the
404 errors in our subjects, increasing the number of dynamic



1 context ClassDeclaration inv EntityOrEmbeddableHasNoArgConstructor:
2 (self.jpaIsEntity or self.jpaIsEmbeddable) implies
3 self.constructors->isEmpty()
4 or self.constructors->exists(c | c.parameters->isEmpty() and
5 (c.accessibility = Public or c.accessibility = Protected))

6 context FieldDeclaration inv PersistentFieldMapping:
7 self.jpaIsPersistent implies (
8 (self.referredType.isCommon and NativeTypes->includes(self.referredType.referredCommon))
9 or self.jpaIsOneToOne or self.jpaIsManyToOne

10 or (self.referredType.isCommon and self.referredType.referredCommon.jpaIsEmbeddable)
11 or ((self.referredType.isCommon or self.referredType.isGeneric or self.referredType.isRaw)
12 and self.referredType.referredCommon.implementedInterfaces->
13 includes(java_io_Serializable))

Fig. 7. Two sample OCL invariants for checking JPA annotations

TypeDecl.

name : String
accessibility : Accessibility
jpaIsEntity : Boolean
jpaIsEmbeddable: Boolean
jpaIsMappedSuperclass : Boolean

ClassDecl.

InterfaceDecl.

MemberDecl.

accessibility : Accessibility
isFinal : Boolean
isStatic : Boolean

PrimitiveType

implementedInterfaces

compatibleTypes

ParameterDecl.

name : String

TypeParameter

ownFields

constructors

declaringType

FieldDecl.

name : String
jpaIsId : Boolean
jpaIsOneToOne : Boolean
...

ConstructorDecl.

referredType

typeParameters

superClass superClasses

fields

ownImplementedInterfaces

TypeReference

isCommon : Boolean
isGeneric : Boolean
isRaw : Boolean
isArray : Boolean
isTypeVariable : Boolean

TypeDecl.
referredCommon

arrayedType

TypeParameterBinding
TypeParameter

name : String

boundParameter

argument

typeParameterBindings

referredTypeParameter

Fig. 8. Model of Java programs using the JPA (excerpt)

properties until the error could be fixed by constraint solving.6

Table I, right, shows the average complexity of the constraints
generated per error depending on d, where d is the depth of the
variability, that is, the allowed maximum distance between a
dynamic property and the properties of the violated constraint,
counted as the number of linking constraints. As can be seen,
all resulting CSPs are small initially, yet increase strongly with
increasing d; this is indicative of the combinatorial explosion
introduced by the unrolling required by variable property
access (Section VII). However, all CSPs are small compared
to those obtained by full translation, and certainly manageable
in size. Figure 10 plots complexity of the so-obtained 581
constraints against the number of dynamic properties resulting
from the increasing d; note that the complexity correlates
strongly with the number of dynamic properties.

6For a deeper discussion of what constraint-based repair can achieve,
see [36].
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X. LESSONS LEARNT AND FUTURE WORK

As was to be expected, we found during our experiments
that the handling of variable property access (i.e., property



TABLE I
SUBJECT JPA PROGRAMS, THEIR SIZES, AND RESULTS OF TOTAL AND PARTIAL EVALUATION

# PROJECT MODEL ELEMENTS TOTAL EVALUATION PARTIAL EVALUATION

(Objects) Number of Syntax Nodes in ICL Expressions
Types Fields All* Expressions Errors Model Completion Model Repair (avg. per error)

Evaluated* shortcut optim.* without* d = 0 d = 1 d = 2 d = 3

1 AgileExpress 103 385 4.25 20.9 1 208 276 6 3,806 — —
2 Apache CloudStack 4,429 20,048 215 1,066 19 10,220 13,654 56 580 — —
3 Apache Syncope 591 1,381 18.8 78.2 36 744 991 4 — — —
4 Candlepin 681 1,874 27.3 105 8 986 1,327 97 2,234 7,960 17,800
5 IQSS Dataverse 544 3,184 32.2 168 31 1,683 2,234 123 7,936 118,550 —
6 JawaBot 270 449 7.36 26.9 10 236 322 193 113 — —
7 Kuali Student 1,831 7,993 116 428 48 4,034 5,445 18 1,779 — —
8 LMCO EurekaStreams 4,121 7,369 58.9 421 91 3,890 5,233 9 246 2,869 74,255
9 Offene-Pflege.de 1,470 4,323 34.6 238 15 2,074 2,861 12 200 — —

10 OpenMeetings 343 1,883 24.8 99.7 12 955 1,280 9 1,418 — —
11 OpenOLAT 5,667 24,558 264 1,312 89 13,085 17,256 12 3,455 33,227 50,361
12 OPF Labs Planet Suite 826 3,292 38.9 178 33 1,666 2,251 14 1,366 23,184 62,393
13 QCRI AIDR 693 2,552 32.8 138 11 1,298 1,758 69 517 — —
14 Tudu 35 78 1.19 4.52 0 43.1 57.4 — — — —

* in thousands
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Fig. 10. Complexity of constraints for fix-specific CSPs obtained by using
partial evaluation

access via expressions whose value is not known statically;
Section VII) is critical for translation and partial evaluation:
With no restrictions on the domain of the receiver expression
e of a property access e.p, all instances of e’s type must be
considered which, for large models like those of our case
study, are in the tens of thousands (see Table I). Complexity
tends to explode when variable receivers are chained (as in
e.p.p′, when the values of neither e nor p are known statically)
or expressions contain several variable property accesses (as in
el.pl < er.pr, when the values of neither el nor er are known
statically). In these cases, translation or partial evaluation may
fail due to space restrictions.

Some of these problems can be avoided by eliminating
variables via careful invariant design. For instance, if we have
a derived property p of classifier C whose value is defined by
the derivation rule

context C ::p derive : if self.x then self.y else self.z endif

and an invariant

context C inv : self.p.c < 5

using p, then partial evaluation of the invariant would unroll
over the domain of C ::p as long as p is dynamic, regardless
of whether x, y, or z are. This can be avoided by inlining the
derivation rule in the invariant, as in

context C inv : if self.x then self.y.c else self.z.c endif < 5

which does not require unrolling if y and z are static. However,
optimizations of this kind should be left to the partial evaluator.

Generally, if the dynamic variables involved in a receiver
expression are additionally constrained by other expressions,
these constraints may reduce the domain of the variable
receiver, and therefore the complexity induced by unrolling.
For instance, for the model M and instance I of our running
example (Figure 1), partially evaluating the invariant I of (1)
in Section II and the invariant

contextA inv J : self.bs->forAll(b|b.c > 1)

for static extensions of classifiers and static properties c, but
dynamic properties bs, would produce the ICL expression

(b1 ∈ Ja1.bsK ∨ b3 ∈ Ja1.bsK) ∧ (b1 ∈ Ja2.bsK ∨ b3 ∈ Ja2.bsK)

(repeated here from Section VI) for invariant I , and

b1 /∈ Ja1.bsK ∧ b1 /∈ Ja2.bsK (3)

for invariant J . With hindsight, however, partial evaluation of
invariant I on I needlessly unrolls over all instances bi of
classifier B (the potential members of a1.bs and a2.bs, from
which it rules out b2, since it can see that b2.c 6< 5), even
though partial evaluation of invariant J clearly yields that b1
cannot be a member of a1.bs or a2.bs.



A possible solution to this problem is to update the domains
of variables in the environments EI and EP with constraints
such as (3), which would then be used in the unrolling of
constraints yet to be evaluated. However, as can be seen from
the above example, the effect of this critically depends on
the order in which the OCL expressions are evaluated, and
choosing the best order depends on what is static and what is
dynamic. We leave this problem to future work.

XI. CONCLUSION

OCL is arguably the specification language in the modelling
domain. However, despite its demonstrated suitability for
many different purposes, the technical support for the lan-
guage itself still lags behind the state-of-the-art. In this paper,
we have systematically explored partial evaluation of OCL
expressions in the context of a wide array of purposes, ranging
from total evaluation (for validation) to total translation (for
model finding and verification). Our target formalism is not,
as in many other works, that of a specific tool, but rather an
intermediate language that can be seen as a reduced version of
OCL apt for symbolic evaluation. By mapping this language
to a standard constraint solver, we have demonstrated that our
partial evaluation of OCL is practical even for large models.
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