Creating Representations for
Continuously Moving Regions
from Observations

Erlend Tossebro! and Ralf Hartmut Gl’itirlg2

Abstract. Recently there is much interest in moving objects databases, and data
models and query languages have been proposed offering data types such as
moving point and moving region together with suitable operations. In contrast to
most earlier work on spatio-temporal databases, a moving region can change its
shape and extent not only in discrete steps, but continuously. Examples of such
moving regions are oil spills, forest fires, hurricanes, schools of fish, spreads of
diseases, or armies, to name but a few.

Whereas the database will contain a “temporally complete” representation of
a moving region in the sense that for any instant of time the current extent and
shape can be retrieved, the original information about the object moving around
in the real world will most likely be a series of observations (“snapshots”). We
consider the problem of constructing the complete moving region representation
from a series of snapshots. We assume a model where a region is represented as
a set of polygons with polygonal holes. A moving region is represented as a set
of slices with disjoint time intervals, such that within each slice it is a region
whose vertices move linearly with time. Snapshots are also given as sets of poly-
gons with polygonal holes. We develop algorithms to interpolate between two
snapshots, going from simple convex polygons to arbitrary polygons. The imple-
mentation is available on the Web.

1 Introduction

Databases have for some time been used to store information on objects which have
positions or extents in space. There are also many applications of databases which
store information about how such objects change over time. Spatial objects that move
or change their shape over time are often referred to as moving objects. In [6] an
abstract model for representing moving objects in databases is described. In an abstract
model, geometric objects are modeled as point sets. For continuous objects like lines
or regions, these point sets are infinite. This means that these models are conceptually
simple, but cannot be directly implemented. A discrete model, on the other hand, can
be implemented but is somewhat more complex. A discrete model for spatio-temporal
objects, which builds on the abstract model in [6], is described in [4].

Early research on spatio-temporal databases concentrated on modeling discrete
changes to the database. Examples of such models can be found in [12], [1], and [7].

1. Department of Computer Science, Norwegian University of Science and Technology, N-
7491 Trondheim, Norway, tossebro@jidi.ntnu.no

2. Praktische Informatik IV, Fernuniversitit Hagen, D-58084 Hagen, Germany, guet-
ing@fernuni-hagen.de

More recent research also addresses the dynamic aspect, that is, that objects may
change continuously without explicit updates. One example of such a model is pre-
sented in [10]. However, this model covers only the current and expected near future of
the objects, and not the histories of the objects, and it also does not deal with moving
regions. Constraint databases can also be used to describe such dynamic spatio-tempo-
ral databases. One study of constraint databases which explicitly addresses spatio-tem-
poral issues is [2]. [3] contains a framework in which all spatio-temporal objects are
described as collections of atomic geometric objects. Each of these objects is given as
a spatial object and a function describing its development over time. For the continu-
ous functions, affine mappings (allowing translation, rotation and scaling) and sub-
classes of these are considered. However, to our knowledge, [6] and [4] describe the
only comprehensive model describing spatio-temporal data types and operations.

The model in [4] describes a way to represent continuously moving, amorphous
objects in a database in such a manner that it is possible to produce a “snapshot” of the
object at any time within the time interval in which it exists. However, most data about
moving objects will come in the form of snapshots taken at specific times. This paper
addresses the problem of creating this type of representation from a series of snapshots
of a moving amorphous region. Important types of such regions in the real world
would be oil spills, forest fires, fish schools, and forests. (Forests change continuously
because of deforestation, climatic changes, etc.).

This problem is similar to the problem of interpolating or blending shapes, which
has been studied in the computer graphics community, because both problems involve
creating plausible in-between shapes at any time between the two states given. One
example of such a shape interpolation algorithm is given in [9]. This algorithm was
created to solve the problem of creating a smooth blending between two figures in an
animated movie. A comparison between the algorithm given in [9] and our algorithm
is given in Section 8.

A problem which occurs when the moving region consists of several disjoint parts
is to discover which part in the first snapshot corresponds to which part in the second
snapshot. Because the region parts may have changed both their positions and shape, it
may not be obvious to a computer which of them to match. One region part may also
have split into two between the two snapshots.

In Section 2 the representation of regions and moving regions from [4] is
described. Section 3 then introduces the basic algorithm for building this representa-
tion for convex regions. In Section 4, a way of representing a non-convex area as a tree
of convex areas with convex concavities is described. This structure is later used to
apply the technique described in Section 3 for non-convex regions. Section 5 describes
strategies for discovering which regions, or components of regions, in one snapshot
correspond to which regions in the other snapshot. This is important both for creating
representations for multi-component regions and for matching parts of the tree repre-
sentation of Section 4 correctly. Section 6 describes the algorithm for interpolating
between arbitrary polygons; an important subproblem is the matching of concavities
between snapshots. In Section 7, the quality of the results for different types of regions
is discussed. Section 8 is a comparison between our work and [9], and Section 9 con-
tains the conclusions to this paper.

2 Representing Regions and Moving Regions

In this section we review the structure and representation of static and moving regions
defined in [4], since this representation needs to be created by our algorithms. We start
by considering a (static) region, as a moving region needs to be consistent with it.
Indeed, a moving region, evaluated at any instant of time, yields a region.

A region may consist of several disjoint parts called faces, each of which may have
0 or more holes. At the discrete level, the boundaries of faces as well as holes are
described by polygons. Hence a region looks as shown in Figure 1.

» A

Figure 1: A region

This structure is defined in terms of segments, cycles, and faces. We sketch the
structure of the formal definitions in [4]; more details can be found there.

Seg = {(u, v) | u, v U Point, u < v}
A segment is just a line segment connecting two points which need to be distinct.
Cycle={S [Seg| ...}
A cycle is a set of line segments forming a closed loop which does not intersect
itself, hence it corresponds to a simple polygon.

Face={(c, H)| ¢ O Cycle, HU Cycle, such that ...}

A face consists of a cycle ¢ defining its outer boundary, and a set of cycles H defin-
ing holes. These holes must be inside the outer cycle, and must be pairwise disjoint. H
may be empty.

Region={F U Face| f,f,UF I:J(f1 ¢f2) U edge-disjoint (f|.f5) }

A region is a set of disjoint1 faces.

A moving region is described - like the other “moving” data types in [4] - in the so-
called sliced representation. The basic idea is to decompose the temporal development
of a value into fragments called s/ices such that within a slice this development can be
described by some kind of “simple” function. This is illustrated in Figure 2.

1. Edge-disjoint means that two faces may have common vertices, but must otherwise be
disjoint (i.e., they may not share edges).

Figure 2: Sliced representation

Hence each slice corresponds to a time interval; the time intervals of distinct slices
are disjoint. For a moving region, the “simple function” within a single slice is basi-
cally a region (as defined above) whose vertices move linearly in such a way that at
any instant of time within the slice a correct region is formed. Such a slice is shown in
Figure 3.

t A —

X

Figure 3: A slice of a moving region representation

The structure represented within a single slice of a moving region is called a region
unit. This structure is defined bottom-up in terms of moving points, moving segments,
moving cycles, and moving faces analogously to the definition of a region. Again we
sketch the formal definitions from [4].

MPoint = {(x1, 1, y0, ¥1) | X X1,y O real .
A moving point is given by four real coordinates. The semantics of this four-tuple,

that is, the function for retrieving the position of the moving point at any point in time
is

p(t) = (xo x4 D1y0 1 (1)
In the three-dimensional (x, y, £)-space, a moving point forms a straight line.

A moving segment is defined by:
MSeg = {(s,e)| s, e D MPoint, s # e, coplanar (s, e)}

A moving segment consists of two moving points which are coplanar, i.e., lie in the
same plane in the (x,), f)-space. Hence in 3D a moving segment is a trapezium

t A t A

(a) (b)
Figure 4: (a) A moving segment. (b) Two moving segments representing a rotating line segment.

(Figure 4a). The segment may degenerate at one end of the time interval into a point,
hence we may have a triangle in the 3D space. This means that a moving segment can-
not rotate as time passes. One can create a (rough) representation for a line segment
which rotates by creating two moving segments, each of which is the line segment in
one snapshot and becomes a point in the other (Figure 4b).

MCycle = { (sq, ... s,,_1) | n23,s; 0 MSeg}

An MCycle is the moving version of the Cycle. It contains a set of moving line seg-
ments. None of these may intersect in the interior of the time interval in which the
MCycle is valid. The MCycle must yield a valid Cycle in all instants in the interior of
the time interval.

MFace = {(c,H)| c 0 MCycle, HO MCycle}

This is a moving version of the Face. The MFace must yield a valid Face in all
time instants in the interior of the time interval.

URegion = {(i, F)| i O Interval, F O MFace such that ...}

A region unit consists of a time interval and a set of moving faces such that evalua-
tion at any instant of time in the interior of the time interval yields a valid region value.

3 The Easy Case: Interpolating Between Two Convex Polygons

The problem is now to compute from a list of region snapshots a moving region repre-
sentation. This reduces to the problem of computing a region unit from two successive
snapshots.

In this section we first consider the most simple case of the problem which occurs
if each of the two snapshots is a single convex polygon without holes. In this case one
can apply an algorithm that we call the “rotating plane” algorithm. It can be described
as follows. Input are two convex cycles at different instants of time.

To create one moving segment, start with a segment s in one of the polygons and
create a plane perpendicular to the time axis through it. Then rotate that plane around
segment s until it hits a segment or a point from the other polygonl. If in the other
polygon there exists a segment s’ which is parallel to s, then the plane will hit this seg-
ment, and the algorithm will create a proper trapezium-shaped moving segment
between s and s’. If there is no parallel segment, then the plane will hit a point p. Then
a degenerate moving segment will be created which starts out as the original segment s
and ends as point p, thus forming a triangle in space-time.

This algorithm can be implemented in a computer in the following fashion: Take
the segments in both polygons and sort them according to their angle with respect to
the x-axis (for instance). Then go through the two lists in parallel, starting with the seg-
ment with the smallest angle in either list. For a given segment check the next segment
in the other list. If the angle of this segment is equal to the angle of the chosen seg-
ment, create a proper moving segment connecting the two and mark both segments as
done. If the angle is different, take the first point in the other segment, use it as the sec-
ond “segment”, and mark only the chosen segment as done. After the moving segment
is formed, take the unmarked segment from either list with lowest angle as the next
segment.

An example of the matchings generated by this algorithm is given in Figure 5.
Because the angle of segment c is greater than the angle of segment a, and less than the
angle of b, the segment c is matched to the point between segments a and b.

t A

> x

Figure 5: Example of matching created by the rotating plane algorithm

We now give a more formal description of this algorithm (Figure 6). The represen-
tation of a line segment (Seg) is extended to contain an angle as well as the two end

1. It should be rotated in such a direction that the part which moves towards the other
object hits the other object on the same side as the segment is on the first object.

points. Also a function make_moving point (Figure 7) is used to create a moving point
from two static points.

algorithm rotating_plane(sy, s, t1, tp)
input: Two convex cycles, s; and s,, which represent snapshots of the
moving cycle at the distinct times #; and #,, respectively.
output: An mcycle which yields the two cycles at the given times.
method:
let sy = {sy, 1> 81, ptsletsy = {53 1, s S2,)3
let um be a list of Segs; um = [J ;
for each s; ; do
compute the angle between s; ; and the x-axis, and store it in
s; jangle;
um = um O {si,j}
end for;
MCycler =0,
while (um #) do
[y = the s; ; with the lowest angle, S; i Uum;
I, ;= the Sk, I» k # i, with the lowest angle, Sk 1 Oum;
if no such /, exists then
I =the sy 5, k # i, with the lowest angle
end if;
if (/; Os;) then
let [} = (a, b); let I, = (c, d)
else let /; = (c, d); let [, = (a, b)
end if;
let mp, and mp, be MPoints;
if (angle of /5) = (angle of /;) then
mpy = make_moving_point(a, c, t1, t);
mp, = make_moving_point(b, d, t|, t,);
um =um\ {[}, L}
else
mpy = make_moving_point(a, c, t1, t);
mp, = make_moving_point(b, c, t1, t);
um :=um)\ {(a, b)}

end if;
MSeg ms == (mp,, mp3);
ro=r0{ms}

end while;

return r

end rotating plane

Figure 6: Algorithm rotating plane

Computing the angles between all segments and the x-axis takes O(n) time, where
n is the total number of segments. Finding the segments with the lowest angle can also

function make_moving_point(a, b, t, t;)
input: Two points, a and b, and two distinct times #(; and ¢,.
output: A moving point which is at a at time #; and at b at time ¢,.
method:

dx = (bx-ax)/(t - ty);

dy =(b.y-ay)/(t -ty);

mp = (a.x - dx [}, dx, a.y - dy L1, dy);

return(mp)
end make_moving point

Figure 7: Function make_moving point

be done in O(n) time. Assuming the segments in the two snapshots are already ordered
so that adjacent segments are also neighbours in the list, finding the next segment with
the lowest angle can be done in constant time (test the next segments in both snapshots
and use the smaller one). Adding a new moving segment to the result » can also be
done in constant time. Because both of the last two operations must be performed once
for every segment, the total time for them is O(n). Therefore, this algorithm takes O(n)
time. Note that in the implementation the removal from um and checking for member-
ship in um is done by modifying or checking a variable associated with each line seg-
ment rather than by physically removing or checking in a set. This also applies to the
other algorithms below which use a set of unmarked objects.

If the segments are unsorted or sorted by a different criterion than ordering along
the border of the cycle, sorting them by angle takes O(n Oog(n)) time, and hence the
running time of the algorithm will grow to O(n Oog(n)).

Theorem 1: Given two convex cycles ¢ and ¢ at times #; and 75, algorithm
rotating plane computes a region unit connecting these two cycles. If the two cycles
consist of a total of n segments and the cycles are represented in (e.g. clockwise) order,
then the algorithm requires O(n) time. If the two argument cycles are not given in
order, then O(n Oog(n)) time is required.

A problem with this interpolation method is that it is poor in handling rotation. If a
long, thin object rotates 90 degrees between snapshots, the interpolation in the middle
between them will be more or less quadratic, and will probably have a much larger
area than the object has in either snapshot. For this reason, one must ensure that the
snapshots are so close to each other in time that only a small amount of rotation has
happened between them.

So far we can handle a single convex polygon in both snapshots, the most simple
case. Two major problems remain:

1. Treating concavities.

2. Treating regions with more than one face. Here the problem is to match faces from
the first snapshot correctly with faces from the second snapshot. Another version
of this problem is one face with several holes. One face with one hole can be
treated by interpolating separately between the outer cycles from the two snap-
shots and the two hole cycles and then subtracting the “moving hole” from the

“moving outer cycle”. But if there are several holes, the algorithm must discover
which holes correspond.
These problems are addressed next.

4 Representing Non-Convex Polygons by Nested Convex
Polygons

We now focus on treating a region which still consists of a single face without holes,
i.e., a single cycle, but which needs not be convex any more. The basic idea is to
reduce this problem to the previous one by viewing a non-convex polygon as being
composed recursively from convex components.

This section first describes a representation in which a general cycle is stored as
nested convex polygons. The second subsection describes an algorithm for generating
this representation from a Cycle.

4.1 The Convex Hull Tree

This is a way to store arbitrarily shaped regions by storing convex regions with convex
holes. These convex regions and convex holes may then be treated independently by
the rotating plane algorithm, allowing it to work for objects with concavities as well.
In an abstract view of the convex hull tree, each node p represents a convex cycle ¢
without holes. Each descendant d of p represents a hole to be cut out from ¢ to form the
cycle represented by the subtree rooted in d. This general method may be used both for
storing real holes and for storing concavities in the object. A concavity can simply be
represented by a hole which includes a part of the boundary of the cycle. See Figure 8.

Figure 8: A convex hull tree

In the implementation of the convex hull tree, a cycle is stored in the following
manner: Each node contains a list of line segments representing the convex hull of the
cycle. For each of the segments in this representation which were added to make the
cycle convex, a link to a child node is stored. This child contains the convex hull of the
area which should be extracted to get the real cycle. If the extracted area contains con-
cavities itself, then the child will have children of it’s own with extracted areas.

- 10 -

An example of a cycle with several concavities and a convex hull tree representa-
tion of this cycle is shown in Figure 9. In this figure, the cycle itself is represented by

A Aa Ab Ca Ar As At Da Ba

feroaiy

C Cda de CBa An_ Ao CCa Ca B Aw Ax Ba

N\
\ Au Av Da

D o om —
Ac Ad CAa A Ag CC
CA oo - Coim mim - -

CBAa Ai Aj Ak CBBa CBa

CB__ o o o — - -
\ \

\ IR

A, CBA i i ™ | (OB i i 22

Figure 9: A region with concavities and its convex hull tree representation.

the thick lines. The segments of medium thickness were added to make it convex. The
other segments were added to make nodes further down in the tree represent convex
areas. The top node of the tree representation to the right in the figure contains the seg-
ments of the convex hull. The line style is the same in the nodes as in the drawing of
the region.

This structure as it is described here cannot store holes, because a hole is not con-
nected to a segment in the parent node. However, one could permit the root! node to
have links to subnodes which are not connected to any particular segment. These
would then represent holes.

4.2 Computing a Convex Hull Tree from a Polygon

To build a convex hull tree for an arbitrarily shaped polygon, use the following steps:
1. Start at the root node and the entire polygon.
2. Create the convex hull of the polygon.
3. Store a segment list representation of the convex hull into the node.
4. For each of the segments which were added to make the polygon convex, create a
new node.
5. For each of these holes with new nodes, go to step 2.
The algorithm for building a convex hull tree (Figure 10) uses two new types,
CHTNode and CHTLineSeg. CHTLineSeg is a line segment (Seg) which in addition to
the two end points may store a link to a child CHTNode. The CHTNode type is the

1. This should not be permitted for nodes other than the root. If the hole is in the object
itself, it should be linked to the root. If the hole is in a concavity, then the object is no
longer a single region, but several disjoint regions.

- 11 -

same as the Cycle type, with the exception that it stores CHTLineSegs instead of nor-
mal line segments.

algorithm build convex hull tree(polygon)
input: A Cycle polygon.
output: A CHTNode which is the root of the convex hull tree for polygon.
method:
CHTNode cl .= 1 ;
Cycle ch := the convex hull of polygon; let ch = {csy, ..., cs,,};
for each c¢s, U ch do
if (cs; U polygon) (that is, it was added to make the polygon convex)
then
cp = cs;and the segments in polygon which were replaced by cs;;
cch = build _convex_hull tree(cp)

else
cch =0
end if;
cl = cl I {(cs;u, cs;v, cch)}
end for;
return c/

end build convex_hull tree

Figure 10: Algorithm build convex hull tree

Our implementation uses the Graham scan from [5] to compute the convex hull in
O(n Oogn) time for a given polygon with n vertices. This must be performed once for
the whole object and once for each concavity. Because the number of vertices in all the
concavities at each level of the tree is less than or equal to n, the total time for comput-
ing convex hulls is bounded by O(dn Qogn), where d is the depth of the convex hull
tree.

The line segments in the convex hull will be returned in counterclockwise order by
the procedure for computing the convex hull. If the line segments in the given polygon
are also ordered in this way, discovering which segments from the convex hull are not
in the original region and discovering which segments they have replaced can be done
in linear time by going through both lists in parallel, and testing for equality. When the
two segments are not equal, go through the list from the original polygon and put seg-
ments into a separate list L until a segment with end point equal to the end point of the
segment from the convex hull is found. List L will then contain the segments which
were replaced by the segment in the convex hull. The only problem with this algorithm
is finding where in the two lists to start, because the starting segment must be in both
sets. This can be done by marking which segments are in the convex hull and which
are not during the construction of the convex hull, and then testing the lines in the
region beginning with the first until one is found which is on the convex hull. This
takes O(n) time. Finding which element of the hull is equal to this segment can then
also be done in O(n) time. Marking whether the segments are in the convex hull or not
does not change the asymptotic running time of the Graham scan. Because this linear

- 12 -

running time is less than the time taken by the Graham scan, the running time of the
entire algorithm is equal to the running time of the Graham scan.

Theorem 2: For a given polygon with n vertices, the convex hull tree can be built in
O(dn Oogn) time, where d is the depth of the resulting tree.

To recreate the polygon which is represented by a convex hull tree, start with the
root node and do the following:
* For each segment in the node which does not have a child, return that segment.
* For each segment in the node which has a child, go to that subnode and use this
procedure on that node.

5 Matching Corresponding Components

We now address the problem of matching components in one snapshot with compo-
nents of the other which comes in three flavors:
* Given observations of a moving region consisting of several faces, which faces in
the older snapshot correspond to which faces in the newer one?
» Given a moving face with several holes, which holes in the old snapshot corre-
spond to which holes in the new?
* Given a moving face (cycle) with concavities and two snapshots of it, which con-
cavities in the old and new snapshots correspond to each other?
Figure 11 illustrates the problem. It becomes aggravated by the fact that compo-
nents may split or merge between snapshots.

r~—
-

Fo0 \
) /s
y N <
> 2
L’ |
X (a)

Figure 11: Matching components of moving region observations: (a) faces, (b) holes, (c) con-
cavities

(b)

In all three cases we need to find matching pairs of cycles (i.e., simple polygons).
From now on we assume that two sets of cycles C and D are the given input for this
problem.

5.1 Requirements for Matching

Before discussing strategies for matching, we should understand the quality criteria for
such strategies.

- 13 -

1. It seems obvious that matching should work correctly for any component that has
not moved at all.

2. Components that have moved a small distance relative to their size should be
matched correctly.

3. It should be possible to match components that have had minor changes to their
shape and size.

4. A matching algorithm should discover that a component has been split into frag-
ments or merged from them.

5. A matching strategy should offer criteria to judge the quality of observations. In
other words, it should allow one to decide whether two successive snapshots are
close enough in time, or too far apart.

Generally, it seems reasonable to require that a matching strategy is guaranteed to
produce correct matchings for the components of a moving region if the frequency of
observations is increased. This can be formulated a bit more precisely as follows:

Definition 3: Let mr be a moving region with several components, and let Sy and Sy
be two observations of it at times ¢ and ¢+ A¢. A matching strategy is called safe, if it
is guaranteed to produce a correct matching of the components of mr if At — 0. In
other words, there exists an € >0 such that the matching is correct for all Ar< €.

5.2 Strategies for Matching

Strategies for matching include the following:

1. Position of centroid. For each cycle, compute its centroid (center of gravity). This
transforms each set of cycles into a set of points. A closest pair in the point sets C”
and D’ is a pair of points (p, g) such that g is the point in D’ closest to p and p is
the point in C” closest to g. For each closest pair, match the corresponding cycles.

2. Overlap. For each pair of cycles ¢ in C and d in D compute their intersection area
u and take the relative overlap, that is, overlap(c, d) = size(u)/size(d) and over-
lap(d, c) = size(u)/size(c). The overlap relationship can be represented as a
weighted directed graph (i.e. if overlap(c, d) = k, for k > 0, then there is an edge
from c¢ to d of weight k). Then there are several options:

a. Fixed threshold. Introduce a threshold ¢ (e.g. t = 60%). Two cycles ¢ and d
match if overlap(c, d) > t and overlap(d, c) > t .

b. Maximize overlap. For all cycles (nodes) order their outgoing edges by
weight. For a node c let succq(c), ..., succy(c) be its ordered list of successors.
Match ¢ with d if d = succ(c) and ¢ = succ(d).

So far we have considered the matching of single cycles. However, the overlap
graph allows us to recognize in a natural way transitions where cycles split or merge.
See Figure 12. Here c splits into d, e, and f (or is a merge of d, e, and f). This can be
deduced from the fact that for each of the three fragments the overlap with c is large
(above 50 %, say) whereas for ¢ the overlap with either d, e, or f'is relatively small, but
the sum of their overlaps is large. This leads to strategies for matching a cycle with a
set of cycles:

c. Fixed threshold, set of cycles. As in (a), introduce a threshold # (e.g. ¢ = 60%).
Match ¢ with {d O D | overlap(c,d)>t} Ll {d O D | overlap(d, c¢) > t}.

X

Figure 12: Cycle c splits into three cycles d, e, and f.

d. Maximize overlap, set of cycles. Order outgoing edges by weight as in (b).
Match ¢ with {succi(c)} O {d O D |c=succ(d)}.

What is a good strategy in the light of the requirements of Section 5.1? Using the
centroids, although simple, is not a safe strategy. This is because centroids may lie out-
side their cycles so that centroids even of disjoint cycles may coincide. This can lead to
entirely wrong matchings. The overlap techniques are safe because overlaps approach
100% for region observations when Ar — 0. Of course, snapshots have to be close
enough to ensure reasonable results.

In the remainder of this paper, we will restrict attention to considering a single
cycle with concavities, represented in a convex hull tree. The full paper [11] covers the
general case with multiple faces and holes. However, the techniques for matching
components are already needed in the restricted case for matching concavities in two
snapshots of a single cycle. Also, we need to treat transitions such as the splitting/
merging of concavities.

5.3 Matching Two Convex Hull Trees

To support the matching of concavities, we compute for two given convex hull trees an
overlap graph. Its nodes are the nodes of the convex hull trees; to store the edges, the
data structure for nodes is extended to store also a set of pointers to other nodes; each
pointer has an associated weight indicating the overlap.

type OverlapEdge = { (node, weight) | node 11 CHTNode, weight U real};

CHTNode subtype CHTNodeWO = { (..., O) | O O OverlapEdge}

In the description of algorithm compute overlap graph (Figure 13) we assume
that the two argument convex hull trees have been constructed using nodes of type
CHTNodeWO (“convex hull tree node with overlap”) and that in each node the set O of
overlap edges has been initialized to the empty set. This is a trivial modification of
algorithm build convex_ hull tree.

The algorithm traverses the tree, computing the overlap for pairs of nodes of differ-
ent trees at the same level whose parents overlap. If the two nodes overlap at a percent-
age higher than criterion, then the nodes are linked.

algorithm compute_overlap graph(cht,, cht,, criterion)
input: Two convex hull trees cht, and cht, with nodes of type CHTNode WO
and the real number criterion, which controls how much two convex hull
tree nodes must overlap to be considered a match.
output: cht| and cht, are updated to contain overlap edges for matching
pairs of nodes.
method:
overlap := intersection(cht,, cht,); // intersection of convex polygons in
// the roots
overlap, := (area(overlap)/area(cht;))*100;
overlap, := (area(overlap)/area(cht,))*100;
if (overlap > criterion) and (overlap, > criterion) then
OverlapEdge oe| = (cht,, overlap);
OverlapEdge oe, = (chty, overlap,);
cht.0 :=cht1.0 O {oe}; chty.0 := cht,.0 O {oe,};
for each son s of cht; do
for each son s, of cht, do
compute_overlap graph(s,, s,, criterion)
end for
end for
end if
end compute_overlap_graph

Figure 13: Algorithm compute overlap graph

The intersection of two convex polygons with / and m edges can be computed in
time O(/ + m) (see e.g. [8, Theorem 7.3]). If the two polygons represented in the con-
vex hull trees have a total of n edges, then the running time for compute over-
lap _graph can be bounded by O(d 52 k), where d is the depth of the tree and f the
maximal fanout, since on each level of the tree there are less than » edges and overlap
computation is called for each combination of f'sons of a node. — Our implementation
described in Section 7 uses a function for computing the intersection of two polygons
that comes with java 1.2 (java.awt.area) and the authors do not know what algorithm
is used there.

6 Interpolating Between Two Arbitrary Polygons

We are now ready to address the problem of interpolating between two general, possi-
bly non-convex polygons. We assume these polygons are represented by convex hull
trees for which the overlap graph has been computed.

The basic idea is, of course, to use the rotating plane algorithm from Section 3 on
each matching pair of nodes of the two convex hull trees. Let us consider what can
happen for a concavity from one snapshot to the next.

The first case (see Figure 14 (a)) is that the concavity doesn’t find a “matching”
partner in the other polygon. In this case we consider the trapezium ¢ involving its par-

(@) (b)

Figure 14: Transitions for cancavities: (a) unmatched concavity, (b) two matching single con-
cavities

ent edge pe which is most likely a triangle (drawn fat in Figure 14). All the edges of
the concavity are connected by triangles with the point p in the other polygon in which
triangle ¢ ends.! So the concavity appears to spring from p or to disappear into p
depending on which snapshot is first in time.

Technically, trapeziums are first constructed for the two convex outer polygons,
which includes the creation of 7. Then, trapeziums (triangles) are constructed for the
concavity, including its parent edge, so that ¢ is created once more. Then the union is
formed of the first set and the second set of trapeziums, subtracting their intersection.
This leads to the complete removal of trapezium .

The second case (Figure 14 (b)) is that there is a single matching partner for the
given concavity in the other polygon. Then trapeziums are constructed recursively for
the two concavities. Again, this also yields the trapeziums involving the parent edges
of the two concavities so that these can be removed from the result when forming the
union with the trapeziums from the next higher level.

The third, most involved case occurs if the concavity matches more than one con-
cavity in the other polygon (Figure 15).

e =
= <=

Figure 15: Transitions for concavities: one concavity matches several concavities

In this case, before the interpolation is performed, the set C of concavities match-
ing the one concavity is first joined into a single convex polygon. This is done as a
transformation on the convex hull tree, which is illustrated in Figure 16.

1. Iftisindeed a trapezium which happens if there is a segment s parallel to pe in the other
polygon, then one of the end points of S is selected arbitrarily to play the role of p.

chtp
chtu
=
4
(d

(a) (b) ©

Figure 16: Rebuilding the convex hull tree to join concavities

The algorithm for performing the transformation shown in Figure 16 is called
join_concavities (Figure 17). It uses a function recreate polygon (Figure 18) imple-
menting the strategy for reconstructing a polygon from a convex hull tree sketched at
the end of Section 4. Some of the notations used in join concavities are shown in
Figure 16.

Finally, the overall algorithm for interpolating between two polygons is given in
Figure 19, Figure 20, and Figure 21. The strategy for matching concavities is actually
a mixture of strategies 2c and 2d: The overlap graph is constructed applying a fixed
threshold (criterion). But then a concavity ¢ is matched to all concavities connected by
an overlap edge for which it is the maximally overlapping concavity.

The analysis of the complexity of this algorithm is a bit more involved and for lack
of space omitted here. In the full paper [11] an upper bound of O(af2 n log n) is derived,
where d is a bound on the depth of the convex hull trees and » the total number of
edges of both polygons.

7 Experimental Results

All algorithms described in this paper have been implemented in Java. The implemen-
tation is available on the Web at htt p://waw. i di . nt nu. no/ ~t ossebr o/
nci nt er pol at or/ i nt erpol at or. ht m . There is an applet that allows one to
interactively enter two snapshots and then see the interpolation, then a version for
download that creates from two snapshots a VRML file which can be studied through a
VRML viewer. The documented source code is also available.

The experimental results described next have been derived from this implementa-
tion. Matching multiple regions and joining separate regions (discussed in the full
paper [11]) have not been implemented yet. The current program also has no support
for holes which are not concavities. The implementation works for all regions which
remain in one piece and do not move much relative to one another. (The more move-
ment or rotation there is, the lower the quality of the resulting triangle representation

algorithm join_concavities(chts, chip, bl)
input: A set of convex hull tree nodes with overlap graph, chts, which
represents the concavities to be joined, the convex hull tree node with
overlap graph chtp, which is the parent node of the nodes in chts, and a
set of lines, b/, which represents the lines between the concavities.
output: A single convex hull tree node which is the union of the others.
method:
let chtu be an empty set of line segments;
for each cht O chts do
chtu := chtu O recreate_polygon(cht)
end for;
let dset be an empty set of line segments;
dset := dset 1 bl
for each /U chtu do
if L] chtp.S then
chtu = chtu\ {l};
chtp.S = chip.S\ {l};
dset :=dset U {I};
end if
end for;
let ¢/ be the line segment that needs to be added to dsef to make it a
cycle;?
chtu := chtu O bl
chtu = chtu O {cl};
let res be the cycle formed by the line segments in chtuz?
resch = build_convex_hull_tree(res)
let 7lp be a CHTLineSeg containing the line segment ¢/ and a reference to
the CHTNodeWO resch,;
chtp.S = chtp.S U {rip};
return resch
end join_concavities

Figure 17: Algorithm join_concavities

a. dset now contains all the line segments in the parent that point to the cycles that
should be joined. It also contains the lines between them. Because the lines in the par-
ent form a convex polygon, adding only a single line makes this collection of line seg-
ments a cycle.

b. Note that the line segments in chtu are not necessarily a cycle, because the line ¢/ may
cross some of the other lines. The implementation contains code that handles this par-
ticular case in all functions that normally take cycles as input. The implementation
always ignores the line which a node has in common with the parent.

will be.) The representation created by the algorithm was passed to the extensible data-
base graphical user interface created by Miguel Rodriguez Luaces, which used it to
create interpolated values between the two snapshots. All the interpolations shown in
this document were created by this program.

algorithm recreate_polygon(cht)
input: A convex hull tree, possibly with overlap graph, cht.
output: The cycle represented by cht.
method:
let res be an empty set of line segments;
for each /s [] cht.S do
if (Is contains link to child node) then
res := res [recreate_polygon(Is.child)
else
res := res [{Is}
end if
end for;
return res
end recreate polygon

Figure 18: Algorithm recreate polygon

algorithm create_moving cycle(poly;, poly,, t1, t,, criterion)
input: Two polygons, poly; and poly, represented as Cycles, two times, ¢
and #,, representing the times when poly; and poly, are valid, and a
criterion specifying how much overlap is required to consider two
objects to match.
output: An MCycle resulting from the interpolation of the two polygons.
method:
chty = build _convex_hull_tree(poly);
chty = build _convex_hull_tree(poly,);
compute_overlap graph(cht,, cht,, criterion);
return trapezium_rep builder(chty, cht, t1, tp)
end create_moving cycle

Figure 19: Algorithm create_moving cycle

An extension which handles multiple regions, regions with holes and regions
which split and merge is planned to be built on top of the existing program.

For the artificial test cases which were used to test the program for bugs, the results
have in most cases become fairly good, such as in Figure 22. However, the algorithm
is very sensitive to overlap, and the smaller concavities may be erroneously matched to
points if they have moved a large distance relative to the size of the concavity. This
problem may be reduced by reducing the threshold overlap, that is, how much should
two concavities overlap to be considered to match. The danger of reducing this crite-
rion is that concavities might be matched erroneously if they overlap by a small per-
centage (The program always matches the object to the first object or combination of
objects which match by more than the criterion). The overlap percentage was lowered
several times during testing. The first tests were conducted with an 80% overlap
requirement, while the last tests used a requirement of 10%. 5% may be even better in
some cases, but with such a small overlap criterion, there is a danger of matching the

algorithm trapezium rep builder(cht,, cht,, t1, t,)

input: Two convex hull trees with overlap graph represented by their roots,
cht, and cht,, and two times, ¢, and t,, when the polygons represented by
cht, and cht, are valid.

output: An Mcycle resulting from the interpolation of the two polygons.

method:
children, = the children of cht; children, := the children of cht,;
MCycle mc = rotating plane(cht,, chty, t1, t,); // convex hull tree node

// is a subtype of cycle.

um = children| O children,; // “unmatched children”

// Step 1: Find partners in cht, for children in children,
for each child U children, do
ol := the list of concavities that overlap child (according to the
overlap graph);
// restrict ol to concavities for which child is the maximally
// overlapping one
for each c [o/ do
col := the list of concavities that overlap c;
if not (child is the element of col with greatest overlap) then
ol :==ol\ {c}
end if
end for;
if ol # O then
Isbc := {the line segments that lie between the concavities in ol/};
concavity := join_concavities(ol, cht,, Isbc);
cr = trapezium_rep_builder(child, concavity, |, t;)
mc = (mc O cr) \ (mc n cr);
um = um\ {child}; um :=um\ ol,
end if
end for;

Figure 20: Algorithm trapezium_rep_builder, Part 1

concavities wrongly due to small overlaps with other concavities. Note that this prob-
lem is more likely to occur for high snapshot distances. With a very small snapshot dis-
tance, the concavities have moved little, and overlaps between “non-matching”
concavities will be unlikely. With a greater snapshot distance, these overlaps may be
significant. Figure 23 shows two interpolations, one with a criterion of 40% and one
with a criterion of 10%. The one with 10% clearly looks better than the one with 40%,
especially the right part of the figure.

Another problem which has occurred in a few cases is that the convex hull trees
have become slightly different for very similar regions, causing some strange behavior
by the matching algorithm. A specific example of this is shown in Figure 24, where
changing the position of a single point causes a line which previously belonged to the
convex hull of the region to instead belong to the concavity. In this particular example,

// Step 2: Find partners in cht; for yet unmatched children in children,
for each child U1 (children, n um) do
ol := the list of concavities that overlap child (according to the
overlap graph);
for each ¢ [o/ do
col := the list of concavities that overlap c;
if not (child is the element of col with greatest overlap) then
ol :==ol\ {c}
end if
end for;
if o/ Z O then
Isbc := {the line segments that lie between the concavities in ol/};
concavity := join_concavities(ol, chty, Isbc);
cr = trapezium_rep_builder(child, concavity, t,, ty);
mc = (mc O cr) \ (mc n cr);
um = um\ {child}; um :=um\ ol,
end if
end for;

/I Step 3: Connect still unmatched children with points (Figure 14 (a))
for each child U ((children, O children,) n um) do
[i == the line in the parent containing the pointer to child,
ml = the moving line segment in mc which contains /i;
cp = one of the points in m/ but not in /i;
for each line segment / in recreate_polygon(child) do
ms = a moving line segment connecting / as and cp (a triangle);
mc =mc [{ms}
end for;
change m/ such that it no longer contains /i, but only one end point
from /i. If this turns it into a moving point, remove it entirely
end for;
return mc
end frapezium_rep builder

Figure 21: Algorithm trapezium_rep builder, Part 2

concavity a will be matched to point 5. When the larger concavities are first matched,
the thin line in concavity a will be matched to point b by the rotating plane algorithm.
When concavity « is then added, and no matches are found for it, all the lines in it will
be matched to point . This interpolation artifact is clearly seen in the interpolations
shown in the right part of Figure 24, where the interpolation has two “teeth” instead of
the single ending in the two snapshots. To get a good-looking result, the two lines from
the real region in concavity a would have to be matched to the two lines ¢ and d in the
other snapshot. The program does not discover this matching because of the different
positions of these two lines in the convex hull tree.

First snapshot Second snapshot Interpolated value

Figure 22: Interpolation of regular object

GWWW

First snapshot Second snapshot Interpolation, over- Interpolation,
lap criterion 40%. overlap crit. 10%.

Figure 23: Test object with original snapshots and interpolated values

However, this problem is most often caused by using objects with few lines and
sharp angles, and is therefore less likely to happen with real objects. For instance, in
the first example in Figure 24, a real object would probably have a rounded corner,
which would have caused a small concavity which might be matched to concavity a in
the rightmost figure. In the few remaining cases the concavities will likely be so small
and/or thin that it will be hard to observe the error. However, for test data which use
relatively few lines, this will continue to be a problem.

8 Related Work

As mentioned in the introduction, algorithms for creating interpolations between two
snapshots already exist. One of these, [9], was designed to help creators of animated
movies by generating intermediate shapes between two snapshots of cartoon figures.
This is a very similar problem to the shape interpolation done by the rotating plane
algorithm and convex hull tree in this paper. From the examples they have presented, it
seems that their approach is better at preserving shape and avoiding some strange
behaviors than ours. It is also definitely better at rotation, which it seems able to detect
and account for. The problem, however, is that the user of the system must specify

Figure 24: Convex concavity becomes non-convex.

seven constants which are used in the interpolation. They present a table with the num-
bers they have used in each of their examples, and for four of the constants they are all
different. This probably means that there is no set of numbers that works universally.
In our approach, one of the goals is that this process should go completely automati-
cally, without any user interaction at all. Also, the preservation of shape is not that
important for our application, because the goal is to store a representation for amor-
phous objects and not objects with a fairly fixed shape, such as the dancing person
used as an example in [9]. Another problem is the running time. If the user specifies an
initial correspondence between two points, their algorithm runs in O(nz) time. How-
ever, if the user doesn’t specify this, it runs in O(n2 log n) time. The average case run-
ning time of our approach, however, is close to O(n log n). The d variable is somewhat
dependent on n, because more details may be shown. However, it will grow only very
slowly.

9 Conclusions

This paper has presented an approach to building the moving region representation
described in [4] from a series of snapshots of an amorphous region. The combination
of rotating plane algorithm and overlap graph seems to work well for most regions of
this type, although there seem to be better approaches if an interpolation between two
snapshots is all that one wants. However, if one instead wants to interpolate between
five hundred snapshots, our approach seems to be a good one, because it doesn’t
demand any user interaction and has a reasonable running time. The algorithms
described in the paper have been implemented. The running time has not been a prob-
lem with any of the tests that have been run up until now, even though the test program
has been implemented in Java. There are some interesting possibilities for future work:

1. The matching strategies described in Section 5 should be implemented and com-
pared systematically. So far we have only implemented one particular choice.

2. A problem with the overlap strategies is that for a large object that is translated in
the plane the smaller parts (e.g. lower level concavities) move a lot relatively to
their size even though the entire object moves only a little. Hence small concavi-
ties will not overlap any more. There are several ways to compensate for this, for

- 24 -

example, by combining overlap with a distance criterion for the small compo-
nents. This should be explored in more detail and evaluated experimentally.

. Given a large collection of snapshots of an object which moves only little, tech-

niques for data reduction need to be developed. For example, suppose an oil spill
in the sea is captured every minute, constructing interpolations between all succes-
sive snapshots may lead to an unnecessary amount of data. How can one construct
a minimal representation according to some required precision?

. Precise definitions for the quality of a series of snapshots should be developed.

This should allow one to decide whether a series of observations is “good
enough”. Such definitions could be given in terms of the matching strategies
described in the paper.

References

1.

10.

11.

12.

T. S. Cheng and S. K. Gadia, A Pattern Matching Language for Spatio-Temporal Data-
bases. In Proc. ACM Conf. on Information and Knowledge Management, pp. 288-295,
1994.

J. Chomicki and P. Revesz, Constraint-Based Interoperability of Spatio-Temporal Data-

bases. In Proc. 5th Int. Symp. on Large Spatial Databases, pp. 142-161, Berlin, Germany,
1997.

. J. Chomicki and P. Revesz, A Geometric Framework for Specifying Spatiotemporal

Objects. In Proc. 6th Int. Workshop on Temporal Representation and Reasoning (TIME),
pp. 41-46, 1999.

L. Forlizzi, R. H. Giiting, E. Nardelli, and M. Schneider, A Data Model and Data Struc-
tures for Moving Objects Databases. Proc. ACM SIGMOD Int. Conf. on Management of
Data, Dallas, Texas, pp. 319-330, 2000.

R. L. Graham, An Efficient Algorithm for Determining the Convex Hull of a Finite Planar
Set. Information Processing Letters 1 (1972), pp. 132-133.

R. H. Giiting, M. H. Béhlen, M. Erwig, C. S. Jensen, N. A. Lorentzos, M. Schneider, and
M. Vazirgiannis, A Foundation for Representing and Querying Moving Objects. ACM
Transactions on Database Systems 25:1 (2000), pp. 1-42.

D. J. Peuquet and N. Duan, An Event-Based Spatiotemporal Data Model (ESTDM) for
Temporal Analysis of Geographical Data. Int. Journal of Geographical Information Sys-
tems 9:1 (1995), pp. 7-24.

. F. P. Preparata and M. 1. Shamos, Computational Geometry: An Introduction. Springer-

Verlag, New York, 1985.

T. W. Sederberg and E. Greenwood: A Physically Based Approach to 2-D Shape Blend-
ing. Computer Graphics (Proc. ACM SIGGRAPH) 26:2 (1992), pp 25-34.

A. P. Sistla, O. Wolfson, S. Chamberlain and S. Dao: Modeling and Querying Moving
Objects. Proc. Int. Conf. on Data Engineering, pp. 422-432, 1997.

E. Tessebro and R. H. Giiting, Creating Representations for Continuously Moving
Regions from Observations. FernUniversitdt Hagen, Informatik-Report, in preparation,
2001.

M. F. Worboys, A Unified Model for Spatial and Temporal Information. The Computer
Journal 37:1 (1994), pp. 25-34.

	1 Introduction
	2 Representing Regions and Moving Regions
	3 The Easy Case: Interpolating Between Two Convex Polygons
	4 Representing Non-Convex Polygons by Nested Convex Polygons
	4.1 The Convex Hull Tree
	4.2 Computing a Convex Hull Tree from a Polygon

	5 Matching Corresponding Components
	5.1 Requirements for Matching
	5.2 Strategies for Matching
	5.3 Matching Two Convex Hull Trees

	6 Interpolating Between Two Arbitrary Polygons
	7 Experimental Results
	8 Related Work
	9 Conclusions
	References

