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Abstract

We study ensembles of random symmetric matrices whose entries ex-
hibit certain correlations. Examples are distributions of Curie-Weiss-type.
We provide a criterion on the correlations ensuring the validity of Wigner’s
semicircle law for the eigenvalue distribution measure. In case of Curie-
Weiss distributions this criterion applies above the critical temperature (i. e.
β < 1). We also investigate the largest eigenvalue of certain ensembles of
Curie-Weiss type and find a transition in its behavior at the critical tempera-
ture.

1 Introduction
In this article we consider random matrices XN of the form

XN =


XN (1, 1) XN (1, 2) . . . XN (1, N)
XN (2, 1) XN (2, 2) . . . XN (2, N)

...
...

...
XN (N, 1) XN (N, 2) . . . XN (N,N)

 (1)

The entries XN (i, j) are real valued random variables varying with N .
We will always assume that the matrix XN is symmetric, such that
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XN (i, j) = XN (j, i) for all i, j. Furthermore we suppose that all moments
of the XN (i, j) exist and that E(XN (i, j)) = 0 and E(XN (i, j)2) = 1.

It is convenient to work with the normalized version AN of XN , namely
with

AN =
1√
N
XN (2)

As AN is symmetric it has exactly N real eigenvalues (counting multi-
plicity). We denote them by

λ1 ≤ λ2 ≤ . . . ≤ λN

and define the (empirical) eigenvalue distribution measure by

σN =
1

N

N∑
j=1

δλj

and its expected value σN , the density of states measure by

σN = E

 1

N

N∑
j=1

δλj

 .

If the random variables XN (i, j) are independent and identically dis-
tributed (i.i.d.) (except for the symmetry condition XN (i, j) = XN (j, i))
then it is well known that the measures σN and σN converge weakly to the
semicircle distribution σsc (almost surely in the case of σN ). The semicircle
distribution is concentrated on the interval [−2, 2] and has a density given by
σsc(x) = 1

2π

√
4− x2 for x ∈ [−2, 2]. This important result is due to Eugen

Wigner [23] and was proved by Arnold [3] in greater generality, see also for
example [17], [18] or [2].

Recently, there was a number of papers considering random matrices
with some kind of dependence structure among their entries, see for exam-
ple [7], [13], [12] and [20]. In particular the papers [6], [10] and [11] con-
sider symmetric random matrices whose entries XN (i, j) and XN (k, `) are
independent if they belong to different diagonals, i.e. if |i− j| 6= |k − `|,
but may be dependent within the diagonals. It was in particular the work
[11] which motivated the current paper. Among other models Friesen and
Löwe [11] consider matrices with independent diagonals and (independent
copies of) Curie-Weiss distributed random variables on the diagonals. (For
a definition of the Curie-Weiss model see below).

The main example for the results in our paper is a symmetric random
matrix whose entries XN (i, j) are Curie-Weiss distributed for all i, j (with
i ≤ j). The models considered in this paper also include the Curie-Weiss
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model on diagonals investigated by Friesen and Löwe. For the reader’s con-
venience we define our Curie-Weiss ensemble here, but we’ll work with
abstract assumptions in the following two chapters.

In statistical physics the Curie-Weiss model serves as the easiest non-
trivial model of magnetism. There are M sites with random variables Xi

attached to the sites i taking values +1 (”spin up”) or −1 (”spin down”).
Each spin Xi interacts with all the other spins prefering to be aligned with
the average spin 1

M

∑
j 6=iXj . More precisely:

Definition 1 Random variables {Xj}j=1,...,M with values in {−1,+1} are
distributed according to a Curie-Weiss law Pβ,M with parameters β ≥ 0
(called the inverse temperature) and M ∈ N (called the number of spins) if

Pβ,M (X1 = ξ1, X2 = ξ2, . . . , XM = ξM ) = Z−1
β,M

1

2M
e
β

2M
(
∑
ξj)

2
(3)

where ξi ∈ {−1,+1} and Zβ,M is a normalization constant.

For β < 1 Curie-Weiss distributed random variables are only weakly
correlated, while for β > 1 they are strongly correlated. This is expressed
for example by the fact that a law of large numbers holds for β < 1, but
is wrong for β > 1. This sudden change of behavior is called a ”phase
transition” in physics. In theoretical physics jargon the quantity T = 1

β is
called the temperature and T = 1 is called the critical temperature. More
information about the Curie-Weiss model and its physical meaning can be
found in [22] and [8].

Our Curie-Weiss matrix model, which we dub the full Curie-Weiss en-
semble, is defined through M = N2 random variables {YN (i, j)}1≤i,j≤N
which are Pβ,M -distributed. To form a symmetric matrix we set XN (i, j) =
YN (i, j) for i ≤ j and XN (i, j) = YN (j, i) for i > j and define

AN =
1√
N
XN

By the diagonal Curie-Weiss ensemble we mean a symmetric random
matrix with the random variables on the kth diagonal {i, i+ k} being Pβ,N -
distributed (0 ≤ k ≤ N − 1 and 1 ≤ i ≤ N − k) and with entries on
different diagonals being independent. This model was considered in [11].
For β < 1 we will prove the semicircle law for these two ensembles.

In the following section we formulate our general abstract assumptions
and state the first theorem of this paper which establishes the semicircle law
for our models. The proof follows in Section 3.

In Section 4 we discuss our main example, the full Curie-Weiss model,
in fact we will study various random matrix ensembles associated to Curie-
Weiss-like models. In this section we also discuss exchangeable random
variables and their connection with the Curie-Weiss model.
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In Section 5 we investigate the largest eigenvalue (and thus the matrix
norm) of Curie-Weiss-type matrix ensembles both below and above the crit-
ical value β = 1.

Acknowlegment It is a pleasure to thank Matthias Löwe, Münster, and
Wolfgang Spitzer, Hagen, for valuable discussion. Two of us (WK and SW)
would like to thank the Institute for Advanced Study in Princeton, USA,
where part of this work was done, for support and hospitality.

2 The semicircle law
Definition 2 Suppose {IN}N∈N is a sequence of finite index sets IN . A
family {XN (ρ)}ρ∈IN ,N of random variables indexed by N ∈ N and (for
givenN ) by the set IN is called an {IN}-scheme of random variables. If the
sequence {IN} is clear from the context we simply speak of a scheme.

To define an ensemble of symmetric random matrices we start with
a ‘quadratic’ scheme of random variables {YN (i, j)}(i,j)∈IN with IN =
{(i, j) | 1 ≤ i, j ≤ N} and define the matrix entriesXN (i, j) byXN (i, j) =
YN (i, j) for i ≤ j and XN (i, j) = YN (j, i) for i > j.

Remark 3 To define the symmetric matrix XN it would be enough to start
with a ‘triangular’ scheme of random variables, i.e. one with
IN = {(i, j) | 1 ≤ i ≤ j ≤ N}, thus with M = 1

2N(N + 1) random
variables instead of M = N2 variables. To reduce notational inconvenience
we decided to use the quadratic schemes. In a slight abuse of language we
will no longer distiguish in notation between the random variables YN (i, j)
and their symmetrized version XN (i, j). We will always assume that the
random matrices we are dealing with are symmetric.

In this paper we consider schemes {XN (i, j)}(i,j)∈IN of random vari-
ables withN = 1, 2, . . .and IN = {(i, j) | 1 ≤ i, j ≤ N} with the following
property:

Definition 4 A scheme {XN (i, j)}(i,j)∈IN is called approximately uncorre-
lated, if ∣∣∣∣∣∣E

∏̀
ν=1

XN (iν , jν)

m∏
ρ=1

XN (uρ, vρ)

∣∣∣∣∣∣ ≤
C`,m

N `/2
(4)

∣∣∣∣∣E
(∏̀
ν=1

XN (iν , jν)2

)
− 1

∣∣∣∣∣ → 0 (5)

for all sequences (i1, j1), (i2, j2), . . . , (i`, j`) which are pairwise disjoint
and disjoint to the sequence (u1, v1), . . . , (um, vm) withN -independent con-
stants C`,m.
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Note that for any approximately correlated scheme the mean asymptotically
vanishes, |E(XN ((i, j)))| ≤ C1,0N

−1/2 by (4), and the variance is asymp-
totically one, E(XN (i, j)2) → 1 by (5). Moreover, by (4) we also have
supN,i,j E

(
XN (i, j)2k

)
<∞ for all k.

The main examples we have in mind are schemes of Curie-Weiss- dis-
tributed random variables (full or diagonal) with inverse temperature β ≤ 1
(for details see Section 4).

Theorem 5 If {XN (i, j)}1≤i≤j≤N is an approximately uncorrelated scheme
of random variables then the eigenvalue distribution measures σN of the
corresponding symmetric matrices AN (as in (2)) converge weakly in prob-
ability to the semicircle law σsc , i.e. for all bounded continuous functions f
on R and all ε > 0 we have

P
(∣∣∣∣∫ f(x) dσN (x)−

∫
f(x) dσsc(x)

∣∣∣∣ > ε

)
→ 0 .

In particular, we prove the weak convergence of the density of states measure
σN to the semicircle law σsc . In Section 4 we discuss various examples of
approximately uncorrelated schemes.

3 Proof of the semicircle law
The proof is a refinement of the classical moment method (see for exam-
ple [2]). We will sketch the proof emphasizing only the new ingredients. As
in [2], Theorem 5 follows from the following two propositions.

To simplify notation we set A = AN thus dropping the subscript N
whenever there is no danger of confusion.

Proposition 6 For all k ∈ N:

1

N
E
(

trAk
)
→
{
Ck/2 for k even

0 for k odd
(6)

where Ck = 1
k+1

(
2k
k

)
denote the Catalan numbers.

The right hand side of (6) gives the moments of the semicircle distribution
σsc. In fact, this proposition implies the weak convergence of the density of
states measures σN to σsc.

Proposition 7 For all k ∈ N:

1

N2
E
[(

trAk
)2
]
→
{
C2
k/2 for k even
0 for k odd

. (7)
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Observe that Proposition 6 and Proposition 7 together imply that

E

[(
1

N
trAk

)2
]
− E

[(
1

N
trAk

)]2

→ 0 (8)

which allows us to conclude weak convergence in probability from weak
convergence in the average (see [2]).

For a proof of the above propositions, which can be found in the subse-
quent subsections, we write

1

N
trAk =

1

N1+k/2

N∑
i1,i2,...,ik=1

XN (i1, i2)XN (i2, i3) . . . XN (ik, i1)

=
1

N1+k/2

N∑
i1,i2,...,ik=1

XN (i) (9)

where we used the short hand notation

XN (i) = XN (i1, i2)XN (i2, i3) . . . XN (ik, i1) (10)

for i= (i1, i2, . . . , ik). The associated k + 1-tupel (i1, i2, . . . , ik, i1) con-
stitutes a Eulerian circuit through the graph Gi (undirected, not necessarily
simple) with vertex set Vi = {i1, i2, . . . , ik} and an edge between the ver-
tices v and w whenever {v, w} = {ij , ij+1} for some j = 1, . . . k with the
understanding that ik+1 = i1, a convention we keep for the rest of this pa-
per. More precisely, the number of edges ν(v, w) linking the vertex v and
the vertex w is given by

ν(v, w) = # {m | {v, w} = {im, im+1}} . (11)

Let us call edges e1 6= e2 parallel if they link the same vertices. An edge
which does not have a parallel edge is called simple. So, if e links v and w,
then e is a simple edge iff ν(v, w) = 1. The graph Gi may contain loops, i.e.
edges connecting a vertex v with itself. By a proper edge we mean an edge
which is not a loop. We set ρ(i) = # {i1, i2, . . . , ik} the cardinality of the
vertex set Vi, i.e., the number of (distinct) vertices the Eulerian circuit visits.
We also denote by σ(i) the number of simple edges in the Eulerian circuit
(i1, i2, . . . , ik, i1). With this notation we can write (9) as

1

N
trAk =

1

N1+k/2

k∑
r=1

∑
i: ρ(i)=r

XN (i)

=
1

N1+k/2

k∑
r=1

k∑
s=0

∑
ρ(i)=r
σ(i)=s

XN (i). (12)
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The sum extends over all Eulerian circuits with k edges and vertex set
Vi ⊂ {1, 2, . . . , N} . To simplify future references we set

Sr,s =
∑
ρ(i)=r
σ(i)=s

|E [XN (i)]| (13)

and

Sr =
∑
ρ(i)=r

|E [XN (i)]| (14)

Obviously ρ(i) and σ(i) are integers with 1 ≤ ρ(i) ≤ k and
0 ≤ σ(i) ≤ k. For ρ(i) = r < N there are

(
N
r

)
≤ N r choices for the vertex

set Vi. Moreover,
# {i | ρ(i) = r} ≤ ηkN r (15)

where ηk is the number of equivalence classes of Eulerian circuits of length k.
We call two Eulerian circuits (i1, i2, . . . , ik, i1) and (j1, j2, . . . , jk, j1) with
corresponding vertex sets Vi and Vj equivalent if there is a bijection ϕ :
Vi → Vj such that ϕ(im) = jm for all m.

3.1 Proof of Proposition 6
We investigate the expectation value of the sum (12).

Lemma 8 For all k ∈ N there is some Dk <∞ such that for all N :

Sr,s =
∑
ρ(i)=r
σ(i)=s

|E [XN (i)]| ≤ DkN
r−s/2 . (16)

Proof. The assertion follows using (4) from the estimate |E [XN (i)]| ≤
D̃kN

−s/2 together with (15).
Evidently, in case r − s/2 < 1 + k/2 the term 1

Nk/2+1 Sr,s vanishes in
the limit. This is in particular the case if r < k/2 + 1. If r > k/2 + 1 we
use the following proposition which is one of the key ideas of our proof:

Proposition 9 Let G = (V,E) denote a Eulerian graph with r = #V and
k = #E, and let t be a positive integer such that r > k

2 + t then G has at
least 2t+ 1 simple proper edges.

We note the following Corollary to Proposition 9.
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Corollary 10 For each k-tuple i we have

ρ(i)− σ(i)/2 ≤ k/2 + 1 .

Moreover ρ(i)− σ(i)/2 = k/2 + 1 iff ρ(i) = k/2 + 1 and σ(i) = 0.

Proof (Corollary 10). Set r = ρ(i) and s = σ(i).
If r ≤ k/2 + 1 the assertion is evident.
If r > k/2 + 1 there is some t ∈ N such that

k

2
+ t < r ≤ k

2
+ t+ 1 .

Proposition 9 hence implies

r − s

2
≤ r − t− 1

2
≤ k

2
+

1

2
<
k

2
+ 1 .

Postponing the proof of Proposition 9, we continue to prove Proposi-
tion 6.

From Lemma 8 and Corollary 10 we learn that

1

Nk/2+1
Sr,s → 0 (17)

unless both r = k/2 + 1 and s = 0.
Thus it remains to compute the number of k-tuples i,with ρ(i) = 1+k/2

such that the corresponding graph is a ‘doubled’ planar tree. There are C k
2

different rooted planar trees with k
2 (simple) edges, where C` = 1

`+1

(
2`
`

)
are

the Catalan numbers (see e.g. [19], Exercise 6.19 e, p. 219-220). Each index
iν is chosen from the set {1, . . . , N}. As we have 1 + k/2 different indices
there are N !

(N−1−k/2)! such choices. From this one sees that

lim
N→∞

1

N
E
(

trAk
)

= lim
N→∞

k∑
r=1

1

N1+k/2

∑
ρ(i)=r

E (XN (i)) (18)

= lim
N→∞

1

N1+k/2

∑
ρ(i)=1+k/2,σ(i)=0

E (XN (i))

= lim
N→∞

1

N1+k/2

N !

(N − 1− k/2)!
C k

2
= C k

2
.

This ends the proof of Lemma 6 modulo the proof of the Proposition 9. For
future purpose, we note that the above proof also shows the slightly stronger
assertion.
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Corollary 11 For all k ∈ N:

lim
N→∞

1

N1+k/2

∑
i

|E [XN (i)]| =
{
Ck/2 for k even

0 for k odd
(19)

where the above sum (in (19)) extends over all Eulerian circuits of length k.

For a proof we note that the leading contribution in the sum (18) is non-
negative. The subleading terms were already shown to vanish.

Proof (Proposition 9). If the graph G = (V,E) contains loops, we delete
all loops and call the new graph (V, Ẽ). This graph is still Eulerian and
satisfies #V > #Ẽ/2 + t. Thus without loss of generality we may assume
that (V,E) contains no loops.

We proceed by induction on the number of edges with multiplicity greater
than one. If there is no such edge, then the number of simple edges is k.
Since G is Eulerian we have k ≥ r and r > k

2 + t implies k > 2t and thus
the assertion.

Hence, assume there exists an edge of multiplicity m ≥ 2. If the graph
that arises from the deletion of 2 copies of this edge is still connected, then
the resulting graph is Eulerian and denoting its number of edges by k′ we
have

r >
k

2
+ t ≥ k′

2
+ t+ 1

Thus, by inductive assumption, we find at least 2t + 3 edges without
parallels in the reduced graph and hence at least 2t+ 2 in G.

We are left with the case that the removal of the edges disconnects the
graph into two Eulerian graphs G1 = (V1, E1) and G2 = (V2, E2). We use
the abbreviations ri := #Vi and ki := #Ei. Then:

r = r1 + r2 >
k

2
+ t =

k1 + 1

2
+
k2 + 1

2
+ t

Hence we can partition t into integers t1, t2 such that

r1 >
k1

2
+ t1 and r2 >

k2

2
+ t2

If, say t1 ≤ 0, then t2 ≥ t and the inductive assumption yields at least
2t+ 1 simple edges in G2 and hence in G.

Otherwise we find at least 2ti+1 simple edges in each of the Gi and thus
in total 2t+ 2 > 2t+ 1 such edges in G.
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3.2 Proof of Proposition 7
We write the expectation value

1

N2
E
[(

trAk
)2
]

=
1

N2+k

∑
i,j

E
[
XN (i)XN (j)

]
(20)

where the sum extends over all pairs of Eulerian circuits (i1, . . . , ik, i1) and
(j1, . . . , jk, j1) of length k with vertex sets Vi and Vj in {1, . . . , N}. We
distinguish two cases.

In case Vi ∩ Vj 6= ∅ the union of the corresponding Eulerian graphs
Gi ∪ Gj is connected and each vertex has even degree. Therefore this union
is itself a Eulerian graph with 2k edges. The corresponding contribution to
the sum (20) is then estimated by extending the summation to all Eulerian
circuits ` of length 2k:

1

N2+k

∑
i,j

Vi∩Vj 6=∅

∣∣E [XN (i)XN (j)
]∣∣ ≤ 1

N2+k

∑
`=(`1,...,`2k)

|E [XN (`)]| ≤ C̃k
N

.

(21)
The last estimate is due to Corollary 11.

In case Vi ∩ Vj = ∅ we use the following analogue of Lemma 8.

Lemma 12 For all k ∈ N there is some Dk <∞ such that for all N :∑
Vi∩Vj=∅

ρ(i)=r1, ρ(j)=r2
σ(i)=s1, σ(j)=s2

∣∣E [XN (i)XN (j)
]∣∣ ≤ DkN

r1+r2−s1/2−s2/2 , (22)

where the sum extends over non-intersecting pairs of Eulerian circuits of
length k.

The proof mirrors that of Lemma 8.
From Lemma 8 we know that r1 − s1/2 ≤ k/2 + 1 and likewise r2 −

s2/2 ≤ k/2 + 1. So the unique possibility that

r1 + r2 −
s1 + s2

2
≥ k + 2

giving rise to a non-vanishing term in the limit, is that r1 = r2 = k/2 +
1 and s1 = s2 = 0. Similarly as in the proof of Lemma 6 we con-
clude that in this case i and j constitute disjoint ’doubled’ planar trees and
E
[
XN (i)XN (j)

]
→ 1 by assumption (5). The proof of Lemma 7 is con-

cluded using the same arguments relating the number of planar trees to the
Catalan numbers.
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4 The Curie-Weiss model and its relatives
In this section we discuss the Curie-Weiss model and related ensembles in
the framework of general exchangeable sequences. Let us first recall:

Definition 13 A finite sequence X1, X2, . . . , XM of random variables is
called exchangeable if for any permutation π ∈ SM the joint distributions
of X1, X2, . . . , XM and of Xπ(1), Xπ(2), . . . , Xπ(M) agree. An infinite se-
quence {Xi}i∈I is called exchangeable if any finite subsequence is.

It is a well known result by de Finetti ([9], for further developments see
e.g. [1]) that any exchangeable sequence of {−1, 1}-valued random vari-
ables is a mixture of independent random variables. To give this informal
description a precise meaning we define:

Definition 14 For t ∈ [−1, 1] we denote by Pt the probability measure
Pt = 1

2(1 + t) δ1 + 1
2(1 − t) δ−1 on {−1, 1}, i.e. Pt(1) = 1

2(1 + t) and
Pt(−1) = 1

2(1 − t). By PMt = P⊗Mt we mean the M -fold, by P∞t = P⊗N
t

the infinite product of this measure.

Remark 15 The measures Pt are parametrized in such a way thatEt(X) :=∫
x dPt = t. To simplify notation, we write PMt (x1, x2, . . . , xM ) instead of

PMt ({(x1, x2, . . . , xM )}).

We are now in a position to formulate de Finetti’s theorem:

Theorem 16 (de Finetti) If {Xi}i∈N is an exchangeable sequence of
{−1, 1}-valued random variables with distribution P (on {−1, 1}N) then
there exists a probability measure µ on [−1, 1], such that for any measurable
set S ⊂ {−1, 1}N:

P(S) =

∫
P∞t (S) dµ(t) .

For this result it is essential that the index set I = N is infinite. In fact,
the theorem does not hold for finite sequences in general (see e. g. [1]).

Definition 17 If µ is a probability measure on [−1, 1] then we call a mea-
sure

P(·) =

∫
PMt (·) dµ(t) (23)

on {−1, 1}M a measure of de Finetti type (with de Finetti measure µ). We
say that a finite sequence {X1, X2, . . . , XM} of random variables is of de
Finetti type if the joint distribution of the {Xi}Mi=1 is of de Finetti type.

The following observation allows us to compute correlations of de Finetti
type random variables:
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Proposition 18 If the sequence {X1, X2, . . . , XM} of random variables is
of de Finetti type with de Finetti measure µ then for distinct i1, . . . , iK

E(Xi1 Xi2 . . . XiK ) =

∫
tK dµ(t) .

Proof. By the definition of PMt we have EMt (Xi1 Xi2 . . . XiK ) = tK .

Corollary 19 Suppose PN (·) =
∫
PN

2

t (·) dµN (t) is a sequence of mea-
sures of de Finetti type and XN is a random matrix ensemble corresponding
to PN via Definition 2. If for all k ∈ N∫

tK dµN (t) ≤ CK
NK/2

(24)

for some constants CK , then XN satisfies the semicircle law.

Proof. We prove that {XN (i, j)} is approximately uncorrelated in the sense
of Definition 4. Since XN (i, j)2 = 1 property (5) is evident. Property (4)
follows from (24) and Proposition 18.

Curie-Weiss distributed random variables turn out to be examples of
de Finetti sequences. This fact is contained in a somewhat hidden way in
physics textbooks (see for example [22, section 4-5]).

Theorem 20 Curie-Weiss (Pβ,M -) distributed random variables
{X1, X2, . . . , XM} are of de Finetti type, more precisely

Pβ,M (X1 = x1, X2 = x2, . . . , XM = xM )

= Z−1

∫ +1

−1
PMt (x1, x2, . . . , xM )

e−MFβ(t) /2

1− t2
dt

where Fβ(t) = 1
β

(
1
2 ln 1+t

1−t

)2
+ ln

(
1− t2

)
and the normalization factor is

given by Z =
∫
e
−MFβ(t) /2

1−t2 dt.
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Proof. Using the observation e
z2

2 = (2π)−
1
2

∫ +∞
−∞ e−

s2

2
+sz ds (also known

as Hubbard-Stratonovich transformation) we obtain

Pβ,M (X1 = x1, X2 = x2, . . . , XM = xM )

= Z−1
β,M

1

2M
e
β

2M
(
∑
xj)

2

= (2π)−1/2 Z−1
β,M

1

2M

∫ +∞

−∞
e
− s

2

2
+s

√
β
M

∑
xj ds

setting y =

√
β

M
s we obtain:

= (2π)−1/2 Z−1
β,M

√
M

β

∫ +∞

−∞
e
−M

2β
y2

coshM y

(
1

2M coshM y

M∏
i=1

eyxi

)
dy

= (2π)−1/2 Z−1
β,M

√
M

β

∫ +∞

−∞
e
−M( y

2

2β
−ln cosh y)

M∏
i=1

(
eyxi

cosh y
P0(xi)

)
dy

a change t = tanh y of variables gives:

= (2π)−1/2 Z−1
β,M

√
M

β

∫ +1

−1
e−M Fβ(t) /2 Pt(x1, x2, . . . , xM )

1

1− t2
dt

= Z−1

∫ +1

−1
PMt (x1, x2, . . . , xM )

e−MFβ(t) /2

1− t2
dt .

Above we used that for | t | < 1 we have tanh−1(t) = 1
2 ln 1+t

1−t ,
dt
dy =

1
cosh2 y

= cosh2 y−sinh2 y
cosh2 y

= 1−tanh2 y, and ln cosh y = −1
2 ln(1−tanh2 y).

Remark 21 From the above proof an alternative representation of the Curie-
Weiss probability follows. Defining the measure Qy = 1

2 cosh y (eyδ1 +

e−yδ−1) and QMy its M -fold product we may write

Pβ,M (x1, x2, . . . , xM ) = Z̃−1

∫ +∞

−∞
e
−M( y

2

2β
+ln cosh y)

QMy (x1, x2, . . . , xM ) dy .

This formula occurs in the physics literature (at least in disguise).

Definition 22 Let F : (−1, 1) → R be a measurable function such that
Z =

∫ 1
−1

e−N F (t) /2

1−t2 dt is finite for all N ∈ N, then the probability measure

PN F
M on {−1, 1}M is defined by

PN F
M (x1, x2, . . . , xM ) = Z−1

∫ +1

−1
PMt (x1, x2, . . . , xM )

e−N F (t) /2

1− t2
dt .

(25)
We call a measure of the form PN F

M a generalized Curie-Weiss measure.
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Remark 23 Obviously, PN F
M is a measure of de Finetti type and we have

Pβ,M = PM ·FβM . Note that N and M may be different in general.

The advantage of the form (25) is that for many cases we can compute
the asymptotics of the correlation functions as N → ∞ using the Laplace
method:

Proposition 24 (Laplace method [16]) Suppose F : (−1, 1)→ R is differ-
entiable and φ : (−1, 1) → R is measurable and for some a ∈ (−1, 1) we
have

1. infx∈[a,1] F (x) = F (a) and infx∈[b,1] F (x) > F (a) for all b ∈ (a, 1).

2. F ′ and φ are continuous in a neighborhood of a.

3. As x↘ a we have

F (x) = F (a) + P (x− a)ν + O( (x− a)ν+1) (26)

φ(x) = Q (x− a)λ−1 + O( (x− a)λ) (27)

where ν, λ and P are positive constants and Q is a real constant and
(26) is differentiable.

4. The integral I(N) =
∫ 1
a e
−N F (x) /2 φ (x) dx is finite for all suffi-

ciently large N.

Then as N →∞

I (N) ≈ Q

ν
Γ

(
λ

ν

)
P−

λ
ν

(
N

2

)−λ
ν

e−N F (a)/2

whereA(N) ≈ B(N) means limN→∞
A(N)
B(N) = 1 and Γ denotes the Gamma

function.

Remark 25 This theorem and its proof can be found in [16, Ch. 3 §7].

We apply the Laplace method to a few interesting cases of PN F
M .

Theorem 26 Let F : (−1, 1)→ R be a smooth even function with F (t)→
∞ as t → ±1 such that

∫ 1
−1 e

−N F (t) /2 tp dt
1−t2 is finite for all p ≥ 0 and

all N big enough and suppose that F has a unique minimum in [0, 1) at
t = a. Then we have for distinct X1, X2, . . . , XK , K ≤ M as N → ∞
and uniformly in M :

1. If a = 0 and F ′′(0) > 0 (i. e. F has a quadratic minimum at 0), then

for K even:

EN F
M (X1X2 . . . XK) ≈ (k − 1)!!

1

(1
2F
′′(0))K/2

1

NK/2

and for K odd :

EN F
M (X1X2 . . . XK) = 0 .

14



2. If a = 0 and F ′′(0) = 0, F (4)(0) > 0 (i. e. F has a quartic minimum
at 0), then

for K even:

EN F
M (X1X2 . . . XK) ≈ CK

1

( 1
24F

(4)(0))K/4
1

NK/4

and for K odd:

EN F
M (X1X2 . . . XK) = 0

where CK =
Γ( k+1

4
)

Γ( 1
4

)
2K/4.

3. If a > 0 and F ′′(a) > 0 then

EN F
M (X1X2 . . . XK) ≈ 1

2

(
aK + a−K

)
.

Proof. The proof of Theorem 26 relies on the Laplace method (Proposi-
tion 24). We concentrate on the proof of case 1, the other cases are proved
by the same reasoning.

We set

ZK =

∫ +1

−1
e−N F (t) /2 tK

1− t2
dt .

Then by (25) and Proposition 18 we have EN F
M (X1X2 . . . XK) = ZK

Z0
.

For K odd we have ZK = 0 since φ(t) = tK is odd in this case. For even
K we have ZK = 2 Z̃K with Z̃K =

∫ +1
0 e−N F (t) /2 tK

1−t2 dt. Moreover,

F (t) = F (0) + t2

2 F
′′(0) +O(t3). Applying Proposition 24 both to Z̃K and

to Z̃0 we obtain:

Z̃K ≈ Γ

(
k + 1

2

) (
1

1
2F
′′(0)

)K+1
2 (

2

N

)K+1
2

e−N F (0)

Z̃0 ≈ Γ

(
1

2

) (
1

1
2F
′′(0)

) 1
2 ( 2

N

) 1
2

e−N F (0) .

Hence, we get

EN F
M (X1X2 . . . XK) =

Z̃K

Z̃0

≈
Γ
(
k+1

2

)
Γ
(

1
2

) 2K/2

(
1

1
2F
′′(0)

)K
2 ( 1

N

)K
2

.

The result (1) then follows from the observation that
Γ( k+1

2 )
Γ( 1

2)
2K/2 =

(K − 1)!! for even K. Case 2 can be handled in a similar way.
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For case 3 we note that −a is also a minimum of the function F since F
is even. We devide the integral

∫ 1
−1 into four parts, namely

∫ −a
−1 +

∫ 0
−a +

∫ a
0 +

∫ 1
a

and observe that each of these terms has the same asymptotics as N → ∞.

Remark 27 As a remark to the above proof we notice that under the as-
sumptions in case 1 we have(∫ +1

−1
e−

N F (t)
2

dt

1− t2

)−1 ∫ +1

−1
e−

N F (t)
2

|t|
1− t2

dt ≈
√

2√
π

1√
1
2F
′′(0)

1√
N

(28)
and in case 2 we obtain(∫ +1

−1
e−

N F (t)
2

dt

1− t2

)−1 ∫ +1

−1
e−

N F (t)
2

|t|
1− t2

dt ≈ Cβ
1

N1/4
.

Corollary 28 Let Fβ(t) = 1
β

(
1
2 ln 1+t

1−t

)2
+ln

(
1− t2

)
and letM(N) be a

function ofN andK ≤M(N) forN large enough and letX1, X2, . . . , XK

be a sequence of distinct random variables. As before we set

EN Fβ
M(N)(·) = Z−1

∫ +1

−1
E
M(N)
t (·) e

−N F (t)
2

1− t2
dt .

1. For β < 1 we have

for K even:

EN Fβ
M(N)(X1X2 . . . XK) ≈ (k − 1)!!

(
β

1− β

)K/2 1

NK/2

for K odd :

EN Fβ
M(N)(X1X2 . . . XK) = 0 .

2. For β = 1 we have for a constant cK > 0:

for K even: EN F1

M(N)(X1X2 . . . XK) ≈ cK
1

NK/4

for K odd: EN F1

M(N)(X1X2 . . . XK) = 0 .

3. For β > 1we have

EN Fβ
M(N)(X1X2 . . . XK) ≈ 1

2

(
m(β)K + (−m(β))K

)
(29)

where m(β) > 0 is the unique positive solution of tanh(βt) = t.
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Proof. Let us compute the minima of the function Fβ. We have:

F ′β(t) =
1

1− t2

(
1

β
ln

1 + t

1− t
− 2 t

)
hence the possible extrema m of Fβ satisfy:

1

2
ln

1 +m

1−m
= β m

or equivalently
tanhβm = m .

For β < 1 the only solution is m = 0 and this solution is a quadratic
minimum since F ′′β (0) = 2 1−β

β > 0 for β < 1.
For β = 1 the solution m = 0 is a quartic minimums as F ′′1 (0) = 0 and

F
(4)
1 (0) = 4.

For β > 1 the solutionm = 0 is a maximum of Fβ and there is a positive
solution m which is a minimum. The same is true for −m.

With this information we can apply Theorem 26.

Now, we discuss random matrix ensembles defined through generalized
Curie-Weiss models.

Definition 29 Suppose α > 0 and F : (−1, 1) → R is a smooth even
function with F (t)→∞ as t→ ±1 and such that

∫ 1
−1 e

−Nα F (t) /2 tp dt
1−t2

is finite for all p ≥ 0 and all N big enough. Let {YN (i, j)}1≤i,j≤N be a
quadratic scheme of PNα F

N2 -distributed random variables, and setXN (i, j) =
YN (i, j) for i ≤ j and XN (i, j) = YN (j, i) for i > j. Then we call the
random matrix ensemble XN (i, j) a generalized (PNα F

N2 )-Curie-Weiss en-
semble.

Remark 30 The full Curie-Weiss ensemble is a PN
2 Fβ

N2 -ensemble.

Theorem 31 Suppose the random matrix ensemble XN (i, j) is a general-
ized PNα F

N2 -Curie-Weiss ensemble.

1. If F has a unique quadratic minimum at a = 0 and α ≥ 1 then the
semicircle law holds for XN .

2. If F has a unique quartic minimum at a = 0 and α ≥ 2 then the
semicircle law holds for XN .

17



5 Largest eigenvalue
At a first glance one might expect that for matrix ensembles with general-
ized Curie-Weiss distribution the limit density of states measure µ should
depend on β, even for β ≤ 1. After all, the correlation structure of the en-
semble depends strongly on β: the behavior of the covariance is given by
Eβ,M (X1X2) ≈ β

1−β
1
M . However, the result that the limiting eigenvalue

distribution does not depend on β (as long as β ≤ 1) is connected with the
fact that

1

N
Eβ,N2

(
tr

(
XN

N1/2

)2
)

= 1

for Curie-Weiss ensembles independent of β ∈ R. In fact, whenever we
have E(XN (i, j) ) = 0 and E(XN (i, j)2 ) = 1 the symmetry of the matrix
implies

1

N
E

(
tr

(
XN

N1/2

)2
)

=
1

N2

∑
i,j

E(XN (i, j)XN (j, i)) = 1 .

Thus, whenever the limiting measure σ exists (and has enough finite
moments) it must have second moment

∫
t2dσ = 1.

In this section we investigate the matrix norm

‖AN‖ =

∥∥∥∥ XN

N1/2

∥∥∥∥ = max
1≤i≤N

|λi(AN )| = max
(
|λ1(AN )|, |λN (AN )|

)
for the Curie-Weiss and related ensembles. For the ‘classical’ Curie-Weiss
ensemble PN

2 Fβ
N2 we have:

Proposition 32 There is a constant C such that for all β < 1

lim sup
N→∞

EN
2 Fβ

N2 (‖AN‖) ≤ C

Proof. The expectation value of the matrix norm ‖AN‖ is given by

EN
2 Fβ

N2 (‖AN‖) = Z−1

∫ +1

−1
EN

2

t (‖AN‖)
e−N

2 Fβ(t) /2

1− t2
dt .

Using the N ×N -matrix

EN =


1 1 . . . 1
1 1 . . . 1
...

...
...

1 1 . . . 1


18



we estimate

EN
2

t (‖AN‖) ≤ EN
2

t (

∥∥∥∥AN − t√
N
EN
∥∥∥∥) +

|t|√
N
‖EN‖ .

The matrix DN = AN − t√
N
EN has random entries DN (i, j) which

are independent and have mean zero with respect to the probability measure
PN

2

t . Thus we may apply [15] (after splitting DN into a lower and uper
triangular part) and conclude that EN

2

t (‖DN‖) ≤ C for a constant C <∞.
The matrix GN = 1

N EN represents the orthogonal projection onto the
one dimensional subspace generated by the vector ηN = 1√

N
(1, 1, . . . , 1).

Thus ‖GN‖ = 1 and ‖EN‖ = N . From Remark 27 we learn that

Z−1

∫ +1

−1
|t| e

−N2 Fβ(t) /2

1− t2
dt ≈ C1

1

N
.

Thus

lim supN→∞ EN
2 Fβ

N2 (‖AN‖) ≤ lim sup
N→∞

(
C + C1

1√
N

)
= C .

The borderline case of generalized Curie-Weiss ensembles for Theo-
rem 5 is the measure EN Fβ

N2 . For this case the expected value of the matrix
norm does depend on β and goes to infinity as β < 1 tends to 1.

Proposition 33 For β < 1 we have for positive constants C1, C2(
β

1− β

) 1
2

C1 − C2 ≤ lim inf
N→∞

EN Fβ
N2 (‖AN‖)

≤ lim sup
N→∞

EN Fβ
N2 (‖AN‖) ≤

(
β

1− β

) 1
2

C1 + C2 .

Proof. The argument is close to the proof of the previous Proposition 32.
We prove the lower bound, the upper bound is similar.

With the notation of the previous proof we have

EN
2

t (‖AN‖) ≥ |t|√
N
‖EN‖ − EN

2

t (

∥∥∥∥AN − t√
N
EN
∥∥∥∥)

≥ |t|
√
N − C2

using again the result of [15] and ‖EN‖ = N .

Thus

EN Fβ
N2 (‖AN‖) ≥ Z−1

√
N

∫ +1

−1
|t| e

−N Fβ(t) /2

1− t2
dt − C2 .
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From Remark 27 we learn that

Z−1

∫ +1

−1
|t| e

−N Fβ(t) /2

1− t2
dt ≈ C1

(
β

1− β

)1/2 1√
N

hence

lim inf
N→∞

EN Fβ
N2 (‖AN‖) ≥

(
β

1− β

) 1
2

C1 − C2 . (30)

We turn to the case of strong correlations, in particular, we consider the
full Curie-Weiss ensemble with inverse temperature β > 1. It is easy to
see that for a full Curie–Weiss ensemble XN (i, j) with inverse temperature
β > 1 the ‘averaged traces’

1

N
EN

2 Fβ
N2

(
tr

(
XN

N1/2

)k)

cannot converge for k large enough, in fact we have:

Proposition 34 Consider the random matrix B(α) = XN
Nα , with XN sym-

metric and distributed according to the the full Curie-Weiss ensemble with
β > 1. Then for α < 1 and k large enough and even we have

1

N
EN

2 Fβ
N2

(
tr

(
XN

Nα

)k)
→∞ as N →∞

and for all k ≥ 1

1

N
EN

2 Fβ
N2

(
tr

(
XN

N

)k)
→ 0 as N →∞ .

Proof. We compute using (29)

1

N
EN

2 Fβ
N2

(
tr

(
XN

Nα

)k)
=

1

N1+kα

∑
i1,i2,...ik

EN
2 Fβ

N2 (XN (i1, i2)XN (i2, i3) . . . XN (ik, i1))

≥ 1

N1+kα

∑
ρ(i1,i2,...ik)=k

EN
2 Fβ

N2 (XN (i1, i2)XN (i2, i3) . . . XN (ik, i1))

≥ 1

N1+kα
C Nkm(β)k → ∞ for k large,
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where again m(β) denotes the unique positive solution of tanh(βt) = t.
We used above, that for all correlations

EN
2 Fβ

N2 (XN (i1, i2)XN (i2, i3) . . . XN (ik, i1)) ≥ 0 .

The second assertion of the Proposition follows from

1

N
EN

2 Fβ
N2

(
tr

(
XN

N

)k)
=

1

N1+k

∑
i1,i2,...ik

EN
2 Fβ

N2 (XN (i1, i2)XN (i2, i3) . . . XN (ik, i1))

≤ 1

N1+k
Nk → 0.

Above we used that there are at most Nk summand in the above sum.

From Proposition 34 we conclude that the eigenvalue distribution func-
tion of XN

N converges to the Dirac measure δ0, while for XN
Nα (α < 1) at

least the moments do not converge. For β > 1 the dependence (‘interac-
tion’) between the XN (i, j) is so strong that a macroscoping portion of the
random variables is aligned, i.e. either most of the XN (i, j) are equal to
+1 or most of theXN (i, j) are are equal to−1 and there are aboutm(β)N2

more aligned spins than others. Moreover, for large β, the matrix XN
N should

be close to the matrix
GN =

1

N
EN

or to −GN . This intuition is supported by the following observation.

Proposition 35 Let BN = XN
N with XN distributed according to PN

2 Fβ
N2 ,

then

1. For β < 1 we have ‖BN‖ → 0 in probability.

2. For β > 1 we have ‖BN‖ → m (β) in probability.

Proof. Part 1 follows from ‖BN‖ = 1√
N
‖AN‖ and from the estimate

supN EN
2 Fβ

N2 (‖AN‖) <∞ by Proposition 33.

To prove 2 we start with an estimate from below. We set ηN = 1√
N

(1, . . . , 1)
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and use the short hand notation E instead of EN
2 Fβ

N2 .

E(‖BN‖2) ≥ E( ‖BN ηN‖2)

=
1

N3

N∑
i=1

E

∣∣∣∣∣∣
N∑
j=1

XN (i, j)

∣∣∣∣∣∣
2

=
1

N2

N∑
j,k=1

E
(
XN (1, j)XN (1, k)

)
=

1

N2

(
1 +N(N − 1)E(XN (1, 1)XN (1, 2)

)
→ m(β)2

since E
(
XN (1, 1)XN (1, 2)

)
→ m(β)2 for β > 1 by Proposition 28. It

follows that

lim inf
N→∞

E(‖BN ηN‖2k) ≥ lim inf
N→∞

E(‖BN‖2)k ≥ m(β)2k .

We prove the converse inequality. For k > 1 we have

E(‖BN‖2k) ≤ E(trB 2k
N )

=
1

N2k
E

 ∑
i1,i2,...,i2k

XN (i1, i2)XN (i2, i3) . . . XN (i2k, i1)

 .

Let ρ = ρ(i1, i2, . . . , i2k) denote the number of different indices among
the ij , i. e. ρ(i1, i2, . . . , i2k) = # {i1, i2, . . . , i2k} , then

1

N2k
E

 ∑
ρ(i1,i2,...,i2k)<2k

XN (i1, i2)XN (i2, i3) . . . XN (i2k, i1)

→ 0

while

1

N2k
E

 ∑
ρ(i1,i2,...,i2k)=2k

XN (i1, i2)XN (i2, i3) . . . XN (i2k, i1)

→ m(β)2k

by Proposition 28.
We also have

E
(
‖BN‖2

)
≤ E

(
‖BN‖4

)1/2 (31)

Thus we have proved that

E(‖BN‖2k) → m(β)2k

for all k ∈ N. It follows that ‖BN‖2 converges in distribution to δm(β)2 ,
hence ‖BN‖ converges in distribution to δm(β), therefore it converges in
probability to m(β).
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