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ABSTRACT 
Efficient evaluation of spatial queries is an important issue in 
spatial database. Among spatial operations, spatial join is very 
useful, intersection being the most common predicate. However, 
the exact intersection test of two spatial objects is the most time-
consuming and I/O-consuming step in processing spatial joins. On 
the other hand, the use of approximations can reduce the need for 
examining the exact geometry of spatial objects in order to find 
the intersecting ones. This work proposes a new raster 
approximation (Three-Color Raster Signature - 3CRS) for 
representing different data types (polygons, polylines and points), 
and to be used as filter in the second step of the Multi-Step Query 
Processor. We have also executed experimental tests over real 
datasets, the results having demonstrated the effectiveness of our 
approach.   

Categories and Subject Descriptors 
E.2 [Data]: Data Storage Representations – Object 
representation; H.2.8 [Database Management]: Spatial 
databases and GIS 

General Terms 
Algorithms, Management, Performance, Experimentation 

Keywords 
Spatial databases, GIS, Raster Approximation, Spatial Join, 
Multi-Step Query Processor, Three-Colors Raster Signature, 
Four-Colors Raster Signature 

1. INTRODUCTION 
The increase in storage capacity and the decrease of hardware 
prices have enabled applications to deal with large amounts of 
data, involving Gigabytes, Terabytes and even Petabytes of 

information. This characteristic is common to Spatial Databases 
where data usually have high complexity and are available in 
huge amounts. 

Spatial data consists of spatial objects made up of points, lines, 
regions, rectangles, surfaces, volumes, and even data of higher 
dimension which includes time [13]. Examples of spatial data 
include cities, rivers, roads, counties, states, crop coverage, 
mountain ranges etc. It is often desirable to attach spatial with 
non-spatial attribute information. Examples of non-spatial data 
are road names, addresses, telephone numbers, city names, etc. 
Since spatial and non-spatial data are so intimately connected, it 
is not surprising that many of the issues that need to be addressed 
are in fact database issues. 

There are numerous applications in the area of spatial database 
systems, such as: traffic supervision, flight control, weather 
forecasting, urban planning, route optimization, cartography, 
agriculture, natural resources administration, coastal monitoring, 
fire and epidemics control, precision agriculture and intelligent 
highways ([1], [8] and [14]). Each type of application deals with 
different features, scales and spatiotemporal properties. 

Efficient evaluation of spatial queries is an important issue in 
spatial database. Among spatial operations, spatial join is one of 
the most useful. Intersection is the most common join predicate. 
Many works point the exact geometry test as the most time 
consuming operation regarding both I/O and CPU time. [6] show 
experimental results confirming that the exact geometry test, 
usually plane-sweep ([3] and [7]) is responsible for most of the 
CPU cost. The I/O cost associated with the exact geometry test is 
due to the access to the real representation of spatial objects, 
which can be very large. Spatial joins have been well studied in 
the literature, and there are many approaches to processing spatial 
join operations. Considering points, polylines and polygons as the 
three data types most commonly found in spatial databases, there 
are nine classes of different spatial joins. For its usefulness and 
complexity, the polygon join has been the most investigated, 
while the point join has been the less investigated because of its 
similarity with the relational join ([13]), while there are some 
proposals for processing polylines × polylines joins and polygon 
× polyline joins. In order to improve the efficiency, organization 
and study of indices and filters for spatial data, [6] proposed a 
three-step architecture for spatial join processing, named Multi-
Step Query Processor. The main target of this architecture is to 

 



accelerate the most costly step by reducing the number of spatial 
objects left to be compared. Such a reduction is done by applying 
filters in previous steps. 

This work proposes a new raster approximation suitable to 
performing spatial joins as a filter in the second step of the Multi-
Step Query Processor, involving these three common data types 
(polygon, polyline and point) and the classes of different spatial 
joins involving them. We propose a raster signature named as 
Three Color Raster Signature (3CRS), based on the Four-Color 
Raster Signature (4CRS) proposed by [15]. The 3CRS signature 
has the main advantage of faster generation time and that can be 
used to represent polygons, polylines and points (without any 
specific characteristic). Besides, the same algorithm can be used 
to evaluate the join predicate involving these three data types. 
Also, the fast generation time allows on-the-fly signature 
generation. For instance, instead of storing the signature, it can be 
generated only when it is needed, saving storage space. In order to 
evaluate the effectiveness of our proposal, we executed spatial 
joins using 3CRS against the processing without using signatures 
and the processing using 4CRS. The experimental tests were 
executed over real data and the results demonstrated the 
effectiveness of the approach. 

This paper is divided in sections, as follows: Section One is this 
introduction; Section Two surveys the related literature; in 
Section Three, we present our raster approximation and its 
implementation as the second step of the MSQP architecture; 
Section Four shows the experimental results; finally, in Section 
Five we present our conclusions. 

2. ARCHITECTURES FOR PROCESSING 
SPATIAL JOINS 
There are many approaches to processing spatial join operations. 
[16] emphasize that traditional approaches execute spatial join 
processing in two steps ([10] and [12]). They propose efficient 
algorithms to be used in the second step. In the two-step 
approach, presented in Figure 1.a, the first step employs a Spatial 
Access Method (SAM) in order to reduce the search space. The 
Minimum Bounding Rectangle (MBR) is normally used by SAM 
methods. This step does not have the result of the join operation 
as output. Instead, it provides a set of candidate pairs that 
correspond to a super-set of the solution, and that is sent to the 
second step. The second step is a refinement step where the pairs 
resulting from the first step are read from disk and have their 
geometries processed. This is the most costly step, requiring I/O 
time to seek and read the spatial objects from disk, and CPU time 
to compute the exact answer. 

[6] propose a three-step architecture for spatial join processing 
named as Multi-Step Query Processor (MSQP), presented in 
Figure 1.b. In this architecture, another step is included between 
the first (SAM) and the second (Exact geometry processor) steps. 
The proposed step consists in comparing the candidate pairs from 
the first step using a geometric filter. The geometric filter uses a 
compact and approximated representation of the object, trying to 
retain its main characteristics. Examples of such proposals of 
object representations are: 4CRS ([15]), Convex Hull, 5C, RMBR 
and others found in [5]. As the result of this step we have three 
possibilities: pairs that belong to the solution (hit); pairs that do 
not belong to the solution (false hit); and, pairs where it is not 

possible to have a conclusive answer (inconclusive comparisons 
or candidate pairs). The latter are sent to the third step, the 
refinement step, where the pairs of objects are read from disk and 
have their geometries processed. 
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Figure 1. a) Two-step architecture for spatial join processing; 

b) Three-step architecture [6] 
There are two main advantages to introducing the filter step. First, 
the approximation size is only a fraction of the spatial object size; 
therefore it can be stored in the index, together with the object 
MBR. Secondly, testing the intersection of two approximations 
requires less CPU time than testing two objects. The pair of 
objects that have a conclusive test (hit or false hit) are not sent to 
the third step. 

3. THREE-COLOR RASTER SIGNATURE 
In this section we will present the characteristics of 3CRS. 
Section 3.1 presents 3CRS main characteristics. Section 3.2 
proposes an algorithm to generate 3CRS. A simple algorithm for 
changing the resolution of 3CRS is proposed in Section 3.3, and 
the algorithm to evaluate if two objects overlap using their 3CRS 
is presented in Section 3.4. 

3.1 3CRS Characteristics 
The 3CRS is based on 4CRS ([15]). 3CRS is a compact and 
approximated raster representation of objects upon a grid of cells 
that uses few colors. Each color represents an intersection type 
between the object and the cell (Table 1). Figure 2 presents an 
example of a 3CRS representation of a polygon. Actually, 3CRS 
is a 4CRS where the Weak and Strong cell types are replaced by 
an Inconclusive type. The Weak 4CRS cell type represents that 
the polygon has an intersection equal or less than 50% with the 
cell, and the Strong type represents an intersection greater than 
50% and less than 100%. The 3CRS Inconclusive cell type 
replaces these two types, and it represents that there is a portion 
of the object within the cell, which does not overlap the whole 
cell. This characteristic allows 3CRS to represent polylines and 
points in the same way it represents polygons. 

a) b) 



Table 1. 3CRS cell types 

Cell type Description 

 Empty The cell is not intersected by the object. 

Inconclusive There is a portion of the object within the 
cell, and it does not fill the cell. 

Full 
The cell is fully occupied by the object. This 

type of cell only exists when representing 
polygons. 

 

 
Figure 2. Example of 3CRS representation of a polygon 

When computing a 3CRS it is not required to compute the exact 
polygon area within the cell, as it is done when computing a 
4CRS signature. In other words, when generating the signature, 
we do not need to clip the polygon against the cell, and to 
compute the area of the clipping region, which is very time-
consuming. Instead, it is required only to evaluate if the cell is 
crossed by the object. As a result, each cell type is computed fast, 
and objects that do not have an area within the cell, such as points 
and polylines, can be represented using 3CRS. In the case of 
points, the 3CRS signature is composed by only one inconclusive 
cell, while regards to polylines, the 3CRS contains Empty cells 
(cells that are not intersected by the polyline) and Inconclusive 
cells (cells that are crossed by the polyline). 

3.2 Algorithm to generate 3CRS 
The algorithm to generate 3CRS can be divided in three steps:  

1. Compute the MBR-2n that encloses the object. The 
MBR-2n is an expanded MBR where its coordinates are 
multiples of 2n, as shown in [15]; 

2. Follow the object segments, setting as Inconclusive the 
type of the cells they intersect;  

3. If the object is a polygon, scan the signature cells, 
adjusting the type of unmarked cells as Empty or Full, if 
the cell is outside the polygon or inside it, respectively. 
Otherwise, if the object is a polyline or a point, this step 
is unnecessary, since all unmarked cells are empty. 

In the first step, the MBR-2n of the polygon is computed 
according to the algorithm presented in [15], and a grid of empty 
cells is computed from this MBR.  
In the second step, the algorithm scans the object’s segments. For 
each segment s, it goes from the first cell (where an ending point 
of s is within) to the last cell (where the other ending point of s is 
within) marking the type of these cells as Inconclusive. The 
algorithm goes from one cell to another according the edge of the 
cell that is intersected by s (left, right, bottom or top edge). The 
cell’s edge that is intersected by the segment s is identified using 

the Sutherland-Cohen line clipping algorithm ([11]). The cell 
adjacent to the current cell’s edge is marked as Inconclusive and 
becomes the current cell. The process is repeated until the current 
cell is equal to the last cell. 
It is important to emphasize some aspects about this step: 

• There is no specific order to evaluate polygon segments, 
since all information needed to evaluate one segment is 
stored within it; 

• It is possible to get a cell that is indexed in the signature 
array in a constant time using a mod operation. Hence 
one can compute the cell for a point in constant time; 

• Given the line equation, one can go along the line and 
mark intersected cells in a constant time per cell. Thus, 
for a line segment, the time required will be linear in the 
number of marked cells; 

• Usually a line segment is short and will mark only a 
constant number of cells, hence requiring O(1) time per 
line segment; 

• Finally, this step computes all partial cells (Inconclusive 
cells), and it needs O(n) time if all segments are 
sufficiently short when compared to the cell size. 

During segment evaluation, if the object from which the signature 
is being computed is a polygon, a matrix of border intersection is 
used to store a value for each cell, representing a type of 
intersection between the segment and the left and right borders of 
the cell. This value is based on the InsideAbove flag of the 
segment. The InsideAbove flag of a segment is true when the area 
inside the polygon lies above the segment; or, if the segment is a 
vertical line, it indicates that the area inside the polygon is on the 
left of the segment. The value of 1 is added to the cell value if the 
InsideAbove flag of the segment is true. Otherwise, 1 is deducted 
from the cell value. Figure 3 shows an example of matrix values. 
The inconclusive cells of the signature are represented as dark 
gray cells. 

 
Figure 3 . (a) Matrix of border intersection (b) example of the 

third step execution 
The third step (only used when computing 3CRS from polygons) 
is responsible for marking the cells that are inside the polygon as 
Full cells. The algorithm goes from bottom to top, following each 
column of the matrix, adding the value of the matrix of border 
intersection corresponding to each cell. A variable named counter 
is used to store this sum. For each cell whose type was not already 
set as Inconclusive, we evaluate the current value of the counter 
variable. Since the maximum number of cells on the grid is a 
fixed K value, then this step requires O(K) time. Figure 3.b shows 
an example of the third step execution for the column pointed by 
the arrow. This example uses the matrix presented in Figure 3.a. 
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Inconclusive cells are already marked (they are represented as the 
gray cells). On the left of the grid, the numbers correspond to the 
values of the counter, as the algorithm goes through each row. 
The counter starts with zero. In the first row (from the bottom to 
the top), the polygon does not intersect the sides of the cell, so the 
value of counter stays zero. The cell is not marked as 
Inconclusive, so it stays as Empty, because the counter is equal to 
zero. On the second row, the correspondent cell of the matrix has 
the value 1 (as calculated on the previous step of the algorithm, 
because one segment of the polygon intersects the right side of the 
cell and the InsideAbove flag of that segment is true), so we 
increase the value of counter by one. The cell was marked before 
as Inconclusive, so its type does not change. The same occurs in 
the third row. On the fourth row, the value of the counter is two, 
and the cell is not Inconclusive. Hence the cell is marked as Full. 
The algorithm continues to the end of the column (and lines), 
until all the cells are marked. 

3.3 Intersection test using 3CRS 
When evaluating two 3CRS signatures of polygons, it is essential 
that both of them have the same cell size. If it does not apply, it is 
imperative to perform a change of scale. Whenever a change of 
scale is necessary, it is accomplished through the grouping of 2m 
cells, bearing in mind that the coordinates of the beginning of 
each cell are proportional to the length of its side. An algorithm 
for scale change is presented in [15]. 

After performing the scale changes (if so required), the cells of 
two 3CRS that overlap each other are evaluated. Only the cells 
that are inside the intersection of the signatures’ MBR are 
processed. The result of the comparison between two cells is 
presented in Table 2. Note that there is only one Inconclusive 
result (Perhaps), and it occurs when comparing two Inconclusive 
cells. 

Table 2. Possible results when comparing two cells 

 Empty Inconclusive Full 

Empty No No No 
Inconclusive No Perhaps Yes 

Full No Yes Yes 

Figure 4 presents a proposal of algorithm for 3CRS comparison 
based on the comparison results for the pair of cells presented on 
Table 2. If all cell comparisons result in “No”, then there is no 
intersection between the polygons. On the other hand, if a “YES” 
result is found, it means that the polygons intersect, and the 
comparison can stop. During the comparison, if there is a 
“PERHAPS” result and no “YES” result, then it is not possible to 
ensure that the polygons intersect or that they do not has 
intersection. In this case, it is necessary to execute the refinement 
step, seeking and reading the polygons’ exact representations 
from disk and executing the exact test. 

algorithm hasIntersection(signat3CRS1,  
                          signat3CRS2) 
  interMBR = intersectionMBR(signat3CRS1,  
                             signat3CRS2); 
  if (signat3CRS1.lengthOfCellSide <    
      signat3CRS2.lengthOfCellSide)  
    s3CRS = changeScale(signat3CRS1,  
            signat3CRS2.lengthOfCellSide); 
    b3CRS = signat3CRS2; 
  else  
    if (signat3CRS1.lengthOfCellSide >    
        signat3CRS2.lengthOfCellSide)  
      b3CRS = signat3CRS1; 
      s3CRS = changeScale (signat3CRS2,  
              signat3CRS1.lengthOfCellSide); 
    else 
      s3CRS = signat3CRS1; 
      b3CRS = signat3CRS2; 
  result = NO; 
  for each b3CRS cell b that is inside               
                                 interMBR do 
     for each s3CRS cell s that intersects  
                                   cell b do 
       if b.type == EMPTY or s.type == EMPTY 
          continue; 
       if b.type == INCONCLUSIVE or  
          s.type == INCONCLUSIVE 
          result = PERHAPS; 
       if ( (b.type == FULL) and  
            (s.type == FULL or  
             s.type == INCONCLUSIVE) ) or  
          ( (s.type == FULL) and  
            (b.type == FULL or  
             b.type == INCONCLUSIVE) )  
          return YES; 
  return result; 

Figure 4. Algorithm for 3CRS comparison 

4. EVALUATION TESTS 
This section is dedicated to presenting the experimental results 
concerning the evaluation of the use of the 3CRS signature in 
query processing. We evaluated the use of 3CRS as a filter in the 
second step of MSQP ([6]) against the use of 4CRS, and against 
the processing without a filter step, the architecture of two steps 
([10] and [12]). We evaluated the intersection join of set of 
polygons. 

4.1 Datasets  
The polygon real datasets used in the experiments consist of 
township boundaries, census block-group, geological map and 
hydrological map of Iowa (US), available online from 
“http://www.igsb.uiowa.edu/nrgis/gishome.htm”, and Brazilian 
municipalities (IBGE, 1996). In order to simulate large datasets, 
the Iowa datasets were replicated six times, in the same way as 
suggested by [6]. The original polygons were shifted by random 
displacements of x and y coordinates. In the case of the Brazilian 
municipalities, we performed one replication (named Brazilian 
municipalities’), so that we could execute the test of Brazilian 
municipalities against Brazilian municipalities’. Data 
characteristics are presented in Table 3. The test datasets are 
composed of objects of medium complexity - less than 1000 
segments per object. The more complex is the object, the greater 
is the time spent in the plane sweep algorithm (3rd step). In this 



way, we can expect more performance gains when datasets 
composed of more complex objects are used. 

Table 3. Test datasets 

Datasets Size 
(KB) # pol. # 

segments
Avg. # 
segm. 

Census block 
group 38,824 17,844 1,764,588 98

Topography 61,748 20,070 3,780,552 188
Hydrologic map 6,904 2,544 475,434 186

Township 
boundaries 25,288 12,216 1,059,438 86

Iowa 

Geological 
maps 21,856 9,984 640,428 64

Municipalities 9,840 4,645 399,002 85Brazil 
Municipalities’ 9,840 4,645 399,002 85

Average 24,757 10,278 1,216,921 118

4.2 Test Environment and R*-tree 
characteristics 
Tests were executed on a PC powered by an Athlon XP 1600+ 1.4 
GHz CPU with 256MB RAM. A page size of 2,048 bytes for I/O 
operations was defined. 
The R*-tree ([2]) was chosen as a spatial access method in order 
to reduce the search space. In other words, the R*-Tree was used 
to only take into account objects that have at least a MBR 
intersection and not all of them. That choice was due to the wide 
use of R*-Tree as well as to the successful results found in the 
literature. The access methods traditionally used employ the 
object’s Minimum Bounding Rectangle (MBR), and the access 
methods execution returns what is called a set of candidates, since 
it contains all pairs of polygons that belong to the answer plus 
other pairs that have only a MBR intersection. In the same way as 
[6] and [15] do, for our tests we generated R*-Trees that store the 
4CRS signatures as part of the polygons’ keys. This means that 
they were stored in the leaf nodes of the R*-Tree index.  
The tests (Table 4) can be described according to the concepts 
presented in Sub-Section 2.1 (Architectures for Processing Spatial 
Joins). The experimental tests using 3CRS and 4CRS were 
executed according to the MSQP (architecture of three steps), 
while the tests without using a filter step can be described as the 
architecture of two steps. In all experiments we have shown the 
average results of these four joins, except for signatures 
characteristics (Table 5). 

Table 4. Joins executed to test the algorithm that computes the 
approximate area of polygon x polygon intersection 

Labels Dataset 1 Dataset 2 
Join-1 Geological map Township boundaries 
Join-2 Geological map Census block 
Join-3 Township boundaries Census block 

Join-4 Brazilian municipalities Brazilian 
municipalities’ 

4.3 Experimental Results 
In order to generate the raster signatures, we have to choose the 
maximum number of grid cells ([15]). Intuitively, the larger the 
number of cells, the closer the approximation to the original 

polygon is. However, processing large size raster signatures could 
produce high I/O and CPU costs. To evaluate the effects of the 
different choices, we executed experimental tests using different 
maximum numbers of cells, such as: 250, 500, 1,000 and 1,500. 
We executed the following evaluations: storage requirements; 
number of pairs identified in the second step which represent hits 
(pairs of objects that intersect each other) and false hits (pairs of 
objects that do not have intersection) - those are identified without 
executing the refinement step; CPU costs; and, I/O costs.  
Despite of the 3CRS being based on the 4CRS, it presents some 
performance differences compared to 4CRS, in terms of 
generation time, execution time and number of inconclusive pairs 
(pairs of objects that are not identified in the sencond step as hits 
or false hits, and which must be processed in third step - Figure 
1.b - Section 2). 
As regards storage requirements, first, it is important to 
emphasize that signatures with 3 or 4 colors (3CRS or 4CRS) 
have the same storage requirements, since 2 bits are required to 
store the color of each cell. Therefore, both of them use the same 
space to be stored. Figure 5.a presents the size of the signature in 
comparison with the size of the original dataset. Signatures of 
maximum number of cells equal to 1,500 have more storage 
requirements. 
a) Storage - Signature (3CRS and 4CRS) / Original data (%)
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Figure 5. a) Size of the signatures (3CRS and 4CRS) related to 

the real data. b) Generation time for 3CRS and 4CRS 
In relation to generation time, 3CRS can be generated faster than 
4CRS signatures, as shown in Figure 5.b.  As expected, when the 
maximum number of cells increases, the time to generate the 
signatures also increases. 



Table 5 presents 4CRS and 3CRS signatures characteristics when 
the maximum number of cells equals 500. To store 4CRS or 
3CRS signatures when the maximum number of cells equals 500 
needs only, on average, 2.85% of the space required to store the 
real datasets. 3CRS can be generated in approximated 70% of 
4CRS generation time.  

Signatures of 250 maximum number of cells are processed faster, 
since there are less cells to process, while signatures of 1,500 
maximum cells are processed slower, since there are more cells to 
evaluate. Figure 6 shows the average time to execute the first two 
steps of the architecture, using 3CRS and 4CRS. In both cases, 
the bigger the maximum number of cells, the bigger the 
processing time is. 

Table 5. Raster signatures’ characteristics with maximum 
number of cells equal to 500 for each dataset 

Datasets 

Data 
size 

(KB) 

4CRS 
size 

(KB) 

4CRS 
/ data 
(%) 

Gener. 
time 

3CRS 
(sec.) 

Gener. 
time 

4CRS 
(sec.) 

3CRS 
/ 

4CRS 
(%) 

Census 
block group 38,824 1163 3.00 14.83 20.77 71.40

Hydrological 
map 6,904 169 2.45 2.70 3.97 68.02

Topography 
map 61,748 1455 2.36 33.71 50.67 66.54

Township 
boundaries 

25,288 838 3.31 10.18 14.53 70.09

Iowa  

Geological 
maps 21,856 676 3.09 8.43 11.93 70.64

Average 29.050 827 2.85 13.97 20.37 69.34

 
Figure 6. Average time (in seconds) to execute the first two 

steps of the signature, using 3CRS and 4CRS 
The number of inconclusive pairs (or candidate pairs - Figure 1.b 
- Section 2) that go from the second step to the third step is bigger 
when 250 is chosen as the maximum number of cells, as 
demonstrated in Figure 7, Figure 8 and Table 6. In other words, 
signatures with a maximum number of cells equal to 250 identify 
less hits and false hits. On the other hand, when the maximum 
number of cells is 1500, the number of inconclusive pairs is the 
smallest. The 3CRS and the 4CRS have almost the same results. 
3CRS generates only a few more inconclusive pairs to the third 
step (Figure 7). It is important to emphasize that comparing the 
three -step processing against the two step processing, the 

reduction of number of objects that are processed by the exact 
geometry test is around 75% (78%) to 89% (91%) when using 
3CRS or 4CRS respectively (Figure 8). 

 

 
Figure 7. Inconclusive pairs (%) that are processed by the 

third step 
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Figure 8. Hits and false hits pairs (%) identified by the filter 

step (3CRS and 4CRS) 
Table 6. Percentage of inconclusive pairs that go from the 

second to the third step 

3CRS (%) 4CRS (%)   
Maximum 
number of 

cells 
Hits and 
false hits Inconclusive Hits and 

false hits 
Inconclu

-sive 

250 75.16 24.84 78.38 21.62 

500 83.62 16.38 85.98 14.02 

1000 87.27 12.73 89.17 10.83 

1500 89.09 10.91 90.69 9.31 

Despite the differences between 3CRS and 4CRS, both present 
significant gain over the 2-step architecture, in terms of total 
execution time and disk accesses. 

Total execution time is presented in Table 7 and Figure 9. Notice 
that both 3CRS and 4CRS use much less time than the 2-step 
architecture (over 50% reduction). The time used in 3CRS is 
slightly bigger than 4CRS, because the 3CRS test generates more 
inconclusive pairs, which leads to more exact and slower tests. 
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Table 7. Total execution time (secs.) between 3CRS, 4CRS and 
2-step architecture 

Maximum 
number of cells 3CRS 4CRS 2-step 

250 37.47 23.53 58.40 
500 30.12 30.48 66.10 

1000 25.00 25.30 63.39 
1500 30.05 23.94 69.19 

 
Figure 9. Comparison of total execution time (secs.) between 

3CRS, 4CRS and 2-step architecture 
Table 8 and Figure 10 show the relation between disk accesses 
using the 3-step architecture (3CRS and 4CRS) and 2-step 
architectures. It shows the ratio in percentage: number of disk 
accesses used by the 3-step architecture divided by number of 
disk accesses used by the 2-step architecture. Notice that 4CRS 
uses slightly less disk accesses than the 3CRS. Again, it is 
because 3CRS generates more inconclusive pairs, which leads to a 
more exact test (the refinement step). Therefore, the algorithm 
needs to access the disk more often, to seek and read objects from 
disk and execute the exact test. However, it is important to 
emphasize that the difference between the number of disk 
accesses using 3CRS and 4CRS is very small. 

Table 8. Disk accesses (average) of the 3-step join over the 2-
step join 

Maximum 
number of cells 3CRS 4CRS 

250 52.11 48.50 
500 51.00 48.18 

1000 59.64 57.41 
1500 71.07 69.13 
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Figure 10. Comparison of the disk accesses (average) of the 3-

step join over the 2-step join 

5. CONCLUSION 
Spatial operations are very costly. The literature presents different 
approaches for processing spatial operations. This work proposed 
a new raster signature, the 3CRS, based on the 4CRS ([15]), that 
can be used as a second filter step in the Multi-Step Query 
Processor of [6]. 3CRS has the good performance of the 4CRS 
when compared against the 2-step processing. Moreover, 3CRS 
has faster generation time over 4CRS and it is also more flexible, 
since it can be used to represent different spatial data types, such 
as polygons, polylines and points. Due to its faster generation 
time, 3CRS can also be calculated on-the-fly, for example, when 
the optimizer decides to use it in case of intermediate results of 
multi-joins. For example, the average time spent to perform the 
experiments using 500 cells (30.48 seconds - Table 7) plus the 
time required to generate the signatures (13.97 seconds - Table 5) 
is less than the time spent to perform the query using only 2-steps 
(66.10 seconds - Table 7). This makes the 3CRS approach a better 
choice to be implemented in core spatial databases than 4CRS. 
Another advantage is that the intersection of two 3CRS (as a 
result of a 
previous operation, for example in a multi-join) can be computed 
using only the 3CRS signatures themselves: it is not necessary to 
retrieve the object from disk. We only have to compute empty, 
inconclusive and full cells to find the resulting 3CRS. 

The experiments we executed to evaluate the new signature 
demonstrated the effectiveness of 3CRS. It only needed, on 
average, 2.85% of the storage requirement to store 3CRS related 
to the real datasets. It showed a significant reduction in generation 
time (30% reduction, on average) in relation to 4CRS. The time 
and number of disk accesses to process the queries where much 
smaller than the time to execute the queries without the signature. 
The filter step identifies more than 75% of the candidate pairs, 
which are not sent to the exact geometry test. In relation to 4CRS, 
the processing using 3CRS produces a small growth of 
inconclusive answers. In other words, the increase of the total 
processing time/number of disk accesses is very small, and 
encourages the use of 3CRS in processing spatial joins. 

As future works, we intend to develop a different storage 
mechanism to reduce storage requirements. We also plan to 
evaluate the use of 3CRS to representing polylines and points. 
Another future work is to implement this signature in SECONDO 
([9]). 
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