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Abstract

We study electoral competition using a new continuous-time framework

for games with a second-mover advantage. Two candidates with different

levels of valence and competence in implementing their announced policy,

compete for office. There is often a unique (easily calculated) SPNE in which

the stronger candidate leads, distorting their policy towards the status quo.

In static analogs to this continuous time game, the unique equilibrium is

usually in mixed strategies. In our continuous time setting, players never

move simultaneously if this involves randomizing over their actions. In this

sense, mixed strategy equilibria are an artifact of static games.
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1 Introduction

Continuous time provides a natural setting for timing games. However, due to

technical difficulties related to the non-existence of a first subgame after time t in

continuous time (Simon and Stinchcombe, 1989), many authors instead use static

or discrete-time settings and impose an order of moves. This produces misleading

results if the imposed order differs from the equilibrium order in a more general

game where players are free to decide about their actions and their timing. Our

electoral competition game demonstrates the power of continuous time modeling.

We begin with a static electoral competition game that illustrates candidates’

second-mover advantage. Apart from special cases, the only simultaneous move

Nash equilibrium is in mixed strategies (Section 2). The payoffs from this game

are the input to the continuous time game where the order of candidates’ pol-

icy announcements is endogenous. Our static game is novel because it includes

candidates’ competence, defined as the probability that they will implement their

announced policy rather than maintain the status quo. This feature causes the

status quo to affect equilibrium platforms, conditional on the order of moves.

The irrelevance of the status quo for candidates’ strategic positioning in policy

space limits most models of electoral competition. Persson and Tabellini (2000,

p.151) write: “A more bothersome feature ... is the unimportance of the status

quo. In these models of electoral competition, and in particular in the median-

voter model, history plays no role.” Introducing “competence” as a candidate

characteristic captures the importance of the status quo policy. Voters evaluate

candidates not only by their announced policies, but also consider the likelihood

that the candidate will deliver on their promises. Voters consider the expectation

and variance of the policy outcome conditional on a candidate winning the election.

As in many previous models, we also allow candidates to differ in their “va-

lence”, their innate appeal (e.g., charisma), independent of their policy position.

Both valence and competence contribute to a candidate’s electoral strength, but

they have subtly different equilibrium effects.

We use a stochastic median-voter model. It is as if there were a single voter

whose ideal policy is unknown to the candidates when they choose their policy

platforms. The voter knows their ideal. Candidates are purely office-motivated,

each candidate seeking to maximize the probability of their election.

We assume that one candidate is more competent and has higher valance, and
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thus is unambiguously stronger. If candidates must move simultaneously, there

usually exists no pure strategy Nash equilibrium. Therefore, most static models of

electoral competition with valence study mixed strategy equilibria (Aragones and

Palfrey, 2002; Groseclose, 2001; Hummel, 2010). As with other anti-coordination

games (e.g., Matching Pennies), the dominant candidate wants to match the rival’s

policy platform, because this assures winning the election; the weaker candidate

seeks to differentiate its platform from the stronger candidate’s in order to win

under extreme realizations of the median voter’s bliss point.

Candidates’ incentives to lead or to follow are crucial for our dynamic analysis,

so in the static setting we also consider the equilibrium outcome under exogenously

chosen order of moves. Both candidates have a second-mover advantage, which is

greater for the weaker candidate. Apart from special cases, the weaker candidate

loses the election with certainty as the leader, but wins with positive probability

as the follower. The stronger candidate, in contrast, wins with positive probability

both as the leader and as the follower. If the stronger candidate leads, it chooses

a policy platform near the center of the policy space, but distorted towards the

status quo, unless the candidates are equally competent.1

Results differ slightly if both candidates have the same valence but one candi-

date is more competent. Here, if the weaker candidate leads and adopts the status

quo policy, the other candidate loses its competence advantage: by matching the

leader’s platform, both candidates maintain the status quo policy after the elec-

tion, so competence does not matter. In this case, the weaker candidate can win

the election with positive probability even when leading.

Section 3 develops a general continuous time framework for two-player games

with a second-mover advantage. This framework has many potential applications,

e.g., in price competition games. We use the framework to endogenize candidates’

timing (and order) of moves in the electoral competition setting (Section 4). Each

of the two candidates can move at most once, choosing an action from an infinite

action set, or can choose to refrain from making any move.

Our main result (Theorem 1) uses a small set of additional conditions to iden-

tify a unique subgame perfect Nash equilibrium (SPNE) in the continuous time

game; here, players move sequentially. We exclude equilibria with simultaneous

1As leader, the stronger candidate chooses the policy that would maximize the rival’s appeal
to the expected median voter. Because the weaker follower must distinguish itself from the leader,
the leader’s action induces the follower to move away from a position that would otherwise be
advantageous to it.
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moves by assuming that in every subgame at least one player has an incentive to

wait, if the other player were to behave as in a (hypothetical) equilibrium where

candidates are required to move simultaneously at t. Proposition 3 provides the

most important justification for this assumption. This proposition deals with the

case where the only simultaneous move equilibrium is in mixed strategies, as in

our electoral competition game. If (in the continuous time setting) player i were

to move at t, mixing over its actions, the rival j strictly prefers to condition its

action on the outcome of i’s randomization, over moving simultaneously. Player

j incurs no cost from the (negligible) delay that this conditioning requires.

Proposition 3 shows that imposing simultaneity if in reality players can choose

when to move, might be restrictive and lead to erroneous results. Games without a

pure strategy Nash equilibrium provide a leading example. Whereas in a one-shot

game players then randomize in equilibrium, in continuous time a sequential pure

strategy equilibrium typically replaces the mixed strategy equilibrium. Analyses

of one-shot games should therefore justify the assumption that players must choose

their actions simultaneously, e.g., because they have to move in a particular time

frame, during which they cannot observe the rival’s behavior.2

The results from the continuous time game may be not only more plausible,

but also simpler to characterize than the mixed strategy equilibrium to the static

game. Section 4 illustrates this. Here we use the payoffs from our static electoral

competition game (from Section 2) to construct a continuous time game in which

candidates choose the timing of their policy announcement, or refrain from running

for office altogether. We add a simple time-dependency to candidates’ payoffs,

providing a number of reasons that a candidate does not want to announce a

policy platform too late (or too early).

We then apply Theorem 1 to identify a unique sequential SPNE valid under a

large set of parameter values. Typically, the stronger candidate is the leader and

the weaker candidate enjoys the second-mover advantage. The logic underlying

Theorem 1 requires working backwards in time. Weakness confers patience in this

setting; the weaker candidate is more willing to out-wait their rival. Anticipating

2With penalty kicks the goalie typically cannot “wait an instant” to condition their response
on the kicker’s action, so here a mixed strategy equilibrium is sensible. Some types of poker
also involve mixed strategies, even though players move sequentially; here the fact that players
interact many times explains the use of mixed strategies. Mixed strategies are plausible in
many circumstances. Our point is that they sometimes arise because a static model replaces an
apparently more complicated but realistic dynamic game.
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this, the stronger candidate then leads early in the game to avoid the cost of

waiting. A candidate’s innate advantage from greater valence and competence

always leads to it having a larger equilibrium probability of election, despite the

fact that this greater innate strength causes it to forgo the second-mover advantage

in the continuous time setting.

To recap: For many games, including electoral competition, where there is no

intrinsic reason that candidates must move simultaneously, a dynamic model is

more descriptive than a static model. The dynamic game appears more compli-

cated than its static analog. However, with the help of Theorem 1, the analysis of

the dynamic game may be considerably simpler than for the static analog. Mixed

strategy equilibria over continuous action sets are difficult to compute, making

comparative statics of the static game equilibrium difficult to obtain.3 In con-

trast, the sequential SPNE in our dynamic game is trivial to compute and is

insensitive to precise functional form assumptions or parameter values. It merely

requires checking a small set of general conditions needed to apply Theorem 1.

Related literature

Our general framework presented in Section 3 builds on Simon and Stinchcombe

(1989), who provide a rigorous analysis of continuous time games. Like them, we

focus on pure strategies for players’ timing decisions (and argue in Footnote 22

why this is not restrictive). We provide conditions under which agents also do not

mix over their action choices. We simplify their setup by restricting the number

of players to two, and allowing each player to move at most once.

The continuous time framework has an important advantage over discrete time,

where if player 1 uses a pure strategy to determine their action choice in a period,

an impatient player 2 strictly prefers to implement their best response in the same

period. Therefore, in a discrete time setting with impatient players and perfect and

complete information, no pure strategy equilibria with sequential moves exist, as

there is always a profitable deviation. By contrast, in continuous time, the follower

can move immediately after the leader without incurring a cost of waiting (Simon

and Stinchcombe, 1989). A continuous time game thus opens the possibility of

both simultaneous and sequential move equilibria in pure strategies.

For this and for other reasons, continuous time games are increasingly popular

3A common approach involves discretizing the action space. See Martin and Sandholm (2022).
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among scholars. Examples include Bergin (1992), Bergin and MacLeod (1993), or

Park and Xiong (2024) who use settings with inertia. Calford and Oprea (2017)

analyze the effects of inertia using laboratory experiments and find that “behavior

tends towards discrete time benchmarks as inertia grows large and perfectly contin-

uous time benchmarks as it falls towards zero”. We follow Simon and Stinchcombe

(1989) and abstract away from exogenous lags in players’ responses.4

Continuous time games are sometimes used to endogenize the order of play-

ers’ moves. For example, Hoppe and Lehmann-Grube (2005) study an innovation

timing game. Hendricks, Weiss, and Wilson (1988) analyze a War of Attrition.

These papers focus on pure timing games, where a player’s only decision is when

to move. By contrast, we analyze players’ non-trivial action choices in conjunc-

tion with their timing decisions. Unlike Simon and Stinchcombe (1989), we do

not restrict action sets to be finite; here we rely on our companion paper, Karp

et al. (2024), that – similar to Simon and Stinchcombe (1989) – formally estab-

lishes the relation between games in continuous time, and discrete time analogs

with an infinitely fine grid.5 Allowing for infinite action sets, such as intervals,

vastly expands the set of potential applications, as our electoral competition game

highlights.6

Our static electoral competition game is in the tradition of Downs (1957).

One candidate has characteristics contributing to electoral strength. Aragones

and Palfrey (2002) and Groseclose (2001) study electoral competition in models

where candidates differ in valence but not in competence. As in our setting,

(typically) the only equilibrium when imposing simultaneous moves is in mixed

strategies. However, we use this static game to construct the payoffs of a dynamic

game, where the unique SPNE is sequential, involving pure strategies. We show

how candidates’ characteristics determine the equilibrium order of their moves, as

well as their policy platforms.7

4See also Sannikov (2007) for a continuous time setting that uses stochastic methods.
5Ambrus and Lu (2015) introduce a continuous-time framework for coalitional bargaining and

show that Markov perfect equilibria are the only SPNE of their model that can be approximated
by SPNE of nearby discrete-time bargaining models.

6Hamilton and Slutsky (1990) endogenize the order of players’ moves in a two-period setting.
As noted above, this discrete time setup cannot accommodate players’ impatience. Therefore,
these authors abstract away from discounting and all other forms of impatience. Other authors
have used their framework to endogenize the order of moves in applications, using risk dominance
considerations (Harsanyi and Selten, 1988). Examples include van Damme and Hurkens (1999
and 2004) who study quantity and price competition games.

7Battaglini (2014) studies electoral competition games with repeated elections, whereas we
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Only a few papers have studied the effects of a difference in candidates’ com-

petence in the electoral competition setting. Miller (2011) comes closest to our

approach; his “effectiveness” corresponds to our “competence”, and he also in-

cludes valence. However, Miller (2011) considers the extreme case of purely policy-

motivated candidates with strong biases: one candidate is interested only in seeing

an implemented policy that is as far left as possible, and the other one as far right

as possible. Abstracting away from uncertainty about the median voter’s bliss

point, for most parameter constellations, the stronger candidate wins the election.

The weaker candidate’s sole interest is to moderate the stronger candidate’s policy

choice. Consequently, the weaker candidate positions itself at the median voter’s

bliss point whereas the stronger candidate chooses a position as far away from the

median voter’s bliss point as possible while still winning the election. By contrast,

we adopt the more standard assumption that candidates are office-motivated.

Desai and Tyson (2023) combine valence and competence into one characteris-

tic called “capability”. Capability affects the probability that a winning candidate

implements their policy platform, similar to “competence” in our model; but vot-

ers also attach intrinsic value to competence, much as they do to valence. As

in Miller (2011), the candidates in Desai and Tyson (2023) are purely policy-

motivated, with one candidate having an ideal point to the left of the center and

the other candidate to the right. They find that in equilibrium both candidates

choose an expected policy more moderate than their ideal point, with the weaker

candidate moving closer to the center than the stronger candidate.

Gouret and Rossignol (2019) model competence as a multiplier on the voter’s

(dis)utility for a candidate. As with our approach, voters prefer a candidate

with low competence when its policy platform is far from the voter’s ideal point.

However, unlike our approach, Gouret and Rossignol’s (2019) model does not

contain a status quo; competence in their model is instead the intensity with

which the proposed platform will be implemented.

The remainder of this paper is organized as follows. Section 2 introduces our

electoral competition game, and analyzes it for different timing regimes: simulta-

neous vs. sequential with an exogenous order of moves. In Section 3, we introduce

our general continuous time framework that can be used to analyze various ap-

analyze a single election. Kamada and Sugaya (2020) endogenize policy platforms and their
timing in electoral competition games where candidates’ opportunities to modify their positions
arrive stochastically.
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plications, including our electoral competition game. We focus on games with a

second-mover advantage. Subsequently, in Section 4, we transform our electoral

competition setting to a continuous time game, and use our main result from Sec-

tion 3 (Theorem 1) to endogenize candidates’ choices of policy platforms along

with their timing. Section 5 concludes. Proofs are relegated to the Appendix.

(The Online Appendix considers additional cases and contains a supplementary

discussion of our dynamic electoral competition game.)

2 Electoral competition game

The median voter’s ideal point is a random variable l ∼ U [−1, 1].8 Candidate

i ∈ {A,B} announces policy xi ∈ R before learning the realization of l. If i wins

they implement their announced policy with probability pi > 0, and retain the

default policy −1 < s < 1 with probability 1 − pi; pi measures the candidate’s

competence. If i wins, voters obtain a utility premium vi, unrelated to the policy;

vi is i’s valence.

The median voter, who knows their ideal point, obtains the expected utility

ul(i, xi) = −pi(l − xi)2 − (1− pi)(l − s)2 + vi,

from choosing candidate i. The candidate who gets this agent’s vote wins the

election. The voter chooses candidate i if ul(i, xi) > ul(j, xj), j 6= i. In case of a

tie, the voter chooses candidate A with exogenous probability α ≥ 1/2.9

Candidates are purely office-motivated, so candidate i’s payoff equals their

probability of winning the election, denoted πi. This model is tractable in the

dynamic environment where candidates decide when to announce their policy

platforms. First, however, we analyze the game under three exogenous timing

regimes: either A or B leads or they choose their platforms simultaneously. In the

latter case, the game often does not have a pure strategy equilibrium.

We begin with the median voter’s decision problem. If this voter chooses

8Duggan (2005) called this the stochastic preference model. Ashworth and Bueno de Mesquita
(2009) include uncertainty about both the median voter’s ideal point and the candidates’ valence.

9The assumption α ≥ 1/2 is reasonable given that A is the stronger candidate, and it reduces
the number of case distinctions in the proof of Proposition 2 (below). Results remain qualitatively
unchanged if the assumption is relaxed, as shown in Online Appendix B.1.

7



candidate i, the expected policy is

ai ≡ pixi + (1− pi)s ⇔ xi =
ai − (1− pi)s

pi
. (1)

If aA > aB, the median voter views candidate A as the rightist choice. To simplify

the algebra, we use ai instead of xi as the strategic variable10. We refer to ai as

both candidate i’s action and as their expected policy (conditional on winning),

whereas xi is i’s policy platform. With this transformation, the utility of the

median voter who chooses candidate i is:

Ul(i, ai) = −2(l − s)(s− ai)−
(s− ai)2

pi
− (l − s)2 + vi. (2)

We adopt the following notation: ∆a ≡ aA − aB, ∆v ≡ vA − vB, ∆p ≡ pA − pB,

and ∆Ul ≡ Ul(A, aA)− Ul(B, aB). Additionally, let

qi ≡ −
(s− ai)2

pi

be the “competence-weighted effect” of candidate i’s expected policy distance from

the status quo s. We also define ∆q ≡ qA − qB. For a = aA = aB we have:

∆q|∆a=0 =
∆p

pApB
(s− a)2. (3)

Our definitions imply

∆Ul = vA − vB −
(s− aA)2

pA
+

(s− aB)2

pB
+ 2(l − s)(aA − aB). (4)

This utility difference can be simplified to

∆Ul = ∆v + ∆q + 2(l − s)∆a. (5)

The preference of the voter with ideal point l between the two candidates depends

on the candidates’ valences, competence effects, and location effects. Higher va-

lence is always an advantage to a candidate. The effect of greater competence de-

pends on the relation between the candidate’s position and the status quo. In the

special case where the candidates announce the same expected policy (aA = aB),

10Note that by xi ∈ R, a candidate can choose any ai ∈ R and specifically any ai ∈ [−1, 1].
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Equation (3) implies that greater competence makes a candidate more attractive.11

Provided that ∆a 6= 0, from Equation (5), we obtain the critical point l̄ at

which the voter is indifferent between the two candidates:

l̄(aA, aB) = s− ∆v + ∆q

2∆a
(6)

= s− pApB(vA − vB)− pB(s− aA)2 + pA(s− aB)2

2pApB(aA − aB)
. (7)

Suppose that the indifferent median voter is “interior”: −1 < l̄(aA, aB) < 1.12 If

∆a > 0, then A is the rightist candidate and wins with probability πA(aA, aB) =
1
2
(1− l̄(aA, aB)). If instead, A is the leftist candidate (∆a < 0), then A’s winning

probability is πA(aA, aB) = 1
2
(1 + l̄(aA, aB)).13

If ∆a = 0, Equation (5) simplifies to

∆Ul|∆a=0 = ∆v + ∆q|∆a=0. (8)

If one candidate dominates in both valence and competence (i.e., ∆v > 0 and

∆p > 0) and in addition ∆a = 0, the voter prefers the dominant candidate for all

l. If each candidate dominates in a different characteristic (and ∆a = 0), then the

voter prefers candidate A if ∆v > −∆q|∆a=0.

We emphasize the case where candidate A is dominant in both competence

and valence. There we obtain a clear ranking of candidates’ incentives to lead or

follow, facilitating our later dynamic analysis. We also consider the special cases

where candidates differ only in their valence (∆p = 0) or only in their competence

(∆v = 0). Online Appendix B.2 examines the mixed case where each candidate

dominates in one of these characteristics.14

11With aA = aB 6= s the expected policy is the same under both candidates, but the policy
platform of the more competent candidate is necessarily closer to the status quo. Therefore, the
variance of the policy is smaller when the more competent candidate wins. Thus, the preference
for the more competent candidate reflects the voter’s implicit risk aversion.

12 If the solution to Equation (6) does not satisfy −1 ≤ l̄ ≤ 1, then it is understood that l̄
takes a boundary value. The proof of Proposition 1 uses this convention.

13We use the abbreviated form πA when there is no risk of confusion.
14This case can also be analyzed in continuous time, but requires complex case distinctions

due to the conflicting effects of competence and valence.
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2.1 Case: ∆v > 0 and ∆p > 0

With ∆v > 0 and ∆p > 0, A is more competent and has higher valence, and

therefore is the dominant candidate. To exclude the extreme case where A wins

with certainty both as the follower and as the leader, we assume

∆v < pB

(
1− ∆p

pA
s2

)
. (9)

Figure 1 helps to visualize the difference between the candidates’ incentives,

holding fixed ∆v, pA, pB, s. In both panels, the black curves show the graphs of

the critical voter’s position, l̄(aA, aB). The left panel shows these graphs for fixed

aB = 0.25 as aA varies, and the right panel shows the graphs for fixed aA = 0.25

as aB varies. Given an action pair, one-half the height of a region (green for A

and red for B) equals the probability that the agent wins. The figure shows that

candidate A has an incentive to move close to its rival, whereas B does better by

moving away. This difference is key to understanding why B’s payoff (its election

probability) is zero if it leads, and positive if it follows.
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Figure 1: Black curves show the critical l̄(aA, aB), for pA = 0.8, pB = 0.6,
s = 0.5, ∆v = 0.1. The left panel holds aB = 0.25 fixed and varies aA. The right
panel holds aA = 0.25 fixed and varies aB. For a given policy pair, 1/2 times the

height of a region equals the winning probability for A (green) and B (red).

The following proposition describes the best response correspondences and the

equilibria under different timing assumptions. Figure 2 illustrates the results.

Proposition 1. Assume that ∆v > 0, ∆p > 0, and Inequality (9) holds. (i) Can-

didate A’s best response correspondence is a closed interval that includes aA = aB

(the striped green area in Figure 2). B’s best response correspondence is single
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valued except at the discontinuity point a∗A ≡ (1 − pB)s, where there is a down-

ward jump (the red curves in Figure 2). (ii) As follower, A wins with certainty,

regardless of B’s choice. As leader, A chooses aA = a∗A and B wins with posi-

tive probability, which is less than A’s winning probability. (iii) The candidates’

best response correspondences are disjoint, so there exists no pure strategy Nash

equilibrium under simultaneous moves.
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Figure 2: Best response correspondences, for pA = 0.8, pB = 0.4, s = 0.5,
∆v = 0.1. Candidate A wins with probability 1 for policies in the green striped

area. The red curves show B’s best response correspondence, which is
discontinuous and multi-valued at aA = a∗A. On these curves, B has positive

probability of winning.

Intuitively, A wins with certainty when following B’s announcement, simply

by choosing a position close to B’s. Inequality (9) ensures that at A’s optimal

action as leader, aA = a∗A, B wins with positive probability by following opti-

mally. Because aA = a∗A minimizes B’s winning probability, B has a still higher

probability of winning for any other choice of aA. Therefore, B’s best response

correspondence lies outside the set where A wins with certainty; that set is A’s

best response correspondence. This disjointness of best response correspondences

implies that a pure strategy Nash equilibrium does not exist.

Part (ii) notes that A’s winning probability is greater than B’s, even when A

leads. Thus, the intrinsic electoral strength associated with ∆v > 0, ∆p > 0 more

than offsets a loss in the second-mover advantage.

If the stronger candidate A leads, their optimal action a∗A = (1 − pB)s cor-
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responds to the policy platform xB = 0, the policy that maximizes the other

candidate’s appeal to the expected median voter (if B were the sole candidate).15

Because A is more competent, the policy platform xA that corresponds to a∗A is

distorted towards the status quo policy s, as can easily be verified. As follower,

B wants to differentiate themselves from A. As leader, A takes advantage of this

incentive by choosing the platform corresponding to xB = 0, thereby inducing B

to move away maximally from what would otherwise be B’s favored platform.

2.2 Two limiting cases

Here we consider two limiting cases: (i) a simple case where ∆v > 0 with ∆p = 0

and (ii) the more complex situation where ∆v = 0 with ∆p > 0. These cases

highlight the differing roles of competence and valence. The first case is closer to

existing literature, but we consider it under different timing regimes.

Remark 1. When ∆v > 0 with ∆p = 0, the equilibrium is qualitatively the same

as in Proposition 1 (which assumes ∆v > 0 with ∆p > 0). In the special case

where pA = pB = 1, the equilibrium does not depend on the status quo policy; in

this case, A chooses the political center a∗A = 0 when it leads.

The anti-coordination structure of the game remains even when ∆p = 0. As noted

above, previous models have been criticized because their equilibria do not depend

on the status quo, and in that respect are independent of history. The Remark

shows that in a more general model the status quo s does affect the equilibrium

unless both candidates are perfectly competent (pA = pB = 1).

The second limiting case eliminates A’s valence advantage (setting ∆v = 0)

but retains its competence advantage (∆p > 0). We first describe the outcome in

the following Proposition, and then use Figure 3 to provide the intuition for it.

Recall that α is the exogenous probability that A wins in the event of a tie.

Proposition 2. (i) In the electoral competition game with ∆v = 0 and ∆p > 0,

there exists a pure strategy Nash equilibrium under simultaneous moves if and

only if s = 0 and α = 1/2. (ii) If A leads they choose aA = a∗A, and B wins with

positive probability. (iii) If B leads they choose aB = s, and B wins with positive

15Conditional on B being able to implement its announcement, xB = 0 is the ideal point for
the expected median voter. If B is not able to implement its announcement, that announcement
does not affect the outcome.
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probability unless α = 1. (iv) Each player obtains a higher winning probability as

follower than as leader (second-mover advantage).

Remark 2. While all statements in Proposition 2 remain valid, a Nash equilibrium

fails to exist (in a strict sense) under sequential moves for some parameter values:

(i) A leads, s = 0, and α > 1/2; (ii) B leads, s 6= 0, and α < 1+|s|
2

. In each

of these cases, the follower “shades” the leader’s action choice, which means that

they choose an action arbitrarily close to the leader’s action.16

The important difference, relative to the case where ∆v > 0, is that B wins

with positive probability also as the leader, unless α = 1 (Proposition 2.iii). How-

ever, B still does better as the follower, and A’s behavior as leader is unchanged.

Apart from a parameter set of measure zero (s = 0 ∧ α = 1/2, Proposition 2.i),

there is still no pure strategy Nash equilibrium under simultaneous moves.
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Figure 3: Combinations of aA and aB where l̄(aA, aB) = 1 resp. l̄(aA, aB) = −1
(green curves), and B’s best response correspondence (red curves), for pA = 0.8,

pB = 0.4, s = 0.3. Left panel: for ∆v = 0.01. Right panel: for ∆v = 0.

Figure 3 illustrates this situation, using s = 0.3. The left panel corresponds

to ∆v = 0.01 and the right panel corresponds to ∆v = 0. The green curves in

both panels show the loci where l̄ = ±1. These are tangent to the 45◦ line (and

thus to each other) at aA = aB = s for ∆v = 0. The red curves in both panels

show the two arms of B’s best response correspondence, with the discontinuity at

a∗A = (1− pB)s. The left panel, corresponding to the case in Proposition 1, shows

these arms bounded away from the 45◦ line, as is also the case in Figure 2. The

16This is well-known from other games, such as Bertrand competition with constant but
asymmetric marginal costs. Tirole (1988, p.234) uses a simple characterization of the outcome
by allowing the firm with lower marginal cost to “undercut” the competitor’s price marginally.
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right panel shows the lower arm tangent to the 45◦ line and to the two l̄ loci at

aA = aB = s.17 This difference causes the qualitative changes described above.

At any aA = aB 6= s, A wins with certainty. At such a point, the candidates

implement the same expected policy, but the variance of the outcome is smaller

under the more competent candidate A (see Footnote 11). The median voter then

prefers the more competent candidate. This advantage disappears at aA = aB = s,

so here A wins with the exogenous probability α.

It appears from the figure that aA = aB = s is a pure strategy Nash equi-

librium. However, if for example A takes aB = s as given, A has the option of

matching B and winning with probability α, or “shading” B’s choice by adopting

a position close to but not equal to s. B has the same opportunity if they take

aA = s as given. The proof of Proposition 2 (see also Remark 2) shows that one

of the two agents always has an incentive to defect from aA = aB = s unless s = 0

and α = 0.5, the only parameter combination at which there is a pure strategy

Nash equilibrium.

A’s behavior as leader (Proposition 2.ii) is the same as when ∆v 6= 0, but B’s

strategic situation as leader is different (Proposition 2.iii). If B were to adopt any

position other than s, A wins with certainty by matching that position. However,

by choosing aB = s, B knows that A will choose either to match or shade its

position. In either case, B’s payoff is positive unless α = 1. A comparison of B’s

payoffs as follower or leader shows that B is then always better off as follower.

3 Continuous time framework

We introduce a two-player continuous time framework. Later we embed the static

electoral competition game from Section 2 into this framework to endogenize the

timing of candidates’ policy announcements.18 In the continuous time setting,

where there is no “first” subgame after the current time, agents who move at the

same time might do so simultaneously or sequentially (Simon and Stinchcombe,

1989). In the former case, neither agent can condition their action on their rival’s

action. In the latter case, this conditioning is possible.

17The tangency occurs on the lower arm because in this figure s > 0. For this reason, the
figure shows only the positive quadrant.

18The framework has many other applications, shown in our companion paper Karp et al.
(2024). That paper emphasizes the relation between discrete and continuous time games, and
explains the technical assumptions listed below.

14



In the electoral competition game, like many others, the lack of a pure strategy

equilibrium is due to the static assumption that requires agents to move at the

same time. Sometimes, analytic convenience is the only reason for that require-

ment. More plausibly, agents can choose when to move, and can do so simultane-

ously or sequentially. The continuous time setting allows for these possibilities.

We first describe the game and introduce the notation. The next subsection

describes a “restricted game” that provides a link between our static and contin-

uous time frameworks. We then present our major result, providing conditions

under which there is a unique pure strategy sequential move equilibrium.

3.1 Model description and notation

Each of two players, i ∈ {1, 2}, can move at most once in the time interval [0, 1).

Player i has a default action, ωi, which we can think of as “waiting”. The agent

can also select an action ai from a compact subset of Rn (e.g., an interval) A−i .

Player i’s full action set is thus Ai = A−i
⋃
ωi. If player i moves at ti ∈ [0, 1),

selecting ai, that action remains fixed after ti. If i never moves, we set ti ≡ 1 and

ai ≡ ωi. Note, however, that time t = 1 is not part of the game.

A decision node is a time t ∈ [0, 1), combined with all information about the

history, h, at t. At any node, either one player or neither player has moved; the

game is over once both have moved. The history at t is thus either h = ∅ (nobody

has moved), or player j has moved at tj ≤ t, implementing action aj. A strategy,

denoted fi(t, h), instructs a player who has not previously moved whether to move

and what action to take. We assume that players use pure strategies regarding

their timing decisions. Section 3.2 explains why they do not mix over actions.

A “discontinuity point” in fi is a decision node where either the player switches

between the default action ωi and some ai ∈ A−i , or where i switches discontinu-

ously between two different actions in A−i . We adopt:

Assumption 1. For every history h of the game and i = 1, 2, fi(t, h) contains at

most a finite number of discontinuity points and is right-continuous in t.

For a subgame beginning at t at which neither player has previously moved, we

define the time tmi (t) ∈ [t, 1] where player i plans to move according to his strategy

f(t, ∅), conditional on the rival not having previously moved, and an associated

action ami (t) ∈ Ai that the player implements at tmi (t). If i plans to wait at all
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t ∈ [0, 1), provided that the other player also does not move, then tmi (t) = 1 and

ami (t) = ωi. Players who follow their strategies move simultaneously at t ∈ [0, 1)

if and only if tmi (t) = tmj (t) = t.

For a subgame at t ∈ [0, 1) where j has already moved, i’s strategy fi(t, h) con-

sists of functions tsi (t|tj, aj) ∈ [t, 1] and asi (t|tj, aj) ∈ Ai, determining the follower’s

response and time of response. The superscript s indicates that i is the second-

mover. If i follows j’s move immediately, then tsi (tj|tj, aj) = tj. If i plans not to

make any move after observing j’s move, then tsi (t|tj, aj) = 1 and asi (t|tj, aj) = ωi.

This description of strategies emphasizes that agents might move at the same

point in time either simultaneously or sequentially. In the first case, neither agent

can condition their action on the other agent’s action. In the second case, the

follower can condition their action on the leader’s action and on its timing. The

equilibrium actions may differ in these two cases. Assumption 1 implies that tmi (t),

ami (t), tsi (t|tj, aj), and asi (t|tj, aj), are right-continuous and have a finite number of

discontinuities in t. Therefore, there can be no sequence of subgames over which

the leader-follower roles switch infinitely many times. This rules out a particular

type of preemption, and is used in the proof of Theorem 1.

Assumption 1 does not specify how player i’s strategy as a follower varies with

tj and aj, the timing and action choice of the leader. We thus adopt:

Assumption 2. The functions tsi (t|t, amj (t)) and asi (t|t, amj (t)) are right-continuous

in t over any interval where player j plans to lead (i.e., where tmj (t) = t holds).

Let player i’s payoff be Πi(ti, ai, tj, aj). If neither player moves in [0, 1), then

player i obtains a fixed endgame payoff Ei ≡ Πi(1, ωi, 1, ωj).

Assumption 3. Πi(ti, ai, tj, aj) is bounded and continuous.

Continuity of players’ payoffs in their timing and action choices seems natural in

many applications where players’ action sets are infinite.

If player i reaches the decision node at t ∈ [tj, 1), after an observed prior move

by player j, (tj, aj), and i behaves optimally at t, i obtains the payoff

Πs
i (t|tj, aj) ≡ max

tsi∈[t,1], asi∈Ai

Πi(t
s
i , a

s
i , tj, aj). (10)

The solution to this optimization problem consists of the functions ts∗i (t|tj, aj)
(the optimal time to move) and as∗i (t|tj, aj) (the optimal action to take). If the
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solution is not unique, we assume that both players know which pair of maximizers

(compatible with Assumption 2) the follower chooses.

Conditional on leading at time t ∈ [0, 1), whether or not it is optimal to do so,

we define the leader’s (player i’s) maximum payoff as

Li(t) ≡ max
ai∈A−i

Πi(t, ai, t
s∗
j (t|t, ai), as∗j (t|t, ai)). (11)

We denote player i’s optimal action, conditional on leading at time t, as aLi (t).19

We again assume that the maximizer ai in Equation (11) is unique, or if not, that

both players anticipate which maximizer i will choose if this player leads at time

t.

If player j leads at time t ∈ [0, 1), implementing their optimal action aLj (t),

then the follower, player i, obtains the payoff

Fi(t) ≡ Πs
i (t|t, aLj (t)). (12)

This definition embeds player i’s optimal behavior as the follower, via Equation

(10). Note that Fi(t) is not the payoff i gets when moving at t, but rather the

payoff from following a move by j, taking place at time t, optimally (irrespective of

whether this has i move immediately after j, at a later point in time, or not at all).

3.2 A bridge between the static and dynamic games

There are many plausible ways to generalize a static game to make it dynamic,

but there is an obvious way to specialize a dynamic game to make it static: For

all t, give players the same payoff and action sets as in the dynamic game but

require that they move simultaneously at t. We refer to this as the “restricted

game” at t.20 Our assumptions above ensure that there exists a Nash equilibrium

to this game (Zhou et al., 2011). If there exist both pure and mixed strategy

equilibria, we assume that players coordinate on a (particular) pure strategy Nash

equilibrium, resulting in player i’s (expected) equilibrium payoff Ni(t).

The dynamic game allows players to wait at t, whereas the restricted game does

19Note the difference between the functions ami (t) and aLi (t). The former describes an arbitrary
strategy of player i, stating the action that the player implements at the next point in time when
this player plans to move, tmi (t). The latter function describes the optimal action for player i to
implement at t, conditional on leading at this time.

20This restricted game is of interest only if neither player has previously moved.
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not. The restricted game thus provides a simple means of obtaining sufficient

conditions to rule out the existence of a simultaneous move equilibrium in the

dynamic game. We merely need to determine whether the restricted-game Nash

equilibrium constitutes an equilibrium in the dynamic game. That is, we ask

whether the restriction to simultaneous moves would bind in the dynamic game.

If the restriction does bind, then there are no simultaneous move equilibria in the

dynamic game.21 The following Assumption states that the restriction binds:

Assumption 4. For every t ∈ [0, 1) in the dynamic game, at subgames where

neither player has previously moved, at least one player strictly prefers to wait at

t rather than to use their restricted-game Nash equilibrium strategy, given that

the other player adopts their restricted-game Nash equilibrium strategy at t.

This assumption might be satisfied in at least two ways. First, waiting might

increase a player’s payoff independently of the actions taken, possibly due to ex-

ogenous changes. Second, there may exist no pure strategy simultaneous move

equilibrium in the restricted game, leaving only a mixed strategy equilibrium. If

player i were to use its restricted-game mixed strategy in the dynamic game at

t, then j strictly prefers to deviate from its own restricted-game mixed strategy.

Player j does better by waiting to observe the outcome of i’s strategy and then

responding optimally. In the continuous time setting, j incurs no cost from this

“delay”. Thus, given that agents do not randomize over their timing decisions,

they do not mix over actions.22

We are interested in the second reason. For the static electoral competition

game that motivates our use of the continuous time setting, the only simultaneous

move equilibrium (in most cases) is in mixed strategies. We noted above that

there are many ways to generalize a static game by embedding it into a dynamic

setting, e.g., different types of discounting or exogenous changes. However, a

minimal requirement for this generalization is that for all t ∈ [0, 1) the restricted

21If there was such an equilibrium in the dynamic game, then it would also be a Nash equi-
librium in the restricted game.

22Equilibria in which players randomize over the timing of their moves by leading with some
hazard rate are easy to rule out, as shown by Hendricks et al. (1988). This merely requires an
asymmetry between players. Below, we introduce a time τi for player i, which is the latest time
at which this player is willing to lead, conditional on the other player not leading after this time.
Provided that τ1 6= τ2, no mixed strategy equilibria of the “hazard rate type” can exist in our
setting. This is implied by our arguments in the proof of Theorem 1 (below), and conforms with
results of Hendricks et al. (1988) for a simpler setting where players can only choose the timing
of their moves (and not their actions).
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game payoff, Πi(t, ai, t, aj), is isomorphic23 to the payoff in the original static game,

πi(ai, aj); and the action sets A−i are the same in the two settings.

Proposition 3. Suppose that for all t ∈ [0, 1) the payoffs Πi(t, ai, t, aj) and

πi(ai, aj) are isomorphic, the action sets A−i in the two games are the same, and

there exist no pure strategy Nash equilibria in the static game. Then there exist

no SPNE in the dynamic game where players move simultaneously.

Proposition 3 implies that when the static game has only mixed strategy equi-

libria, then Assumption 4 is satisfied. With that and the previous technical as-

sumptions, we can sometimes identify a unique SPNE with sequential moves in the

dynamic game. The profession is so habituated to mixed strategy equilibria that

we may forget that these sometimes arise from the assumption that agents must

move simultaneously. That assumption might be adopted for tractability, without

a compelling economic rationale. However, using a continuous time formulation of

the game, we discover that in some cases the dynamic game is both more tractable,

and its predictions more plausible than its static counterpart. Section 4 illustrates

this claim using the electoral competition model from Section 2.

3.3 Main result

We hereafter consider games with a “second-mover advantage”, as in the electoral

competition game. Player i has a strict second-mover advantage at t if, assuming

that the other player moves at t, i strictly prefers to wait until t, rather than lead

shortly before t. More formally:

Definition 1. Player i has a strict second-mover advantage at t ∈ (0, 1) if there

exists some δ > 0 such that Fi(t) > supt′∈[t−δ,t] Li(t
′), and at t = 0 if Fi(0) > Li(0).

Figure 4 illustrates two cases that make it easy to understand both our nota-

tion and the role of “patience” in determining which player leads in equilibrium.

In both panels, player 1 (but perhaps not player 2) has a strict second-mover ad-

vantage at all t ∈ [0, 1). For both players, the payoff from leading at t, Li(t), is

single-peaked with i’s ideal time located at t̄i ≥ 0. The possible non-monotonicity

of Li(t) accommodates non-strategic reasons for a player to delay leading. For ex-

ample, the timing of an advertisement or electoral campaign might be important.

23Isomorphic means that the location of minima, maxima, signs of slopes, curvatures etc. are
the same in πi and Πi for identical values of ai and aj .
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In addition, for each player i there is a first decision node, a critical value denoted

τi, beyond which i does not want to lead provided that the other player also does

not lead for the rest of the game. In both panels, τ2 > τ1. The main difference

between the panels is that t̄1 > t̄2 in panel A, but t̄2 > t̄1 in panel B.

Here, patience has three dimensions. (i) A second-mover advantage gives an

agent a reason to delay moving. (ii) An earlier critical time, τi means that from an

earlier time player i prefers to wait (rather than lead) until the end of the game.

(iii) A later ideal time to lead, t̄i, creates a third reason for patience. In Figure 4A,

player 1 is more patient in both the second and third dimensions (and possibly

also in the first), so it is not surprising that for this configuration player 2 leads in

the unique SPNE. In contrast, in Figure 4B player 1 is more patient in the second

dimension but player 2 is more patient in the third one.24 Here, the identity of

the leader depends on the relative strength of the two types of patience.

We now define three pieces of notation. Let

τi ≡ inf{t ∈ [0, 1) : Li(t
′) < Ei for all t′ ≥ t} (“latest time for i to lead”), (13)

t̄i ≡ argmax
t∈[0,1)

Li(t), (“best time for i to lead”), (14)

t̂i ≡ sup{t ∈ [0, t̄j) : Li(t) ≥ Fi(t̄j)} (“latest time for i to preempt j”). (15)

If there is no t ∈ [0, 1) such that Li(t
′) < Ei for all t′ ≥ t, we set τi = 1.25 We

further assume that the maximum in Definition (14) exists and is unique.26 The

value t̂i is the upper boundary of an interval where i prefers to preempt j by

leading prior to j’s optimal time to lead, t̄j, rather than wait for j to lead (see

Figure 4B for illustration). If no such time exists, we set t̂i = 0.

We now collect conditions used in Theorem 1:

Condition 1. (Conditions relevant for Theorem 1)

(i) At every t ∈ [t̄2, τ2), player 1 has a strict second-mover advantage and L2(t)

is strictly decreasing over this interval; in addition, τ2 > τ1.

(iia) supt∈[0,t̄2) L1(t) < F1(t̄2).

24Theorem 1 does not require all of the features (e.g., continuity everywhere, or that F1(t) >
L1(t) holds for all t ∈ [0, 1)) shown in Figure 4.

25This is for instance the case if Li(t
′) ≥ Ei for all t ∈ [0, 1).

26We thus rule out the (knife-edge) case where Li(t) has a downwards discontinuity exactly
at the point where it attains its highest value.
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Figure 4: Payoff functions Li(t) and Fi(t) in stylized examples with a
second-mover advantage for player 1, and L2(t) monotonically decreasing for
t > t̄2 (player 2’s ideal point for leading); panel A: example where t̄1 > t̄2;
panel B: example where t̄2 > t̄1; Green color: player i leads at t in unique

SPNE, Red: player i waits (see Theorem 1).

(iib) supt∈[0,t̄2) L1(t) > F1(t̄2), and supt∈[0,t̄1) L2(t) < F2(t̄1).

(iii) At every t ∈ [t̄1, t̂1), player 2 has a strict second-mover advantage, and L1(t)

is strictly decreasing over this interval.

Condition 1.iia implies that player 1 does not want to preempt player 2 by leading

prior to t̄2, 2’s optimal time to lead. The first part of Condition 1.iib states that

player 1 would like to preempt player 2 by leading before t̄2. The second part

21



of this condition states that player 2 is willing to accommodate this preemption.

Condition 1.iii mirrors Condition 1.i, with the roles of the two players reversed.

The proof of Theorem 1 uses the observation that under Conditions 1.iib and 1.iii,

the subgames in the interval t ∈ [t̄1, t̄2) are isomorphic to those in the interval

t ∈ [t̄2, 1), with the roles of the players reversed.

The following condition assures uniqueness of the SPNE:27

Condition 2. (Conditions for uniqueness in Theorem 1)

(i) For any t ∈ [0, 1), tj ≤ t, and aj ∈ A−j , the maximizers of Equation (10) are

unique.

(ii) For any t ∈ [0, 1), the maximizer of Equation (11) is unique.

If one player has previously moved, the other agent faces a standard decision

problem. In Theorem 1, it is understood that a follower responds optimally to

any prior move of the other player; and a player who leads at time t uses their

best leader’s action, aLi (t) (Section 3.1). In Figure 4, the curve Li(t) is green if

(according to Theorem 1) i leads at time t, and red if i waits.

Theorem 1. Suppose that Assumptions 1–4, as well as Condition 1.i hold. Con-

sider subgames starting at time t ∈ [0, 1), such that nobody has previously moved:

(i) (See Figure 4.) In subgames starting at any t ∈ [t̄2, 1), there is a SPNE:

player 1 waits at decision nodes t ∈ [t̄2, 1); player 2 leads at nodes t ∈ [t̄2, τ2),

and waits at t ∈ [τ2, 1).

(ii) (See panel A in Figure 4.) If Condition 1.iia holds, there is also a SPNE for

subgames starting at [0, t̄2): both players wait at nodes t ∈ [0, t̄2). (Players’

behavior at later decision nodes is as under (i).)

(iii) (See panel B in Figure 4.) If Conditions 1.iib and 1.iii hold, there is a SPNE

for subgames starting at [0, t̄2), with the strategies: player 1 leads at decision

nodes t ∈ [t̄1, t̂1) and waits at t ∈ [0, t̄1)
⋃

[t̂1, t̄2); player 2 waits at decision

nodes t ∈ [0, t̄2). (Players’ behavior at later decision nodes is as under (i).)

If, additionally, Condition 2 holds, then the respective SPNE is unique.

Online Appendix B.3 provides an intuition for Theorem 1.

27If this condition does not hold, then (as in Section 3.1) we assume that both players anticipate
which maximizer is selected. Then the SPNE is unique conditional on that choice.
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3.4 Extension: Non-monotonicity of Li(t)

Condition 1(i), and thus Theorem 1, requires that over particular intervals, Li(t)

is strictly decreasing. Here we show how to restore uniqueness in one case where

this monotonicity fails. The top graphs in Figure 5 show two different types of

non-monotonic functions Li(t). In panel A, Li(t) has an upwards jump, while

in panel B it has an increasing segment. For both panels, between t′ and t′′

this player prefers to wait rather than lead, conditional on the other player also

waiting. The functions L̄i(t), shown at the bottom, are obtained by “ironing” (or

“flattening”) Li(t): between t′ and t′′, L̄i(t) is constant, equal to the higher value

at the discontinuity point (panel A), or at the local maximum (panel B).
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Figure 5: Li(t) non-monotonic; panel A (top part): Li(t) has an upwards
discontinuity at t′′; panel B (top): Li(t) has an increasing segment; bottom part
of each panel: “modified leader’s payoff function” L̄i(t) (player i waits between t′

and t′′)

The functions Li(t) and L̄i(t) have different interpretations. By definition,

Li(t) is the maximal payoff of player i, conditional on leading at time t, regardless

of whether this is optimal for player i at t. The function L̄i(t), on the other hand,

incorporates the fact that between t′ and t′′, i prefers to wait, conditional on j

also waiting. The red segment in each panel indicates this interval. Outside of the

interval (t′, t′′), L̄i(t) has the same interpretation as Li(t).

When the monotonicity of Li(t) stated in Condition 1(i) fails over (t′, t′′), a

sufficient alternative condition for uniqueness is that j does not want to lead over

this interval given that the alternative is to wait until t′′ and enjoy the second-

mover advantage: j does not want to preempt i. This sufficient condition is

Condition 3. (Condition relevant for Corollary 1)

supt∈[t′,t′′] Lj(t) < Fj(t
′′).
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This alternative to Condition 1.i is useful in the next section, so we state:28

Corollary 1. Suppose that Condition 1.i fails, so that a non-monotonicity in Li(t)

gives rise to the interval [t′, t′′] over which the “ironed” function L̄i(t) is constant.

Moreover, Condition 3 is satisfied. The unique SPNE is as described in Theorem

1, except that both agents wait over the interval [t′, t′′].

Remark 3 in Section 4 considers a case where both, Conditions 1.i and 3, fail.

4 Electoral competition in continuous time

Here we embed the electoral competition model from Section 2 into a continuous

time setting, thus allowing candidates to decide when to announce their plat-

form. Section 3.2 notes that a minimal requirement in using a static game to

construct a continuous time game is that for all t ∈ [0, 1) the restricted game pay-

off, Πi(t, ai, t, aj), is isomorphic to the payoff in the original static game, πi(ai, aj);

and the action sets A−i are the same in the two settings. We assume that this

condition is met. However, to complete the description of the dynamic game we

need to introduce time dependence of payoffs and also extend the domain of the

static game payoff functions to include ωi (“waiting”).

We adopt the following formulation: For ai ∈ A−i , ti < 1, and i ∈ {A,B}, (i.e.,

when both candidates announce a policy platform)29

Πi(ti, ai, tj, aj) = (1− ti)πi(ai, aj)− ci. (16)

In the static game πi(ai, aj) is i’s probability of winning when the candidates

announce (ai, aj). In the dynamic game, candidate i incurs a fixed cost ci from

entering. Note that delaying entry harms the candidate, without benefiting the

rival. For example, it may raise the cost of running a campaign, reduce opportu-

nities for fund-raising, or expose the candidate to the risk of being replaced.

28The proof of this corollary closely follows the proof of Theorem 1, except that over [t′, t′′]
player i prefers to wait, knowing that j will not preempt it. If the function Li(t) (rather than the
ironed function L̄i(t)) were constant over [t′, t′′], then there is a (trivial) multiplicity of equilibria:
over some interval i is indifferent between leading and waiting.

29Note, that the right-hand side depends only on ti, the timing of player i’s own move. This
formulation provides perhaps the most parsimonious extension to a dynamic setting of our static
model. Clearly, more general formulations are available, but our main interest is endogenizing
the timing of moves in a simple setting that captures the main features of the underlying electoral
competition model.
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Let aLi be the leader’s action choice in the static electoral competition model

if i leads. In the dynamic game, if A announces aLi at a time ti < 1 at which j’s

optimal response is to never respond (so that ts∗j (ti|ti, ai) = 1), i’s payoff is

Πi(ti, a
L
i , 1, ωj) = (1− ti)π̄i − ci, (17)

where π̄i ≤ 1 is a free parameter. If π̄i = 1, then i wins by default. If π̄i < 1, then

i faces the risk of a late entrant when j chooses not to announce a policy.30 We

assume that leading at ti with an action different from aLi leads to a strictly lower

payoff to candidate i. Hence, also in the dynamic game, conditional on leading,

candidate i always chooses the same action aLi .31

Finally, if neither player moves in [0, 1), then both candidates obtain a payoff

of zero, i.e., Ei = Πi(1, ωi, 1, ωj) = 0. And if only player j moves in [0, 1), but

player i never moves, again, player i obtains a payoff of zero: Πi(1, ωi, tj, aj) = 0

for all aj ∈ A−j and tj < 1.

We assume that either (i) ∆v > 0 and ∆p ≥ 0, or (ii) ∆v = 0 and ∆p > 0, so

candidate A is the stronger candidate in the static game. For the second case, we

exclude s = 0 (see Remark 2 in Section 2.2) to ensure that there does not exist

a pure strategy Nash equilibrium in the static game under simultaneous moves

in either case, and that A always chooses a∗A as leader. We also assume that

Condition (9) holds. If −1 ≤ l̄(aA, aB) ≤ 1, where l̄(aA, aB) is given by Equation

(7), A’s winning probability is (see Section 2)

πA(aA, aB) =
1

2
·

1− l̄(aA, aB), if aA > aB

1 + l̄(aA, aB), if aA < aB.

For ∆a sufficiently close to zero and ∆v > 0, the condition −1 ≤ l̄(aA, aB) ≤ 1 is

not satisfied, and A wins with probability one (see Figure 2 in Section 2). Under

30A candidate’s decision not to adopt a policy before t = 1 constitutes an implicit withdrawal,
which does not necessarily benefit the rival. For example, Kamala Harris was nominated by the
Democrats following Joe Biden’s withdrawal from the 2024 US presidential election.

31We thus assume that πi(ai, ωj) has the same maximizer as πi(ai, a
s
j(ai)). Note, that “entry

deterrence” is not a viable strategy for the leader, because the leader’s action already minimizes
the follower’s election probability. Karp et al. (2024) analyze a price competition game where
entry deterrence plays a role (see also Online Appendix B.4 for a related discussion). Caruana
and Einav (2008) analyze a dynamic game in which commitment arises endogenously, although
players can change their actions over time; they use this framework to study entry deterrence.
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a tie, which occurs only if ∆v = 0, ∆p > 0 and aA = aB = s,32 candidate A wins

with probability α. B’s winning probability is πB(aA, aB) = 1− πA(aA, aB).

We use πFi and πLi to denote i’s equilibrium winning probability as follower or

leader in the static game33. We have

(i) πFj = 1− πLi , (ii) πFi > πLi , (iii) πLA > πLB and (iv) πA ≥ πB. (18)

Condition (18).i is a property of probabilities. Condition (18).ii states that both

candidates have a second-mover advantage. Condition (18).iii follows from Propo-

sitions 1 and 2 and our assumption that A is the stronger candidate. The new

condition (18).iv is consistent with the assumption that A is the stronger candi-

date: A does better than B when the rival never announces a policy, and thus

(essentially) drops out of the race. We treat πLi , π
F
i , and π̄i as parameters, and

use them to define the equilibrium payoffs, conditional on the order of moves, in

the dynamic game. We can relate πLi and πFi to the parameters of the static game;

Online Appendix B.4 contains details.

Using Equations (12) and (17), i’s payoff as follower in the dynamic game is

Fi(t) = max{(1− t)πFi − ci, 0}. (19)

Candidate i follows the leader immediately for

t < tcriti ≡ max{1− ci
πFi

, 0} (20)

and never responds for t ≥ tcriti .34 Thus, i’s payoff, conditional on leading at t, is

Li(t) =

(1− t)πLi − ci if t < tcritj

(1− t)π̄i − ci, if t ≥ tcritj .
(21)

To rule out trivial cases, we assume that the entry costs are small enough that

early in the game, A is willing to lead and B is willing to announce a policy as

32This is the only parameter constellation that produces a strictly positive probability of a tie.
33For ∆v = 0, when the weaker candidate leads, the stronger candidate may not have a

best response as this candidate may prefer to shade the weaker candidate’s action choice (see
the proof of Proposition 2.iii, and Remark 2 in Section 2.2). However, the limit value for the
winning probability of each candidate is still well-defined. Moreover, in Proposition 4 we will
show that in the dynamic game it is the stronger candidate who leads in equilibrium.

34Assumption 2 (right continuity) breaks the tie at t = tcriti .
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the follower: cA < πLA and cB < πFB , so LA(0) > 0 and FB(0) > 0. Additionally,

we assume cA ≤ cB.
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Figure 6: Li(t) (green) and Fi(t) (red) in the dynamic electoral competition
game, for πLA = 0.6, πLB = 0.2, πA = 0.9, πB = 0.6, c1 = c2 = 0.15

Figure 6 illustrates Li(t) and Fi(t) that satisfy these assumptions. For both

candidates, Fi(t) consists of a linearly decreasing segment with Fi(0) > 0, followed

by a constant segment with the value zero, beginning at tcriti < 1. In addition,

tcritA > tcritB . Li(t) is piecewise linearly decreasing, with a potential discontinuity

at t = tcritj ; if πi = πLi , the function is continuous.

We need two additional restrictions to apply Theorem 1. The first restriction

implies that the weaker candidate B does not lead beyond t ≥ tcritA , where the

strong candidate A is unwilling to follow. If B were to lead at tcritA it receives

the payoff (1 − tcritA )πB − cB. We require that this payoff is negative, i.e., using

Definition (20), that

cAπB − cBπFA < 0, (“B does not lead late in the game”). (22)

With this restriction, B never leads at any t ≥ 1− cB/πLB ≡ τB.35

Our second restriction arises if πA > πLA; here there is an upward jump in

LA(t) at t = tcritB , as Figure 6 illustrates. In this case, we apply the “ironing”

procedure described in Section 3.4, producing the flat interval over [t]A, t
crit
B ] in

A’s payoff, shown in the graph of LA(t) in Figure 7.36 As Section 3.4 explains,

35There are three possible cases for τA. If both segments of LA(t) intersect the horizontal axis,
then τA is the larger of the two intersection points. If there is only one intersection, this point is
τA. If neither segment intersects the horizontal axis, then πA < πL

A (so LA(t) has a downwards
jump at tcritB ); here, τA equals the point of discontinuity, i.e., τA = tcritB .

36 Setting LA(t]A) = LA(tcritB ) yields t]A = 1− (1− tcritB )πA/π
L
A = 1− cBπA/(π

F
Bπ

L
A).
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here the application of Theorem 1 requires that B does not want to preempt A

by leading in this interval. Because LB(t) is decreasing over this interval, the “no

preemption” Condition (3), is LB(t]A) < 0, which is equivalent to37

πLA(1− πLA) > πAπ
L
B (“B does not preempt while A waits”). (23)

We summarize these two restrictions in

Condition 4. (i) B does not lead when A would not follow: Inequality (22) is

satisfied. (ii) B does not preempt while A waits: Inequality (23) is satisfied.

We now apply Theorem 1 to solve the dynamic electoral competition game:38

Proposition 4. In the dynamic version of the electoral competition game, under

the assumptions and conditions of Theorem 1, together with Condition 4, there is

a unique SPNE in which candidate A leads at t = 0 and B follows immediately.

In subgames where neither player has moved, the strategies are:

• (i) if πA ≤ πLA or LA(tcritB ) ≤ 0 (or both), A leads at t < τA, and waits

thereafter, while B always waits;

• (ii) if πA > πLA and LA(tcritB ) > 0, strategies are the same except that A waits

for t ∈ [t]A, t
crit
B ).

In subgames where one candidate has moved, the other candidate follows optimally.

Condition 4.i simplifies the statement and proof of Proposition 4, but the main

conclusions remain even without that condition:

Remark 3. If Condition 4.i, fails, both players have a first mover advantage in

off-path subgames at t ≥ tcritA . Therefore, the equilibrium strategies in these sub-

games can differ from those described in Proposition 4. However, the equilibrium

strategies at earlier subgames are unchanged. Therefore, the outcome of the game

at t = 0 does not change: A leads and B follows immediately.

37To establish this equivalence, use LB(t]A) < 0 ⇐⇒ cB > (1 − t]A)πL
B . Using the formula

for t]A in Footnote 36 we obtain (1− t]A)πL
B = cBπAπ

L
B/(π

F
Bπ

L
A) < cB ⇐⇒ πAπ

L
B/(π

F
Bπ

L
A) < 1.

Using πF
B = 1− πL

A, this yields Inequality (23).
38Online Appendix B.5 provides a preliminary welfare analysis comparing the efficiency of the

sequential equilibrium to a (hypothetical) setting where a planner chooses candidates’ policy
platforms to maximize the expected welfare of the median voter. Numerical results suggest that
the planner chooses policies that are farther apart than the equilibrium policies, thereby catering
to more extreme realizations of the median voter’s bliss point.
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Figure 7: SPNE strategies in the dynamic electoral competition game: L̄A(t) and
LB(t), green: player leads in subgame beginning at t, red: player waits; for

πLA = 0.6, πLB = 0.2, πA = 0.9, πB = 0.6, c1 = c2 = 0.15

Figure 7 graphs the candidates’ payoffs if they lead, L̄A(t) and LB(t), for the

case πA > πLA. The color coding identifies the candidates’ strategies, red indicating

“wait” and green indicating “lead”. Candidate B’s equilibrium strategy is to wait

at every subgame where neither player has moved. Candidate A leads at every

such subgame before τA, except over the interval [t]A, t
crit
B ), where A waits. Our key

finding is that the stronger candidate A leads, i.e., announces their policy platform

before the other candidate. Most importantly, candidates do not announce their

platforms simultaneously if they are free to decide when to move.

Figure 7 illustrates a case where both candidates obtain a positive payoff from

leading near the beginning of the game. Nevertheless, the stronger candidate leads

in the unique equilibrium. The explanation is that the candidates recognize that

there are later (off-path) subgames at which the weaker candidate would not lead

(because doing so returns a negative payoff), but the stronger candidate is still

willing to lead. Reasoning backwards in time, the stronger candidate thus starts

leading from an earlier time onwards to avoid inefficient delay, and ends up leading

immediately at t = 0. Both candidates would prefer to follow rather than lead,

but only the weaker candidate enjoys their second-mover advantage. Here, innate

strength creates a strategic disadvantage. Similar results have been found by other

authors, but using a different equilibrium concept, e.g., risk dominance as in van

Damme and Hurkens (1999 and 2004).39

Applying Theorem 1 requires only checking that the conditions of the theorem

39Using a different application, our companion paper shows that the stronger candidate does
not lead in every case: It depends on the details of the strategic interaction.
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hold. For the game here, this confirmation is straightforward, making it easier to

characterize the sequential equilibrium than to compute the mixed strategy equi-

librium – which occurs only when agents are assumed to move simultaneously.

That assumption is sometimes motivated by analytic convenience, not because

there is an economic reason to think that agents really do move simultaneously.

In our electoral competition game, agents never move simultaneously. The strong

candidate announces their policy first and the weak candidate responds immedi-

ately, conditioning their response on the leader’s announcement.

5 Conclusion

We introduce a continuous-time setup to analyze two-player games where agents

choose actions along with their timing. We focus on games with a second-mover

advantage. Under a small set of intuitive conditions, we identify a unique SPNE

entailing sequential moves by the players. The characteristics that determine

which agent follows – a source of “patience” – are context-specific. An agent

who is more patient in all dimensions follows in equilibrium. If each agent is more

patient in a different dimension, the identity of the follower depends on the relative

strength in the different dimensions.

We use this framework to study electoral competition where two candidates

differ in their valence and in their competence (defined as the probability of im-

plementing the announced policy in case of winning the election). The “stronger”

candidate, with greater valence and competence, is more eager to enter the fray;

this agent is less patient and therefore typically leads in equilibrium. The weaker

agent then enjoys the second-mover advantage. The electoral value of greater

valence and competence (intrinsic strength) always dominates the second-mover

advantage, so the stronger candidate has a higher probability of winning the elec-

tion. Nevertheless, the weaker candidate wins with positive probability.

Previous papers have shown that intrinsic strength may cause an agent to

lose the second-mover advantage. These analyses sometimes rely on restrictive

functional forms and complex calculations using risk dominance considerations.

In our setup, the identity of the leader can be determined by checking a simple

set of conditions, using subgame perfection as the only refinement.

Our framework offers a new perspective on timing games. It provides a useful

tool to endogenize the order of players’ moves, especially where players interact
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both in the timing of their move and in their action. Many strategic interactions

are traditionally analyzed by imposing an order on the players’ moves. Static

games require that agents move simultaneously. In many of these games, includ-

ing our static model of electoral competition, the unique Nash equilibrium is in

mixed strategies. In some circumstances (e.g., with penalty kicks) the assumption

of simultaneous moves is plausible, but in other cases (including electoral com-

petition) there is no compelling reason to think that agents move simultaneously.

The static assumption may be adopted because it appears to simplify an otherwise

intractable game. Although the description of the dynamic game is more compli-

cated than that of its static analog, the equilibrium analysis of the former might

be much simpler. Mixed strategy equilibria, especially where action sets are con-

tinuous, are typically difficult to compute, making it hard to obtain comparative

statics. The pure strategy SPNE in our dynamic game is trivial to obtain. Under a

weak set of assumptions for a game where agents choose when to move, they never

move simultaneously in equilibrium. In this case, equilibria where players random-

ize over their actions are a special feature of static simultaneous-move games.

A possible research agenda involves reconsidering static games, to determine

when the assumption of simultaneous moves is descriptive. Where that assumption

is made for reasons of (apparent) tractability rather than plausibility, the tools we

provide may offer an alternative way to think about the game. Additional features

that may be added to our continuous time modeling framework include asymmetric

information or exogenous changes to the payoff structure. And last but not least,

allowing players to choose the timing of their moves freely (in continuous time) in

analog games that have traditionally been analyzed as static ones, promises new

insights also when using laboratory experiments.40

40Calford and Oprea (2017) pioneered experiments based on the continuous time framework
of Simon and Stinchcombe (1989). Our general framework (Section 3) drastically expands the
set of games that can be analyzed by including infinite action sets, such as intervals.
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A Appendix: Proofs

Proof of Proposition 1. Part i. We first confirm the description of A’s best re-

sponse correspondence, and then turn to B’s best response correspondence.

Using Equations (3) and (5), when ∆a = 0 the median voter strictly prefers

candidate A regardless of the realization of this voter’s ideal point; in this case,

candidate A wins with certainty. Given the continuity of the model in actions,

for all realizations of the median voter’s ideal point, this voter strictly prefers

candidate A whenever |∆a| is sufficiently small. Therefore, there is an interval

with positive measure, that includes the 45o line in Figure 2, such that for all

policies in this interval candidate A wins with certainty.

We now show that this interval is candidate A’s entire best response corre-

spondence: no point outside this interval is a best response to aB. To establish

this claim, we show that for any pair of positions at which candidate A’s proba-

bility of winning is less than 1, the candidate does strictly better by moving its

policy toward the 45o line. We use the critical value l̄(aA, aB) in Equation (7) and

compute the derivative

∂l̄(aA, aB)

∂aA
=
pB(aA − aB)2 + ∆p(s− aB)2 + pApB∆v

2pApB(aA − aB)2
> 0. (24)

This relation implies that if πA < 1, candidate A has an incentive to move closer

to candidate B’s position: If aA < aB, a higher aA increases l̄(aA, aB), thereby

increasing A’s probability of winning, πA(aA, aB) = 1
2
(1+ l̄(aA, aB)). For aA > aB,

a decrease in aA reduces l̄(aA, aB), which again implies a higher probability of

winning, πA(aA, aB) = 1
2
(1 − l̄(aA, aB)). Therefore, outside the green area shown

in Figure 2 there exists no interval or point where A wins with certainty.

We now consider B’s best response correspondence. For the time being we

ignore the constraints −1 ≤ l̄(aA, aB) ≤ 1. The proof of Part (ii) establishes that

these constraints are not binding, given the assumptions of the Proposition.

For aB < aA, B’s probability of winning the election (its objective) is 1
2
(1 +

l̄(aA, aB)) and for aB > aA, it is 1
2
(1 − l̄(aA, aB)), so in both cases a necessary

condition for a local extreme point is ∂l̄(aA,aB)
∂aB

= 0. Using Equation (7) and

rearranging the derivative, this necessary condition implies

0 = ∆v − (s− aA)2

pA
+

(s− aB)2

pB
− 2(s− aB)(aA − aB)

pB
. (25)
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This equation is a quadratic in aB with roots

a1,2
B (aA) = aA ±

√
∆p

pA
(s− aA)2 + pB∆v, with a1

B > aA > a2
B. (26)

We now confirm that both of these roots are strict local maxima. Again using

(7), we obtain the second derivative

∂2l̄(aA, aB)

∂a2
B

= −∆p(s− aA)2 + pApB∆v

pApB(aA − aB)3
.

The sign of this expression determines the curvature of l̄(aA, aB) with respect to aB.

The numerator on the right side is positive. At the larger root, aB = a1
B(aA) > aA;

here the right side is positive, the extreme point minimizes l̄ and thus maximizes

B’s probability of winning. Similarly, at the smaller root, aB = a2
B(aA) < aA, so

the extreme point maximizes l̄ and thus maximizes B’s probability of winning.

Therefore, both of the roots in Equation (26) are strict local maxima. Candi-

date B’s best response to aA is the local maximum that gives B the higher winning

probability. Passing through the discontinuity point (as aA increases) of B’s best

response correspondence, B switches from a policy that is perceived by the voter

as more rightist (a1
B(aA) > aA) to one that is more leftist (a2

B(aA) < aA). This

switch enables B to appeal to the voter under more extreme realizations of l.

To compute the point of discontinuity, we equalize B’s winning probability for

a1
B, 1

2
(1− l̄(aA, a1

B(aA))), with B’s winning probability for a2
B, 1

2
(1+ l̄(aA, a

2
B(aA))),

to obtain the following indifference condition:

l̄(aA, a
1
B(aA)) + l̄(aA, a

2
B(aA)) = 0. (27)

Using Equations (7) and (26), this yields the location of the discontinuity point:

a∗A = (1− pB)s. (28)

Note that because Equation (27) has a unique solution, for every aA 6= a∗A one of

the two local maxima gives B a strictly higher probability of winning than the

other: for every aA 6= a∗A, B’s best response correspondence is single-valued.

Part ii. The conclusion that A wins with certainty if B leads is an immediate

consequence of Part i: A merely has to match B’s choice sufficiently closely, i.e.,
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it chooses any action in its best response correspondence associated with aB.

We now turn to the case where A leads, maintaining the assumption that the

constraints −1 ≤ l̄(aA, aB) ≤ 1 are not binding; we confirm at the end of this step

that Inequality (9) is necessary and sufficient for that assumption to hold.

We need to show that if A leads it chooses a∗A, the discontinuity point in B’s

best response correspondence. At this point (by construction) B is indifferent

between a1
B and a2

B. We want to show that a∗A indeed maximizes A’s winning

probability when A leads. Recall that when aA < a∗A, as the leader, A becomes

the leftist candidate (because B chooses a1
B(aA) > aA as the follower), so that

πA(aA, a
1
B(aA)) = 1

2
(1 + l̄(aA, a

1
B(aA))). Computing l̄(aA, a

1
B(aA)) (using Equation

(7)), we obtain (after rearranging):

l̄(aA, a
1
B(aA)) =

aA − (1− pB)s

pB
+

1

pB

√
∆p

pA
(s− aA)2 + pB∆v. (29)

We need to verify that l̄(aA, a
1
B(aA)) is strictly increasing in aA for aA < a∗A. To

this end, we compute the derivative with respect to aA to obtain:

dl̄(aA, a
1
B(aA))

daA
=

(pA − pB)(aA − s) +
√
pA∆p(s− aA)2 + p2

ApB∆v

pB
√
pA∆p(s− aA)2 + p2

ApB∆v
.

The denominator on the right side of this equality is positive, so the expression is

positive if and only if the numerator is positive. The numerator is always positive

if aA ≥ s. For aA < s, notice that the numerator is strictly larger than

(s− aA)
(√

pA∆p−∆p
)
,

which we obtain by setting ∆v = 0 (since the numerator increases in ∆v). This

expression is greater than zero (for aA < s) if
√
pA∆p > ∆p. This inequality holds

because pA > pB. Therefore, we conclude that l̄(aA, a
1
B(aA)) is strictly increasing

in aA for aA < a∗A.

To complete the proof, one can follow similar steps as above to verify that
dl̄(aA,a

2
B(aA))

daA
< 0 when aA > a∗A, i.e., when A is the rightist candidate (not shown).

So in this range, πA(aA, a
2
B(aA)) decreases in aA.

As the leader, the optimal policy for candidate A is thus a∗A, the point where B

is indifferent between choosing a1
B(aA) or a2

B(aA) as the follower. At this point, B is
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indifferent between these responses: they result in an identical winning probability

for B. Therefore, A is also indifferent between these responses at aA = a∗A. Hence,

conditional on leading, a∗A maximizes A’s payoff.

We now confirm that the constraints −1 ≤ l̄(aA, aB) ≤ 1 are not binding.

Recall that for aB > aA, B’s probability of winning is 1
2
(1 − l̄(aA, aB)). Here, B

wins with positive probability if and only if l̄(aA, aB) < 1. Using the definitions

a∗A ≡ (1 − pB)s and Equation (26) for a1
B in Equation (7) and simplifying, we

obtain

l̄(a∗A, a
1
B(a∗A)) =

1
√
pB

√
pB∆p

pA
s2 + ∆v. (30)

This expression is strictly smaller than 1 if and only if

∆v < pB

(
1− ∆p

pA
s2

)
.

This reproduces Inequality (9) in the main text. The right-hand side is positive

for all pA > pB > 0 and s ∈ [−1, 1], so there always exists a positive ∆v that

satisfies Inequality (9). The calculations for a2
B are similar.

Finally, we confirm that even as the leader, A has a higher probability of

winning than B, despite the fact that B obtains the second-mover advantage.

Consider the case where, when A leads with a∗A, B follows with aB = a1
B, so that

aB > aA in equilibrium. (The gist of the argument when B chooses a2
B is the

same.) Here, B’s winning probability is πB = 1
2
(1 − l̄(a∗A, a1

B(a∗A)) < 1/2, where

the inequality uses Equation (30), which implies that l̄(a∗A, a
1
B(a∗A)) > 0.

To summarize, we have shown that l̄(a∗A, a
1
B(a∗A)) < 1 and l̄(a∗A, a

2
B(a∗A)) > −1,

so when A leads and chooses aA = a∗A, B has positive probability of winning.

Because a∗A maximizes A’s probability of winning, it minimizes B’s probability

of winning. Therefore, B has a strictly higher (and thus positive) probability

of winning for any other choice of aA. Consequently, for all aA, B’s optimal

response guarantees B a positive probability of winning: l̄(aA, a
1
B(aA)) < 1 and/or

l̄(aA, a
2
B(aA)) > −1.

Part iii. The proof of Part ii establishes that A and B’s best response correspon-

dences are disjoint. Thus, there exists no pure strategy simultaneous move Nash

equilibrium.
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Proof. (Remark 1.) We confirm the first sentence of the Remark by checking

that all of the inequalities used to establish Proposition 1 continue to hold when

∆p = 0. We establish the second sentence in the Remark using Equation (28),

evaluated at pB = 1, to obtain a∗A = 0.

Proof of Proposition 2. Much of the proof follows from specializing the proof of

Proposition 1, setting ∆v = 0. We discuss only those features that are different,

including the outcome when one candidate locates at point s.

Part i. We can use the same argument as in Proposition 1 to establish that no

point other than aA = aB = s can be a potential pure strategy Nash equilibrium:

for any aA = aB 6= s, A wins with probability 1, so B has an incentive to deviate,

whereas for aB 6= s and aA 6= aB, A has an incentive to deviate (if it does not win

with probability 1) and match aB (which assures that A wins). Hence, in what

follows, we only need to check when aA = aB = s is an equilibrium.

For analyzing deviations from a (potential) equilibrium, the following observa-

tion is useful: If the rival locates at s, a candidate may choose a different location,

the same location, or choose a location arbitrarily close to s (“shading”); in the

latter case, for s > 0, shading from below (by choosing s − ε, with ε arbitrarily

close to zero) leads to a higher winning probability than shading from above, so

we only consider the former (arguments for s < 0 are qualitatively the same and,

thus, not shown here). Considering aB = s and aA = s−ε, we find (using Equation

(7)): l̄(s− ε, s) = s− ε
2pA

. Since aA < aB, this leads to a winning probability for

candidate A of πA = 1
2
(1 + l̄) = 1

2
(1 + s− ε

2pA
) (for any ε > 0 sufficiently small). If

A matches (rather than shades) B’s action, it obtains a winning probability of α,

so that A does not shade B’s action for any α ≥ 1
2
(1+s− ε

2pA
). Considering aA = s

and aB = s− ε, we find (using Equation (7)): l̄(s, s− ε) = s− ε
2pB

. Since aB < aA,

this leads to a winning probability for candidate B of πB = 1
2
(1+l̄) = 1

2
(1+s− ε

2pB
).

If B matches (rather than shades) A’s action, it obtains a winning probability of

1−α, so that B does not shade A’s action for 1−α ≥ 1
2
(1 + s− ε

2pB
), which never

holds when s > 0 and ε is sufficiently small (given our assumption that α ≥ 1/2);

B thus always shades when s > 0.

The action pair aA = aB = s is a pure strategy Nash equilibrium if and only if

neither candidate wants to defect from that position; this condition holds if and
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only if both of the above inequalities are satisfied, implying

1

2

(
1 + s− ε

2pA

)
≤ α ≤ 1

2

(
1− s+

ε

2pB

)
∀ε > 0.

This pair of inequalities requires α = 1/2 and s = 0.

Part ii. To start, we calculate the payoffs in a sequential equilibrium where candi-

date A leads with aA = a∗A and B follows with aB = a1
B(a∗A) (following with a2

B(a∗A)

leads to identical payoffs). In what follows, unless otherwise stated, we only con-

sider the case where s ≥ 0 (arguments for the opposite case are qualitatively the

same). Using Equation (7), we find (after simplifying): l̄(a∗A, a
1
B(a∗A)) = s

√
∆p
pA

.

Since aB > aA, we have πB = 1
2
(1− l̄). This yields:

πfollowB ≡ 1

2

(
1− |s|

√
∆p

pA

)
. (31)

The absolute value takes care of the case where s < 0. A’s payoff is πA = 1− πB.

First consider the case where s 6= 0, i.e., s > 0. If A chooses aA = s (instead of

a∗A), which is the only potentially profitable deviation, B always shades (see part

(i)). A’s resulting winning probability is πA = 1
2
(1 − s + ε

2pB
), which is smaller

than 1/2 for ε sufficiently small (given s > 0). Without the deviation, A’s winning

probability is (using Equation (31)): πA = 1
2

(
1 + |s|

√
∆p
pA

)
> 1

2
. Deviating to

aA = s is thus not profitable for candidate A. (A deviation to s by candidate B

is not profitable by construction: a1
B(a∗A) is B’s best reply.) We also observe that

B’s winning probability (see Equation (31)) is positive since ∆p < pA.

Now consider the case where s = 0, which yields a∗A = a1
B(a∗A) = a2

B(a∗A) = 0

in a sequential equilibrium where A leads. Hence, πA = α and πB = 1 − α.

This is only an equilibrium if α = 1/2. For α > 1/2, B responds to a∗A = 0 by

shading (see part (i)), which leads to winning probabilities of πB = 1
2
(1 − ε

2pB
),

and πA = 1
2
(1 + ε

2pB
). The latter is at least as large as 1/2. If A instead leads

with some aA 6= 0, B responds optimally, choosing a1,2
B (aA), and places itself in

between s and aA. It is easy to verify that this leads to a winning probability of

A that is strictly smaller than 1/2. Hence, A strictly prefers to lead with a∗A = 0

also in this case, and B’s winning probability is again positive (equal to 1/2 in the

limit ε→ 0).

Part iii. If B leads with any action aB 6= s, A wins with certainty by choosing
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a sufficiently similar position. Therefore, B’s best choice as leader is aB = s.

Focusing once more on the case where s ≥ 0 (see above), for any α ≥ 1
2
(1 + s), A

has no incentive to shade B’s action (see part (i)). Then the winning probabilities

are πA = α and πB = 1− α. For any α < 1
2
(1 + s− ε

2pA
), there is an ε sufficiently

small so that A prefers aA = s− ε over aA = s. Hence, A shades B’s action for all

α < 1
2
(1 + s) (see part (i)). Then B’s winning probability is πB = 1

2
(1− s+ ε

2pA
),

which is at least as large as 1
2
(1− s). In the limit (ε→ 0), we thus obtain

πleadB ≡

1− α, if α ≥ 1+|s|
2

1−|s|
2
, if 1

2
≤ α < 1+|s|

2
,

a lower bound for B’s winning probability. (The absolute value once more takes

care of the case where s < 0.) This can be written more concisely as:

πleadB = min{1− α, 1− |s|
2
}. (32)

Candidate B’s winning probability is thus positive, unless α = 1.

Part iv. Comparing Equations (31) and (32), using the fact that
√

∆p/pA < 1,

we find that

πfollowB =
1

2

(
1− |s|

√
∆p

pA

)
>

1− |s|
2
≥ πleadB .

We establish two lemmas before proving Theorem 1. Lemma 1 establishes right

continuity of the functions Fj(t), Li(t), and Lemma 2 provides conditions over an

interval, ensuring that the players’ leader-follower role does not switch.

Lemma 1. Suppose that Assumptions 1–3 hold. Then

(i) at any t ∈ [0, 1) where aLi (t) is continuous, Fj(t) is also continuous;

(ii) at any t ∈ [0, 1) where as∗j (t|t, aLi (t)) and ts∗j (t|t, aLi (t)) are continuous, Li(t)

is also continuous; and

(iii) Li(t) and Fi(t) are right-continuous in t.

Proof of Lemma 1. Part (i): Due to Assumption 3 and given that (by the defini-

tion of Li and Fj) player i leads at t and player j plays their optimal response
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to i’s move, a discontinuity in the follower’s payoff, Fj(t), can only arise at t if

the leader’s action choice aLi (t) changes discontinuously at t. Without a discontin-

uous change in aLi (t), the follower’s behavior (timing and/or action choice) may

still change discontinuously at t, but only if the follower is indifferent between

these types of responses. Hence, a discontinuous change in the follower’s response

cannot lead to a discontinuity in Fj(t), if aLi (t) is continuous at t.

Part (ii): Similarly as in Part (i), as long as as∗j (t|t, aLi (t)) and ts∗j (t|t, aLi (t)) change

continuously with t, a discontinuity in the leader’s payoff, Li(t), cannot arise due to

Assumption 3. This is because, as long as the follower’s response does not change

discontinuously, the leader has to be indifferent between two actions at t, in order

to be willing to change their action discontinuously at this time. Hence, although

aLi (t) may be discontinuous at some t, this discontinuity does not lead to a discon-

tinuity in Li(t), provided that as∗j (t|t, aLi (t)) and ts∗j (t|t, aLi (t)) are continuous at t.

Part (iii): Given statements (i) and (ii) in the Lemma, it follows from Assump-

tions 1 and 2 that Li(t) and Fj(t) are right-continuous: if there is a discontinuity

in the leader’s or in the follower’s behavior (or both) at some t, then the “new”

behavior (to the right of the discontinuity point in the respective player’s strategy)

is adopted at t, i.e., there is a first decision node where this happens. This implies

right-continuity of the payoff functions Li(t) and Fi(t). This holds also in cases

where both the leader’s and the follower’s behavior changes discontinuously at the

same t (so neither case (i) nor case (ii) applies).

It remains to be shown that this behavior is not in conflict with players’ op-

timization problems (10) and (11). In other words, we need to show that the

assumption of right-continuity of the players’ strategies does not in itself restrict

players in a way that conflicts with their respective payoff-maximizing behavior,

subject to maintaining the timing of the leader’s move and holding the order of

players’ moves fixed. To this end, note that by their definition, the functions aLi (t)

as well as as∗j (t|t, aLi (t)) and ts∗j (t|t, aLi (t)), are mutually optimized, for the given

order of moves and subject to player i leading at time t. Hence, preemption by

player j is ruled out by assumption.

We need only show that a player looses nothing by switching to a new type of

behavior at a first decision node at some t, instead of immediately after time t.

(The latter case would violate right-continuity of players’ strategies.) To confirm

this claim, consider some interval where players’ behavior changes continuously
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with time, following a discontinuous change in the leader’s or the follower’s be-

havior (or both) at t. Moving backwards in time, the same kind of behavior as

inside of this interval can also be adopted at the decision node at time t, without

a discontinuous change in either player’s payoff (thanks to Assumption 3). Hence,

although there might exist another “mutually optimized behavior” in which play-

ers behave differently at the decision node at t (for example by extending their type

of behavior from immediately before t onto the decision node at t, or by selecting

another type of mutually optimized behavior if such exists), it must co-exist with

the mutually optimized behavior that is selected by imposing right-continuity on

the players’ strategies (Assumptions 1 and 2), i.e., the type of behavior shortly

after t. Hence, there is no strictly profitable deviation at any t that is ruled out by

imposing Assumptions 1 and 2, conditional on maintaining the order of players’

moves and player i leading at t.

Lemma 2. Suppose that Assumptions 1–4 hold and there is an interval 0 ≤ tl <

th < 1 such that: player i has a strict second-mover advantage at every t ∈ (tl, th],

and Lj(t) is strictly decreasing at every t ∈ [tl, th]. Suppose further that there

exists a unique SPNE in the subgame that starts at th, such that player j leads

and player i waits at th. Then player j also leads and player i waits in the unique

SPNE at all decision nodes t ∈ [tl, th). In particular, the identity of the leader

cannot switch at any t in the interval [tl, th].

Proof. By Assumption 4, there are no SPNE with simultaneous moves: all equi-

libria involve either sequential moves or waiting. As j leads at th and Lj(t) is

strictly decreasing over [tl, th], both players waiting over the entire interval is not

an equilibrium, since moving immediately is a profitable deviation for player j.

Therefore, any SPNE involves sequential moves.

Figure 8 provides a graphical aide for the proof, which proceeds by contra-

diction. Suppose to the contrary of the statement in Lemma 2, that there are

decision nodes t ∈ [tl, th) where j does not lead. If player i also waits at those

nodes, then player j is strictly better off by deviating and leading at t, because

Lj(t) is strictly decreasing at every t ∈ [tl, th]. If player i instead leads at those

decision nodes, then let t′ be the largest t (decision node) where players “switch”

their roles between leading and following – see Figure 8. (Thus, i waits and j

leads over [t′, th].) But then there exists an interval of decision nodes prior to t′

where waiting until t′ produces a strictly higher payoff for player i than leading
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during this interval, due to their strict second-mover advantage (see Definition 1).

Moreover, if i deviates from the proposed strategy and waits over this interval,

then j’s best response is to lead in this interval. Thus, the switching strategy

shown in Figure 8 cannot be part of any SPNE under the stated conditions.

Figure 8 illustrates Lemma 2.41 The red (respectively, green) segment indicates

that the player plans to wait (respectively, lead) over that interval. The proof of

Lemma 2 shows that the situation in Figure 8 leads to a contradiction, and thus

cannot be part of any SPNE under the stated conditions.

 

𝑡𝑡′ 

𝐿𝐿𝑖𝑖(𝑡𝑡) 

𝐿𝐿𝑗𝑗(𝑡𝑡) 
𝑡𝑡𝑙𝑙 𝑡𝑡ℎ 

𝐹𝐹𝑖𝑖(𝑡𝑡) 

𝑡𝑡 − 𝛿𝛿 

𝑖𝑖 waits at 𝑡𝑡ℎ 

𝑗𝑗 leads at 𝑡𝑡ℎ 

Figure 8: Li(t) green/red: player i leads/waits at t; the case shown is
incompatible with SPNE if player i has strict second-mover advantage and Lj(t)

strictly decreasing

Proof of Theorem 1. By Assumption 4, there are no SPNE with simultaneous

moves: all equilibria involve either sequential moves or waiting. We first demon-

strate that the behavior described in the theorem is an equilibrium, and then that

it is unique, provided that Condition 2 is satisfied.

Part i: We start with the latest subgames, and work backwards in time.

Subames at t ∈ [τ2, 1). This step is relevant only if τ2 < 1.

We first show that both players waiting at all times t ∈ [τ2, 1) is a SPNE in

this part of the game. Because τ2 > τ1, waiting is player 1’s best response if player

2 waits for t ≥ τ2. For player 2, due to the definition of τi and by Lemma 1, it

holds that L2(t) ≤ E2 for all t ≥ τ2. Therefore, waiting is also a best response

for player 2 if player 1 waits for t ≥ τ2, so that both payers waiting at all times

t ∈ [τ2, 1) is a SPNE.

41For simplicity, the figure shows Li as monotonically decreasing as well, but neither the
statement of the lemma nor the proof use this feature.
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We now show that this SPNE is unique, provided that Condition 2 holds.

Given that there are no equilibria with simultaneous moves, we need only show

that there is also no equilibrium in any subgame beginning at t ∈ [τ2, 1) such

that players move sequentially. We demonstrate this by contradiction. Suppose,

contrary to our claim, that there exists a SPNE such that player i leads at some

t ∈ (τ2, 1). (We treat t = τ2 separately below.) Over this interval Ei > Li(t)

by the definition of τi and the assumption τ2 > τ1. Here, the only rationale for

player i (i = 1, 2) to move at t is to preempt a later move by player j. Thus, for

such a SPNE to exist, subgames over which one player leads and the other follows

would have to alternate along the time axis. If they alternated a finite number of

times, there would be a final interval over which a particular player, e.g. i, leads

and j waits. However, over this interval, waiting is a profitable deviation for i.

Therefore, in subgames over which the leader-follower roles alternate, they must do

so an infinite number of times. However, that behavior contradicts Assumption 1.i,

which requires that there are a finite number of discontinuity points in each player’s

strategy. Therefore, in the unique SPNE for all t ∈ (τ2, 1), both agents wait.

Subgame at t = τ2: We showed above that L2(τ2) ≤ E2. If L2(τ2) = E2, then

player 2 is indifferent between leading or waiting at τ2. However, we have shown

above that for all t ∈ (τ2, 1), both agents wait. Therefore, by Assumption 1.ii,

each player must also wait at τ2.

Subgames at t ∈ [t̄2, τ2): We first show that the strategies of the two players

stated in the theorem are a SPNE. Since player 1 has a strict second-mover ad-

vantage (Condition 1.i), there is no profitable deviation for player 1, who expects

player 2 to move immediately at any t (decision node) in this interval. There is

also no profitable deviation for player 2, because player 1 is waiting and L2(t) is

decreasing in this range. (Thus, a delay lowers player 2’s payoff).

It remains to be shown that these strategies constitute a unique SPNE for sub-

games in this interval under Condition 2. Assumption 4 guarantees that there are

no equilibria with simultaneous moves. Furthermore, there is no SPNE in which

both players wait at any t ∈ [t̄2, τ2), because L2(t) > E2 holds for any t in this

interval. Therefore, it remains to be shown that there cannot exist any sequential

move SPNE other than the one stated in the theorem.

In particular, we show that there does not exist any SPNE where player 1 leads

in any of these subgames. We rule out the existence of such equilibria by contra-
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diction. Suppose, contrary to our claim, that there exists a SPNE where player 1

leads in some subgame beginning at a time t ∈ (max{τ1, t̄2}, τ2), a non-empty set.

Because player 1 has a strict second-mover advantage at any t in this range and

L1(t) < E1, player 1’s plan to lead at t can be sustained in a SPNE, only if this

player fears that player 2 will otherwise lead at a strictly later point in time, after

a delay of at least δ units of time (for some δ > 0). However, such a period of delay

is incompatible with L2(t) being strictly decreasing in this range – a contradiction.

It then follows that at any t ∈ (max{τ1, t̄2}, τ2), player 2 leads and player 1 waits.

Thus, we can take any t in this range as the “starting value” th, to initiate the

procedure of working backwards in time until t̄2, applying Lemma 2. It follows

that the proposed SPNE is unique.

Part ii The assumptions in Parts i and ii of the theorem differ only by the inclu-

sion of Condition 1.iia to Part ii. That condition puts added structure only on

payoffs prior to t̄2. It therefore does not alter (relative to Part i) the equilibrium

for t ∈ [t̄2, 1). The proof of Part i already confirms the characteristics of the equi-

librium over that interval. Therefore, to verify Part ii of the Theorem we need

only confirm that in the SPNE both players wait at subgames t ∈ [0, t̄2). We first

show that waiting over this interval is a SPNE and then we show that it is unique,

given Condition 2.

By Condition 1.iia, player 1 does not benefit from preempting player 2, if player

2 plans to lead at t̄2, but not before. Player 2 also has no profitable deviation from

the waiting strategy, because leading at t̄2 is more profitable than leading at any

other time. Thus, the pair of waiting strategies for t ∈ [0, t̄2) is a SPNE.

We now establish uniqueness. By Condition 1.iia, the only reason that player 1

might want to lead over this interval is to preempt its rival from leading at a later

point, but prior to t̄2. The only reason that player 2 might want to lead at such a

point is to preempt player 1 from leading at a later point, also prior to t̄2. Thus,

a strategy involving either player leading at t ∈ [0, t̄2) requires that there be a se-

quence of subgames over which the leader-follower role switches. An argument that

parallels that given above for the interval (τ2, 1) implies that this sequence must be

infinite. However, an infinite sequence of switches implies that strategies are dis-

continuous at infinitely many points, contradicting Assumption 1. Thus, the pair

of waiting strategies for t ∈ [0, t̄2) is the unique SPNE. Given these strategies, the

unique outcome of the game is for player 2 to lead at t̄2 and for player 1 to follow.
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Part iii As with Part ii, the assumptions of Part iii differ from those of Part i

only in placing added structure on the payoffs prior to t̄2. This added structure

does not alter the equilbrium at subgames t ≥ t̄2. Therefore the equilibrium for

t ≥ t̄2 described in Part i remains an equilibrium. We need only determine the

equilibrium for t < t̄2.

Subgames at t ∈ [t̄1, t̄2): Given that a unique SPNE has already been identified

for the subgame beginning at t̄2, where player 2 leads, let us denote the equilib-

rium payoffs of the players in that subgame by E ′2 ≡ L2(t̄2), and E ′1 ≡ F1(t̄2).

From the perspective of earlier subgames, these values are fixed. A move by any

player before t̄2 effectively ends the game; the subgame at t̄2 can be reached only

if nobody moves earlier.

Now compare the subgames starting at values of t ∈ [t̄2, 1) with those starting

at t ∈ [t̄1, t̄2). In both cases, there is an ideal time for one agent to move, and

also a latest time that they are willing to move given that the other agent follows

a waiting strategy beyond that time. In between these two points Li(t) is strictly

decreasing for this agent and the other agent has a strict second-mover advantage.

Therefore, the game played over [t̄1, t̄2), is isomorphic to the game over the

interval [t̄2, 1). The roles of the two players are reversed, t̂1 in the former game

replaces τ2 in the latter game, and E ′i (i = 1, 2) in the former game replaces Ei in

the latter.42 The same set of assumptions applies in each of these ranges (except

for the reversal of the identities of the two players). In particular, player 2 has

a strict second-mover advantage in the range [t̄1, t̂), and player 1’s payoff from

leading is strictly decreasing in this range. Our earlier proof for the range [t̄2, 1)

can thus be applied to identify a (unique) SPNE for the range [t̄1, t̄2).

Subgames at t ∈ [0, t̄1): In the same way, it is easy to see that the game in

[0, t̄1), under Condition 1.iib is isomorphic to the game in the range [0, t̄2) under

Condition1.iia. It thus follows from the same reasoning as in Part ii that the

unique SPNE is for both players to wait at every t ∈ [0, t̄1).

Proof of Proposition 4. Inspection of the payoffs and the strategies confirms that

Assumptions 1 – 3 of Theorem 1 are satisfied. Our parametric assumptions below

equation 17 (either (i) ∆v > 0∧∆p ≥ 0, or (ii) ∆v = 0∧∆p > 0∧s 6= 0) together

42Note that, since t̄2 is the optimal time for player 2 to lead, there is no t ∈ [0, t̄2) such that
L2(t) ≥ E′2.
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with Propositions 1 and 2 imply that there is no pure strategy equilibrium in the

static game. By Proposition 3 there thus exists no simultaneous move equilibria

in the dynamic game either, so Assumption 4 is also satisfied.

Conditions 1.i – (iia) and 2 are also satisfied by inspection. The strict mono-

tonicity of LA(t) required by Condition 1.i is satisfied if πA ≤ πLA but not if

πA > πLA. In the latter case, Condition 4.ii enables us to use Corollary 1 to modify

the equilibrium strategy from Theorem 1 for the interval (t]A, t
crit
A ). Condition 4.i

ensures that πB is not so large that B would want to lead at the point beyond

which A prefers not to follow (i.e., to wait until t = 1). This condition implies

that the definition of τB in this game is indeed the same as in Theorem 1.

Proof of Remark 3. If Condition 4.i fails, then beginning at tcritA there is a range

where both candidates have a first-mover advantage. The conclusion that B has a

first-mover advantage follows directly from LB(tcritA ) > 0, and the fact that tcritA >

tcritB (so B’s payoff as follower is zero in this range). Candidate A has a first-mover

advantage due to our assumption πA ≥ πB, and also FA(t) = 0 because t ≥ tcritA .

When both players have a first-mover advantage, Theorem 1 does not apply,

and it is easy to see that either of the players may lead in subgames within this

range. Hence, the identity of the leader at t = tcritA is not uniquely determined.

However, for subgames beginning at any t between tcritB and tcritA , we can uniquely

identify A as the leader. Shortly before tcritA , A would rather lead than wait to

enjoy their first-mover advantage. If A waits until tcritA and leads at that time, its

payoff is lower than if it had lead earlier (because LA(t) is decreasing); if A follows

at tcritA its payoff is zero. Thus, A chooses to lead during an interval before tcritA .

Over this interval, B receives a negative payoff by leading, so B waits. Reasoning

backwards in time, A leads at all times within this range. We can then apply the

arguments of Theorem 1 for earlier subgames.
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B Online Appendix

B.1 Basic electoral competition game, case α < 1/2

We show here the parts of the proof of Proposition 2 that need to be modified to

include the case α < 1/2. The results stay qualitatively the same. The modifica-

tions concern only part ii of the proof.

Case: s 6= 0 Suppose that α ≤ (1− s)/2, so that (as shown in the proof of Part

(i)) B has no strict incentive to shade A’s action (by choosing a slightly lower

position). Hence, leading with aA = s gives A a payoff of α. If A were to lead

with any a∗A < aA < s, B would pick a2
B(aA) = aA −

√
∆p
pA

(s− aA)2 (see the proof

of Proposition 1). A would thus become the more rightist candidate. As A is

also the more competent candidate, a voter with l ≥ aA would then always prefer

candidate A over B, and A’s payoff would thus be at least (1 − aA)/2 which is

larger than (1−s)/2, by aA < s. If, instead, 1/2 > α > (1−s)/2, then B’s optimal

response to aA = s is to shade that policy. As shown in Part (i), B wins with

probability 1
2
(1+s− ε

2pB
) if it shades with aB = s−ε, which means A’s probability

of winning is then 1
2
(1−s+ ε

2pB
). However, if A would lead with a∗A < aA < s− ε

2PA
,

by the same reasoning as above, it would get a higher payoff. Hence, leading with

aA = s can never be more profitable than leading with aA = a∗A.

Case: s = 0: If α < 1
2

then it is a best response for B to follow with aB = 0

when A leads with a∗A = 0. If A would instead lead with aA = ε > 0, then B’s

best response correspondence has this candidate follow with aB = ε(1 −
√

∆p
pA

).

Candidate A then wins with probability

1

2

1− ε
pB − pA

(
1−

√
∆p
pA

)2

2pApB

√
∆p
pA

 .

Candidate A’s probability of winning is thus higher if it shades 0 then if it chooses

aA = 0. It is easy to see that the same is true if A chooses aA = −ε instead.

B.2 Basic electoral competition game, case ∆v < 0,∆p > 0

Whereas the main text assumes that one candidate is unambiguously stronger,

here we consider the case where candidate A enjoys a competence advantage, while
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B dominates in valence.43 Unlike the case where one candidate dominates in both

characteristics, in this mixed case, the incentives to match or to differentiate away

from the opponent’s policy platform depend on the location in the policy space.

The reason is that the competence effect ∆q changes with the distance from s.

The game no longer has the structure of an anti-coordination game, because it is

sometimes the one, and sometimes the other candidate that prefers to match or

to differentiate away from the other candidate’s action choice.

This is easiest to see along the diagonal where aA = aB. Here, it holds that

∆q|∆a=0 increases with the distance between a and s (see Equation (3)), with

∆q|∆a=0 = 0 for a = s. Intuitively, in order to benefit from its competence advan-

tage, candidate A needs to announce a policy platform that is sufficiently different

from the status quo. Otherwise, competence hardly matters. The valence advan-

tage of candidate B, by contrast, is constant: it does not depend on candidates’

actions. Therefore, along the diagonal, for values of a = aA = aB, B wins for sure

if a is close to s; if a is sufficiently far away from s, by contrast, A wins the election.
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Figure 9: Best response correspondences, for pA = 0.9, pB = 0.4, s = 0.1,
∆v = −0.1; candidate A: green; candidate B: red

By continuity, this logic extends to locations near the diagonal. Holding ∆a

fixed at some small (positive or negative) value, when varying a, there is again

an interval around s where B wins, whereas outside of this interval, A wins (see

Figure 9). Hence, for values of aA and aB sufficiently far away from s, the incentives

43The case where ∆v > 0 and ∆p < 0 is obtained by swapping the indices of the candidates.
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in the game resemble those in the case where ∆v > 0 and ∆p > 0: A prefers to

match B’s platform, whereas B prefers to differentiate away from aA. By contrast,

for values of aA near s, B has an incentive to match A’s platform, because the

valence advantage then assures that B wins the election. A then has an incentive to

differentiate away from aB to benefit from its competence advantage. In Figure 9,

the combinations of aA and aB where B wins for sure (around the diagonal and

near s) are indicated by the red striped area. The green striped areas around the

diagonal further away from s are the combinations for which A wins for sure. For

intermediate values of aB, A’s best response is either smaller or larger than aB,

with a discontinuous switch between these values (a1
A(aB), a2

A(aB)), as illustrated

by the thin dashed line (green) in Figure 9. This resembles our earlier findings (see

Section 2) where B’s best response correspondence entailed such a switch, but now

it is candidate A who switches discontinuously from a rightist (aA > aB) to a leftist

policy as aB is increased. The switching point in A’s best response correspondence

is easily calculated (using similar steps as in the proof of Proposition 1), and is

located at aB = (1− pA)s.

A formal proof is omitted, but a simple thought reveals that also in this mixed

case, a pure strategy Nash equilibrium often does not exist under simultaneous

moves. This is due to the constant sum property of the electoral competition

game: an increase in one candidate’s winning probability implies a decrease in the

other’s winning probability, and vice versa. Therefore, if one candidate’s payoff

attains a local maximum in the aA-aB-space, this is generally a local minimum of

the other candidate’s payoff function.

In Figure 9, this can be seen at the intersection points of the curves a1
B(aA)

(red) and a1
A(aB) (grey) in the left part of the figure, as well as a2

B(aA) (red) and

a2
A(aB) (grey) on the right. The grey color indicates that this is not the best reply

chosen by candidate A in the respective range, because a response on the other

side of the political spectrum leads to a higher winning probability of this can-

didate.44 Additionally, the intersection points of the curves l̄(aA, aB) = −1 and

l̄(aA, aB) = 1, where the red striped and the green striped areas become tangent,

are also not candidates for a pure strategy Nash equilibrium. At these points, at

least one candidate will have an incentive to shade the policy of their rival, because

this leads to a discontinuous change in candidates’ winning probabilities. Excep-

44Results may differ when the parameter values are changed. We do not claim any generality
here and content ourselves with these intuitive explanations.
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tions are possible for some specific parameter constellations (see Proposition 2 and

Remark 2 in Section 2).

Whether a candidate is relatively better or worse off as the leader or as the

follower, depends strongly on the parameters, which can lead to very tedious case

distinctions. This mixed case is thus less amenable for an extension to a game

that can be analyzed in continuous time. Although this is possible, we omit this

case in our dynamic analysis of the electoral competition game.

B.3 Intuition for Theorem 1

Although the logic of the proof works “backwards in time”, the discrete-time

procedure of backwards induction cannot be used, because (with continuous time)

between any two points in time there are infinitely many decision nodes. The

procedure begins with decision nodes t ∈ (τ2, 1) (see Figure 4). In this interval,

neither player is willing to lead, provided that the other player also does not lead.

The only reason that a player might be willing to lead would be to preempt a move

by the other player. But the other player would also only lead, if this player fears

that otherwise, the first player would lead. This configuration requires an infinite

sequence of intervals over which players switch their roles as leader and follower,

because there can be no final interval over which a player leads. That infinite

sequence of switches violates Assumption 1.i, and is thus ruled out.45 Hence, we

conclude that at any decision node t ∈ (τ2, 1), both players wait in any SPNE.

Building on this result, we can work backwards in time towards earlier decision

nodes. At decision nodes shortly before τ2, player 1 still prefers waiting over

leading, provided that player 2 does not move. But player 2 now strictly prefers

leading over waiting, since L2(t) is strictly decreasing in this range. Hence, there

cannot be any SPNE where both players wait at such decision nodes, or where

player 1 leads. This conclusion identifies unique SPNE strategies such that player

2 leads and player 1 waits at those nodes.

This result enables us to work backwards over [t̄2, τ2). Lemma 2 in Appendix

A shows that if player j leads at a point in time th and player i has a strict second-

45Without imposing Assumption 1.i, Theorem 1 can be maintained if another assumption is
imposed or strengthened that rules out an “infinite sequence of switches”. For example, if at least
one player has a strict second-mover advantage also in the range t ∈ (τ2, 1) (where Condition 1.i
does not require it) with a strictly positive δ (see Definition 1) that applies for all t in this range,
the result can be restored.
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mover advantage at all t ∈ [tl, th], and Lj(t) is strictly declining over this interval,

then players cannot switch their roles as leader and follower in this interval. This

fact allows us to pin down a unique SPNE for all subgames starting at t ∈ [t̄2, 1).

As Theorem 1 states, player 2 leads at every t ∈ [t̄2, τ2) whereas player 1 waits,

and both players wait at every t ∈ [τ2, 1).

For earlier subgames, either Condition 1.iia or 1.iib become relevant. The

former rules out that player 1 would preempt player 2 before t̄2. This implies

that both players wait at all decision nodes t ∈ [0, t̄2), thereby completing the

derivation of a unique SPNE under these conditions.

If Condition 1.iia fails, but Conditions 1.iib and 1.iii hold, the subgames in

the interval t ∈ [t̄1, t̄2) become isomorphic to those in the interval t ∈ [t̄2, 1), with

the roles of the players reversed. This fact explains why we now need to assume

that player 2 (rather than player 1) has a strict second-mover advantage over part

of this range. As panel B in Figure 4 illustrates, the equilibrium strategies for

the first range of subgames are the mirror image of the strategies for the second

range: first, the less patient player leads over a range of subgames, and then both

players wait. In the outcome of the overall game, of course, player 1 will then be

the leader, as these decision nodes are reached earlier. Finally, at decision nodes

before t̄1, both players wait in the SPNE, as this is strictly more profitable for

both players, given the strategy of the other player.

B.4 Supplementary discussion (for Section 4)

If a dynamic game is based on some underlying static game, payoffs for cases

where at least one player never chooses an action can usually not be inferred

directly from the static game, as most static games require each player to choose

an action. When extending such a game to a continuous time setting, one thus

needs to clarify what happens if a player never moves. Below, we provide three

examples for what could happen if a candidate in an electoral competition never

announces a policy platform, and discuss what this implies for payoffs.

The simplest case is when there are only two potential candidates, and a can-

didate who never announces a platform loses the election with certainty, whereas

the other candidate wins for sure if they announce a platform. We thus obtain

πi = πi(ai, ωj) = 1 for i = A,B and for all ai ∈ A−i . If neither of the candidates

makes a move, one may simply assume that each candidate wins with a probability
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of one half, or choose some other tie-breaking rule.

Our second example is where each candidate represents their party, and if a

candidate never announces a policy platform, they are replaced by some other

candidate.46 Then the parameter value πi, capturing i’s payoff if j never makes a

move, depends on the characteristics of the new candidate by which j is replaced.

If the new candidate has a higher valence or higher competence than candidate j,

this leads to πi < πLi . As a result, candidate i’s payoff function Li(t) as the leader

then has a downwards discontinuity at tcritj , i.e., at the point in time from which j

would no longer enter as the follower. Conversely, if the new candidate is weaker

than j, this leads to πi > πLi , amounting to an upwards discontinuity at tcritj . In

the simplest case, j is replaced by some candidate who has effectively the same

characteristics as j, so that πi = πLi , and Li(t) is continuous.

In the latter case, our assumption made in the main text, that a player who

leads, always leads with the same action aLi , is well justified. If candidate j, in

case of inaction, is effectively replaced by a “clone”, then as the leader, candidate

i finds aLi optimal, irrespective of whether j follows or remains inactive. This is

because aLi will be optimal also when playing against j’s clone. In other cases,

one may either maintain the assumption that i always chooses aLi conditional on

leading as a simplification, or work out in detail and based on a fully specified

model, how the leader’s optimal action changes with time, depending on whether

the other candidate follows or stays out. We return to this issue below.

Our third example is a setting in which A and B are set as candidates, and

choosing an action means to shift the policy platform away from a candidate-

specific default. For example, a candidate of a leftist party may be expected to

implement a leftist policy in case of winning, in line with their party’s program,

unless the candidate announces a different platform. Committing to a new plat-

form may be costly to the candidate, which conforms with our assumption of a

fixed cost incurred when making a move. In the following, we discuss how the

parameters of the dynamic game (see Section 4) relate to the underlying electoral

competition setting in this example. Small adjustments to the setting in Section 4

will be needed to accommodate this example (see below).

The values ωi are now interpreted as specific default policies. Suppose that ωi

46The decision to give up candidacy is not formally captured by our framework. However, it
can be anticipated from what time onwards a candidate would no longer make a move. At this
point, the candidate might be replaced. See also Footnote 30 in Section 4.

vi



is the expected policy of candidate i, conditional on winning the election, if this

candidate never announces a policy platform.47 We assume that by default, B is

the more leftist candidate (ωB < ωA). If candidate i moves, they commit to an

expected policy that (strictly) differs from ωi.
48 Adjusting the policy platform may

be more effective or less costly early on, compared to later during the electoral

campaign. This can explain why the payoffs are decreasing with time in this

example (see Equations (16) and (17) in Section 4).

The winning probabilities if both candidates move can now be inferred directly

from the underlying static game (see Section 4). For example, in the case where

∆v = 0 and ∆p > 0, we have πLB = min{1−α, 1
2
(1−|s|)}, as shown in Section 2 and

in the proof of Proposition 2. To avoid results that depend explicitly on the value

of the tie-braking parameter α, we simply set α = 1/2. Then πLB = 1
2
(1− |s|), and

πFA = 1− πB. If A leads and B follows by choosing an action, then aLA = a∗A, and

aB ∈ {a1
B(a∗A), a2

B(a∗A)}, with corresponding payoffs (not shown here). As indicated

in the main text, issues like entry deterrence, i.e., a strategic manipulation of the

leader’s action choice to prevent the other player (who would otherwise enter /

move) from making a move as the follower, is not a viable strategy.49 This is

because the leader’s action choice aLi is already optimized so as to minimize the

follower’s payoff.

If nobody makes a move, each candidate maintains their respective default

action ωi. Hence, we get πA = 1
2
(1 − l̄(ωA, ωB)) if l̄(ωA, ωB) lies in the interval

[−1, 1], and πB = 1 − πA. l̄(ωA, ωB) can be calculated using Equation (7) (not

shown). Let us assume that the parameters pA, pB, and s are such that this value

indeed lies in the interval [−1, 1].

To complete the description of the model, it remains to be specified what

happens if only one candidate moves. The difficulty that arises in this example is

that, when anticipating that the other player will no longer move, player i may

prefer to lead with a platform different from aLi . In particular, if the follower (B)

does not move, as the leader, the stronger candidate A has an incentive to choose

47Recall, that the action variable ai was defined as the expected policy, conditional on candi-
date i winning, thereby taking into consideration i’s competence. In this example, candidate i’s
competence thus matters even if i never moves.

48In the light of candidates’ fixed costs, making a move but choosing an action that coincides
with ωi or that differs only marginally from it, is not a sensible choice. Without loss of generality,
we can, thus, define compact action sets that are bounded away from players’ default actions.

49In this example, making a move is not entry, but we refer to it as “entry deterrence” here
because this is a well-known concept from the literature.
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a platform closer to ωB to increase their election probability. However, in order to

avoid inducing j to move, which would be the opposite of entry deterrence, A then

chooses its platform under the constraint that B, as the follower, weakly prefers to

maintain ωB. Hence, after tcritj , as the leader, A chooses an action slightly distorted

away from aLi , towards ωB, such that B is indifferent between moving and not.50
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Figure 10: Dynamic electoral competition: example where candidates have
default actions ωA resp. ωB; green: LA(t), given that A leads with aLA; dotted
blue curve: LA(t), given that A leads with action closer to ωB such that B is
indifferent between moving as follower and maintaining ωB; red: B’s payoff as

follower if B moves and chooses best reply to aLA; orange: B’s payoff as follower if
B maintains ωB; for s = 0.4, ∆v = 0, pA = 0.8, pB = 0.5, c1 = c2 = 0.15,

ωB = −0.7

The earliest time when this issue arises is tcritB . Note, that tcritB is now defined

slightly differently than in Section 4: at this point, as the follower, B is just

indifferent between not making a move at all, thus maintaining ωB, and choosing

their best response to the leader’s action. Hence, at this point, A cannot deviate

from the action aLA. Because aLA is optimized for the case where B enters, leading

with only a slightly different action at tcritB would induce B to move as the follower.

Hence, at tcritB , the action choice aLA remains optimal for A. However, at later points

in time, A can lead with action choices closer to ωB while B remains inactive. As

a result, the curve Li(t) declines somewhat more slowly after tcritB , compared to

the case where B always leads with aLA. This is illustrated in Figure 10 (see the

blue dotted curve). In the main text, we abstracted from this issue by assuming

50It is convenient to assume that if B is indifferent, they maintain their default policy, i.e.,
refrain from moving.
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that if candidate i leads, it always leads with the same action, aLi . However, this

modification does not qualitatively affect our main result (see Proposition 4).

In order to formally analyze this example, the dynamic model described in

Section 4 needs to be slightly modified. In particular, in the main text, we assumed

that a candidate who never announces a policy platform obtains a payoff of zero.

This simplifying assumption is not well justified if choosing an action means to

deviate from a default action. Then even if one player or if both players never

move, each of them may still win with a positive probability. Therefore, we define

additional payoffs: πi(ωi, aj), and πi(ωi, ωj) for the case where player i does not

move, and j moves resp. also does not move. In the main text, these payoffs

were assumed to be zero. Calculating them is now straight-forward: because the

default ωi is an expected policy, these payoffs can be computed in the usual way

by using Equation (7). Furthermore, as explained above, candidate A’s payoff as

leader after tcritB is not simply −cA+(1− t)πA. Here, the parameter πA used in the

main text is replaced by a time-dependent payoff that needs to be computed via

an indifference condition for B (not shown). The resulting leader’s payoff for A is

illustrated in Figure 10 for a numerical example. Apart from these modifications,

the rest of the analysis in Section 4 remains qualitatively unchanged.51

B.5 Welfare analysis

We conduct a partial welfare analysis based on the sequential SPNE identified in

Section 4.52 We content ourselves with some basic observations. We assume that

the candidates and their characteristics are exogenously given. Even a social plan-

ner cannot affect candidates’ valence and competence. Our goal is to analyze how

(in)efficient their endogenously chosen locations in the policy space are, compared

to a hypothetical case where a planner dictates these choices.53

51To apply Theorem 1 for solving the game, it must hold that the weaker candidate is unwilling
to lead from an earlier time onwards than the stronger one, provided that the rival also does not
lead until the end of the game (τA > τB). The modifications to LA(t) after time tcritj described
above (see the dotted blue curve in Figure 10) render τA larger while τB remains unchanged.
Hence, the conditions needed for applying Theorem 1 are even easier to satisfy.

52A comprehensive welfare analysis is hard to achieve, due to the analytical complexity.
53We only consider the case where candidates enter sequentially at time zero, see Proposition 4.

Welfare is thus the same as in the static electoral competition game (Section 2) under sequential
moves, with A leading.
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We define welfare as follows:

W (aA, aB) =

∫ 1

−1

Ul(w, aw)dl, (33)

where w = A if ∆Ul > 0, w = B if ∆Ul < 0, and w ∈ {A,B} if ∆Ul = 0. Ul and

∆Ul are given by Equations (2) resp. (4). For given actions aA and aB, the planner

does not interfere with the median voter’s choice of a candidate since the voter

chooses optimally. Candidates’ utility is neglected, including their entry costs.54

Note, that the definition of welfare in Equation (33) only considers the median

voter, who is decisive for the outcome of the election. Hence, we neglect here

the preferences of the other voters. This would necessitate additional assumptions

about their “ideal policies”, and how these relate to the median voter’s preference.

The above definition of welfare is precise if all voters share identical preferences,

and it is still a good approximation if the “dispersion” of the other voters’ prefer-

ences around the median voter’s ideal policy is small, compared to the size of the

interval over which the median voter’s bliss point is distributed, i.e, [−1, 1].

As a benchmark case, we first analyze how the planner would position a candi-

date, say, A, if only one candidate were available. Instead of the above expression

for welfare, we thus maximize
∫ 1

−1
Ul(A, aA)dl. Solving this problem is straight-

forward and yields:

aoA = (1− pA)s ⇔ xoA = 0.

This result is unsurprising: if only one candidate were available, the policy plat-

form that maximizes welfare is the center of the policy space. If both candidates

are equally competent, or if s = 0, in a sequential equilibrium, the leader (A)

thus positions itself in the same way as a planner would position a candidate if

there were only one. The sequential equilibrium is then at least as efficient as the

benchmark case where only candidate (A) exists, and this candidate’s location is

optimal.55 In fact, the sequential equilibrium is strictly more efficient, because the

weaker candidate positions itself at a different location in the policy space and is

elected with a strictly positive probability (Proposition 1), so it must contribute

to the (expected) welfare.56

54If candidates are citizens, their fraction of the population is negligible.
55Note that, due to continuity, the same welfare comparison still holds true if candidates are

almost equally competent, or if s is near zero.
56The only case where this is not true is when ∆v = 0 and s = 0. As shown in Proposition 2, in
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However, the more relevant comparison is with the case where two candidates

exist, and their positions are optimized. To analyze this case, suppose aA > aB.

Then Equation (33) can be rewritten as

W (aA, aB) =

∫ l̄(aA,aB)

−1

Ul(B, aB)dl +

∫ 1

l̄(aA,aB)

Ul(A, aA)dl, (34)

provided that −1 < l̄(aA, aB) < 1, where l̄ is given by Equation (7). Evaluating

these integrals is straight-forward, but the resulting algebraic expressions (not

shown) are too complex to lend themselves to a general analysis. We content

ourselves with a simple numerical example.

Consider the following parameter values: s = 0.2, pA = 0.9, pB = 0.8, vA =

0.15, vB = 0.1. For a given set of parameter values, we can analyze Equation

(34) numerically. We find the following optimized action choices: aA ≈ 0.45, and

aB ≈ −0.37. This yields l̄(aA, aB) ≈ −0.036 and W ≈ −0.023. The planner thus

positions the stronger candidate A to the right of the status quo policy, and the

weaker one to the left of the political center. For comparison, in the sequential

SPNE where the stronger candidate leads, we find: aA = a∗A = 0.04, and aB =

a2
B(aA) ≈ −0.17.57 This yields l̄(aA, aB) ≈ −0.26 and W ≈ −0.26. In the bench-

mark case where only candidate A is available, and the planner optimizes aA, we

find aoA = 0.02 and W ≈ −0.37. If candidates are not too heterogeneous,58 the ex-

istence of the second candidate thus permits to achieve a substantially higher wel-

fare, because each candidate can then “specialize” on one part of the policy space

(left or right). For the given parameter values, however, candidates’ positions in

the policy space are too moderate in equilibrium. The planner would force them

to adopt much more extreme positions, so that for many realizations of the median

voter’s bliss point, one of the candidates is located nearer to the voter’s ideal policy.

In the limit case where pA = pB = 1 and ∆v = 0, it is easy to verify that the so-

cial optimum entails aA = xA = 0.5 and aB = xB = −0.5, with l̄ = 0.59 The plan-

ner then specializes the candidates’ positions so as to maximally “cover” the policy

space. For these parameter values, our static electoral competition model collapses

that case B follows by choosing aB = aA making the voter indifferent between both candidates.
57Candidate B is indifferent between a1B(aA) and a2B(aA), so we assume they choose the latter,

which leads to a higher expected welfare.
58If candidates are very heterogeneous, so that one candidate clearly dominates the other one,

the existence of the weaker candidate does not contribute much to the welfare optimum.
59Of course, due to symmetry, the indices of the candidates can be swapped.
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to a standard Downsian framework without the competence or valence feature. For

this setup, it is well-known that the equilibrium entails xA = xB = 0 (Median voter

theorem). In our model, it is straight-forward to check that as the parameters ap-

proach these extreme values, the sequential equilibrium with A leading converges

to the same outcome. Both candidates then position themselves in the center of

the policy space. The planner, by contrast, would force them to specialize.
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