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Abstract

Current database systems cannot only store standard data like integer ,
string , and real values, but also spatial data like points , lines, and regions .
The importance of topological relationships between spatial objects has
been recognized a long time ago. Using the well known 9 intersection
model for describing such relationships, a lot of constellations can be
distinguished.

For the query language of a database system it is not desirable to have
such a large number of topological predicates. Particularly the query lan-
guage should not be extended by a large number of topological predicates.
This paper describes how a database system user can define and use her
own topological relationships. We show algorithms for computing user
defined topological predicates in an efficient way. Last, we compare these
general versions with specialized implementations of topological predi-
cates.

1 Introduction

Besides standard data types, current database systems are able to store different
kinds of information. Among others, it is possible to store spatial data types
like points , lines , and regions . The importance of topological relationships be-
tween spatial objects has been recognized a long time ago. In database systems,
topological predicates are used to find pairs of objects which are in an interest-
ing relationship. In the past, several models describing topological relationships
have been developed. In [6], the emptiness/non-emptiness of the intersections
between the interior and the boundary of the involved objects are used to de-
scribe a topological relationship. The model is called the 4 intersection model.
[5] investigates the possible relationships between regions with holes using this
model. But it omits complex regions with separate components. Instead of
only checking for emptiness of intersections between object components, the
Dimension Extended Method (DEM)[4] defines a topological relationship using
the maximum dimension of any connected point set within such intersections.
Also the problem of too many different topological relationships was addressed.
In contrast, the Calculus Based Method (CBM) uses only a few basic topo-
logical relationships (described in [3]) together with a boundary operator for
providing a user friedly model for querying a database system. The CBM is
applied to complex spatial objects in [1]. Detailed Topological Relationships
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between Composite Regions (TRCR) is the subject of [2]. Here, the number of
topological relationships depends on the number of components of the involved
regions. Therefore the model is inappropriate for extending the query language
of a database system.

In this paper, we use the 9 intersection model [7]. It is an extension of the
4 intersection model. Here not only the emptiness of the intersections between
interior and boundary of a spatial object is evaluated, but additionally the
intersections of all parts of an object with the exterior of the other object.
It uses a boolean matrix to represent a topological relationship between two
spatial objects o1 and o2. The matrix entries indicate the non-emptiness of
the intersection between the interior (o◦), the boundary (δ(o)) and the exterior
(o−1) of the involved objects in the following way:

m(o1, o2) =

(

o◦1 ∪ o◦2 6= ∅ o◦1 ∪ δ(o2) 6= ∅ o◦1 ∪ o−1

2
6= ∅

δ(o1) ∪ o◦2 6= ∅ δ(o1) ∪ δ(o2) 6= ∅ δ(o1) ∪ o−1

2
6= ∅

o−1

1
∪ o◦2 6= ∅ o−1

1
∪ δ(o2) 6= ∅ o−1

1
∪ o−1

2
6= ∅

)

=

(

ii ib ie

bi bb be

ei eb ee

)

where the lower matrix is used as an abbreviation of the upper one within
the remainder of this paper.

For simple spatial objects, only a few topological predicates can be real-
ized. E.g. for two non-empty simple regions (connected areas without holes),
eight topological relationships can be identified. But the number of realizable
topological relationships grows drastically when switching to complex spatial
objects. For example, for two non-empty complex lines (a complex line may
consist of several connected parts each with an arbitrary number of end points),
82 relationships can occur. A detailed analysis of realizable topological relation-
ships applying the 9 intersection model to complex spatial objects can be found
in [15].

Whereas for simple spatial objects, providing a complete set of topological
predicates makes sense, the according set of predicates for complex objects would
be hard to use.

On the other hand, providing a small fixed set of topological predicates for
complex spatial objects would only realize the programmer’s imagination about
the semantics of a topological predicate. For example, it is not clear when an
overlap predicate applied to two region values should return true. Sometimes,
it is sufficient, if both regions have a common 2-dimensional part. In another
context, it may be required that each region also has its own part (i.e. one is
not contained in the other). Different people may have different understandings
of such predicates.

The next problem is the granularity of topological predicates. For example,
it is not clear whether a region should be inside another region if it has no
parts in the other region’s exterior, or has each part of the region in the other
region’s interior (see Figure 1).

Such decisions depend on the applications and the user’s understanding of
topological predicates. For this reason, we will introduce an approach where
the user can define and use her own topological relationships.

[14] presents an implementation for computing topological predicates for
complex regions. Unfortunately, in this paper realm based regions [12] are
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Figure 1: Different relationships or not?
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Figure 2: Different matrices describing disjoint lines

presumed. Such regions are represented by their boundaries, these are sets of
segments. In the realm based approach, these segments must not cross each
other even for different objects. Furthermore, an end point of a segment must
not lie within the interior of any other segment. So, segments are equal or
have at most one common end point. Within a spatial database system (or a
database system extended by spatial features), it is a very hard task to maintain
these conditions.

Within this paper, we present algorithms computing topological relation-
ships between complex objects in an efficient way. We describe, how we can
compute a topological relationship for all combinations of spatial objects, i.e.
point , points , line, and region values. We leave the assumption of realm based
objects and allow segments to overlap or to cross.

The remainder of this paper is structured as follows. In Section 2, we describe
a concept for defining and using topological relationships. In Section 3 we apply
that concept to an existing database system. Section 4 shows algorithms for the
efficient evaluation of topological predicates. We compare the running times
of the proposed general approach with existing specialized implementations for
some topological predicates in Section 5. Finally, Section 6 concludes the paper.

2 Concept

For describing a topological relationship between two spatial objects, we use
the 9 intersection model. Because the number of topological relationships may
be very large depending on the spatial data types, it makes no sense to handle
each of them as a separate topological predicate. Moreover, there are different
matrices describing the same topological relationship (see Figure 2).

On the other hand, the granularity of topological relationships depends on
the application.

We solve these problems by introducing some new data types together with
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a set of operations. The types are int9m, cluster , and predicategroup.
In the following, we denote the 9 intersection matrix for the objects o1 and

o2 by m(o1, o2). An object of type int9m corresponds to a 9 intersection matrix
and describes an exact topological relationship between two spatial objects.

A cluster is a named set of objects of type int9m. It will be used to define
topological relationships by the user. A topological predicate described by clus-
ter c complies with two spatial objects o1 and o2 if m(o1, o2) is contained in c.
For example, we could define a disjoint predicate for two non empty objects
by a cluster containing all matrices with a false entry at the positions ii, ib,
bi, and bb and true entries at positions ie and ei. We can combine different
topological relationships to a single one just by forming the union of matrices
contained in the two corresponding clusters. So we overcome the problem of
granularity.

A predicategroup defines a system of mutually exclusive topological relation-
ships. If several users will use different realizations of topological predicates,
a lot of clusters have to be defined. predicategroups are helpful to control this
large set of clusters.

3 Using the Concept in SECONDO

The concept described above is implemented as part of the Secondo extensible
database system. Secondo is extensible by so-called algebra modules using the
concept of the second order signature [8]. An algebra module provides new data
types together with operators working on them. The data types described in
Section 2 are part of the TopRelAlgebra, where also some supporting operators
are implemented. The TopOpsAlgebra connects the TopRelAlgebra and the
SpatialAlgebra. The SpatialAlgebra provides the spatial data types point ,
points , line, and region . In the TopOpsAlgebra the operators toprel and top-

pred, but no new types are provided.
A value of type point corresponds to a single point in the Euclidean space.

Its interior consists of this point and its boundary is empty. An object of type
points is a finite set of points. The boundary of a points value also is empty.
An instance of type line is a finite set of segments. A line may consist of several
non-connected components, each with any finite number of end points forming
the boundary of the line. Formally, we can define the set of end points of a line
L as:

δ(L) = {e : card({s = (e1, e2) ∈ L|e = e1 ∨ e = e2}) = 1} −
⋃

s∈L

s◦

where s is a segment described by its two end points e1 and e2.
A region is a regular closed point set. The boundary is approximated by

polylines. There are no missing parts within the boundary.
In the following let t1, t2 ∈{ point , points , line, region}. The toprel operator

computes the 9 intersection matrix for two spatial objects. Its signature is
t1 × t2 → int9m. The signature of the toppred operator is t1 × t2×cluster →
bool . It checks if m(o1, o2) is contained in the given cluster.

The toppred operator has a similar functionality as the SDO RELATE

operator of the Oracle Spatial database system [13]. Whereas the SDO RELA-
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Name Signature

union cluster × cluster → cluster
intersection cluster × cluster → cluster
+, - cluster × int9m → cluster
name of cluster → string
contains cluster × int9m → bool
disjoint cluster × cluster → bool
transpose cluster × string → cluster

Table 1: Operations on Clusters

TE operator receives one of a small set of topological predicates (or a disjunction
of them), our operator is more flexible because of the use of arbitrary clusters.

3.1 Defining and Manipulating Matrices

Normally, single matrices are not defined by the user. But they may be helpful
to define and manipulate clusters. In Secondo, an object can be created by a
const construct having the format [const type value valuelist]. For an object
of type int9m there are several possibilities for valuelist. For a matrix m it can
be a list containing the boolean entries of m in the following order: (ii ib ie

bi bb be ei eb ee). As an abbreviation, the concatenation of the entries in the
matrix can also be interpreted as a binary number, so that each matrix can be
described by a unique number in range [0, 511].

3.2 Defining and Manipulating Clusters

A cluster is a named set of matrices describing a topological relationship. It
can be defined directly by writing up the set of contained matrices: [const

cluster value ("name" (m1 m2 ...))], where mi is a matrix description
from Section 3.1. Because it is inconvenient for the user to select the contained
matrices manually, there is an alternative way for describing a set of matrices by
giving the set of matrices as a boolean expression. The basic conditions are ii,
. . . , ee. Each such condition corresponds to a true value at the corresponding
matrix position. They can be combined using and(&), or(|), not(!), → (⇒),
and ↔(⇔) operations and brackets in the usual way.

For example, defining a cluster describing a touches relationship can be
done in the following way. Such a relationship should hold, if the involved
objects have a common boundary but no further common parts. The expres-
sion: [const cluster value ("touches" "bb & !( ii | ib | bi)")] de-
fines the corresponding cluster.

Clusters can be manipulated using the operations from Table 1. The op-
eration union (intersection) creates the union (intersection) of the matrices
of both arguments. The name is taken from the first argument. The opera-
tions +, -, name of, contains, and disjoint should be self-explanatory. The
transpose operator defines a symmetrical relationship by replacing all con-
tained matrices by their transposed counterparts. The string parameter is the
new name of the result. For example, if there is a cluster cl inside defining
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Name Signature

stdpgroup → predicategroup
clustername of predicategroup × int9m → string
cluster of predicategroup × int9m → cluster
sizeof predicategroup → int
getcluster predicategroup × string → cluster

Table 2: Operations on Predicate Groups

an inside relationship, we can create a contains cluster using the command:
let cl contains = transpose(cl inside, "contains"). In general, m(o1,

o2) = transpose(m(o2, o1)) holds. Hence also toppred(o1, o2, cl) = top-

pred(o2, o1, transpose( cl)) holds.

3.3 Defining Predicate Groups

A predicategroup describes a system of mutually exclusive topological relation-
ships. It is realized by a set of disjoint clusters. There are several operators
creating predicate groups from clusters.

Among others, the operator stdpgroup is provided creating a constant
predicate group realizing our imagination of topological predicates. The result
contains eight topological predicates, namely covers, coveredBy, contains,
inside, equal, disjoint, meet, and overlap.

The operator cluster of returns the cluster containing the 9 intersection
matrix given as second argument. clustername of is an abbreviation for
name of(cluster of(g, m)). It is provided just for more comfort. Using the
getcluster operator, we can extract a cluster from a group by its name.

3.4 Using Defined Objects

In this section we illustrate how to use the types and operators from the last
section by some examples.

Queries are formulated using the query language of Secondo’s optimizer [9].
The query language is very similar to SQL but differs in some details. Further
applications of the Secondo system are described in [10].

For the following examples, we use the database “Germany” which is de-
scribed in detail in Appendix C.1.

Example 1: Find out which counties are the neighbours of the county with
name “Magdeburg”.

For better readability, we first extract the cluster describing adjacent spatial
objects from the standard predicate group:

let ’cl_meet = getcluster(stdpgroup(),"meet")’.

In a second step, we define a function object.

let ’myAdjacent = fun(r1 : region, r2: region)

toppred(r1,r2,cl_meet)’.
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Note that the expression “toppred(r1,r2,cl meet)” could also be replaced
by “cl meet contains toprel(r1,r2)”. The reasons for providing an addi-
tional operator are better readability of the queries as well as a speed up by
implementing of an early exit (see Section 4.4). The function object now can
be used like a usual predicate. Of course, these steps must be done only once
for the definition of an topological predicate. Later, the predicate can just be
used without further changes.

We have to tell the optimizer to use the newly defined predicate as a prefix
operator of Secondo. After that, we can use it.

assert(secondoOp(myAdjacent, prefix, 2)).

select kname from kreis where myAdjacent(gebiet,magdeburg).1

Example 2: Which are the counties that contain or touch the river “Rhine”?
This question can be answered by:

let ’cl_intersects =

[const cluster

value ("intersects" "ii | ib | bi | bb")]".

select kname

from [fluss, kreis]

where [fname ="Rhein" ,

toppred(fverlauf, gebiet, cl_intersects)].

Example 3: Which parts of highways are disjoint or completely inside of
“Magdeburg”?

let ’cl_di = getcluster(stdpgroup(),"disjoint") union

getcluster(stdpgroup(),"inside")’.

select [aname,anr]

from autobahn

where toppred(averlauf, magdeburg, cl_di).

By simply defining a new cluster, we can combine two completely different
topological relationships. So, we only have to compute a single topological
predicate. If a fixed set of topological relationships is provided, we would have
to evaluate two different topological predicates and connect their result within
a conjunction. Because the computation of a topological predicate may be
expensive, our approach saves running time in such cases.

But also more unconventional topological relationships can be defined. For
example, if we want to find out whether a river exists which ends within the
county Magdeburg but is not completely inside of that county.

In the relation “Fluss”, rivers are divided into several parts. Hence we use
the relation “Fluss2” where rivers are concatenated.

First, we define the cluster realizing the predicate from our question. Then,
we execute the corresponding query.

1For technical reasons, in Secondo’s SQL-like query language, names of objects (relations)
and attributes are written in lower case.
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let ’cl_ends_in = [const cluster value

("endsIn" "bi & (ie | be)")]’.

select count(*)

from fluss2

where toppred(fverlauf2, magdeburg, cl_ends_in)

first 1.

4 Implementation

4.1 Data Types

For the representation of a 9 intersection matrix, we use a bit vector. The bit
vector is realized using the C++ data type short int. A boolean flag indicates
whether a matrix has a defined value or is undefined.

Because a 9 intersection matrix consists of 9 boolean values, there are 512
possible matrices. So, a cluster can contain at most 512 matrices. This number
is small enough to represent it as a bit vector. The fixed size of the bit vector
has some advantages when storing the object persistently. Inserting, deleting
and check for containedness of a single matrix can be done in constant time.
For the set operations union, intersection and so on, we have to scan the whole
bit vector. Due to the restricted size, this can also be done efficently. For two
different spatial types t1 and t2 the complex algorithms realizing the toprel and
the toppred operators only are implemented in one direction. For example, the
algorithm processing the types line and region is implemented with signature
(line × region × . . . ) but not with signature (region × line × . . . ). Instead,
the toprel operator transposes the result after calling the algorithm and the
toppred operator transposes the argument cluster. Hence, transposing of a
cluster is a frequently needed operation. To accelerate it, we also store the bit
vector representing the transposed cluster and swap them for transposing.

A predicate group is realized by a DBArray, a data type realizing a persistent
vector. The DBArray is provided by the Secondo system. The single entries
are stored sorted by their names. An additional cluster contains all matrices
which are not defined explicitly by the user.

4.2 Used Spatial Data Types

To understand the algorithms computing the 9 intersection matrix for two spa-
tial objects, we have to clarify the data structures of the spatial types. A point
is just a pair of real coordinates together with a flag for the defined state. A
value of type points represents a set of points. It is realized by a DBArray where
the single points are stored in (x,y)-lexicographical order.

A line represents a set of segments. Each contained segment is stored as
two halfsegments. A halfsegment is a segment with a signalized point called the
dominating point. The halfsegments are stored sorted where the first criterion
for sorting is the dominating point. Thereby each segment is reached twice
during a single scan of all halfsegments. First, we hit the left end point of the
segment and later the right one. The second criterion is the slope of the segment.
So for halfsegments having the same dominating point, the one having a smaller
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y value at the right of the dominating point will be the smaller halfsegment.
By this representation, we avoid the expensive creation of an explicit event
structure for plane sweep algorithms. The disavantage is the doubled stored
data size. line values are not restricted to have a fixed number of end points
and can consist of several components. Unfortunately, our line representation
also allows crossing or overlapping segments which must be handled by some
special cases in the algorithms.

For a region , we store its boundary as halfsegments. For the region type,
halfsegments are extended by a flag insideAbove indicating where the inner
part of the region is. Within a representation of a region, both, overlapping and
crossing segments, are not allowed.

4.3 Algorithms

In this section we describe how the topological relationship between two spatial
objects can be computed. We will only present the main part of the algorithms.
In the actual implementation, in a preliminary step, checks for emptiness and
disjoint minimum bounding boxes are performed (see also Section 4.5).

4.3.1 point × point

This combination is very easy to handle, because two single points can only
be equal or not. To compute the result, we have just to check it and to set
the appropriate entry of the resulting matrix to true. So, the result can be
computed in constant time.

4.3.2 point × points

Because the points are stored sorted, we perform a binary search, to find out,
whether the point is part of the points value. Then, we set the corresponding
matrix entries to true. Because of the binary search, the result is computed in
O(log(n)) time, where n is the number of points contained in the points value.

4.3.3 points × points

Again, we benefit from the sorted storage of the entries for a points value. To
compute the result, we do a parallel scan and set the matrix entries to the
correct values. Because only entries at the matrix positions ii, ie, and ei can
be found during this scan, we can stop the process when these entries are all
set to true. Here, the running time is O(m + n) time, where n and m are the
sizes of the arguments.

4.3.4 point × region

Here, we use a usual plumb line algorithm to find out, where the point is located
with respect to the region. The running time is proportional to the number of
halfsegments contained in the region’s representation.
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4.3.5 points × line

For the combinations point × line and points × line, the same algorithm is
used. The complete algorithm can be found in Appendix A.

The event structure of the algorithm consists of three parts, the halfsegment
array of the line value, the point array of the points value, and a priority queue
q containing halfsegments coming from split operations of original halfsegments
(see below). A function selectNext is used to get the smallest entry from the
three parts. It returns first, if the next segment comes from the points value,
second if the next segment is part of the line, or none if all parts are empty.
The value of the next element is returned in the parameter s. If a point is the
result, s contains a degenerated segment.

As a status structure, we use an ordinary AVL-Tree. It only stores segments
of the line. The segments are ordered by their y coordinate with respect to the
current x coordinate. We disallow overlapping or crossing segments within the
tree. This is achieved by splitting such segments. If a segment was splitted, only
its left part is stored in the tree. The remaining part is moved into a priority
queue for later processing. As for halfsegments, the slopes of segments are used
as second criterion for sorting them within the tree. Overlapping segments
are assumed to be equal. If we come to a right end point it may be that the
corresponding segment is not stored in the tree because we were required to
split it. But it will overlap a part which comes from split operations. For this
reason, we have to check the exact equality (both end points are equal) of the
segment in the tree and the currently processed segment.

The dominating points of the halfsegments are candidates for the line’s
boundary. We use the variable count to count how often a point was hit by
such a dominating point. If the number of hits is one, this point is part of the
boundary of the line. A number greater than one indicates a point within the
interior of this line.

When the next event is launched by the points value, we check, if the current
point is equal to the last dominating point. If so, we set the appropriate entry
depending on the value of the counter within the matrix to true. If not, we
look whether the point is located on a segment stored in the tree. If we can find
such a segment, the point is located in the interior of the line, otherwise in its
exterior. If the next event comes from the line, we perform required splits and
insert the segment into the tree. Additionally, we also update the information
about the last dominating point (ldp) and change the matrix content if needed.

4.3.6 line × line

The algorithm used here is very similar to the points × line combination. For
this reason, we just describe the differences instead of writing up the complete
algorithm. Segments are extended by an attribute describing their owner. Pos-
sible values are first, second, and both. For the last dominating point, we
now use a separate counter for each line. The update of the counters and the
associate handling of the lines’ boundaries is done in the obviously way. The
right parts resulting from split operations are stored in two separate priority
queues (one for each line). When a right end point is processed, we remove
the corresponding segment from the sweep status structure and split the neigh-
bours if required. We ignore segments not having an equivalent in the tree.
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Figure 3: All intersections for crossing segments

Such segments have been splitted in some steps before but the corresponding
event caused by its right end point was not removed from the event structure.

If a left end point of a halfsegment is processed, we first search for an over-
lapping segment in sss. If the stored segment has the same owner as the current
segment, we just insert a possibly exiting right part into the corresponding
queue. If they are different, we replace the stored segment by the common part
(with owner = both) and insert a remaining right part into the corresponding
queue. In this case the intersection of both interiors is set to be true within the
result matrix. If no overlapping segment can be found, we look for intersections
with the neighbours, perform required splits, and insert the segment (or its left
part) into the tree.

4.3.7 points × region

The processing of halfsegments is the same as in algorithm A. We do not need
a counter for the dominating points because the boundary of the region is built
by the complete segments instead of only some of the end points. If a point from
the points value is processed, we search in the AVL-tree the segment which is
on or directly below the point. If the segment contains the point, it is located
on the region’s boundary. If there is no segment below the point, it is in the
exterior of the region. Otherwise, we can determine whether the point is in
the interior or in the exterior of the region using the insideAbove flag of the
segment.

4.3.8 region × region

Here, for each segment so called coverage numbers (con above and con below

are computed. Such numbers show, how many regions (0, 1, or 2) are covering
the area above and below the segment. The coverage numbers can be computed
easily using the insideAbove flags of the segments. At the right end point of
a segment, we can be sure that the coverage numbers and the owner are up to
date. So, we can use the coverage numbers to derive the corresponding matrix
entries. If two segments are crossing, all possible intersections are found (see
Figure 3). Thus we can stop our computation.

The complete algorithm can be found in Appendix B.
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4.3.9 line × region

Actually, this is the most complex algorithm, because the coverage numbers as
well as the counter for the line’s potential end points must be handled. But ba-
sically, it works as a combination of the algorithms before. For segments owned
exclusively by the line, the coverage numbers below and above are always equal,
namely the con above value of its left neighbour in the sweep status structure.
To check where the last processed dominating point was, we additionally store
its con below value.

4.4 Acceleration for Topological Predicates

Normally, in database systems we are not interested in the exact description of
the topological relationship by a 9 intersection matrix. Rather, we want to find
pairs of objects which have an interesting relationship (given as a cluster). This
is realized by the toppred operator. It checks whether the exact topological
relationship (a 9 intersection matrix) is contained in a cluster. So, a naive
implementation would be:

Algorithm toppred ( S1 , S2 , C )
Input : S1 , S2 : two s p a t i a l ob j e c t s ;

C : c l u s t e r ;
Output : true , i f C conta in s the matrix

d e s c r i b i n g the t op o l o g i c a l r e l a t i o n s h i p
between S1 and S2

return C. conta in s ( t op r e l ( S1 , S2 ) ) ;
end toppred .

Unfortunately, this simple approach leads to long running times. For ex-
ample, we want to check two line values for equality given as condition (!ib &
!ie & !bi & !be & !ei & !eb). Although, we could return false if one of the
non-allowed intersections is found, we have to scan all the segments of the line
because the complete matrix must be computed. Even bounding box checks for
lines will have no effect using the naive approach because the matrix entries eb

and be cannot be derived from bounding box constellations. To enable an early
exit, we extend our algorithms computing the matrix by an additional argument
of type cluster. In a first step, this cluster is restricted to contain the matrices
valid for the current combination of spatial objects. For example in the compu-
tation for two points values, we remove all matrices containing a true at any
entry related to an object’s boundary. A complete discussion about the possible
matrices can be found in [15]. Whenever an intersection is found, we restrict
our cluster to such matrices having a true at the corresponding position. If the
cluster becomes empty, we can stop the computation and the result is false.
On the other hand, the cluster may contain all matrices which can be derived
from the partial result by setting further intersections to be true. In this case,
we call the cluster an extension of the matrix (see Figure 4 as an example).
Because during the run of the algorithm no entries are set to false, we can also
stop the computation here and return true.
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Figure 4: Cluster c is an extension of matrix m

4.5 Minimum Bounding Box Checks

To avoid unnecessary expensive evaluations of complex geometries, in practice,
minimum bounding box checks are used as prefilter.

For most predicates, disjoint boxes or the emptiness of an involved object
render complex computations needless. In the context of database systems,
additionally the expensive access to the spatial data may be avoided in such
cases.

However, in our approach it is possible to define predicates where the dis-
jointness of the bounding boxes cannot help. For example, consider a predicate
describing the relationship “Some boundary parts of the second object are out-
side the first object”. For a line value nothing is known about the existing
end points (the line’s boundary). Hence, we have to perform a check for the
existence of them.

Because the clusters acting as arguments of the algorithms are not con-
strained, we cannot do the bounding box check without knowledge about the
cluster. For this reason, we have extended our cluster representation by some
flags describing, which bounding box tests will successfully avoid expensive com-
putations. A function of the cluster type uses these flags to perform the possible
bounding box checks in constant time, i.e. without scanning the whole cluster.
The flags are computed when the cluster is created by a scan of all contained
matrices. The creation of a new cluster is a rare operation in contrast to the
evaluation of a predicate. So, the additional running time during the creation
is acceptable. In the following, we describe the flags, their meaning, and the
inferences for bounding box checks.

In the sequel, matrices are written down linearly. A ‘&’ denotes a bitwise
conjunction of the matrix entries.

PART INTER ∀m ∈ c : m&(110 110 000) 6= (000 000 000)
The flag PART INTER is set to true, if each matrix within the cluster
requires an intersection of the objects’ boundaries or inner parts. So,
disjoint bounding boxes or an empty object induce a false result for the
predicate evaluation.

NO EXT INTER ∀m ∈ c : m&(001 001 110) = (000 000 000)
This flag is true, if in each contained matrix no part of an object is in the
exterior of the other one, and vice versa. This is possible, if the bounding
boxes are equal. So different bounding boxes will produce a false in the
predicate evaluation.
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CPU Intel R© Pentium R©IV at 2.93 GHz
OS SuSe Linux 10.3
Kernel Version 2.6.18
RAM 1 GB
SWAP 8 GB

Table 3: Configuration of the PC used for the Experiments

O1 EMPTY ∀m ∈ c : m&(111 111 000) = (000 000 000)
This flag indicates that in each matrix the intersections of the boundary
and the interior of o1 are empty. Thereby the predicate can be evaluated
to true if o1 is empty.

O2 EMPTY ∀m ∈ c : m&(110 110 111) = (000 000 000)
This is just the symmetric case to the one above.

O1 NON EMPTY ∀m ∈ c : m&(111 111 000) 6= (000 000 000)
This flag is true, if each matrix in the cluster has at least one intersection
of the non-exterior parts of o1. If o1 is empty, the corresponding predicate
cannot be evaluated to true.

O2 NON EMPTY ∀m ∈ c : m&(110 110 111) 6= (000 000 000)
Works like O1 NON EMPTY, but for object o2.

O1 INNER ∀m ∈ c : m&(001 001 000) = (000 000 000)
If this holds, each part of o1 cannot be in the exterior of o2. This implies
that the bounding box of o1 must be contained within the bounding box
of o2.

O2 INNER ∀m ∈ c : m&(000 000 110) = (000 000 000)
Symmetrically to O1 INNER.

5 Experiments

The introduction of general implementations for any topological predicate will
produce some overhead in contrast to specialized solutions for each predicate.
I.e. a specialized disjoint operator can abort its computation, if the algorithm
detects an intersection of any parts of the arguments. The general implementa-
tion must check if the cluster contains a matrix which has a true entry at the
corresponding position.

In this section we measure the running times for checking two spatial objects
for a set of (user defined) topological predicates and compare them with the
running times for specialized predicates which were already part of the Secondo

system.
The data sets used in the experiments are described in Appendix C. The

system used for the tests was a standard PC. Its configuration is shown in Table
3.

Since the goal of the experiments is to compare the efficiency of the predi-
cates, we use a simple nested loop join comparing all pairs of objects from the
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Operator Meaning

= check for equality
# check for inequality
intersects true, if any common point is found
inside true, if nothing is outside of the other object
overlaps true, if there is a common point in the interior
onborder true, if a point is located on the border of a region
ininterior true, if a point is located in the interior of a region

Table 4: Topological Relationships implemented in the SpatialAlgebra

two argument relations rather than a spatial join also available in Secondo.
All predicate implementations (in previous algebras of Secondo as well as in
the TopOpsAlgebra presented here) use a bounding box test as a pre-filter step.

For example in the column “Kreis× Kreis” in Table 5, we have each predicate
evaluated 439 * 439 = 192,721 times. The bounding box check rejects 189,418
pairs. The proper algorithm for testing the predicate is executed 3,303 times.
(See Appendix C for the numbers.) Obviously, the time for the bounding box
check is very small compared to the proper predicate implementation. As a
reference, the nested loop join for “Kreis × Kreis” checking only for bounding
box overlap has a running time of 1.7 seconds.

5.1 Topological Predicates of the SpatialAlgebra

In the SpatialAlgebra, some topological predicates are defined. Their names
and meanings are collected in Table 4.

Unfortunately it turned out during our experiments that most implementa-
tions of the spatial predicates were not well-engineered. The reason was the big
effort in writing dedicated code for each predicate. For example, the operator
descriptions were not unique, e.g. the overlap operator was described by “re-
turns true if the arguments overlap each other”. Only a look into the source
code could help to find out the exact meaning of this. Furthermore, for most
topological relationships only a naive implementation exists. For example, the
= operator checks for equality of the representations. Because in Secondo the
representation of a spatial object is not unique, we cannot trust a false result
of this predicate. The remaining operators are implemented to have quadratic
running time. For this reason, the general implementation beats the specialized
ones in most cases. An exception is the configuration point × region where a
sophisticated implementation described in [11] is used in the SpatialAlgebra.
Here, the general implementation uses a simple plumb line algorithm. But it is
possible to tune the new implementation by using the improved version of the
plumb line algorithm.

Nevertheless we have collected our results in Table 5. In the table, we can
recognize reasonable running times for the operators of the TopOpsAlgebra.
The results for the SpatialAlgebra are given just for fun.
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Kreis × Kreis Fluss × Kreis Autobahn × Kreis Ort × Kreis
op SA TOA SA TOA SA TOA SA TOA

= 2.24s 18.5s - - - - - -
# 2.4s 18.1s - - - - - -
intersects 7:10m 40.4s 1:05m 22.3s 28.8s 17.2s - -
inside 1:51m 31s 11.3s 4.1s 2.5s 2.4s 7.7s 32.5s
overlaps 13:29m 1:21m - - - - - -
onborder 3:29m 36.9s
ininterior 7.2s 34.2s

Table 5: Running time comparison with the SpatialAlgebra

SA : SpatialAlgebra, TOA: TopOpsAlgebra

p intersects PlaneSweep TopOps

Kreis × Kreis 1:27 m 1:14m
Kreis × Fluss 30.1 s 22.3 s
Kreis × Autobahn SIGSEGV∗∗ 16.5 sec
Fluss × Autobahn 3.1 sec ∗ 1.9 sec
SeqPoly × SeqPoly small 49.4 s 42.7 s
SeqPoly × SeqLine small 43.3 s 46.7 s
SeqLine × SeqPoly small 1:01 m 1:10 m
SeqLine × SeqLines small 44.2 s 50.2 s
∗ wrong result
∗∗the system crashes during running the query

Table 6: Running time comparison with the PlaneSweepAlgebra

(p intersects predicate)

5.2 Topological Predicates of the PlaneSweepAlgebra

The PlaneSweepAlgebra – like the TopOpsAlgebra – uses plane sweep algo-
rithms for detecting the topological relationships between spatial objects. But
only two topological relationships are implemented, namely p intersects (both
objects have a common point in their interior), and intersects new (both ar-
guments have any common point). We define the corresponding clusters by the
conditions “ii” for the p intersects predicate and “ii | ib | bi | bb” for
the intersects predicate.

Table 6 compares the running times of the p intersects predicate using the
specialized implementation of the PlaneSweepAlgebra with the running times
of our general implementation. We can see that the overhead produced by our
general implementation is resonable. In some cases our implementation is even
better than the specialized versions. Unfortunately, the PlaneSweepAlgebra

produces some wrong results.
In the experiments, we have used narrowed versions of the Sequoia Bench-

mark relations as a second argument. This was done because we want to focus on
predicate evaluation, as explained earlier, and have again used a simple nested
loop join algorithm.
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intersects new PlaneSweep TopOps

Kreis × Kreis 1:14 m 35.3 s
Kreis × Fluss 30.1 s ∗ 20 s
Kreis × Autobahn 23.9 s ∗ 15.8 s
Fluss × Autobahn 3.1 s 1.9 s
SeqPoly × SeqPoly small 1:02m 54.8 s
SeqPoly × SeqLines small 45.1 s 54.1 s
SeqLines × SeqPoly small 1:00 m 1:13 m
SeqLines × SeqLines small 45.3 s 54.9 s
∗wrong results

Table 7: Running time comparison with the PlaneSweepAlgebra

(intersects new operator)

Table 7 shows the running times of the intersects new operator and its
alternative realized in the TopOpsAlgebra. Also here, the PlaneSweepAlgebra

produces wrong results in some cases. Again the overhead of our general im-
plementation is adequate or the running times are better than the ones for the
specialized versions.

6 Conclusions

We have shown how user defined topological predicates can be realized within
a database system. After sketching some problems with specialized topological
relationships provided by a database system, we have presented the advan-
tages and the implementation of our general approach. The performance of
the general implementation has been shown to be similar to existing specialized
implementations for some predicates within the Secondo extensible database
system.
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A Algorithm for points × line

Algorithm : TopRel (P, L ) ;
Input : P : Point ; L : Line
Output : int9m , d e s c r i b i n g the top . r e l . between P and L ;
var r e s : int9m ;
var s s s : t ree <segment >;
var owner : Ownertype ;
var q : pqueue ;
var ldp , dp , p : Point ;
var count : i n t ;
var s , member , l e f t , r i gh t : segment ;
var l e f t 1 , l e f t 2 , r ight1 , r i gh t 2 : segment ;

q := empty ; s s s := empty ; count := 0 ;
r e s := ( 0 0 0 0 0 0 1 0 1 ) ;
ldp := undef ined ;
owner := se l e c tNext (P,L , q , s ) ;
while owner # none do

dp := s . getDominatingPoint ( ) ;
i f owner = f i r s t then // the po in t

i f dp = ldp then

i f count = 1 then

r e s . ib := t rue ;
else // count > 1

r e s . i i := t rue ;
f i

count := 2
else // dp != ldp

member := s s s . f i nd ( s ) ;
i f member . de f in ed then

r e s . i i := t rue ;
else

r e s . i e := t rue ;
f i

f i

e lse // the l i n e
member := s s s . f i nd ( s ) ;
i f ( s . isRightDominat ingPoint ) then

i f (member . de f in ed and exactEqual (member , s ) ) then

l e f t := s s s . l e f tNe ighbour (member ) ;
r i gh t := s s s . r ightNeighbour (member ) ;
s s s . remove (member ) ;
i f l e f t . i n t e r s e c t s ( r i gh t ) then

p := i n t e r s e c t i o n point o f l e f t and r i gh t ;
s p l i t l e f t and r i gh t at p ;
r ep l a c e l e f t and r i gh t by t h e i r l e f t par t s ;
i n s e r t the remaining par t s in to q ;

f i

i f dp = ldp then

count := count + 1 ;
else

i f count = 1 then

r e s . eb := t rue ;
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f i

ldp := dp ;
f i

f i

e lse // a l e f t end po in t
i f member . de f in ed then

q . i n s e r t ( s − member ) ;
else

foreach neighbour n o f member in s s s do

i f ( n . i n t e r s e c t s ( s ) )
s p l i t n and s at t h e i r i n t e r s e c t i o n point ;
r ep l a c e n in s s s by i t s l e f t part ;
r ep l a c e s by i t s l e f t part ;
i n s e r t both r i gh t par t s in to q ;

f i

done

s s s . i n s e r t ( s ) ;
i f dp = ldp then

count := count + 1 ;
else

i f count = 1 then

r e s . eb := t rue ;
f i

lpd := dp ;
f i

f i

f i

owner = se l ec tNext (P,L , q , s ) ;
done

i f count = 1 then

r e s . eb := t rue ;
f i

return r e s ;
end TopRel ;

B region × region

Algorithm : TopRel (R1 , R2 ) ;
Input : R1 , R2 : r eg ion ;
Output : int9m , d e s c r i b i n g the top . r e l . between R1 and R2 ;
var r e s : int9m ;
var s s s : t ree <segment >;
var owner : Ownertype ;
var q1 , q2 : pqueue ;
var ldp , dp , p : Point ;
var count : i n t ;
var s , member , l e f t , r i gh t : segment ;
var l e f t 1 , l e f t 2 , r ight1 , r i gh t 2 : segment ;

q := empty ; s s s := empty ; count := 0 ;
r e s := ( 0 0 0 0 0 0 0 0 1 ) ;
ldp := undef ined ;
owner := se l e c tNext (R1 ,R2 , q1 , q2 , s ) ;
while owner !=none do
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dp := s . getDominatingPoint ( ) ;
i f dp = lpd then

i f dp . owner # lpd . owner then

r e s . bb := t rue ;
f i

e lse

lpd := dp ;
f i

member := s s s . f i nd ( s ) ;
i f s . isRightDomPoint ( ) then

i f member . de f in ed and member . exactEquals ( s ) then

l e f t := the l e f t neighbour o f member in s s s ;
r i gh t := the r i gh t ne igbour o f member in s s s ;
s s s . remove (member ) ;
i f l e f t . c r o s s e s ( r i gh t ) then

r e s . s e tA l l ( t rue ) ;
return r e s ;

f i

i f l e f t . i n t e r s e c t s ( r i gh t ) then

let p be the i n t e r s e c t i o n point o f l e f t and r i gh t ;
s p l i t the segments at p ;
r ep l a c e l e f t and r i gh t by the par t s l e f t o f p ;
i n s e r t the r i gh t par t s in to q1 and q2 r e s p e c t i v e l y ;

f i

i f member . owner # both then

// check where member i s l o ca t ed
i f member . con above=0 or member . con below=0 then

// member in e x t e r i o r od the o ther reg i on
i f member . owner = f i r s t then

r e s . be := t rue ; r e s . i e := t rue ;
else

r e s . eb := t rue ; r e s . e i := t rue ;
f i

f i

i f member . con above=2 or member . con below=2 then

// member in i n t e r i o r o f the o ther reg i on
i f member . owner = f i r s t then

r e s . b i := t rue ; r e s . i i := t rue ;
r e s . e i := t rue ;

else

r e s . ib := t rue ; r e s . i i := t rue ;
r e s . i e := t rue ;

f i

f i

e lse // member . owner = both
r e s . bb := t rue ;
i f member . con above=2 or member . con below=2 then

// combination 2 − 0
r e s . i i := t rue ;

else // combination 1 − 1
r e s . e i := t rue ; r e s . i e := t rue ;

f i

f i

f i
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else // l e f t dominating po in t
i f member . de f in ed then

r e s . bb := t rue ;
s e t the e n t r i e s in r e s accord ing to the

owners and insideAbove f l a g s ;
s s s . remove (member ) ;
s p l i t member by s ; // three parts , l e f t , common , r i g h t
i f s . insideAbove then

common . con above := common . con above + 1 ;
else

common . con above := common . con above − 1 ;
f i

s s s . i n s e r t ( l e f t ) ;
s s s . i n s e r t (common ) ;
i n s e r t r i gh t in to the cor r e spond ing pqueue ;

else // no over l app in g segment found in s s s
l e t l e f t and r i gh t the ne ighbours o f member in s s s ;
i f s c r o s s e s l e f t or s c r o s s e s r i gh t then

r e s . s e tA l l ( t rue ) ;
return r e s ;

f i

// update coverage numbers
i f l e f t . d e f in ed then

s . con below := l e f t . con above ;
else

s . con below := 0 ;
f i

i f s . insideAbove = true then

s . con above := s . con below + 1 ;
else

s . con above := s . con below − 1 ;
f i

s s s . i n s e r t ( s ) ;
f i

f i

owner = se l ec tNext (R1 ,R2 , q1 , q2 , s ) ;
done

return r e s ;
end TopRel .

C Used Data Sets

C.1 Database “Germany”

The database “Germany” contains cities, counties, rivers, and highways of Ger-
many in the following relations:

Kreis

(KName : string, Flaeche : real, Bev : int, Bev maennlich : int, Gebiet : region)

where KName is the name of the county, Flaeche is the area occupied by
the region, Bev is the population in thousand, Bev maennlich is the amount
of the male population, and Gebiet is a region value describing the territory
of the county. The relation consists of 439 entries. The contained regions have
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Kreis Fluss Autobahn
Kreis 3303 1682 1597
Fluss 1381 674
Autobahn 1379

Table 8: Number of intersecting bounding boxes

368 segments on average (50 minimum, 1086 maximum). The regions within
this relation form a partition of Germany, i.e. there are no overlapping regions.
For this reason, we only can find equal, adjacent, or disjoint regions within the
relation Kreis.

Fluss

(FName : string, FNr : int, FVerlauf : line)

The relation contains 375 parts of rivers. The geometry is described in the
attribute FVerlauf. The lines consist of 82 segments on average (5 minimum,
471 maximum).

Fluss2

(FName : string, FNr : int, FVerlauf : line)

This relation contains the same data as the relation “Fluss”. The difference
is that here rivers are not longer divided into several parts. The relation contains
122 rivers with 251 segments on average (8 mininum, 1010 maximum).

Autobahn

(AName : string, ANr : int, AVerlauf : line)

This relation contains 325 parts of highways of Germany. The size of the
line value is 37 segments on average (1 minimum, 217 maximum).

Orte

(key : int, Ort : string, Position : point, . . . )

This relation comes from opengeodb. It contains 17409 cities (14288 located
in Germany). Beside the position also further but here unused attributes are
stored.

Table 8 shows how many pairs of entries within the relations have intersecting
bounding boxes.

Furthermore, the database contains some “single” objects. This means ob-
jects stored outside a relation. In this paper we use the object “magdeburg” of
type region , which was extracted from the relation Kreis.

C.2 Database “Sequoia”

The database “Sequoia” contains a subset of the Sequoia 2000 benchmark data
[16]. Because we only are interested in the spatial attributes, we have also
reduced the set of attributes. Within our paper, we only use the line and the
polygon features of the benchmark. We have stored them in two relations with
schemas:
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Poly Poly small Lines Lines small
Number of Tuples 79,607 200 201,658 200

Number of segments
min 0 4 0 1
max 5537 922 466 160
avg 46 40 18 18

Table 9: Sizes of the relations of the Sequoia database

SeqLine SeqPoly
SeqLines small 924 544
SeqPoly small 1081 1,543

Table 10: Numbers of intersecting bounding boxes

SeqPoly

(No : int, Reg : region)

SeqLines

(No : int, Line : line)

The relations and attributes have the sizes described in Table 9.
To reduce the query time, we have created two smaller relations which are

randomized subsets of the relations SeqLines and SeqPoly, each with size of
200 tuples.

Table 10 shows the numbers of overlapping bounding boxes for these rela-
tions.
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