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Abstract.
This is an elementary review, aimed at non-specialists, of results that have been obtained for
the limiting distribution of eigenvalues and for the operator norms of real symmetric random
matrices via the method of moments. This method goes back to a remarkable argument of
Eugene Wigner some sixty years ago which works best for independent matrix entries, as far as
symmetry permits, that are all centered and have the same variance. We then discuss variations
of this classical result for ensembles for which the variance may depend on the distance of the
matrix entry to the diagonal, including in particular the case of band random matrices, and/or for
which the required independence of the matrix entries is replaced by some weaker condition.
This includes results on ensembles with entries from Curie-Weiss random variables or from
sequences of exchangeable random variables that have been obtained quite recently.
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1. Introduction

Approximately at the time when Helge Holden was born the physicist Eugene Wigner
presented a result in [45] that may be considered to be the starting signal for an ex-
tremely fruitful line of investigations creating the now ample realm of random matri-
ces. The reader may consult the handbook [3] to obtain an impression of the richness
of the field. Its ongoing briskness is well documented by over 700 publications listed
in MathSciNet after the print of [3] in 2011.
In view of later developments that often use heavy machinery to provide very detailed
knowledge about specific spectral statistics, Wigner’s observation impresses by its
simplicity and fine combinatorics. For certain matrix ensembles, which in various
generalizations are nowadays called Wigner ensembles, he was able to determine the
limiting density of eigenvalues by the moment method. More precisely, he computed
the expectations of all moments of the empirical eigenvalue distribution measures
in the limit of matrix dimensions tending to infinity. Furthermore, he observed that
these limits agree with the moments of the semicircle distribution thus proving the
semicircle law that bears his name (see Sections 2 and 3 for definitions of the phrases
in italics).
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It is quite remarkable that the moment method continues to provide new insights into
the distribution of random eigenvalues. With this article we take the reader on a tour
that starts with Wigner’s discovery and ends with the description of recent results,
some yet unpublished. Along the way we try to explain a few developments in more
detail while briefly pointing at others.
The first application of the moment method to the analysis of random eigenvalues
appears almost accidental. In an effort to understand “the wave functions of quantum
mechanical systems which are assumed to be so complicated that statistical consid-
erations can be applied to them” Wigner introduces in [45] three types of ensem-
bles of “real symmetric matrices of high dimensionality”. Although he considers
his results not satisfactory from a physical point of view, he expresses the hope that
“the calculation which follows may have some independent interest”. Moreover, the
reader learns that one of the three models considered just serves “as an intermediate
step”. And it is only this auxiliary ensemble that we would now call a Wigner ensem-
ble. Wigner names it the “random sign symmetric matrix” by which he understands
(2N + 1) × (2N + 1) matrices for which the diagonal elements are zero and “non
diagonal elements vik = vki = ±v have all the same absolute value but random
signs".
In the short note [46] that appeared a few years later, Wigner remarks that the ar-
guments of [45] show the semicircle law for a much larger class of real symmetric
ensembles. He observes that, except for technical assumptions, two features of the
model were essential for his proof: Firstly, stochastic independence of the matrix en-
tries (as far as the symmetry permits) and, secondly, that all (or at least most) matrix
entries are centered and have the same variance.
In Section 3 we present Wigner’s proof with enough detail to make the significance
of these two assumptions apparent. The remaining sections are then devoted to the
discussion of results where at least one of these essential assumptions are weakened.
In Section 4 independence and centeredness of the matrix entries are kept. However,
we allow the variances to vary as a function of the distance to the diagonal. The most
prominent examples in this class are band matrices and we discuss them in detail.
A first step to loosen the assumption of independence is presented in Section 5. Its
central result provides conditions on the number and location of matrix entries that
may be dependent without affecting the validity of Wigner’s reasoning. We call such
dependence structures sparse. Sparse dependence structures appear for example in
certain types of block random matrices that are used in modelling disordered systems
in mesoscopic physics (see e. g. [1]) .
In the last three sections 6–8 we report on results for ensembles with a dependence
structure that is not sparse. This is largely uncharted territory. However, in recent
years a number of special cases were analyzed using the method of moments. They
show interesting phenomena that should be explored further. We devide the models
into three groups. In the first group the correlations decay to 0 as the distance of
the matrix entries becomes large in some prescribed metric. Then we look at those



1 INTRODUCTION 3

ensembles for which the entries are drawn from Curie-Weiss random variables. Here
the correlations have no spatial decay but decay for supercritical temperatures as the
matrix dimension becomes large. Finally, we pick the matrix entries from an infinite
sequence of exchangeable random variables. Here the correlations between matrix
entries depend neither on their locations nor on the size of the matrix.
We close this introduction by stating what is not contained in this survey. One of
the striking features of random matrix theory is the observation that local statistics
of the eigenvalues obey universal laws that, somewhat surprisingly, have also arisen
in certain combinatorial problems, in some models from statistical mechanics and
even in the distribution of the non-trivial zeros of zeta-functions. By local statistics
we mean statistics after local but deterministic rescaling so that the spacings between
neighboring eigenvalues are of order 1. Examples are the statistics of spacings or the
distribution of extremal eigenvalues. Such results were first obtained for Gaussian
ensembles, i.e. Wigner ensembles with normally distributed entries. In this special
case it is possible to derive an explicit formula for the joint distribution of eigenval-
ues that can then be analyzed using the method of orthogonal polynomials. In the
Gaussian case this requires detailed asymptotic formulas for Hermite polynomials of
large degree that had already been derived in the beginning of the twentieth century.
The first step to prove universality beyond Gaussian ensembles was then taken about
twenty years ago within the class of ensembles that are invariant under change of
orthonormal bases. For such ensembles the eigenvectors are distributed according to
Haar measure, the joint distribution of eigenvalues is still explicit, and the method of
orthogonal polynomials works, albeit they generally do not belong to the well studied
families of classical orthogonal polynomials (see for example [11, 12, 37] and refer-
ences therein). It is only seven years ago that universality results for local statistics
became available for Wigner matrices (see e. g. [14, 15, 43, 44, 22] and references
therein). Since all of these results do not use the moment method, we will not discuss
them in this paper.
There is one notable exception to what has just been said. The distribution of extremal
eigenvalues (and consequently of the operator norm) can and has been investigated
for Wigner ensembles on the local level, using the method of moments [40], see also
[39] and references therein. However, this requires quite substantial extensions of
the ideas that we explain and goes way beyond the scope of this paper. We therefore
only state weaker results that might be considered as laws of large numbers for the
operator norm and that can be proved with much less effort. Nevertheless, we do not
discuss their proofs either and refer the reader to Section 2.3 of the textbook [42].
Finally, we mention that the moment method can also be applied to complex Hermi-
tian matrices and to sample covariance matrices (also known as Wishart ensembles),
but in the present article we always restrict ourselves to the case of real symmetric
matrices to keep the presentation as elementary as possible.

Acknowledgment: The authors would like to thank the referee for an exceptionally
careful reading of the manuscript and for a number of valuable suggestions.
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2. Setup

We begin by setting the scene and fixing some notation.

Definition 2.1. A (real symmetric) matrix ensemble is a family
XN (i, j), i, j = 1, . . . , N,N ∈ N of real valued random variables on a probability
space (Ω,F ,P) such that XN (i, j) = XN (j, i). We then denote by XN the corre-
sponding N ×N -matrix, i.e.

XN =


XN (1, 1) XN (1, 2) · · · XN (1, N)
XN (2, 1) XN (2, 2) · · · XN (2, N)

...
...

...
XN (N, 1) XN (N, 2) · · · XN (N,N)

 (1)

Since we deal exclusively with real symmetric matrices by ’matrix ensemble’ we
always mean a real symmetric one.

Definition 2.2. A (real symmetric) matrix ensemble is called independent if for each
N ∈ N the random variables XN (i, j), 1 ≤ i ≤ j ≤ N are independent. It is called
identically distributed, if all XN (i, j) have the same distribution.
An independent and identically distributed matrix ensemble XN is called a Wigner
ensemble if E(XN (i, j)) = 0 and E(XN (i, j)2) = 1 .

By a slight abuse of language we use the phrase ’XN is a Wigner matrix’ to indi-
cate that the family XN of random (symmetric) matrices form a Wigner ensemble.
Some authors allow for Wigner ensembles a probability distribution for the diagonal
elements which differs from the distribution for the nondiagonal entries.

Definition 2.3. The kth moment of a random variable X is the expectation E(Xk).
We say that all moments of X exist, if E(|X|k) <∞ for all k ∈ N.

Unless stated otherwise we always assume that all random variables occurring in this
text have all moments existing.
For any symmetricN×N -matrixM we denote the eigenvalues ofM by λj(M). We
order these eigenvalues such that

λ1(M) ≤ λ2(M) ≤ . . . ≤ λN (M)

where degenerate eigenvalues are repeated according to their multiplicity.
The empirical eigenvalue distribution measure νN of M is defined by

νN (A) = 1
N

∣∣∣{j | λj(M) ∈ A}
∣∣∣

= 1
N

N∑
j=1

δλj(M)(A)
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where |B| denotes the number of points in B,N - as above - is the dimension of the
matrix M , A is a Borel-subset of R and δa is the Dirac measure in a, i.e.

δa(A) =
{

1 if a ∈ A
0 otherwise .

(2)

It turns out that for a Wigner matrixXN the empirical eigenvalue distribution measure
νN of XN has no chance to converge as N → ∞ as the following back-of-the-
envelope calculations show.
We have ∫

λ2 dνN (λ) = 1
N

N∑
`=1

λ`(XN )2

= 1
N

tr X2
N (3)

If the N ×N -matrix XN has entries ±1 (random or not), then (3) shows∫
λ2 dνN (λ) = N (4)

and if the XN are random matrices with E(XN (i, j)2) = 1 we get

E
( ∫

λ2 dνN (λ)
)

= N . (5)

This shows that (at least the second moment of) the empirical eigenvalue distribution
measure of XN is divergent.
Moreover, the same calculation suggests that the empirical eigenvalue distribution
measure of the normalized matrices

MN = 1√
N
XN

might converge as for MN

E
∫
λ2 dνN = 1

N
tr M2

N = 1 .

As we shall see below, this is indeed the case not only for Wigner ensembles, but for
a huge class of random matrices.
A similar reasoning applies to the operator norm of a matrix ensemble XN :

‖XN‖ = max
{
|λ1(XN )|, |λN (XN )|

}
. (6)
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Since for any real symmetric N ×N -matrix M :

1
N

tr M2 = 1
N

N∑
`=1

λ`(M)2 ≤ ‖M‖2 ≤ tr M2 (7)

a matrix M with ±1-entries satisfies
√
N ≤ ||M || ≤ N

and similarly for E(XN (i, j)2) = 1
√
N ≤ E(||XN ||2) 1

2 ≤ N .

Again, one is lead to look at the norm of MN = 1√
N
XN .

Indeed, for Wigner ensemble the norm of MN will stay bounded as N →∞, in fact,
it will converge to 2.
However, this fact is more subtle than the convergence of νN , and so is its proof (cf.
Theorem 3.13 that was proved by Füredi and Komlós in [20], see also [5], and [42]
for a textbook presentation).
To illustrate this, let us look at a particular example within the class considered in (4),
namely the N ×N -matrices

EN (i, j) = 1 for all 1 ≤ i, j ≤ N . (8)

The matrix EN can be written as

EN = N · Pe

where Pe is the orthogonal projection onto the vector e, with e(i) = 1√
N

for

i = 1, . . . , N .
Consequently EN is of rank 1 and

λj(EN ) =
{
N for j = N

0 otherwise .
(9)

Thus we obtain ∣∣∣∣∣∣ EN√
N

∣∣∣∣∣∣ =
√
N →∞

but the eigenvalue distribution function νN of EN/
√
N is given by

νN = 1
N

(N − 1)δ0 + 1
N
δ√N =⇒ δ0

where⇒ means weak convergence (see definition 3.1).
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3. Wigner’s Semicircle Law

In this section we present and discuss the classical semicircle law for Wigner ensem-
bles.
So, let XN be a Wigner ensemble (see Definition 2.2), set MN = 1√

N
XN and denote

the empirical eigenvalue distribution measure of MN by σN , thus

σN (A) = 1
N

∣∣∣{j | λj( 1√
N
XN ) ∈ A}

∣∣∣ .
The semicircle law, in its original form due to Wigner ([45], [46]), states that σN
converges to the semicircle distribution σ given through its Lebesgue density

σ(x) =
{

1
2π
√

4− x2 , for |x| ≤ 2
0 , otherwise.

(10)

σ describes a semicircle of radius 2 around the origin, hence the name.
So far, we have avoided to explain in which sense σN converges. This is what we do
now.
Let us first look at the convergence of measures on R.

Definition 3.1. Suppose µN and µ are probability measures on R (equipped with the
Borel σ-algebra B(R)).
We say that µN converges weakly to µ, in symbols

µN ⇒ µ

if ∫
f(x) dµN (x)→

∫
f(x) dµ(x)

for all f ∈ Cb(R), the space of bounded continuous functions.

If the matrix XN is random and

σN = 1
N

∑
δλj

(XN√
N

)
is the empirical eigenvalue distribution measure of 1√

N
XN then the measure σN itself

is random.
Consequently, we have not only to define in which sense the measures converge
(namely weakly), but also how this convergence is meant with respect to random-
ness, i.e. to the ‘parameter’ ω ∈ Ω. There are various ways to do this.

Definition 3.2. Let (Ω,F ,P) be a probability space and let µωN and µω be random
probability measures on (R, B(R)).
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1) We say that µωN converges to µω weakly in expectation, if for every

f ∈ Cb(R)
E
( ∫

f(x) dµωN (x)
)
→ E

( ∫
f(x) dµω(x)

)
(11)

as N →∞.

2) We say that µωN converges to µω weakly in probability, if for every f ∈ Cb(R)
and any ε > 0

P
( ∣∣∣ ∫ f(x) dµωN (x)−

∫
f(x) dµω(x)

∣∣∣ > ε
)
→ 0

as N →∞.

3) We say that µωN converges to µω weakly P-almost surely if there is a set Ω0 ⊂ Ω
with P(Ω0) = 1 such that µωN ⇒ µω for all ω ∈ Ω0.

Theorem 3.3 (Semicircle Law). Suppose XN is a Wigner ensemble with

E(|XN (i, j)|k) < ∞ for all k ∈ N and let σN denote the empirical eigenvalue dis-
tribution measure of MN = 1√

N
XN then σN converges to the semicircle distribution

σ weakly P-almost surely.

Remarks 3.4. 1. Wigner [45, 46] proved this theorem for weak convergence in
expectation.

2. Grenander [23] showed under the same conditions that the convergence holds
weakly in probability.

3. Arnold [4] proved that the convergence is weakly P-almost surely. He also
relaxed the moment condition to

E
(
XN (i, j)6

)
< ∞

for P-almost sure weak convergence and to

E
(
XN (i, j)4

)
< ∞

for weak convergence in probability.

4. According to Definition 2.2 the entries in a Wigner ensemble are independent
and identically distributed. Hence a condition of the form E(|XN (i, j)|k) <∞,
as it appears for example in the previous remark, actually implies

sup
N,i,j

E(|XN (i, j)|k) <∞ .
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Besides the moment method we discuss in this article there is another important tech-
nique to prove the semicircle law. This is the Stieltjes transform method originating
in [27], [35] and [36], see also [37] and references given there. Both methods are
discussed in [2] and in [42].
The moment method is based on the observation that the following result is true.

Proposition 3.5. If µN and µ are probability measures on R such that all moments
of µN exist and ∫

|x|k dµ(x) ≤ ACkk! (12)

for all k and some constants A,C, then∫
xk dµN (x)→

∫
xk dµ(x)

for all k ∈ N implies that
µN ⇒ µ .

For a proof see for example [8], [32] or [28].
Since the semicircle distribution σ has compact support, it obviously satisfies (12).
The moments of σ are given by:∫

xk dσ(x) =
{
Ck/2, if k is even;

0, if k is odd.
(13)

where

C` = 1
`+ 1

(
2`
`

)
(14)

are the Catalan numbers. (For a concise introduction to Catalan numbers see e. g.
[33] or [41].)
The moments of σN can be expressed through traces of the matrices XN

E
( ∫

xk dσN (x)
)

= 1
N
E
( N∑
j=1

λj
(XN√

N

)k)
= 1

N
E
(

tr
(XN√

N

)k )

= 1
N1+ k

2

N∑
i1,...,ik=1

E
(
XN (i1, i2) ·XN (i2, i3) · . . . ·XN (ik, i1)

)
. (15)

The sum in (15) contains Nk terms. So, at a first glance, the normalizing factor
N1+k/2 seems too small to compensate the growth of the sum. Fortunately, many of
the summands are zero, as we shall see later.
For the purpose of bookkeeping it is useful to think of i1, i2, . . . , ik in terms of a
graph.
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Definition 3.6. The multigraph G with vertex set

V :=
{
i1, i2, . . . , ik

}
(16)

and ` (undirected) edges between i and j if {i, j} occurs ` times in the sequence

{i1, i2}, {i2, i3}, . . . , {ik, i1} (17)

is called the multigraph associated with (i1, i2, . . . , ik).

Remark 3.7. The sequence (i1, i2, . . . , ik) defines a multigraph since there may be
several edges between the vertices iν .

Definition 3.8. If G is a multigraph we define the associated (simple) graph G̃ in the
following way. The set of vertices of G̃ is the same as the vertex set of G and G̃ has a
single edge between i and j whenever G has at least one edge between i and j.

Remark 3.9. The sequence (17) describes not only a multigraph but in addition a
closed path through the multigraph which uses each edge exactly once. Such paths
are called Eulerian circuits. They occur for example in the famous problem of the
‘Seven Bridges of Königsberg’ (see e. g. [7]).
The existence of an Eulerian circuit implies in particular that the multigraph is con-
nected.

Now, we order the sum in (15) according to the number |V| = |{i1, . . . , ik}| of
different indices (=vertices) occurring in the sequence i1, i2, . . . , ik.

N∑
i1,...,ik=1

E
(
XN (i1, i2) ·XN (i2, i3) · . . . ·XN (ik, i1)

)

=
k∑
r=1

∑
|{i1,...,ik}|=r

E
(
XN (i1, i2) ·XN (i2, i3) · . . . ·XN (ik, i1)

)
(18)

The number of index tuples (i1, . . . , ik) with |{i1, . . . , ik}| = r is of order O(Nr)
and can be bounded above by rkNr. In fact, to choose the r different numbers in
{1, . . . , N} we have less than Nr possibilities. Then, to choose which one to put at a
given position we have at most r choices for each of the k positions.
Therefore the sum∑

|{i1,...,ik}|=r
E
(
XN (i1, i2) ·XN (i2, i3) · . . . ·XN (ik, i1)

)
(19)

is of order O(Nr) as well. Thus the terms with r = |{i1, . . . , ik}| < 1 + k/2 in (15)
can be neglected compared to prefactor N−(1+k/2). Consequently

1
N1+k/2

∑
|{i1,...,ik}|<1+k/2

E
(
XN (i1, i2) · . . . ·XN (ik, i1)

)
−→ 0 (20)
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To handle those terms with |{i1, . . . , ik}| > 1 + k/2 we need the following two
observations.
For comparison with results in Section 7 we formulate the first one as a lemma.

Lemma 3.10. Whenever an edge {i, j} occurs only once in (17) then

E
(
XN (i1, i2) ·XN (i2, i3) · . . . ·XN (ik, i1)

)
= 0 . (21)

This follows from independence and the assumption E
(
XN (i, j)

)
= 0.

The second observation is:

Proposition 3.11. If |{i1, . . . , ik}| > 1 + k/2 there is an edge {i, j} which occurs
only once in {i1, i2}, {i2, i3}, . . . , {ik, i1}.

Proof: Set r = |{i1, . . . , ik}| and denote the distinct elements of |{i1, . . . , ik}| by
j1, . . . , jr.
To connect the vertices j1, . . . , jr we need at least r−1 edges. To double each of these
connections we need 2r−2 edges. So, if we have k edges we need that k ≥ 2r−2 to
double each connection. Hence, if r > 1 + k/2, at least one edge occurs only once.

Remark 3.12. A similar reasoning as in the proof above shows: If a graph G with k
edges and k+1 vertices is connected then G is a tree, i. e. G contains no loops. Indeed,
if G contained a loop we could remove an edge without destroying the connectedness
of the graph. But the new graph would have k − 1 edges and k + 1 vertices, so it
cannot be connected.

From Proposition 3.11 and (21) we learn that∑
|{i1,...,ik}|>1+k/2

E
(
XN (i1, i2) ·XN (i2, i3) · . . . ·XN (ik, i1)

)
= 0 . (22)

To summarize, what we proved so far is

1
N1+ k

2

N∑
i1,...,ik=1

E
(
XN (i1, i2) ·XN (i2, i3) · . . . ·XN (ik, i1)

)
≈ 1
N1+ k

2

∑
|{i1,...,ik}|=1+k/2

all {i,j} occur exactly twice

E
(
XN (i1, i2) ·XN (i2, i3) · . . . ·XN (ik, i1)

)
(23)

Let us set

I(N)
k =

{
(i1, . . . , ik) ∈ {1, . . . , N}

∣∣∣ |{i1, . . . , ik}| = 1 + k/2

and all {i, j} occur exactly twice.
}

(24)
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For odd k the set I(N)
k is empty, so the sum (23) is obviously zero.

Due to independence and the assumptions E(XN (i, j)) = 0 and E(XN (i, j)2) = 1
we have

E
(
XN (i1, i2) ·XN (i2, i3) · . . . ·XN (ik, i1)

)
= 1

whenever all {i, j} occur exactly twice.
Consequently,

Right side of (23) = 1
N1+ k

2

∣∣I(N)
k

∣∣ . (25)

For even k, let us consider the multigraph G associated with (i1, . . . , ik) ∈ I(N)
k .

Since G has 1 + k/2 vertices and k double vertices, the corresponding simple graph
G̃ is a connected graph with 1 + k/2 vertices and k/2 edges. Thus, this G̃ is a tree by
Remark 3.12. Moreover the path (i1, . . . , ik, i1) defines an ordering on G̃.
The number of ordered trees [33, 41] with ` edges (and hence `+1 vertices) is known
to be the Catalan number C` (see (14)).
Given an (abstract) ordered tree with ` = 1 + k/2 vertices we find all corresponding
paths (i1, i2, . . . , ik, i1) with ij ∈ {1, . . . , N} by assigning 1 + k/2 (different) num-
bers (=indices) from {1, . . . , N} to the vertices of the tree. There are N !

(N−(1+k/2))! ≈
N1+k/2 ways to do this. Thus

E
( ∫

xk dσN (x)
)
≈ 1

N1+ k
2

∣∣I(N)
k

∣∣ (26)

→
{
C k

2
for k even

0 for k odd .
(27)

and these are the moments of the semicircle distribution σ (see (13)). In view of
Proposition 3.5 this proves that σN converges to σ weakly in expectation (cf. Defini-
tion 3.2).
For more details on the semicircle law and its proof see [2], [42] or [28].
From Theorem 3.3 and (10) we conclude that lim inf || 1√

N
XN || ≥ 2 almost surely,

since for symmetric N × N -matrices A the matrix norm ‖A‖, as an operator on the
Euclidian space RN , satisfies ‖A‖ = max {|λ1(A)|, |λN (A)|}.
However, Theorem 3.3 does not imply that lim inf ‖ 1√

N
XN‖ ≤ 2! Wigner’s result

does imply that the majority of the eigenvalues will be less than 2+ε finally, however
some

(
in fact even o(N)

)
eigenvalues could be bigger and might even go to ∞. In

Sections 4, 7, and 8 we encounter ensembles for which exactly this happens.
However, for Wigner ensembles it is correct that the norm of 1√

N
XN goes to 2. This

can be shown by a more sophisticated variant of the moment method.
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Theorem 3.13. Suppose XN is a Wigner ensemble with E
(
|XN (i, j)|k

)
< ∞ for

all k ∈ N and let

λ∗N = max
{
|λ1( 1√

N
XN )|, |λN ( 1√

N
XN )|

}
= ‖ 1√

N
XN‖

be the operator norm of MN = 1√
N
XN , then

λ∗N → 2 as N →∞ P-almost surely.

This theorem was proved by Füredi and Komlós in [20], see also [5].
To prove the semicircle law we considered the kth moment mk of σN for fixed k as
N goes to infinity. For the norm estimate we need bounds on mk for k = kN for
a sequence kN which is growing with N . See [42, Section 2.3] for a pedagogical
explanation.

4. Random Band Matrices

In a first variation of Wigner’s semicircle law we abandon the assumption of identi-
cal distribution of the XN (i, j), by assuming that entries away from a band around
the diagonal are zero, while the other entries are still iid, apart from the symmetry
XN (i, j) = XN (j, i).
More precisely, let X̃N (i, j) be a Wigner ensemble and set

XN (i, j) =
{
X̃N (i, j) for |i− j| ≤ bN
0 otherwise .

(28)

where bN is a sequence of integers with bN →∞ and 2bN + 1 ≤ N .
We call such matrices banded Wigner matrices with band width βN = 2bN + 1.
There is a ’Semicircle Law’ for banded Wigner matrices due to Bogachev, Molchanov
and Pastur [6].

Theorem 4.1. Suppose XN is a banded Wigner matrix with band width

βN = 2bN + 1 ≤ N and assume that all moments of XN (i, j) exist.

SetMN = 1√
βN
XN and denote by σN the empirical eigenvalue distribution measure

of MN .

1) If βN → ∞ but βNN → 0 then the σN converges to the semicircle distribution
weakly in probability.

2) If βN ≈ cN for some c > 0 then σN converges weakly in probability to a
measure σ̃ which is not the semicircle distribution.
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It turns out that the moment method used to prove Wigner’s result can also be applied
to banded random matrices.
Let us look at the products

XN (i1, i2) ·XN (i2, i3) · . . . ·XN (ik, i1)

which occur in evaluating traces as in (15).
We have N possibilities to choose i1. In principle, for i2 we have again N possibil-
ities. However, unlike to the Wigner case, at most βN of these possibilities are not
identically zero. This observation makes it plausible that∑

i1,...,ik

E
(
XN (i1, i2) · . . . ·XN (ik, i1)

)
≈ N βN

k/2

since - again - only those terms with each {i, j} occurring exactly twice count in the
limit. Note that our assumption βN → ∞ is needed here. Without this assumptions
pairs {i, j} occurring more than twice are not negligible.
Unfortunately, the above argument is not quite correct. It is true that most columns
(and rows) contain βN entries XN (i, j) which are not identically equal to zero.
However, this is wrong for the rows with row number j when

j ≤ bN or j > N − bN ,

i.e. in the ‘corners’ of the matrix.
Thus for any 1 ≤ ` < k for which the vertex i`+1 is new in the path, i.e. i`+1 /∈
{i1, . . . , i`} we have at least βN − ` choices for il+1 only if

bN < i` ≤ N − bN .

If bN
N → 0 (as in case 1 of the theorem) the number of exceptions (i.e. i` ≤ bN or

il > N − bN ) is negligible and the semicircle law is again valid.
However, if bN grows proportional to N the ‘exceptional’ terms are not exceptional
any more but rather contribute in the limit N →∞.
For details of the proof see [6] or [10].
The above argument suggests that for bN ≈ cN the limit distribution might be again
the semicircle distribution if we ‘fill the corners’ of the matrix appropriately. This can
be achieved by the following modification of (28).

Definition 4.2. Set (for i ∈ N)

| i |N = min {| i |, |N − i|} (29)

and let X̃N be a Wigner ensemble. Then we call the matrix
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XN (i, j) =
{
X̃N (i, j) for |i− j|N ≤ bN
0 otherwise .

(30)

a periodic band matrix.

|i − j|N measures the distance of i and j on Z/NZ. The choice of | · |N guarantees
that each column (and each row) contains exactly βN = 2bN + 1 non zero (i.e. not
identically zero) entries.
As we anticipated we have

Theorem 4.3. If XN is a periodic band random matrix with band width βN ≤ N
and βN → ∞, then the empirical eigenvalue distribution measure σN of 1√

βN
XN

converges weakly in probability to the semicircle distribution σ.

A proof of this result due to Bogachev, Molchanov and Pastur can be found in [6] or
in [10].
Catalano [10] has generalized the above result to matrices of the form

XN (i, j) = α
( |i− j|

N

)
X̃N (i, j) (31)

where X̃N is a Wigner matrix and α : [0, 1]→ R a Riemann integrable function.
This class of matrices contains both random band matrices with bN ≈ cN and peri-
odic random band matrices, take either α(x) = χ[0,c](x) or α(x) = χ[0,c]∪[1−c,1](x),

where χA(x) =
{

1, if x ∈ A;
0, otherwise.

Theorem 4.4. Let XN be a matrix ensemble as in (31), set

Φ :=
∫ 1

0

∫ 1

0
α2(|x− y|) dx dy

and let σN be the empirical eigenvalue distribution measure for 1√
ΦNXN . Then σN

converges weakly in probability to a limit measure τ .

The limit τ is the semicircle law if and only if

|α(x)| = |α(1− x)| (32)

for almost all x ∈ R.

Note, that in the case of band matrices with bandwidth proportional to N condition
(32) is fulfilled for the periodic case, but not for the non periodic case (28).
As for the Wigner case the question arises whether the norm of band matrices is
bounded in the limit N →∞. In fact we have:
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Theorem 4.5. Let XN be a banded Wigner ensemble (as in (28)) with band width
βN ≤ N and assume that all moments of XN (i, j) exist. If there are positive con-
stants γ and C such that βN ≥ C Nγ for all N then

lim sup
N→∞

|| 1√
βN

XN || ≤ 2 (33)

P-almost surely.

A proof of Theorem 4.5 is contained in the forthcoming paper [30]. This theorem
applies to periodic band matrices as well.
Bogachev, Molchanov and Pastur [6] show that the norm of 1√

β
N

XN can go to in-

finity if βN grows only on a logarithmic scale with N .
We mention that there are various other results about matrices with independent, but
not identically distributed random variables. Already the papers [35] and [36] con-
sider matrix entries with constant variances but not necessarily identical distribution.
The identical distribution of the entries is replaced by a (far weaker) condition of Lin-
deberg type. In the paper [21] even the condition of constant variances is relaxed.
Moreover these authors replace independence by a martingale condition.

5. Sparse Dependencies

Now we turn to attempts to weaken the assumption of independence between the
XN (i, j) of a matrix ensemble. We start with what we call ‘sparse dependencies’.
This means that, while we don’t care how some of theXN (i, j) depend on each other,
we restrict the number of dependencies in a way specified below. We follow Schenker
and Schulz-Baldes [38] in this section.
We assume that for each N there is an equivalence relation ∼N on N2

N with NN =
{1, 2, . . . , N} and we suppose that the random variables XN (i, j) and XN (k, `) for
1 ≤ j, k ≤ ` are independent unless (i, j) and (k, `) belong to the same equivalence
class with respect to ∼N .

Definition 5.1. We call the equivalence relations ∼N sparse, if the following condi-
tions are fulfilled:

1) max
i∈NN

|{(j, k, `) ∈ N3
N |(i, j) ∼N (k, `)}| = o(N2)

2) |{(i, j, `) ∈ N3
N |(i, j) ∼N (j, `) and ` 6= i}| = o(N2)

3) max
i,j,k∈NN

|{` ∈ NN |(i, j) ∼N (k, `)}| ≤ B for an N -independent constant B.
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Definition 5.2. A symmetric random matrix ensemble XN (i, j) with

E
(
XN (i, j)

)
= 0,E

(
XN (i, j)2

)
= 1 and sup

N,i,j
E
(
XN (i, j)k

)
<∞ for all k ∈ N is

called a generalized Wigner ensemble with sparse dependence structure if there are
sparse equivalence relations∼N , such that XN (i, j) and XN (k, `) are independent if
(i, j) �N (k, `).

Examples 5.3. If AN and BN are Wigner matrices, then the 2N × 2N -matrices

XN =
(
AN BN
BN −AN

)
and

X
′

N =
(
AN BN
BN AN

)
are generalized Wigner ensembles with sparse dependence structure.
Many more example classes can be found in [26].

Theorem 5.4. IfXN is a generalized Wigner ensemble with sparse dependence struc-
ture and σN is the empirical eigenvalue distribution measure of MN = 1√

N
XN then

σN converges to the semicircle distribution weakly in probability.

This theorem is due to Schenker and Schulz-Baldes [38] who proved weak conver-
gence in expectation, for convergence in probability see [10].
Catalano [10] combines sparse dependence structures with generalized band struc-
tures as in (31).

6. Decaying Correlations

In this section we discuss some matrix ensembles for which the random variables
XN (i, j) have decaying correlations. We begin by what we call ‘diagonal’ ensembles.
By this we mean that the random variables XN (i, j) and XN (i′, j′) are independent
if the index pairs (i, j) and (i′, j′) belong to different diagonals, i. e. if i− j 6= i′− j′
(for i ≤ j and i′ ≤ j′).

Definition 6.1. Suppose Yn is a sequence of random variables and Yn(`), ` ∈ N are
independent copies of Yn, then the matrix ensemble

XN (i, j) = Y
(|i−j|)
i for 1 ≤ i ≤ j ≤ N (34)

is called the matrix ensemble with independent diagonals generated by Yn.
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Of course, if the random variables Yn themselves are independent then we obtain
an independent matrix ensemble. If, on the other hand, Yn = Y1 we get a matrix
with constant entries along each diagonal, which vary randomly from diagonal to
diagonal. Such a matrix is thus a random Toeplitz matrix. Random Toeplitz matrices
were considered by Bryc, Dembo and Jiang in [9]. They prove:

Theorem 6.2. Suppose that XN (i, j) is the random Toeplitz matrix ensemble associ-
ated with Yn = Y with E(Y ) = 0, E(Y 2) = 1 and E(Y K) < ∞ for all K, then the
empirical eigenvalue distribution measures σN of 1√

N
XN converge weakly almost

surely to a nonrandom measure γ which is independent of the distribution of Y and
has unbounded support.

In particular, γ is not the semicircle distribution.

Friesen and Löwe [18] consider matrix ensembles with independent diagonals gener-
ated by a sequence Yn of weakly correlated random variables. In their case the limit
distribution is the semicircle law again.

Theorem 6.3. Let Yn be a stationary sequence of random variables with E(Y1) = 0,
E(Y1

2) = 1 and E(Y1
K) <∞ for all K. Assume

∞∑
`=1

∣∣E(Y1Y1+`)
∣∣ < ∞ . (35)

Let XN be the matrix ensemble with independent diagonals generated by Yn. Then
the empirical eigenvalue distribution measures σN of 1√

N
XN converge to the semi-

circle distribution P-almost surely.

The next step away from independence is to start with a sequence {Zn}n∈N of ran-
dom variables and to distribute them in some prescribed way on the matrix entries
XN (i, j). It turns out (see [34]) that the validness of the semicircle law depends on
the way we fill the matrix with the random number Zn.
One main example of a filling is the ‘diagonal’ one, resulting in:

XN =



Z1 ZN+1 Z2N · · · · · · · · · ZN(N+1)
2

ZN+1 Z2 ZN+2 · · · · · · · · · · · ·
Z2N ZN+2 Z3 ZN+3 · · · · · · · · ·
· · · Z2N+1 ZN+3 Z4 · · · · · · · · ·

...
...

...
ZN(N+1)

2
· · · · · · · · · · · · Z2N−1 ZN


(36)

Löwe and Schubert define abstractly:

Definition 6.4. A filling is a sequence of bijective mappings

ϕN : {1, 2, . . . , N(N + 1)
2 } −→ {(i, j) ∈ {1, 2, . . . , N}2 | i ≤ j} (37)
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If Zn is a stochastic process and {ϕN} is a filling we say that

XN (i, j) = ZϕN−1(i,j) for 1 ≤ i ≤ j ≤ N (38)

is the matrix ensemble corresponding to {Zn} with filling {ϕN}

Another example of a filling, besides the ‘diagonal’ one, is the (symmetric) ‘row by
row’ filling:

XN =



Z1 Z2 Z3 · · · · · · · · · ZN
Z2 ZN+1 ZN+2 ZN+3 · · · · · · Z2N−1
Z3 ZN+2 Z2N Z2N+1 · · · · · · Z3N−3
· · · ZN+3 Z2N+1 Z3N−1 · · · · · · · · ·

...
...

...
ZN Z2N−1 · · · · · · · · · · · · ZN(N+1)

2


(39)

Among other results, Löwe and Schubert prove:

Theorem 6.5. Suppose Zn is an ergodic Markov chain with finite state space S ⊂ R
started in its stationary measure and assume

E(Zn1Zn2 . . . Znk) = 0 (40)

E(Zn2) = 1 (41)

for any n and any n1, . . . , nk with k odd.

If XN is the matrix ensemble corresponding to {Zn} with diagonal filling then the
empirical eigenvalue distribution measures σN of 1√

N
XN converge to the semicircle

distribution P-almost surely.

The assumptions we made in Theorem 6.5 both on Zn and on the filling are but an
example of the abstract assumptions given in [34]. These authors also show:

Theorem 6.6. There is an ergodic Markov chain {Zn} with finite state space S ⊂ R
started in its stationary measure satisfying (40) and (41) such that for the matrix
ensembleXN corresponding to {Zn} with row by row filling the empirical eigenvalue
distribution measures σN of 1√

N
XN do not converge to the semicircle distribution.

Consequently, the convergence behavior of σN depends not only on the process {Zn}
but also on the way we fill the matrices with this process. For details we refer to [34].

7. Curie-Weiss Ensembles

In section 6 we discussed matrix ensembles XN (i, j) which are generated through
stochastic processes with decaying correlations. Thus, for fixed N , the correlations
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E
(
XN (i, j)XN (k, `)

)
become small for (i, j) and (k, `) far apart, in some appropri-

ate sense.
In the present section we investigate matrix ensembles XN (i, j) with E

(
XN (i, j)

)
=

0 for which the correlations E
(
XN (i, j)XN (k, `)

)
do not depend on i, j, k, ` for

most (or at least many) choices of i, j, k and `, but the correlations depend on N
instead.
More precisely, we will have that for given (i, j)

E
(
XN (i, j)XN (k, `)

)
∼ CN ≥ 0

for (k, `) ∈ BN with |BN | ∼ N or even |BN | ∼ N2, and, as a rule, CN → 0.
However, in Theorem 7.13 we will encounter an example for which CN does not
decay.
The main example we discuss comes from statistical physics, more precisely from the
Curie-Weiss model.

Definition 7.1. Curie-Weiss random variables ξ1, . . . , ξM take values in {−1, 1}M
with probability

PMβ (ξ1 = x1, . . . , ξM = xM ) = Z−1e
β

2M (
∑M

i=1
xi)2

(42)

where Z = Zβ,M is a normalization constant (to make PMβ a probability measure)
and β ≥ 0 is a parameter which is interpreted in physics as ‘inverse temperature’,
β = 1

T .

If β = 0 (T = ∞) the random variables ξi are independent while for β > 0
there is a positive correlation between the ξi, so the ξi tend to have the same value
+1 or −1. This tendency is growing as β → ∞. The Curie-Weiss model is used
in physics as an easy model to describe magnetism. The ξi represent small magnets
(‘spins’) which can be directed upwards (‘ξi = 1’) or downwards (‘ξi = −1’). At
low temperature (high β) such systems tend to be aligned, i. e. a majority of the spins
have the same direction (either upwards or downwards). For high temperature they
behave almost like independent spins. These different types of behavior are described
in the following theorem.

Theorem 7.2. Suppose ξ1, . . . , ξM are PMβ -distributed Curie-Weiss random vari-
ables. Then the mean 1

M

∑M
i=1 ξi converges in distribution, namely

1
M

M∑
i=1

ξi
D=⇒

{
δ0 if β ≤ 1
1
2(δ−m(β) + δm(β)) if β > 1 .

(43)

where m = m(β) is the (unique) strictly positive solution of

tanh(βm) = m (44)
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Above we used D=⇒ to indicate convergence in distribution: Random variables ζi
converge in distribution to a measure µ if the distributions of ζi converge weakly to
µ. Also, δx denotes the Dirac measure (see (2)).
For a proof of the above theorem see e. g. [13] or [28].
Theorem 7.2 makes the intuition from physics precise: The ξi satisfy a law of large
numbers, like independent random variables do, if β ≤ 1, in the sense that the dis-
tribution of mM = 1

M

∑M
i=1 ξi converges weakly to zero, while mM , the ‘mean

magnetization’, equals ±m(β) 6= 0 in the limit, with probability 1
2 each, for β > 1.

In physics jargon, there is a phase transition for the Curie-Weiss model at β = 1, the
‘critical inverse temperature’.
We now discuss two matrix ensembles connected with Curie-Weiss random variables.
The first one, which we call the diagonal Curie-Weiss ensemble, was introduced in
[19]. It has independent ‘diagonals’ and the matrix entries within the same diagonal
are Curie-Weiss distributed. Thus, it is closely related to the diagonal filling as defined
in (36).

Definition 7.3. Let the random variables ξ1, ξ2, . . . , ξN be PNβ -distributed Curie-
Weiss random variables and take N independent copies of the ξi, which we call
ξ1

1, ξ2
1, . . . , ξN

1, ξ1
2, ξ2

2, . . . , ξN
2 , . . . , ξ1

N , ξ2
N , . . . , ξN

N .
Then we call the random matrix

XN (i, i+ `) := ξi
` for ` = 0, . . . , N − 1 and i = 1, . . . , N − ` (45)

XN (i, j) := XN (j, i) for i > j (46)

the diagonal Curie-Weiss ensemble (with diagonal distribution PNβ ).

For the diagonal Curie-Weiss ensemble Friesen and Löwe [19] prove the following
result.

Theorem 7.4. Suppose XN is a diagonal Curie-Weiss ensemble with diagonal dis-
tribution PNβ .

Then the empirical eigenvalue distribution measure σN of 1√
N
XN converges weakly

almost surely to a measure σβ . σβ is the semicircle law σ if and only if β ≤ 1.

Remarks 7.5. 1. The theorem shows that there is a phase transition for the eigen-
value distribution of the diagonal Curie-Weiss ensemble at β = 1.

2. The proof in [19] uses the moment method. It allows the authors to give an
expression for the moments of σβ in terms of m(β) (see (43)).

For large β the empirical eigenvalue distribution measure of the diagonal Curie-Weiss
ensemble approaches the eigenvalue distribution measure of random Toeplitz matri-
ces we discussed in Theorem 6.2 (see Bryc, Dembo and Jiang [9]).
The second Curie-Weiss-type matrix ensemble, which we call the ‘full Curie-Weiss
ensemble’, is defined as follows.
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Definition 7.6. Take N2 Curie-Weiss random variables X̃N (i, j) with distribution
PN2

β and set

XN (i, j) =
{
X̃N (i, j) for i ≤ j
X̃N (j, i) otherwise .

(47)

We call the random matrix XN defined above the full Curie-Weiss ensemble.

To our knowledge this ensemble was first considered in [25], where the following
result was proved.

Theorem 7.7. Let XN be the full Curie-Weiss matrix ensemble with inverse tem-
perature β ≤ 1. Then the empirical eigenvalue distribution measure σN of 1√

N
XN

converges weakly in probability to the semicircle distribution σ.

The proof is based on the moment method we discussed in section 3. In [25] the
authors prove this result just using assumptions on correlations of theXN (i, j) which
are in particular satisfied by the full Curie-Weiss model if β ≤ 1. Here, we only
discuss this special case and refer to [25] for the more general case.
The main difficulty in this proof is the fact that for the Curie-Weiss ensemble it is not
true that

EN
2

β

(
XN (i1, i2) ·XN (i2, i3) · . . . ·XN (ik, i1)

)
(48)

is zero if an edge {i, j} occurs only once in (48) (cf. (21) for the independent case).
In other words, we need an appropriate substitute for Lemma 3.10.
So, we need a way to handle expectations as in (48) when there are edges (=index
pairs, see Definition 3.6) which occur only once. Let us call such index pairs ‘single
edges’.
Correlation estimates as we need them can be obtained from a special way of writing
expectations EMβ with respect to the measure PMβ .

Definition 7.8. For t ∈ [−1, 1] we denote by P (1)
t the probability measure on {−1, 1}

given by

P
(1)
t (1) = 1

2(1 + t) and P
(1)
t (−1) = 1

2(1− t) .

P
(M)
t denotes the M -fold product of P (1)

t on {−1, 1}M . If M is clear from the
context we write Pt instead of P (M)

t .

By Et resp. E(M)
t we denote the corresponding expectation.

Proposition 7.9. For any function φ on {−1, 1}M we have

EMβ
(
φ(X1, . . . , XM )

)
=
∫ 1

−1
Et
(
φ(X1, . . . , XM )

)e−M 1
2Fβ(t)

1− t2 dt (49)

where Fβ(t) = 1
β (1

2 ln 1+t
1−t)

2 + ln(1− t2).
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This proposition can be proved using the so called Hubbard-Stratonovich transforma-
tion. For a proof see [25] or [28]. The way to write expectations with respect to PMβ as
a combination of independent measure is typical for exchangeable random variables
and is known as de Finetti representation [16]. We will discuss this issue in detail in
Section 8 and in particular in [29, 31].
The advantage of the representation (49) comes from the observation that under the
probability measure Pt the random variables X1, . . . , XM are independent and the
fact that the integral is in a form which is immediately accessible to the Laplace
method for the asymptotic evaluation of integrals.
The Laplace method and Proposition 7.9 yield the required correlation estimates.

Proposition 7.10. Suppose X1, . . . , XM are PMβ -distributed Curie-Weiss random
variables.

If ` is even, then as M →∞

1. if β < 1

E(M)
β (X1 ·X2 · . . . ·X`) ≈ (l − 1)!!

( β

1− β

) `
2 1
M

`
2

2. if β = 1 there is a constant c` such that

E(M)
β (X1 ·X2 · . . . ·X`) ≈ c`

1
M

`
4

3. if β > 1
E(M)
β (X1 ·X2 · . . . ·X`) ≈ m(β)`

where t = m(β), as in (44), is the strictly positive solution of tanh βt = t.

If ` is odd then E(M)
β (X1 ·X2 · . . . ·X`) = 0 for all β.

We remind the reader that for an odd number k we set k!! = k · (k − 2) · . . . · 3 · 1.
For proof of Proposition 7.10 see again [25] or [28].
From Proposition 7.10 we get immediately the following Corollary, which substitutes
Lemma 3.10.

Corollary 7.11. Let XN be the full Curie-Weiss matrix ensemble with inverse tem-
perature β and let the graph corresponding to the sequence i1, i2, . . . , ik contain `
single edges.

1. If β < 1 then∣∣∣E(XN (i1, i2) ·XN (i2, i3) · . . . ·XN (ik, i1)
) ∣∣∣ ≤ C N−` . (50)



7 CURIE-WEISS ENSEMBLES 24

2. If β = 1 then∣∣∣E(XN (i1, i2) ·XN (i2, i3) · . . . ·XN (ik, i1)
) ∣∣∣ ≤ C N−`/2 . (51)

In the next step we have to prove a quantitative version of Proposition 3.11.

Proposition 7.12. If |{i1, . . . , ik}| ≥ 1 + k/2 + s for some s > 0, then there are at
least 2s+ 2 single edges in {i1, i2}, {i2, i3}, . . . , {ik, i1}.

Proof: The proof is a refinement of the proof of Proposition 3.11.
Suppose G is a multigraph with r vertices and k edges. Then, as we saw already,
k ≥ r − 1, if G is connected. So, there are at most k − r + 1 edges left for ‘double’
connections. This means that there are at least ` = r − 1− (k − r + 1) single edges
and

` = r − 1− (k − r + 1) = 2r − k − 2
≥ (k + 2 + 2s)− k − 2
= 2s (52)

by assumption on r. So, by the above simple argument we are off the assertion by
two only.
Now, we take into account that the sequence (i1, . . . , ik, i1) defines a closed path
through the graph. Since |{i1, . . . , ik}| > 1 + k/2 there is at least one single edge. If
we remove one of the single edges from the graph, this new graph G′ is still connected.
G′ has r vertices and k − 1 edges.
We redo the above argument with the graph G′ and get for the minimal number `′ of
single edges in G′ equation (52) with k replaced by k − 1 and thus obtain

`′ = r − 1− (k − 1− r + 1) = 2r − k − 1
≥ k + 2 + 2s− k − 1
= 2s+ 1 (53)

Since we have removed a single edge from G, the graph G has at least 2s + 2 single
edges.
Corollary 7.11 and Proposition 7.12 together allow us to do the moment argument as
in Section 2.2.
We turn to the case β > 1 for the full Curie-Weiss model. Part 3 of Proposition 7.10
shows that there are strong correlations in this case, so one is tempted to believe that
there is no semicircle law for β > 1.
In fact, it is easy to see that for β > 1 the expectations of 1

N1+k tr(XN
2k) cannot
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converge for k ≥ 2 as N →∞. For example, for k = 2 we have

E
( 1
N3 tr

(
XN

4))
= 1

N3

∑
i1,i2,i3,i4
all different

E
(
XN (i1, i2)XN (i2, i3)XN (i3, i4)XN (i4, i1)

)
+O(1)

≈ N(N − 1)(N − 2)(N − 3)
N3 m(β)4 → ∞ (54)

so the moment method will not work here.
A closer analysis of the problem shows that the divergence of the moments of traces is
due to a single eigenvalue of 1√

N
XN which goes to infinity. All the other eigenvalues

behave ‘nicely’. Informally speaking, for β > 1 the matrices XN fluctuate around
the matrices ±m(β) EN (see (8)) with probability 1/2 each. As we saw in Section 2
these matrices have rank one. So, one may hope that they do not change the empirical
eigenvalue distribution measure in the limit.
Analyzing the fluctuations around ±m(β) EN one can apply the moment method to
XN ∓ m(β) EN . The variance of the matrix entries is v(β) = 1 − m(β)2, so this
has a chance to converge to the semicircle distribution, but scaled due to the variance
v(β) < 1. In fact we have:

Theorem 7.13. Let XN be the full Curie-Weiss matrix ensemble with arbitrary in-
verse temperature β ≥ 0. Then the empirical eigenvalue distribution measure σN of

1√
N
XN converges weakly in probability to the rescaled semicircle distribution σv(β),

given by:

σv(β)(x) =
{

1
2πv(β)

√
4v(β)− x2 , for |x| ≤ 2

√
v(β)

0 , otherwise.
(55)

Here, v(β) = 1 −m(β)2 with m(β) = 0 for β ≤ 1 and m = m(β) is the unique
positive solution of tanh(βm) = m for β > 1 (cf. (44)).

A detailed proof will be contained in [29].
Already in (54) we saw that the norm of 1√

N
XN does not converge for the full Curie-

Weiss ensemble if β > 1. This is made precise in the following theorem.

Theorem 7.14. Suppose XN is a full Curie-Weiss ensemble.

1. If β < 1 then

‖ 1√
N
XN‖ → 2 as N →∞

P-almost surely.
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2. If β = 1 then

‖ 1
Nγ

XN‖ → 0 as N →∞

for every γ > 1/2 P-almost surely.

3. If β > 1 then

‖ 1
N
XN‖ → m(β) as N →∞

P-almost surely.

Theorem 7.14.3 was proved in [25], 1 and 2 can be found in [30].

8. Ensembles with Exchangeable Entries

The results presented in the previous section for Curie-Weiss ensembles with sub-
critical temperatures (β > 1) suggest that models with correlations that do not decay
sufficiently fast asN tends to infinity (e.g. in the sense of Corollary 7.11) may display
a wealth of spectral phenomena depending on the specific features of the model. This
is largely uncharted territory. One step into this world is to consider matrix ensembles
with entries chosen from a sequence of exchangeable random variables.
A sequence (ξi)i∈N of real valued random variables with underlying probability space
(Ω,F ,P) is called exchangeable, if for all integers N ∈ N, all permutations π on
{1, . . . , N}, and F ∈ B(RN ) it is true that

P
(
(ξ1, . . . , ξN ) ∈ F

)
= P

(
(ξπ(1), . . . , ξπ(N)) ∈ F

)
.

Generalizing a result of de Finetti [16, 17] for random variables that only take on
two values, Hewitt and Savage [24, Theorem 7.4] showed in a very general setting
that such probability measures P may be represented as averages of i.i.d. sequences
with respect to some probability measure µ. In our context we impose the additional
condition that all moments of the random variables ξi exist (cf. Definition 2.3). This
leads us to the following general definition of ensembles of real symmetric matrices
with exchangeable entries.

Definition 8.1. Let µ denote a probability measure on some measurable space (T, T )
and let Λ : T →M(0)

1 (R) be a measurable map that assigns every element τ of T to
a Borel probability measure Λτ on R for which all moments exist (we callM(0)

1 (R)
the set of all such probability measures on R). Define

Pµ,Λ :=
∫
T
Pτdµ(τ) , with Pτ :=

∞⊗
i=1

Λτ , (56)

as the µ-average of i.i.d. sequences of real random variables with distributions Λτ .
The corresponding matrix ensemble with exchangeable entries consists of matrices
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XN with entries XN (i, j), 1 ≤ i ≤ j ≤ N , given by the first N(N + 1)/2 members
of the sequence (ξi)i of exchangeable random variables that is distributed accord-
ing to Pµ,Λ of (56). The remaining entries XN (i, j), 1 ≤ j < i ≤ N are then
fixed by symmetry XN (i, j) = XN (j, i). Observe that due to the exchangeability
of (ξi)i it is of no relevance in which order the upper triangular part of XN is filled
by ξ1, . . . , ξN(N+1)/2. Moreover, one could have chosen any N(N + 1)/2 distinct
members of (ξi)i to fill the entries of XN without changing the ensemble.

It is instructive to consider the special case of ensembles that allow only for matrix
entries XN (i, j) ∈ {1,−1}. We refer to it as the spin case. Observe that the prob-
ability measures with support contained in {1,−1} are all represented by the family
Λτ = 1

2 [(1 + τ)δ1 + (1− τ)δ−1], τ ∈ T := [−1, 1]. Hence all ensembles of the
spin case are given by (56) with the just mentioned choices for T and Λτ . They are
parameterized by the probability measures µ on [−1, 1]. Recall that Λτ already ap-
peared in Definition 7.8 as the building block P (1)

t for Curie-Weiss ensembles. What
is different from Section 7 is that there the averaging measure µ depends on the matrix
size N and is of a special form.
Let us return to the general ensembles with exchangeable entries of Definition 8.1.
The key for analyzing both the empirical eigenvalue distribution measure and the
operator norm is that for every τ ∈ T the measure Pτ generates i.i.d. entries for XN .
For the latter ensembles Pτ the following observations that can already be found
in [20] are useful: Subtracting the mean of the entries yields a Wigner ensemble
(multiplied by the standard deviation of Λτ ) for which Theorem 3.3 is applicable.
Considering first the empirical eigenvalue distribution measure we note that the mean
is some multiple of the matrix EN defined in (8). Since EN has rank 1 the subtraction
of the mean will not have an influence on the limiting spectral measure. As Pµ,Λ is the
µ-average over all measures Pτ it is plausible that the limit of the empirical eigenvalue
distribution measures is an average of scaled semicircles w.r.t. the measure µ, where
the scaling factors are given by the standard deviaton of Λτ . Accordingly, we define

σµ :=
∫
T
σv(τ) dµ(τ) , (57)

where v(τ) denotes the variance of Λτ and σv is the semicircle distribution with
support [−2

√
v, 2
√
v] (cf. Definition (55)). We prove in [31]

Theorem 8.2. Denote by Pµ,Λ, σµ the measures introduced in Definition 8.1 and in
(57). Then the empirical eigenvalue distribution measures σN of XN/

√
N converge

weakly in expectation to σµ w.r.t. to the measure Pµ,Λ.

Moreover, it is shown in [31] that σµ is a semi-circle if and only if the function
τ 7→ v(τ) is constant µ-almost surely.
For the operator norm the situation is quite different. Since ‖EN‖ = N the operator
norm of XN w.r.t. the measure Pτ it is determined to leading order by the mean of
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XN , if the mean does not vanish. Therefore the operator norm scales with N , except
for the special case that the matrix entries are Pµ,Λ-almost surely centered. We prove
in addition in [30, 31] that the N -scaling of the norm is due to a single outlier of
the spectrum by showing that the second largest eigenvalue (in modulus) possesses a√
N -scaling that is consistent with the law for the limiting spectral measure.

In [30, 31] we also generalize the just mentioned results to band matrices. Here an
additional difficulty arises, because the mean ofXN is no longer a multiple of EN and
will have large rank. Nevertheless it is shown that all results obtained for full matrices
can be saved, except for the result on the second largest eigenvalue (in modulus).
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