
Filtering with Raster Signatures
Leonardo Guerreiro Azevedo1, Ralf Hartmut Güting2, Rafael Brand Rodrigues1, Geraldo

Zimbrão1,3, Jano Moreira de Souza1,3
1Computer Science Department, Graduate School of Engineering, Federal University of Rio de Janeiro,

PO Box 68511, ZIP code: 21945-970, Rio de Janeiro, Brazil, +55-21-2562-8694
2LG Datenbanksysteme für neue Anwendungen, FB Informatik,

Fernuniversität Hagen, D-58084 Hagen,Germany, +49-2331-987-4279
3Computer Science Department, Institute of Mathematics,

Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, +55-21-2562-8694

Email: {azevedo, brand, zimbrao, jano}@cos.ufrj.br, rhg@fernuni-hagen.de

ABSTRACT
Efficient evaluation of spatial queries is an important issue in
spatial database. Among spatial operations, spatial join is very
useful, intersection being the most common predicate. However,
the exact intersection test of two spatial objects is the most time-
consuming and I/O-consuming step in processing spatial joins. On
the other hand, the use of approximations can reduce the need for
examining the exact geometry of spatial objects in order to find
the intersecting ones. This work proposes a new raster
approximation (Three-Color Raster Signature - 3CRS) for
representing different data types (polygons, polylines and points),
and to be used as filter in the second step of the Multi-Step Query
Processor. We have also executed experimental tests over real
datasets, the results having demonstrated the effectiveness of our
approach.

Categories and Subject Descriptors
E.2 [Data]: Data Storage Representations – Object
representation; H.2.8 [Database Management]: Spatial
databases and GIS

General Terms
Algorithms, Management, Performance, Experimentation

Keywords
Spatial databases, GIS, Raster Approximation, Spatial Join,
Multi-Step Query Processor, Three-Colors Raster Signature,
Four-Colors Raster Signature

1. INTRODUCTION
The increase in storage capacity and the decrease of hardware
prices have enabled applications to deal with large amounts of
data, involving Gigabytes, Terabytes and even Petabytes of

information. This characteristic is common to Spatial Databases
where data usually have high complexity and are available in
huge amounts.

Spatial data consists of spatial objects made up of points, lines,
regions, rectangles, surfaces, volumes, and even data of higher
dimension which includes time [13]. Examples of spatial data
include cities, rivers, roads, counties, states, crop coverage,
mountain ranges etc. It is often desirable to attach spatial with
non-spatial attribute information. Examples of non-spatial data
are road names, addresses, telephone numbers, city names, etc.
Since spatial and non-spatial data are so intimately connected, it
is not surprising that many of the issues that need to be addressed
are in fact database issues.

There are numerous applications in the area of spatial database
systems, such as: traffic supervision, flight control, weather
forecasting, urban planning, route optimization, cartography,
agriculture, natural resources administration, coastal monitoring,
fire and epidemics control, precision agriculture and intelligent
highways ([1], [8] and [14]). Each type of application deals with
different features, scales and spatiotemporal properties.

Efficient evaluation of spatial queries is an important issue in
spatial database. Among spatial operations, spatial join is one of
the most useful. Intersection is the most common join predicate.
Many works point the exact geometry test as the most time
consuming operation regarding both I/O and CPU time. [6] show
experimental results confirming that the exact geometry test,
usually plane-sweep ([3] and [7]) is responsible for most of the
CPU cost. The I/O cost associated with the exact geometry test is
due to the access to the real representation of spatial objects,
which can be very large. Spatial joins have been well studied in
the literature, and there are many approaches to processing spatial
join operations. Considering points, polylines and polygons as the
three data types most commonly found in spatial databases, there
are nine classes of different spatial joins. For its usefulness and
complexity, the polygon join has been the most investigated,
while the point join has been the less investigated because of its
similarity with the relational join ([13]), while there are some
proposals for processing polylines × polylines joins and polygon
× polyline joins. In order to improve the efficiency, organization
and study of indices and filters for spatial data, [6] proposed a
three-step architecture for spatial join processing, named Multi-
Step Query Processor. The main target of this architecture is to

accelerate the most costly step by reducing the number of spatial
objects left to be compared. Such a reduction is done by applying
filters in previous steps.

This work proposes a new raster approximation suitable to
performing spatial joins as a filter in the second step of the Multi-
Step Query Processor, involving these three common data types
(polygon, polyline and point) and the classes of different spatial
joins involving them. We propose a raster signature named as
Three Color Raster Signature (3CRS), based on the Four-Color
Raster Signature (4CRS) proposed by [15]. The 3CRS signature
has the main advantage of faster generation time and that can be
used to represent polygons, polylines and points (without any
specific characteristic). Besides, the same algorithm can be used
to evaluate the join predicate involving these three data types.
Also, the fast generation time allows on-the-fly signature
generation. For instance, instead of storing the signature, it can be
generated only when it is needed, saving storage space. In order to
evaluate the effectiveness of our proposal, we executed spatial
joins using 3CRS against the processing without using signatures
and the processing using 4CRS. The experimental tests were
executed over real data and the results demonstrated the
effectiveness of the approach.

This paper is divided in sections, as follows: Section One is this
introduction; Section Two surveys the related literature; in
Section Three, we present our raster approximation and its
implementation as the second step of the MSQP architecture;
Section Four shows the experimental results; finally, in Section
Five we present our conclusions.

2. ARCHITECTURES FOR PROCESSING
SPATIAL JOINS
There are many approaches to processing spatial join operations.
[16] emphasize that traditional approaches execute spatial join
processing in two steps ([10] and [12]). They propose efficient
algorithms to be used in the second step. In the two-step
approach, presented in Figure 1.a, the first step employs a Spatial
Access Method (SAM) in order to reduce the search space. The
Minimum Bounding Rectangle (MBR) is normally used by SAM
methods. This step does not have the result of the join operation
as output. Instead, it provides a set of candidate pairs that
correspond to a super-set of the solution, and that is sent to the
second step. The second step is a refinement step where the pairs
resulting from the first step are read from disk and have their
geometries processed. This is the most costly step, requiring I/O
time to seek and read the spatial objects from disk, and CPU time
to compute the exact answer.

[6] propose a three-step architecture for spatial join processing
named as Multi-Step Query Processor (MSQP), presented in
Figure 1.b. In this architecture, another step is included between
the first (SAM) and the second (Exact geometry processor) steps.
The proposed step consists in comparing the candidate pairs from
the first step using a geometric filter. The geometric filter uses a
compact and approximated representation of the object, trying to
retain its main characteristics. Examples of such proposals of
object representations are: 4CRS ([15]), Convex Hull, 5C, RMBR
and others found in [5]. As the result of this step we have three
possibilities: pairs that belong to the solution (hit); pairs that do
not belong to the solution (false hit); and, pairs where it is not

possible to have a conclusive answer (inconclusive comparisons
or candidate pairs). The latter are sent to the third step, the
refinement step, where the pairs of objects are read from disk and
have their geometries processed.

 Relation A Relation B

SAMs

Candidate pairs

False hits

Exact geometry
processor

$

Response set

Step 1

Step 2

 Relation A Relation B

SAMs

Candidate pairs

Geometric
filter

Hits False hits Cand. pairs

False hits

Exact geometry
 processor$

Response set

Step 1

Step 2

Step 3

Figure 1. a) Two-step architecture for spatial join processing;

b) Three-step architecture [6]
There are two main advantages to introducing the filter step. First,
the approximation size is only a fraction of the spatial object size;
therefore it can be stored in the index, together with the object
MBR. Secondly, testing the intersection of two approximations
requires less CPU time than testing two objects. The pair of
objects that have a conclusive test (hit or false hit) are not sent to
the third step.

3. THREE-COLOR RASTER SIGNATURE
In this section we will present the characteristics of 3CRS.
Section 3.1 presents 3CRS main characteristics. Section 3.2
proposes an algorithm to generate 3CRS. A simple algorithm for
changing the resolution of 3CRS is proposed in Section 3.3, and
the algorithm to evaluate if two objects overlap using their 3CRS
is presented in Section 3.4.

3.1 3CRS Characteristics
The 3CRS is based on 4CRS ([15]). 3CRS is a compact and
approximated raster representation of objects upon a grid of cells
that uses few colors. Each color represents an intersection type
between the object and the cell (Table 1). Figure 2 presents an
example of a 3CRS representation of a polygon. Actually, 3CRS
is a 4CRS where the Weak and Strong cell types are replaced by
an Inconclusive type. The Weak 4CRS cell type represents that
the polygon has an intersection equal or less than 50% with the
cell, and the Strong type represents an intersection greater than
50% and less than 100%. The 3CRS Inconclusive cell type
replaces these two types, and it represents that there is a portion
of the object within the cell, which does not overlap the whole
cell. This characteristic allows 3CRS to represent polylines and
points in the same way it represents polygons.

a) b)

Table 1. 3CRS cell types

Cell type Description

 Empty The cell is not intersected by the object.

Inconclusive There is a portion of the object within the
cell, and it does not fill the cell.

Full
The cell is fully occupied by the object. This

type of cell only exists when representing
polygons.

Figure 2. Example of 3CRS representation of a polygon

When computing a 3CRS it is not required to compute the exact
polygon area within the cell, as it is done when computing a
4CRS signature. In other words, when generating the signature,
we do not need to clip the polygon against the cell, and to
compute the area of the clipping region, which is very time-
consuming. Instead, it is required only to evaluate if the cell is
crossed by the object. As a result, each cell type is computed fast,
and objects that do not have an area within the cell, such as points
and polylines, can be represented using 3CRS. In the case of
points, the 3CRS signature is composed by only one inconclusive
cell, while regards to polylines, the 3CRS contains Empty cells
(cells that are not intersected by the polyline) and Inconclusive
cells (cells that are crossed by the polyline).

3.2 Algorithm to generate 3CRS
The algorithm to generate 3CRS can be divided in three steps:

1. Compute the MBR-2n that encloses the object. The
MBR-2n is an expanded MBR where its coordinates are
multiples of 2n, as shown in [15];

2. Follow the object segments, setting as Inconclusive the
type of the cells they intersect;

3. If the object is a polygon, scan the signature cells,
adjusting the type of unmarked cells as Empty or Full, if
the cell is outside the polygon or inside it, respectively.
Otherwise, if the object is a polyline or a point, this step
is unnecessary, since all unmarked cells are empty.

In the first step, the MBR-2n of the polygon is computed
according to the algorithm presented in [15], and a grid of empty
cells is computed from this MBR.
In the second step, the algorithm scans the object’s segments. For
each segment s, it goes from the first cell (where an ending point
of s is within) to the last cell (where the other ending point of s is
within) marking the type of these cells as Inconclusive. The
algorithm goes from one cell to another according the edge of the
cell that is intersected by s (left, right, bottom or top edge). The
cell’s edge that is intersected by the segment s is identified using

the Sutherland-Cohen line clipping algorithm ([11]). The cell
adjacent to the current cell’s edge is marked as Inconclusive and
becomes the current cell. The process is repeated until the current
cell is equal to the last cell.
It is important to emphasize some aspects about this step:

• There is no specific order to evaluate polygon segments,
since all information needed to evaluate one segment is
stored within it;

• It is possible to get a cell that is indexed in the signature
array in a constant time using a mod operation. Hence
one can compute the cell for a point in constant time;

• Given the line equation, one can go along the line and
mark intersected cells in a constant time per cell. Thus,
for a line segment, the time required will be linear in the
number of marked cells;

• Usually a line segment is short and will mark only a
constant number of cells, hence requiring O(1) time per
line segment;

• Finally, this step computes all partial cells (Inconclusive
cells), and it needs O(n) time if all segments are
sufficiently short when compared to the cell size.

During segment evaluation, if the object from which the signature
is being computed is a polygon, a matrix of border intersection is
used to store a value for each cell, representing a type of
intersection between the segment and the left and right borders of
the cell. This value is based on the InsideAbove flag of the
segment. The InsideAbove flag of a segment is true when the area
inside the polygon lies above the segment; or, if the segment is a
vertical line, it indicates that the area inside the polygon is on the
left of the segment. The value of 1 is added to the cell value if the
InsideAbove flag of the segment is true. Otherwise, 1 is deducted
from the cell value. Figure 3 shows an example of matrix values.
The inconclusive cells of the signature are represented as dark
gray cells.

Figure 3 . (a) Matrix of border intersection (b) example of the

third step execution
The third step (only used when computing 3CRS from polygons)
is responsible for marking the cells that are inside the polygon as
Full cells. The algorithm goes from bottom to top, following each
column of the matrix, adding the value of the matrix of border
intersection corresponding to each cell. A variable named counter
is used to store this sum. For each cell whose type was not already
set as Inconclusive, we evaluate the current value of the counter
variable. Since the maximum number of cells on the grid is a
fixed K value, then this step requires O(K) time. Figure 3.b shows
an example of the third step execution for the column pointed by
the arrow. This example uses the matrix presented in Figure 3.a.

a) b)

Inconclusive cells are already marked (they are represented as the
gray cells). On the left of the grid, the numbers correspond to the
values of the counter, as the algorithm goes through each row.
The counter starts with zero. In the first row (from the bottom to
the top), the polygon does not intersect the sides of the cell, so the
value of counter stays zero. The cell is not marked as
Inconclusive, so it stays as Empty, because the counter is equal to
zero. On the second row, the correspondent cell of the matrix has
the value 1 (as calculated on the previous step of the algorithm,
because one segment of the polygon intersects the right side of the
cell and the InsideAbove flag of that segment is true), so we
increase the value of counter by one. The cell was marked before
as Inconclusive, so its type does not change. The same occurs in
the third row. On the fourth row, the value of the counter is two,
and the cell is not Inconclusive. Hence the cell is marked as Full.
The algorithm continues to the end of the column (and lines),
until all the cells are marked.

3.3 Intersection test using 3CRS
When evaluating two 3CRS signatures of polygons, it is essential
that both of them have the same cell size. If it does not apply, it is
imperative to perform a change of scale. Whenever a change of
scale is necessary, it is accomplished through the grouping of 2m
cells, bearing in mind that the coordinates of the beginning of
each cell are proportional to the length of its side. An algorithm
for scale change is presented in [15].

After performing the scale changes (if so required), the cells of
two 3CRS that overlap each other are evaluated. Only the cells
that are inside the intersection of the signatures’ MBR are
processed. The result of the comparison between two cells is
presented in Table 2. Note that there is only one Inconclusive
result (Perhaps), and it occurs when comparing two Inconclusive
cells.

Table 2. Possible results when comparing two cells

 Empty Inconclusive Full

Empty No No No
Inconclusive No Perhaps Yes

Full No Yes Yes

Figure 4 presents a proposal of algorithm for 3CRS comparison
based on the comparison results for the pair of cells presented on
Table 2. If all cell comparisons result in “No”, then there is no
intersection between the polygons. On the other hand, if a “YES”
result is found, it means that the polygons intersect, and the
comparison can stop. During the comparison, if there is a
“PERHAPS” result and no “YES” result, then it is not possible to
ensure that the polygons intersect or that they do not has
intersection. In this case, it is necessary to execute the refinement
step, seeking and reading the polygons’ exact representations
from disk and executing the exact test.

algorithm hasIntersection(signat3CRS1,
 signat3CRS2)
 interMBR = intersectionMBR(signat3CRS1,
 signat3CRS2);
 if (signat3CRS1.lengthOfCellSide <
 signat3CRS2.lengthOfCellSide)
 s3CRS = changeScale(signat3CRS1,
 signat3CRS2.lengthOfCellSide);
 b3CRS = signat3CRS2;
 else
 if (signat3CRS1.lengthOfCellSide >
 signat3CRS2.lengthOfCellSide)
 b3CRS = signat3CRS1;
 s3CRS = changeScale (signat3CRS2,
 signat3CRS1.lengthOfCellSide);
 else
 s3CRS = signat3CRS1;
 b3CRS = signat3CRS2;
 result = NO;
 for each b3CRS cell b that is inside
 interMBR do
 for each s3CRS cell s that intersects
 cell b do
 if b.type == EMPTY or s.type == EMPTY
 continue;
 if b.type == INCONCLUSIVE or
 s.type == INCONCLUSIVE
 result = PERHAPS;
 if ((b.type == FULL) and
 (s.type == FULL or
 s.type == INCONCLUSIVE)) or
 ((s.type == FULL) and
 (b.type == FULL or
 b.type == INCONCLUSIVE))
 return YES;
 return result;

Figure 4. Algorithm for 3CRS comparison

4. EVALUATION TESTS
This section is dedicated to presenting the experimental results
concerning the evaluation of the use of the 3CRS signature in
query processing. We evaluated the use of 3CRS as a filter in the
second step of MSQP ([6]) against the use of 4CRS, and against
the processing without a filter step, the architecture of two steps
([10] and [12]). We evaluated the intersection join of set of
polygons.

4.1 Datasets
The polygon real datasets used in the experiments consist of
township boundaries, census block-group, geological map and
hydrological map of Iowa (US), available online from
“http://www.igsb.uiowa.edu/nrgis/gishome.htm”, and Brazilian
municipalities (IBGE, 1996). In order to simulate large datasets,
the Iowa datasets were replicated six times, in the same way as
suggested by [6]. The original polygons were shifted by random
displacements of x and y coordinates. In the case of the Brazilian
municipalities, we performed one replication (named Brazilian
municipalities’), so that we could execute the test of Brazilian
municipalities against Brazilian municipalities’. Data
characteristics are presented in Table 3. The test datasets are
composed of objects of medium complexity - less than 1000
segments per object. The more complex is the object, the greater
is the time spent in the plane sweep algorithm (3rd step). In this

way, we can expect more performance gains when datasets
composed of more complex objects are used.

Table 3. Test datasets

Datasets Size
(KB) # pol. #

segments
Avg. #
segm.

Census block
group 38,824 17,844 1,764,588 98

Topography 61,748 20,070 3,780,552 188
Hydrologic map 6,904 2,544 475,434 186

Township
boundaries 25,288 12,216 1,059,438 86

Iowa

Geological
maps 21,856 9,984 640,428 64

Municipalities 9,840 4,645 399,002 85Brazil
Municipalities’ 9,840 4,645 399,002 85

Average 24,757 10,278 1,216,921 118

4.2 Test Environment and R*-tree
characteristics
Tests were executed on a PC powered by an Athlon XP 1600+ 1.4
GHz CPU with 256MB RAM. A page size of 2,048 bytes for I/O
operations was defined.
The R*-tree ([2]) was chosen as a spatial access method in order
to reduce the search space. In other words, the R*-Tree was used
to only take into account objects that have at least a MBR
intersection and not all of them. That choice was due to the wide
use of R*-Tree as well as to the successful results found in the
literature. The access methods traditionally used employ the
object’s Minimum Bounding Rectangle (MBR), and the access
methods execution returns what is called a set of candidates, since
it contains all pairs of polygons that belong to the answer plus
other pairs that have only a MBR intersection. In the same way as
[6] and [15] do, for our tests we generated R*-Trees that store the
4CRS signatures as part of the polygons’ keys. This means that
they were stored in the leaf nodes of the R*-Tree index.
The tests (Table 4) can be described according to the concepts
presented in Sub-Section 2.1 (Architectures for Processing Spatial
Joins). The experimental tests using 3CRS and 4CRS were
executed according to the MSQP (architecture of three steps),
while the tests without using a filter step can be described as the
architecture of two steps. In all experiments we have shown the
average results of these four joins, except for signatures
characteristics (Table 5).

Table 4. Joins executed to test the algorithm that computes the
approximate area of polygon x polygon intersection

Labels Dataset 1 Dataset 2
Join-1 Geological map Township boundaries
Join-2 Geological map Census block
Join-3 Township boundaries Census block

Join-4 Brazilian municipalities Brazilian
municipalities’

4.3 Experimental Results
In order to generate the raster signatures, we have to choose the
maximum number of grid cells ([15]). Intuitively, the larger the
number of cells, the closer the approximation to the original

polygon is. However, processing large size raster signatures could
produce high I/O and CPU costs. To evaluate the effects of the
different choices, we executed experimental tests using different
maximum numbers of cells, such as: 250, 500, 1,000 and 1,500.
We executed the following evaluations: storage requirements;
number of pairs identified in the second step which represent hits
(pairs of objects that intersect each other) and false hits (pairs of
objects that do not have intersection) - those are identified without
executing the refinement step; CPU costs; and, I/O costs.
Despite of the 3CRS being based on the 4CRS, it presents some
performance differences compared to 4CRS, in terms of
generation time, execution time and number of inconclusive pairs
(pairs of objects that are not identified in the sencond step as hits
or false hits, and which must be processed in third step - Figure
1.b - Section 2).
As regards storage requirements, first, it is important to
emphasize that signatures with 3 or 4 colors (3CRS or 4CRS)
have the same storage requirements, since 2 bits are required to
store the color of each cell. Therefore, both of them use the same
space to be stored. Figure 5.a presents the size of the signature in
comparison with the size of the original dataset. Signatures of
maximum number of cells equal to 1,500 have more storage
requirements.
a) Storage - Signature (3CRS and 4CRS) / Original data (%)

0

1

2

3

4

5

6

7

8

250 500 1000 1500

M aximum number o f cel ls

3CRS / 4CRS

0

10

20

30

40

50

60

70

250 500 1000 1500

Number of maximum cells

b) Time of generation (secs.)

3CRS
4CRS

Figure 5. a) Size of the signatures (3CRS and 4CRS) related to

the real data. b) Generation time for 3CRS and 4CRS
In relation to generation time, 3CRS can be generated faster than
4CRS signatures, as shown in Figure 5.b. As expected, when the
maximum number of cells increases, the time to generate the
signatures also increases.

Table 5 presents 4CRS and 3CRS signatures characteristics when
the maximum number of cells equals 500. To store 4CRS or
3CRS signatures when the maximum number of cells equals 500
needs only, on average, 2.85% of the space required to store the
real datasets. 3CRS can be generated in approximated 70% of
4CRS generation time.

Signatures of 250 maximum number of cells are processed faster,
since there are less cells to process, while signatures of 1,500
maximum cells are processed slower, since there are more cells to
evaluate. Figure 6 shows the average time to execute the first two
steps of the architecture, using 3CRS and 4CRS. In both cases,
the bigger the maximum number of cells, the bigger the
processing time is.

Table 5. Raster signatures’ characteristics with maximum
number of cells equal to 500 for each dataset

Datasets

Data
size

(KB)

4CRS
size

(KB)

4CRS
/ data
(%)

Gener.
time

3CRS
(sec.)

Gener.
time

4CRS
(sec.)

3CRS
/

4CRS
(%)

Census
block group 38,824 1163 3.00 14.83 20.77 71.40

Hydrological
map 6,904 169 2.45 2.70 3.97 68.02

Topography
map 61,748 1455 2.36 33.71 50.67 66.54

Township
boundaries

25,288 838 3.31 10.18 14.53 70.09

Iowa

Geological
maps 21,856 676 3.09 8.43 11.93 70.64

Average 29.050 827 2.85 13.97 20.37 69.34

Figure 6. Average time (in seconds) to execute the first two

steps of the signature, using 3CRS and 4CRS
The number of inconclusive pairs (or candidate pairs - Figure 1.b
- Section 2) that go from the second step to the third step is bigger
when 250 is chosen as the maximum number of cells, as
demonstrated in Figure 7, Figure 8 and Table 6. In other words,
signatures with a maximum number of cells equal to 250 identify
less hits and false hits. On the other hand, when the maximum
number of cells is 1500, the number of inconclusive pairs is the
smallest. The 3CRS and the 4CRS have almost the same results.
3CRS generates only a few more inconclusive pairs to the third
step (Figure 7). It is important to emphasize that comparing the
three -step processing against the two step processing, the

reduction of number of objects that are processed by the exact
geometry test is around 75% (78%) to 89% (91%) when using
3CRS or 4CRS respectively (Figure 8).

Figure 7. Inconclusive pairs (%) that are processed by the

third step

0
10
20
30
40
50
60
70
80
90

100

250 500 1000 1500

3CRS (%)
4CRS (%)

Figure 8. Hits and false hits pairs (%) identified by the filter

step (3CRS and 4CRS)
Table 6. Percentage of inconclusive pairs that go from the

second to the third step

3CRS (%) 4CRS (%)
Maximum
number of

cells
Hits and
false hits Inconclusive Hits and

false hits
Inconclu

-sive

250 75.16 24.84 78.38 21.62

500 83.62 16.38 85.98 14.02

1000 87.27 12.73 89.17 10.83

1500 89.09 10.91 90.69 9.31

Despite the differences between 3CRS and 4CRS, both present
significant gain over the 2-step architecture, in terms of total
execution time and disk accesses.

Total execution time is presented in Table 7 and Figure 9. Notice
that both 3CRS and 4CRS use much less time than the 2-step
architecture (over 50% reduction). The time used in 3CRS is
slightly bigger than 4CRS, because the 3CRS test generates more
inconclusive pairs, which leads to more exact and slower tests.

0

5

10

15

20

25

250 500 1000 1500

3CRS

4CRS

0
2
4
6
8

10
12
14

25
0

50
0

1000 1500

3CRS

4CRS

Table 7. Total execution time (secs.) between 3CRS, 4CRS and
2-step architecture

Maximum
number of cells 3CRS 4CRS 2-step

250 37.47 23.53 58.40
500 30.12 30.48 66.10

1000 25.00 25.30 63.39
1500 30.05 23.94 69.19

Figure 9. Comparison of total execution time (secs.) between

3CRS, 4CRS and 2-step architecture
Table 8 and Figure 10 show the relation between disk accesses
using the 3-step architecture (3CRS and 4CRS) and 2-step
architectures. It shows the ratio in percentage: number of disk
accesses used by the 3-step architecture divided by number of
disk accesses used by the 2-step architecture. Notice that 4CRS
uses slightly less disk accesses than the 3CRS. Again, it is
because 3CRS generates more inconclusive pairs, which leads to a
more exact test (the refinement step). Therefore, the algorithm
needs to access the disk more often, to seek and read objects from
disk and execute the exact test. However, it is important to
emphasize that the difference between the number of disk
accesses using 3CRS and 4CRS is very small.

Table 8. Disk accesses (average) of the 3-step join over the 2-
step join

Maximum
number of cells 3CRS 4CRS

250 52.11 48.50
500 51.00 48.18

1000 59.64 57.41
1500 71.07 69.13

0

10

20

30

40

50

60

70

80

250 500 1000 1500

Maximum number of cells

Disk Access - 3-step join / 2-step join

3CRS

4CRS

Figure 10. Comparison of the disk accesses (average) of the 3-

step join over the 2-step join

5. CONCLUSION
Spatial operations are very costly. The literature presents different
approaches for processing spatial operations. This work proposed
a new raster signature, the 3CRS, based on the 4CRS ([15]), that
can be used as a second filter step in the Multi-Step Query
Processor of [6]. 3CRS has the good performance of the 4CRS
when compared against the 2-step processing. Moreover, 3CRS
has faster generation time over 4CRS and it is also more flexible,
since it can be used to represent different spatial data types, such
as polygons, polylines and points. Due to its faster generation
time, 3CRS can also be calculated on-the-fly, for example, when
the optimizer decides to use it in case of intermediate results of
multi-joins. For example, the average time spent to perform the
experiments using 500 cells (30.48 seconds - Table 7) plus the
time required to generate the signatures (13.97 seconds - Table 5)
is less than the time spent to perform the query using only 2-steps
(66.10 seconds - Table 7). This makes the 3CRS approach a better
choice to be implemented in core spatial databases than 4CRS.
Another advantage is that the intersection of two 3CRS (as a
result of a
previous operation, for example in a multi-join) can be computed
using only the 3CRS signatures themselves: it is not necessary to
retrieve the object from disk. We only have to compute empty,
inconclusive and full cells to find the resulting 3CRS.

The experiments we executed to evaluate the new signature
demonstrated the effectiveness of 3CRS. It only needed, on
average, 2.85% of the storage requirement to store 3CRS related
to the real datasets. It showed a significant reduction in generation
time (30% reduction, on average) in relation to 4CRS. The time
and number of disk accesses to process the queries where much
smaller than the time to execute the queries without the signature.
The filter step identifies more than 75% of the candidate pairs,
which are not sent to the exact geometry test. In relation to 4CRS,
the processing using 3CRS produces a small growth of
inconclusive answers. In other words, the increase of the total
processing time/number of disk accesses is very small, and
encourages the use of 3CRS in processing spatial joins.

As future works, we intend to develop a different storage
mechanism to reduce storage requirements. We also plan to
evaluate the use of 3CRS to representing polylines and points.
Another future work is to implement this signature in SECONDO
([9]).

0
10

20

30

40

50

60

70

250 500 1000 1500
Maximum number of cells

Total Execution Time

3CRS

4CRS

2-
step

6. REFERENCES
[1] Aronoff, S. Geographic Information Systems, 1 ed., WDL

Publications, Ottawa, Canada, 1989.
[2] Beckmann, N., Kriegel, H. P., Schneider, R., and Seeger, B.

The R*-tree: An Efficient and Robust Access Method for
Points and Rectangles. In Proceedings of the 1990 ACM
SIGMOD International Conference on Management of Data
(Atlantic City, NJ, USA, May 23-25, 1990), ACM Press,
New York, NY, 1990, 322-331.

[3] Boissonnat, J. D., and Preparata, F. P. Robust Plane Sweep
for Intersecting Segments, SIAM Journal on Computing,
1997, v. 29, issue 5, 1401-1421.

[4] Brazilian Institute of Geography and Statistics Fundação
Instituto Brasileiro de Geografia e Estatística – IBGE:
“Malha Municipal Digital do Brasil - 1994”, Rio de Janeiro,
1996.

[5] Brinkhoff, T., Kriegel, H. P., and Schneider, R. Comparison
of Approximations of Complex Objects Used for
Approximation-based Query Processing in Spatial Database
Systems. In Proceedings of Ninth International Conference
on Data Engineering (ICDE’93) (Vienna, Austria, April 19-
23, 1993), IEEE Computer Society, Washington, DC, USA,
1993, 40-49

[6] Brinkhoff, T., Kriegel, H. P., Schneider, R., and Seeger, B.
Multi-step Processing of Spatial Joins. In Proceedings of the
1994 ACM SIGMOD International Conference on
Management of Data (Minneapolis, Minneapolis, Minnesota,
USA, May 24-27, 1994) ACM Press New York, NY, USA,
1994, 197-208.

[7] Freiseisen W., and Pau, P. A generic plane-sweep for
intersecting line segments, Technical Report RISC-Linz TR-
98-18, University of Linz, Linz, Austria, 1998.

[8] Gordon, S. R.,Goodwin, C.W.H., and Xiong, D. Final Report
on Status of Spatial/Map Databases. Technical Report of
Oak Ridge National Laboratory, June, 1994.

[9] Güting, R.H., Almeida, V., Ansorge, D., Behr, T., Ding, Z.,
Höse, T., Hoffmann, F., Spiekermann, M., and Telle, U.
Secondo: An Extensible DBMS Platform for Research
Prototyping and Teaching, In Proceedings of 21st
International Conference. on Data Engineering (ICDE’05)
(Tokyo, Japan, April 5-8, 2005), IEEE Computer Society
Washington, DC, USA, 1115-1116.

[10] Kothuri, R. K., and Ravada, S. Efficient Processing of Large

Spatial Queries Using Interior Approximations. In
Proceedings of the 7th International Symposium on Spatial
and Temporal Databases (SSTD’01), (Redondo Beach, CA,
USA, July 12-15, 2001) Springer-Verlag London, UK,
2001, 404-424.

[11] Newman, W. M., and Sproull, R. F. Principles of Interactive
Computer Graphics, 2 ed., McGraw-Hill Book Company,
New York, 1979.

[12] Orenstein, J. A. Spatial query processing in an object-
oriented database system. In Proceedings of the 1986 ACM
SIGMOD International Conference on Management of Data,
(Washington, DC, USA, May 28-30, 1986) ACM Press, New
York, NY, USA, 1986, 326-336.

[13] Samet, H.The Design and Analysis of Spatial Data Structure,
1 ed., Addison-Wesley Publishing Company, Boston,
Massachusetts, 1990.

[14] Tao, Y., Sun, J., and Papadias, D. Selectivity estimation for
predictive spatio-temporal queries. In Proceedings of the
19th International Conference on Data Engineering
(ICDE’03) (Bangalore, India, March 5-8, 2003) IEEE
Computer Society, 2003, 417-428.

[15] Zimbrao, G., and Souza, J. M. A Raster Approximation For
Processing of Spatial Joins. In Proceedings of the 24th
International Conference on Very Large Databases
(VLDB’98) (New York City, NY, USA, August 24-27, 1998)
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
558-569.

[16] Zhu, H., Su, J., and Ibarra, O. H. Toward Spatial Joins for
Polygons. In Proceedings of the 12th International
Conference on Scientific and Statistical Database
Management (SSDBM'00) (Berlin, Germany, July 26-28,
2000) IEEE Computer Society Washington, DC, USA,
2000, 231-244.

