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Abstract We study fundamental spectral properties of random block operators that are com-
mon in the physical modelling of mesoscopic disordered systems such as dirty superconduc-
tors. Our results include ergodic properties, the location of the spectrum, existence and reg-
ularity of the integrated density of states, as well as Lifshits tails. Special attention is paid to
the peculiarities arising from the block structure such as the occurrence of a robust gap in the
middle of the spectrum. Without randomness in the off-diagonal blocks the density of states
typically exhibits an inverse square-root singularity at the edges of the gap. In the presence
of randomness we establish a Wegner estimate that is valid at all energies. It implies that the
singularities are smeared out by randomness, and the density of states is bounded. We also
show Lifshits tails at these band edges. Technically, one has to cope with a non-monotone
dependence on the random couplings.
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1 Introduction

Random block operators play an important role in the mathematical modelling of superfluid
fermions in a random environment and are thus relevant for mesoscopic disordered quan-
tum systems such as dirty superconductor devices. They arise in the Bogoliubov-de Gennes
equation (

H B

B∗ −H̄

)(
ψ+
ψ−

)
= E

(
ψ+
ψ−

)
, (1.1)

that is, the eigenvalue problem for the quasi-particle (or excitation) states
(
ψ+
ψ−

)
in a mean-

field approximation of BCS theory [6]. Without loss of generality we have assumed that
the chemical potential equals zero in (1.1). The ‘particle’ and ‘hole’ components ψ+ and
ψ− of the quasi-particle state belong to the single-particle Hilbert space H. The self-adjoint
single-particle Hamiltonian H = H ∗ and the so-called pair potential or gap function B are
linear operators on H. The overbar in (1.1) denotes complex conjugation.

Following Altland and Zirnbauer [2] one can classify all block operators that arise in
(1.1) according to their behaviour with respect to time-reversal and spin-rotation symmetry.
In this paper we will focus on random block operators of the form

H :=
(

H B

B −H

)
(1.2)

with both H and B self-adjoint. This choice corresponds to symmetry class CI of [2] and
describes physical systems for which both time-reversal and spin-rotation symmetry hold.
Since the Bogoliubov-de Gennes equation results from a mean-field approximation, the ex-
pressions for the operators H and B should be determined from self-consistency require-
ments. For disordered systems the discrete Anderson model in d dimensions,

H := � + V on H = �2(Zd), (1.3)

is a generally accepted effective description for this, see e.g. [20]. (Choosing H as a random
matrix from a suitable ensemble would be another [2].) Here,

(�ψ)(j) :=
∑

i∈Zd :|i−j |=1

ψ(i) (1.4)

for all j ∈ Z
d and all ψ ∈ �2(Zd) is the centred discrete Laplacian and the random potential

V amounts to multiplication by independent and identically distributed, real-valued random
variables {V (j)}j∈Zd according to (V ψ)(j) := V (j)ψ(j).

The form of the gap operator B , which should also be determined by self-consistency,
depends on the pairing mechanism. For s-wave (a.k.a. conventional) superconductors B is
a multiplication operator in position space �2(Zd). Homogeneous s-wave superconductors
are described by a multiple of the identity operator, B = β 1 with a self-consistently de-
termined parameter β > 0. Disordered s-wave superconductors are often described by an
effective random multiplication operator B = b [6, 20, 22]. Here (bψ)(j) := b(j)ψ(j),
where {b(j)}j∈Zd are independent and identically distributed real-valued random variables.
In addition, the b(j)’s are often required to be independent of the V (j)’s. Our main results
in Sects. 5 and 6 will be proved in precisely this setting.

Non-diagonal gap operators B occur in the modelling of dx2−y2 -wave superconduc-
tors. For example, the momentum-dependent interaction of Cooper pairs leads to B =
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Fig. 1 Comparison of the density of states of a random block operator H without (left) and with (right)
randomness in the off-diagonal blocks B . The singularities at the inner band edges are smoothed out by the
randomness in B

β(�(1)
x − �(1)

y ) for homogeneous superconductors in two dimensions [1, 7], where β > 0

and �
(1)
x/y denotes the one-dimensional centred discrete Laplacian in x-, resp. y-direction.

Since diagonal disorder has also been used to model inhomogeneous d-wave superconduc-
tors [20, 22], our results may also be of relevance for these materials.

The plan of this paper is as follows. In Sect. 2 we study basic spectral features of block
operators H that are of the general form (1.2). Among others we establish the existence of
a robust spectral gap of H in Proposition 2.10. We interpret the robustness of the gap in the
context of Anderson’s theorem [3, 4] in Remark 2.11(iii).

Section 3 briefly discusses an important special case of (1.2), namely constant off-
diagonal blocks B = β 1. This serves to expose a typical phenomenon in the absence of
disorder: the density of states of H suffers from an inverse square-root singularity at the
inner band edges in every dimension d ∈ N. The singularity is robust in the sense that it
always shows up unless the density of states of H vanishes at energy zero—the location of
the chemical potential.

We introduce the main objects of this paper, ergodic random block operators, in Sect. 4.
The basic spectral consequences of ergodicity are also explored there. This includes the
location of the almost-sure spectrum, as well as the definition and self-averaging of the
integrated density of states of H.

In Sect. 5 we show that the density of states exists for suitable ergodic random block
operators and that it is bounded. This is the content of Theorem 5.1, the main result of this
paper, and follows from a Wegner estimate. Figure 1 compares this situation to the one with
the singularity at the inner band edges for a constant B = β 1 as in Sect. 3. Randomness in
the off-diagonal blocks smooths out the singularities. We stress that the Wegner estimate of
Theorem 5.1 holds for a block random Schrödinger operator with a sign-indefinite single-
site potential of mean zero. In contrast, for ordinary (i.e. non-block) random Schrödinger
operators such a result is still missing despite a lot of recent efforts [14, 19].

Finally, Sect. 6 establishes Lifshits tails for the integrated density of states of H at the
inner band edges. Theorem 6.1 embodies the second main result presented here.

The Wegner estimate and the Lifshits tail we establish in this paper allow to prove spectral
and dynamical localisation for random block operators by performing a multi-scale analysis.
The details [8] will be given elsewhere.
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2 Basic Properties of Block Operators

In this section we explore some fundamental properties of rather general self-adjoint block
operators

H :=
(

H B

B −H

)
(2.1)

on the Hilbert space H2 := H ⊕ H. We equip H2 with the scalar product

〈〈�,�〉〉 := 〈ψ1, ϕ1〉 + 〈ψ2, ϕ2〉, (2.2)

where 〈·, ·〉 stands for the Hilbert space scalar product of H and � := (
ψ1
ψ2

)
,� := (

ϕ1
ϕ2

) ∈ H2.

We write |||�||| := (‖ψ1‖2 + ‖ψ2‖2)1/2 for the induced norm.
Later we will be mainly interested in the case where the self-adjoint operator H is a dis-

crete Schrödinger operator on H = �2(Zd) and B is a multiplication operator with some real-
valued function b on Z

d . In this situation both operators H and B are frequently bounded,
so that H is unambiguously well defined as a self-adjoint operator. However, we can treat
unbounded operators as well, as one can read off from the following assertion.

Proposition 2.1

(i) Let H,B be self-adjoint, assume that dom(B) ∩ dom(H) is a core for H and that
dom(|H |1/2) ⊆ dom(B). Then H is essentially self-adjoint on (dom(B) ∩ dom(H)) ⊕
(dom(B) ∩ dom(H)).

(ii) Let H be self-adjoint, let B be symmetric and H -bounded with bound strictly smaller
than one. Then H is self-adjoint on dom(H) ⊕ dom(H).

(iii) Let B be self-adjoint, let H be symmetric and B-bounded with bound strictly smaller
than one. Then H is self-adjoint on dom(B) ⊕ dom(B).

Proof The assertions are special cases of Thm. 2.6.6 and Prop. 2.3.6 in [18]. �

Without further mentioning we will assume in the rest of this paper that at least one of
the three situations described by Proposition 2.1 applies, thereby ensuring self-adjointness
of H. Next we compile some basic structural properties of the spectrum of H.

Lemma 2.2 The operators H and H′ := (
B H

H −B

)
are unitary equivalent.

Proof Define the unitary involution U1 := 1√
2

( 1 1
1 −1

)
, then H′ = U1 HU1

∗. �

Lemma 2.3 The spectrum of H is symmetric around 0, i.e.

spec(H) = − spec(H). (2.3)

In particular, if H� = E� for some E ∈ R and � = (ψ1,ψ2)
T ∈ H2, then H�̃ = −E�̃ ,

where �̃ = (ψ2,−ψ1)
T .

Proof We define the unitary transformation U2 := ( 0 1
−1 0

)
on H2, which obeys U−1

2 = −U2,
and observe U2HU∗

2 = −H. �
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Remarks 2.4

(i) It follows that the spectrum of H2 has multiplicity at least 2, except possibly at zero,
and that

spec(H) = {E ∈ R | E2 ∈ spec(H2)}. (2.4)

(ii) The anti-symmetry of H under the transformation U2 is known as ‘particle-hole’ sym-
metry.

Lemma 2.5 The operator H2 is given by

H2 =
(

H 2 + B2 [H,B]
−[H,B] H 2 + B2

)
(2.5)

and unitarily equivalent to K− ⊕ K+ on H2, where

K± := H 2 + B2 ± i[H,B]. (2.6)

Proof This follows from an explicit computation and the observation that

U3H
2U∗

3 =
(

K− 0

0 K+

)
(2.7)

for the unitary U3 := 1√
2

( 1 i
i 1

)
. �

Remark 2.6 Introducing the annihilation operator a := H − iB on H, we can write K+ =
aa∗ and K− = a∗a. Thus, the spectra of K+ and K− differ at most by {0}. In fact, we have

(
K− 0

0 K+

)
=

(
0 a∗

a 0

)2

and U3HU∗
3 = i

(
0 −a∗

a 0

)
. (2.8)

A direct calculation also shows the next assertion.

Lemma 2.7 Suppose there exists a unitary involution U = U ∗ = U−1 on H such that
HU + UH = 0 and [B,U ] = 0. Then U := 1√

2

( 1 U

1 −U

)
is unitary on H2 and UHU∗ =(

H+UB 0
0 H−UB

)
.

Later we will use the following particularisation of Lemma 2.7.

Corollary 2.8 Assume B ≡ b is the maximal self-adjoint multiplication operator by the
function b : Z

d → R and � the centred discrete Laplacian as defined in (1.4). Then the
operator H = (

� b

b −�

)
is unitarily equivalent to H+ ⊕ H−, where H± := � ± (−1)j b.

Proof Choose U := (−1)j , that is

(Uψ)(j) := (−1)jψ(j) := (−1)
∑d

k=1 jkψ(j) (2.9)

for all j = (j1, . . . , jd) ∈ Z
d and ψ ∈ �2(Zd), and apply Lemma 2.7. �
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Remarks 2.9

(i) It is essential for the validity of Corollary 2.8 that � contains no diagonal terms.
(ii) Lemma 2.5 and Corollary 2.8 imply that H2 is both unitarily equivalent to K− ⊕ K+

and also to H 2+ ⊕H 2−. We have UK+U = K− and UH+U = −H−. Note also that none
of the operators H 2+ or H 2− alone is unitarily equivalent to K+ or K−.

(iii) From Corollary 2.8 we can infer some information on the location of the spectrum
of discrete Schrödinger operators with periodic potentials. For example, if b is the
constant function equal β ∈ R, then the corresponding operators H± are unitarily
equivalent. Hence spec(H+) = spec(H−) = spec(H). Thus it will follow from Proposi-
tion 2.10 below, that the interval ]−β,β[ is a spectral gap for the operator �+ (−1)j β .

Finally, we are concerned with locating the spectrum of general H and with the occur-
rence of spectral gaps that arise from the special block structure.

Proposition 2.10

(i) spec(H) ⊆ [−‖H‖ − ‖B‖,‖H‖ + ‖B‖].
(ii) Suppose there exists λ � 0 such that H � λ1. Then

spec(H) ∩ ]−λ,λ[= ∅. (2.10)

(iii) Suppose there exists β � 0 such that B � β1. Then

spec(H) ∩ ]−β,β[= ∅. (2.11)

(iv) Suppose there exist λ,β � 0 such that H � λ1 and B � β1. Then

spec(H) ∩ ]−(λ2 + β2)1/2, (λ2 + β2)1/2
[ = ∅. (2.12)

Remarks 2.11

(i) The endpoints of the interval in Proposition 2.10(i) are sharp upper and lower bounds
for the maximum and minimum of spec(H). This can be seen by choosing B as the
multiplication operator by the function b = (−1)j in Corollary 2.8.

(ii) The statements of Proposition 2.10(ii), (iii) and (iv) remain true if one replaces H and
B by −H and −B in the assumptions.

(iii) According to Proposition 2.10(iii), H has always a spectral gap of size at least 2β , no
matter what H is like. This statement can be interpreted in the context of Anderson’s
theorem [3, 4]: Anderson argued that adding non-magnetic impurities to an s-wave su-
perconductor should have only little (or at best no) effect on the gap operator B . In view
of Proposition 2.10(iii), this implies stability of the gap under non-magnetic impurity
doping and thus leads to the experimentally observed insensitivity of superconductivity
in this case. As an aside we mention that the situation is totally different when doping
dx2−y2 -wave superconductors by non-magnetic impurities. Here it is known that disor-
der leads to the breaking of Cooper pairs.

Proof of Proposition 2.10 The statement in (i) follows from Lemma 2.5 and ‖K±‖ �
(‖H‖ + ‖B‖)2.

To prove (iv) we define H̃ := H − λ � 0 and B̃ := B − β � 0. Then we get for the
operators K± in Lemma 2.5

K± = H̃ 2 + B̃2 ± i[H̃ , B̃] + λ2 + 2λH̃ + β2 + 2βB̃ � λ2 + β2, (2.13)
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where we used that the linear terms in λ and β are manifestly non-negative, as is the sum of
the first three terms on account of Remark 2.6. Hence, H2 � λ2 + β2.

The proofs of (ii) and (iii) are simpler and proceed along the very same lines. �

Part (ii) of Proposition 2.10 allows for a generalisation towards different diagonal blocks.

Lemma 2.12 Let H1 be a self-adjoint operator on H such that the block operator H1 :=( H B

B −H1

)
is self-adjoint on H2. Suppose there exists λ � 0 such that both H � λ and H1 � λ.

Then

spec(H1) ∩ ]−λ,λ[= ∅. (2.14)

Proof We define H̃ := H − λ � 0 and H̃1 := H1 − λ � 0. An explicit computation gives

H2
1 =

(
H 2 + B2 HB − BH1

BH − H1B H 2
1 + B2

)
=

(
λ2 + 2λH̃ 0

0 λ2 + 2λH̃1

)
+

(
H̃ B

B −H̃1

)2

� λ21. (2.15)

�

3 The Case of Constant Diagonal B

As a warm-up and in order to expose some typical features we consider first the simple case
where B = β 1 is a constant multiple of the identity. In particular, the operators H and B

commute. As a consequence, the spectral theory of H can be reduced to the diagonalisation
of a 2 × 2-matrix and the spectral theory of H .

Proposition 3.1 Let H be a self-adjoint operator on H, let β ∈ R \ {0} and consider

H :=
(

H β1
β1 −H

)
(3.1)

on H2. Then

(i) spec(H) = {E± := ±(E2 + β2)1/2 : E ∈ spec(H)}.
(ii) If Hϕ = Eϕ for some E ∈ spec(H) and ϕ ∈ H, then H�̃± = E±�̃± for the non-

normalised vector �̃± := (
ϕ

β−1(E±−E)ϕ

) ∈ H2.
(iii) Fix also E ∈ R. Then there exists a constant C ≡ CE,β > 0 such that if ‖(H −E)ϕ‖ � ε

for some ϕ ∈ H and ε > 0, then

|||(H − E±)�̃±||| � Cε. (3.2)

Proof Part (i) is a corollary of Lemma 2.5, Part (ii) follows from an explicit computation.
As to Part (iii) we observe

H�̃± =
(

Hϕ + (E± − E)ϕ

βϕ − β−1(E± − E)Hϕ

)
= E±�̃± +

(
(H − E)ϕ

−β−1(E± − E)(H − E)ϕ

)
. (3.3)

This implies

|||(H − E±)�̃±|||2 � ε2 + β−2(E± − E)2ε2 =: C2ε2. (3.4)

�
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Fig. 2 Comparison of the density of states of a random block operator H with B = 0 (left) and B = β1
(right)

Remark 3.2 We know already from Proposition 2.10(iii) that the spectrum of H as given by
(3.1) has always a gap between −|β| and |β| no matter how the spectrum of H looks like.
For an interpretation of this in the context of Anderson’s theorem, see Remark 2.11(iii).

We can also compute the density of states of H = ( H β1
β1 −H

)
, given the operator H pos-

sesses a density of states. The corresponding result is stated and proven here, even though
we postpone the formal definition of the integrated density of states and of its Lebesgue
derivative, the density of states, to the next section.

Proposition 3.3 If H possesses an absolutely continuous integrated density of states with
Lebesgue derivative D, then the integrated density of states of H is also absolutely continu-
ous with Lebesgue derivative given by

D(E) = |E|√
E2 − β2

[
D(

√
E2 − β2 ) + D(−

√
E2 − β2 )

]
(3.5)

for a.e. E ∈ spec(H) ⊆ R\]−|β|, |β|[, and D(E) = 0 for E /∈ spec(H).

Remark 3.4 Observe that in the case considered here the density of states D of H has a
square-root singularity at the inner band edges ±β whenever D(0+) �= 0, see the right
panel of Fig. 2. This is typically the case, if 0 lies in the interior of the spectrum of a random
Schrödinger operator H [9, 10, 21]. The square-root singularity may remind the reader of
the van Hove singularity in dimension d = 1. In the present case the nature of the singularity
is independent of the dimension d , however.

Proof By assumption we have for every interval A0 ⊆ R

∫
A0

dE0 D(E0) = lim
L→∞

#{eigenvalues of H(L) lying in A0}
|�L| , (3.6)

where H(L) is a self-adjoint finite-volume restriction of H to the cube �L centred about the
origin and containing |�L| = Ld points for L ∈ N odd. In particular, the spectrum of H(L) is
discrete and H(L) converge to H in the limit L → ∞. Now, for a given interval A ⊆ [0,∞[
we define

A0 := {
E0 ∈ R :

√
E2

0 + β2 ∈ A
}

(3.7)



Random Block Operators 1043

and

H(L) :=
(

H(L) β1

β1 −H(L)

)
. (3.8)

Proposition 3.1 implies

#
{
eigenvalues of H(L) lying in A0 = #

{
eigenvalues of H(L) lying in A

}
. (3.9)

On the other hand, we have the identity
∫

A0

dE0 D(E0) =
∫

A

dE D(E), (3.10)

which results from the change-of-variables E0 = √
E2 − β2, E > 0, on A0 ∩ [0,∞[ and

E0 = −√
E2 − β2, E > 0, on A0 ∩]−∞,0]. Altogether we have

∫
A

dE D(E) = lim
L→∞

#{eigenvalues of H(L) lying in A}
|�L| . (3.11)

The same argument applies if A ⊆]−∞,0[. Thus, (3.11) generalises to arbitrary Borel sets
A ⊆ R, proving the assertion. �

4 Ergodic Properties of Random Block Operators

From now on we are concerned with random block operators. We consider a probability
space (�, F ,P) together with a block-operator-valued random variable

H : ω �→ Hω :=
(

Hω Bω

Bω −Hω

)
, (4.1)

where Hω is densely defined on H2 = �2(Zd) ⊕ �2(Zd) for P-a.e. ω ∈ �. Throughout we
will assume that (at least) one of the situations of Proposition 2.1 applies to Hω for P-a.e.
ω ∈ � so that self-adjointness is ensured.

We say that the random block operator H is ergodic (w.r.t. pZ
d -translations), if there ex-

ists a period p ∈ N
d and an ergodic group of measure-preserving transformations {τj }j∈pZd

on � such that H fulfils the covariance relation UjHωU∗
j = Hτj (ω) for every ω ∈ � and

for every j ∈ pZ
d = ×d

k=1(pkZ), where Uj := ( Uj 0
0 Uj

)
and Uj is the unitary translation

operator on �2(Zd), that is Ujϕ := ϕ(· − j) for every ϕ ∈ �2(Zd).
Consequently, standard results [5, 11, 12, 16] imply the existence of a non-random closed

set � ⊆ R, the a.s. spectrum of H, such that spec(Hω) = � for P-a.e. ω ∈ �. Analogous
statements hold for the components in the Lebesgue decomposition of the spectrum.

Next we introduce the central quantity of this paper which measures the density of spec-
tral values of pZ

d -ergodic random block operators H.

Definition 4.1 The (non-random) right-continuous, non-decreasing function N : R →
[0,1], defined by

N(E) := 1

2 |�0| E
[

trH2 [χ�0χ]−∞,E](H)]] (4.2)
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for all E ∈ R, is called integrated density of states of H. Here we introduced the elemen-
tary cell �0 := {j ∈ Z

d : 0 � jk < pk for all k = 1, . . . , d}, E stands for the probabilistic
expectation on �, the trace extends over H2 and the notation χ�0 refers to the multiplication
operator

(
M 0
0 M

)
where M is multiplication by the indicator function of �0 on �2(Zd).

As we shall see from the next lemma, the definition of N is justified by Birkhoff’s ergodic
theorem. For L ∈ N odd, we denote by �L(j) the cube centred about j ∈ Z

d and containing
|�L(j)| = Ld many points of Z

d . We also write �L := �L(0).

Lemma 4.2 Let H be the random, P-a.s. self-adjoint block matrix operator (4.1), which is
ergodic w.r.t. pZ

d -translations. Then there exists a set �0 ⊆ � of full probability, P(�0) =
1, such that

N(E) = lim
L→∞

1

2Ld
trH2

[
χ�L(j)χ]−∞,E](Hω)

]
(4.3)

for every E ∈ R, every ω ∈ �0 and every j ∈ Z
d . Moreover, the set of growth points of N is

given by the a.s. spectrum of H.

Proof This is fully analogous to [13] or Sect. 5.1 in [12]. �

Mostly we will be interested in more specific random block operators whose diagonal
blocks are given by the discrete random Schrödinger operator of the Anderson model in d

dimensions and whose off-diagonal blocks are i.i.d. random multiplication operators. For
simplicity and ease of presentation we dispense with the presence of magnetic fields. More
precisely, let U0 : Z

d → R be a periodic potential with period p ∈ N
d and define the bounded

periodic background Hamiltonian H0 := −� + U0 on H = �2(Zd). Consider two indepen-
dent sequences of independent real-valued random variables (V (j))j∈Zd and (b(j))j∈Zd on
� such that all the V (j) : ω �→ Vω(j) are identically distributed with law μV and all the
b(j) : ω �→ bω(j) are identically distributed with law μb , and such that the V ’s are indepen-
dent of the b’s. For the sake of technical simplicity we assume that the supports of the mea-
sures μV and μb are bounded subsets of R. For each elementary event ω ∈ � the functions
Vω : j �→ Vω(j) and bω : j �→ bω(j) give rise to corresponding multiplication operators.
Then the random operators

H : ω �→ Hω := H0 + Vω (4.4)

and

b : ω �→ bω (4.5)

are P-a.s. bounded and self-adjoint on �2(Zd). They are both ergodic w.r.t. pZ
d -translations.

From standard results, see e.g. [5, 11, 12, 16], we know that their spectra are P-almost surely
given by

spec(H) = spec(H0) + supp(μV ) (4.6)

and

spec(b) = supp(μb). (4.7)

The corresponding random block operator

H : ω �→ Hω :=
(

Hω bω

bω −Hω

)
, (4.8)



Random Block Operators 1045

is also ergodic and P-a.s. bounded and self-adjoint on H2. The next lemma roughly locates
its a.s. spectrum.

Lemma 4.3 Let H be the random block operator (4.8). Then we have P-a.s. the inclusions

{ ± √
E2 + β2 : E ∈ spec(H),β ∈ supp(μb)

} ⊆ spec(H) ⊆ [−r, r] (4.9)

where r := supE∈spec(H) |E| + supβ∈supp(μb) |β|.

Remark 4.4 Since
√

E2 + β2 < E + β , if both E,β > 0, we suspect from recalling Re-
mark 2.11(i) that even the left inclusion in (4.9) might be a strict one in certain cases. This is
indeed true, as can be seen by choosing H = −� to be deterministic and μb a symmetrical
distribution w.r.t. reflection at zero. In this situation we may apply Corollary 2.8 and get
P-a.s.

spec(H) =
⋃
κ=±

spec(Hκ) = spec(�) + supp(μb). (4.10)

Combining Lemma 4.3 with Proposition 2.10(iv) we infer

Corollary 4.5 Assume that inf spec(H) � 0, inf supp(μb) � 0 and

λ± := ±√[inf spec(H)]2 + [inf supp(μb)]2 > 0. (4.11)

Then λ− and λ+ are the endpoints of the open gap interval which separates the positive and
negative parts of the a.s. spectrum of H.

Proof of Lemma 4.3 While the right inclusion follows immediately from Lemma 2.10(i) and
(4.6), the left inclusion is based on a typical Weyl-sequence argument. Let (ϕn)n∈N be a Weyl
sequence of normalised vectors for H0 and some fixed energy E0 ∈ spec(H0). Since H0 is a
bounded operator we may assume without loss of generality that each ϕn �= 0 has compact
support. The Borel-Cantelli lemma implies the existence of a set �0 of full probability,
P(�0) = 1, such that for every ω ∈ �0, for every length L > 0, for every ε > 0, for every
v ∈ suppμV and every β ∈ suppμb there exist k ∈ Z

d with

|Vω(j) − v| < ε and |bω(j) − β| < ε for all j ∈ �L(k). (4.12)

Now fix also v ∈ suppμV and β ∈ suppμb . We define

E± := ±
√

(E0 + v)2 + β2, (4.13)

and, if β �= 0, the vector

�±
n := Nn

(
ϕn

β−1(E± − E0 − v)ϕn

)
, (4.14)

where the constant Nn ensures proper normalisation |||�±
n ||| = 1. If β = 0, we set �+

n := (
ϕn

0

)
and �−

n := ( 0
ϕn

)
. For every n ∈ N we have the estimate
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|||(Hω − E±)�±
n |||

�
∣∣∣∣
∣∣∣∣
∣∣∣∣
(

Vω − v bω − β

bω − β −(Vω − v)

)
�±

n

∣∣∣∣
∣∣∣∣
∣∣∣∣ +

∣∣∣∣
∣∣∣∣
∣∣∣∣
[(

H0 + v β

β −(H0 + v)

)
− E±

]
�±

n

∣∣∣∣
∣∣∣∣
∣∣∣∣

=: T (1)
n + T (2)

n (4.15)

and the identity

(
T (1)

n

)2 =
〈〈

�±
n

(
(Vω − v)2 + (bω − β)2 0

0 (Vω − v)2 + (bω − β)2

)
�±

n

〉〉
. (4.16)

For every n ∈ N and every ε > 0 we exploit the freedom to shift the support of ϕn such that
it lies inside some large enough box �L(k) for which (4.12) holds. This implies

(
T (1)

n

)2 � 2ε2
〈〈
�±

n ,�±
n

〉〉 = 2ε2. (4.17)

On the other hand, given any ε > 0, we infer from the Weyl-sequence property of (ϕn)n∈N

for H0 and Proposition 3.1 that there exists nε ∈ N such that for all n � nε the esti-
mate T (2)

n � Cε holds with some constant C > 0 depending on E0, v and β . This proves
|||(Hω − E±)�±

n ||| � (C + √
2)ε, and hence (�±

n )n∈N is a Weyl sequence for H and E±. �

In order to make manifest the interpretation of the integrated density of states N as an
eigenvalue counting function we have to introduce appropriate finite-volume restrictions of
the block operator H.

Definition 4.6 For H as in (4.8) and a finite cube �L ⊂ Z
d we introduce the Dirichlet and

Neumann restrictions

H(L)
D :=

(
H

(L)
D b

b −H
(L)
D

)
and H(L)

N :=
(

H
(L)
N b

b −H
(L)
N

)
(4.18)

of H to the 2|�L|-dimensional Hilbert space H2
L := �2(�L) ⊕ �2(�L). We also introduce

the Dirichlet-bracketing and Neumann-bracketing restrictions

H(L)
+ :=

(
H

(L)
D b

b −H
(L)
N

)
and H(L)

− :=
(

H
(L)
N b

b −H
(L)
D

)
. (4.19)

In the above we have used the Dirichlet, resp. Neumann, restriction

H
(L)
D/N := −�

(L)
D/N + U0 + V (4.20)

of H to �2(�L), and all multiplication operators are to be interpreted as canonical restric-
tions.

Remarks 4.7

(i) The Neumann Laplacian on �2(�L) is also called graph Laplacian or combinatorial
Laplacian. It is defined by

(−�
(L)
N ψ)(j) :=

∑
k∈�L:|j−k|=1

[ψ(j) − ψ(k)] (4.21)
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for every ψ ∈ �2(�L) and every j ∈ �L. The Dirichlet Laplacian can be represented as
the perturbation

−�
(L)
D := −�

(L)
N + 2�(L), (4.22)

where �(L) is the multiplication operator given by

(�(L)ψ)(j) := ψ(j) #{k ∈ Z
d \ �L : |k − j | = 1} (4.23)

for every j ∈ �L. In other words, �(L) lives only on the outermost layer of �L and
multiplies by the number of missing neighbours at every point.

(ii) The finite-volume restrictions −�
(L)
N and −�

(L)
D are defined such as to obey Dirichlet-

Neumann bracketing. Consequently we obtain the chains of inequalities

H(L)
− � H(L)

N � H(L)
+ and H(L)

− � H(L)
D � H(L)

+ (4.24)

for every �L ⊂ Z
d and the Dirichlet-Neumann bracketing properties

H(�)
− ⊕ H(�′)

− � H(�∪�′)
− and H(�)

+ ⊕ H(�′)
+ � H(�∪�′)

+ (4.25)

for all disjoint �,�′ ⊂ Z
d (in obvious abuse of our notation).

The desired interpretation of N follows from

Lemma 4.8 Given the random block operator H from (4.8) and any E ∈ R, we define the
random, finite-volume eigenvalue counting function

N(L)
X (E) := 1

2 |�L| trH2
L

[
χ]−∞,E](H

(L)
X )

]
, (4.26)

where X symbolises any self-adjoint restriction such that

H(L)
− � H(L)

X � H(L)
+ . (4.27)

Then

(i) there is a set �0 ⊆ � of full probability, P(�0) = 1, such that

N(E) = lim
L→∞

N(L)
X,ω(E) (4.28)

for every ω ∈ �0, every continuity point E ∈ R of N and every boundary condition X

satisfying (4.27).
(ii) In addition we have the bounds

E
[
N(L)

+ (E)
]
� N(E) � E

[
N(L)

− (E)
]

(4.29)

for every finite cube �L and every E ∈ R.

Proof The arguments proceed as in the standard random Schrödinger case, see e.g. [5, 11–
13, 16]. �
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5 Random Diagonal B: Boundedness of the Density of States

We have seen in Sect. 3 that the density of states of H with off-diagonal operators B that
are a constant multiple of the identity can have a singularity, even if the density of states
of H is bounded. In this section we consider random operators H of the form (4.8) with
diagonal disorder in all blocks. We will prove a Wegner estimate for such models. It implies
that the density of states of H exists and is bounded provided H or b is bounded away from
zero and the distribution of the random variables is absolutely continuous with a suitably
regular Lebesgue density. Technically, one has to cope with a non-monotone dependence
on the random potential: the single-site potential that enters H is sign-indefinite and has
mean zero. In contrast, for ordinary (i.e. non-block) random Schrödinger operators with
such single-site potentials it is not known how to prove a comparable Wegner estimate.
Existing Wegner estimates involve either higher powers of the volume [19] or yield only
log-Hölder continuity of the integrated density of states [14].

Theorem 5.1 Consider the random block operator

H : ω �→ Hω =
(

Hω bω

bω −Hω

)
(5.1)

where H and b are given as in (4.4) and (4.5). Assume that at least one of the following two
conditions is satisfied:

(H) there exists λ > 0 such that H � λ1 holds P-a.s. and μV is absolutely continuous with a
piecewise continuous Lebesgue density φV of bounded variation and compact support,

(B) there exists β > 0 such that b � β1 holds P-a.s. and μb is absolutely continuous with a
piecewise continuous Lebesgue density φb of bounded variation and compact support.

Then the integrated density of states N of H is Lipschitz continuous and has a bounded
density D := dN/dE. In particular, we have for Lebesgue-almost all E ∈ R

D(E) � 2
|E| + 1

λ
‖φV ‖BV, (5.2)

if Condition (H) applies, and

D(E) � 2
|E| + 1

β
‖φb‖BV, (5.3)

if Condition (B) applies. Here, ‖f ‖BV denotes the total variation of f : R → C.

Remarks 5.2

(i) The density of states D is an even function on account of Lemma 2.3.
(ii) We recall that, typically, D exhibits a singularity at the inner band edges for constant

off-diagonal blocks b = β1 > 0, see the left panel of Fig. 1. Case (B) of Theorem 5.1
implies that, regardless of H , this singularity is smeared out by the disorder. In partic-
ular, D remains bounded.

(iii) Figure 3 displays a typical density of states for random block operators in the case (H)
of Theorem 5.1. Here, D is not only bounded but even vanishes at the inner band edges,
because it exhibits a Lifshits tail, see Sect. 6.
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Fig. 3 Assuming bω(j) = 1 + w b̃ω(j) with b̃ω(j) distributed uniformly in the interval [−0.5,0.5] we
display the dependence of the density of states on the disorder parameter w (Assumption (B) of Theorem 5.1
is satisfied for w = 0.1,0.5,0.9)

Proof of Theorem 5.1 As compared to the proof of the Wegner estimate for the standard
Anderson model, there are essentially two modifications necessary here. They have been
isolated in the subsequent Lemmas 5.3 and 5.4.

Lemma 2.2 tells us that the roles of the diagonal operator H and of the off-diagonal op-
erator b are interchangeable. Thus it suffices to prove only the case (H). Moreover, because
of Lemma 2.3 we will restrict ourselves to energies E � 0 without loss of generality. In
fact, using Condition (H) and Proposition 2.10(ii) it then suffices to consider E � λ, which
we will do from now on. We denote by H(L)(V) := H(L)

D the Dirichlet restriction (4.18) of
the operator H to the cube �L. In this notation we make explicit the dependence of the
operator on the random variables V := {Vj }j∈�L

(we prefer to write Vj instead of V (j) in
this proof and the subsequent lemmas) and suppress the dependence on the entries of the
off-diagonal blocks. Furthermore, we write En(V) := En(H(L)(V)) for the nth eigenvalue of
H(L)(V), where the eigenvalues are ordered by magnitude and repeated according to multi-
plicity. Finally, we fix ε ∈]0,min{λ,1}/3[ and consider a switch function �, i.e. � ∈ C1(R)

is non-decreasing with 0 � � � 1, �(η) = 1 for η > ε and �(η) = 0 for η < −ε. Then

0 � χ]E−ε,E+ε](η) � �(η − E + 2ε) − �(η − E − 2ε) (5.4)
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for all η ∈ R, whence

trH2
L

[
χ]E−ε,E+ε]

(
H(L)(V)

)]

�
2|�L|∑
n=1

[
�
(
En(V) − E + 2ε

) − �
(
En(V) − E − 2ε

)]

= −
2|�L|∑
n=1

∫ E+2ε

E−2ε

∂

∂η
�
(
En(V) − η

)
dη

=
2|�L|∑
n=1

∫ E+2ε

E−2ε

�′(En(V) − η
)

dη. (5.5)

The chain rule tells us that

∑
j∈�L

∂

∂Vj

�
(
En(V) − η

) = �′(En(V) − η
) ∑

j∈�L

∂En(V)

∂Vj

. (5.6)

Since H(L)(V) � λ > 0 by Condition (H), we conclude from this identity and Lemma 5.3

�′(En(V) − η
)
� En(V)

λ

∑
j∈�L

∂

∂Vj

�
(
En(V) − η

)

� E + 1

λ

∑
j∈�L

∂

∂Vj

�
(
En(V) − η

)
(5.7)

for all n ∈ N and all η ∈ [E − 2ε,E + 2ε]. We note that the last inequality uses 3ε <

min{λ,1}. This guarantees that only those n with En(V) ∈]0,E + 1[ contribute and that the
j -sum is non-negative for these n by Lemma 5.3.

Since the random variables {Vj }j∈�L
are independent and have the same individual dis-

tribution μV , the expectation is just integration with respect to the product of these distribu-
tions. Thus (5.5) and (5.7) imply

E
{

trH2
L

[
χ]E−ε,E+ε](H

(L)
D )

]}

� E + 1

λ

∑
j∈�L

∫ E+2ε

E−2ε

∫
R

. . .

∫
R

(∫
R

∂

∂Vj

2|�L|∑
n=1

�
(
En(V) − η

)
dμV (Vj )

)

×
( ∏

k∈�L: k �=j

dμV (Vk)

)
dη. (5.8)

Since, in general, the function

Vj �→ F(Vj ) :=
2|�L|∑
n=1

�
(
En(V) − η

) = trH2
L

[
�
(
H(L)(V) − η

)]
(5.9)

is non-monotone in its argument for given η ∈ R and Vk ∈ R, k �= j , we deviate from
the standard reasoning at this point. Clearly F ∈ C1(R) by analytic perturbation the-
ory. Moreover changing Vj amounts to a rank-2-perturbation of H(L)(V). Thus we have
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|F(v) − F(v′)| � 2 for all v, v′ ∈ R and we can apply Lemma 5.4 to (5.8). This gives

E
{

trH2
L

[
χ]E−ε,E+ε](H

(L)
D )

]}
� 8ε Ld‖φV ‖BV

E + 1

λ
. (5.10)

Finally, the assertion follows from Lemma 4.28 and dominated convergence. �

We come to the main deterministic tool used in the proof of Theorem 5.1. Given As-
sumption (H), it ensures that eigenvalues move around strongly enough when the random
variables change their values.

Lemma 5.3 Let E(V) be an eigenvalue of
(

H(L)(V) B(L)

B(L) −H(L)(V)

)
. Then

E(V)
∑
j∈�L

∂E(V)

∂Vj

� inf spec
(
H(L)(V)

)
. (5.11)

Proof Let �(V) ≡ � = (
ψ1
ψ2

) ∈ H2
L be an eigenvector corresponding to the eigenvalue

E(V) ≡ E, normalised according to 〈〈�,�〉〉 = 〈ψ1,ψ1〉 + 〈ψ2,ψ2〉 = 1. Thus, writing
H(L)(V) ≡ H(L), it satisfies

H(L)ψ1 + B(L)ψ2 = Eψ1,

B(L)ψ1 − H(L)ψ2 = Eψ2.
(5.12)

By the Feynman-Hellmann theorem (see e.g. [17]) we have

∂E

∂Vj

= |ψ1(j)|2 − |ψ2(j)|2 (5.13)

for every j ∈ �L and consequently, inserting (5.12) we find

E
∑
j∈�L

∂E

∂Vj

= E〈ψ1,ψ1〉 − E〈ψ2,ψ2〉

= 〈ψ1,H
(L)ψ1 + B(L)ψ2〉 − 〈B(L)ψ1 − H(L)ψ2,ψ2〉

= 〈ψ1,H
(L)ψ1〉 + 〈ψ2,H

(L)ψ2〉
� inf spec

(
H(L)

)
. (5.14)

�

The next lemma deals with the problem of the non-monotonous dependence of the cu-
mulative eigenvalue counting function on the random potential. It is here where we have to
assume a suitable regularity of the distribution.

Lemma 5.4 Let φ : R → C be piecewise continuous, of bounded variation and have com-
pact support. Let F ∈ C1(R) and assume the existence of a constant a > 0 such that
|F(x) − F(y)| � a for all x, y ∈ R. Then we have

∣∣∣∣
∫

R

F ′(x)φ(x)dx

∣∣∣∣ � a ‖φ‖BV. (5.15)
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Proof Step 1: We prove the claim for step functions

φN =
N∑

ν=1

ξνχ]xν−1,xν ] =
N∑

ν=1

(ξν − ξν−1)χ]xν−1,xN ] (5.16)

where N ∈ N, ξν ∈ C for all ν ∈ {1, . . . ,N}, ξ0 := 0 and −∞ < x0 < x1 < · · · < xN < ∞.
For such φN we get

∣∣∣∣
∫

R

F ′(x)φN(x)dx

∣∣∣∣ =
∣∣∣∣∣

N∑
ν=1

(ξν − ξν−1)[F(xN) − F(xν−1)]
∣∣∣∣∣

� a

N∑
ν=1

|ξν − ξν−1| � a ‖φN‖BV. (5.17)

Step 2: For general φ as in the lemma, the claim (5.15) follows from a uniform approx-
imation of φ by step functions of the form φN := ∑N

ν=1 φ(xν)χ]xν−1,xν ]. Indeed, for every
given ε > 0 we can choose discretisation points xν , ν = 1, . . . ,N and N ∈ N such that ‖φ −
φN‖∞ � ε, because φ is piecewise uniformly continuous. Therefore

∫
R

F ′(x)φ(x)dx =
limN→∞

∫
R

F ′(x)φN(x)dx for a suitable sequence of step functions φN , because F ′ is
bounded on the support of φ. This, the bound from Step 1 and ‖φN‖BV � ‖φ‖BV finish
the proof. �

6 Random Diagonal B: Lifshits Tails

It is a striking fact that the integrated density of states of random Schrödinger operators
grows only exponentially slowly in the vicinity of fluctuation band edges. This behaviour is
called Lifshits tail [15].

In Theorem 6.1 we provide a result for random block operators H of the form (4.8) which
limits the growth of the integrated density of states N at energy λ, provided H � λ > 0
exhibits a Lifshits tail at energy λ. We emphasise that Theorem 6.1 is only interesting in the
case where ±λ coincide with the endpoints of the spectral gap of H around zero. According
to Corollary 4.5 this always happens if 0 ∈ supp(μb).

Theorem 6.1 Consider the random block operator

H : ω �→ Hω =
(

Hω bω

bω −Hω

)
(6.1)

where H and b are given as in (4.4) and (4.5) and let N be its integrated density of states.
Suppose in addition that λ := inf spec(H) > 0 and that there exists constants α,γ > 0 such
that for all sufficiently small ε > 0

P
[

inf spec(H (Lε)
N ) � λ + ε

]
� e−γ ε−α

(6.2)

where Lε is a sequence of diverging lengths as ε ↓ 0 with limε↓0 εα/dLε exists and lies in
]0,∞[. Then the estimate

lim sup
ε↓0

ln
∣∣ ln[N(λ + ε) − N(λ)]∣∣

ln ε
� −α (6.3)

holds.
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Remarks 6.2

(i) Assumption (6.2) is the statement which is typically proven for a random Schrödinger
operators H of the form (4.4) when establishing the upper bound

lim sup
ε↓0

ln
∣∣ ln[N(λ + ε)]∣∣

ln ε
� −α (6.4)

for a Lifshits tail with Lifshits exponent α = d/2 of the integrated density of states N at
the lower spectral edge λ. In other words, if 0 ∈ supp(μb), then Theorem 6.1 says that
the growth of N near the lower edge of the positive a.s. spectrum of H is no faster than
the growth of N near the bottom of the a.s. spectrum of H . Note that the bound on N
holds independently of b.

(ii) An analogous statement to Theorem 6.1 holds at the upper edge of the negative spectrum
of H.

Proof of Theorem 6.1 We claim that for all energies E � 0 and all finite cubes �L the
estimate

N(E) − N(0) � E
[
N(L)

− (E) − N(L)
− (0)

]
(6.5)

holds. This follows from Dirichlet-Neumann bracketing (4.29) and

N(0) = 1

2
= E

[
N(L)

N (0)
] = E

[
N(L)

− (0)
]
. (6.6)

The first two equalities in (6.6) are based on Lemma 2.3 and that zero is not in the spectrum.
In order to see the last equality in (6.6) we view H(L)

− = H(L)(1) as an analytic perturbation
of H(L)

N = H(L)(0), where

H(L)(a) := H(L)
N − 2a

(
0 0

0 �(L)

)
(6.7)

for a ∈ R and �(L) was introduced in (4.22). Analytic perturbation theory tells us that the
eigenvalues of H(L)(a) depend continuously on the parameter a. On the other hand, we
infer from Lemma 2.12 that zero lies in an open spectral gap of H(L)(a) of size at least
2λ for every a ∈ [0,1]. Therefore H(L)(0) must have exactly as many positive (negative)
eigenvalues as H(L)(1), and the third equality in (6.6) holds.

Now let ε > 0 and observe

E
[
N(L)

− (λ + ε) − N(L)
− (0)

]
� P

[
spec(H(L)

− )∩]0, λ + ε] �= ∅
]
. (6.8)

By contradiction we conclude from Lemma 2.10(ii) that the event in the probability on the
r.h.s. of (6.8) implies the event inf spec(H (L)

N ) � λ + ε. Hence, we get

N(λ + ε) − N(0) � P
[

inf spec(H (L)
N ) � λ + ε

]
, (6.9)

and the claim follows from (6.2). �
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