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On the analogues of Szegő’s theorem for ergodic operators
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Abstract. Szegő’s theorem on the asymptotic behaviour of the determi-
nants of large Toeplitz matrices is generalized to the class of ergodic oper-
ators. The generalization is formulated in terms of a triple consisting of an
ergodic operator and two functions, the symbol and the test function. It is
shown that in the case of the one-dimensional discrete Schrödinger opera-
tor with random ergodic or quasiperiodic potential and various choices of
the symbol and the test function this generalization leads to asymptotic
formulae which have no analogues in the situation of Toeplitz operators.
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§ 1. Introduction

Szegő’s theorem is an important result in analysis with a number of links and
applications, see, for instance, [1]–[3] and the references there. Its original form is
as follows. Let

{Aj}j∈Z, Aj = A−j ,
∑
j∈Z

|Aj | <∞, (1.1)

be a sequence and

A = {Aj−k}j,k∈Z, (Au)j =
∑
k∈Z

Aj−kuk, (1.2)

be the corresponding bounded selfadjoint (discrete convolution) operator in l2(Z).
Choose a positive integer L and consider the interval

Λ = [−L,−L+ 1, . . . , L] ⊂ Z (1.3)

and the restriction of A to Λ,

AΛ = {Aj−k}j,k∈Λ, (1.4)

that is, the finite dimensional operator defined by the central (2L + 1) × (2L + 1)
block of the doubly infinite matrix {Aj−k}j,k∈Z. Also let

a(p) =
∑
j∈Z

Aje
2πipj , p ∈ T = [0, 1), (1.5)
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be the Fourier transform of (1.1), which is called the symbol of A in this context.
Assume that

a(p) > 0, a ∈ L1(T), (1.6)

and denote by {lj}j∈Z the Fourier coefficients of log a. Then we have the two term
asymptotic formula (see, for instance, [3], Theorem 1.6.2)

log DetAΛ = |Λ|l0 +
∞∑

j=1

jlj l−j + o(1), |Λ| → ∞, (1.7)

where
|Λ| = 2L+ 1. (1.8)

The one term asymptotic formula

log DetAΛ = |Λ|l0 + o(|Λ|), |Λ| → ∞, (1.9)

is known as Szegő’s theorem (or the first Szegő theorem), while the two term asymp-
totic formula (1.7) is called the strong Szegő theorem.

Note that the traditional setting for Szegő’s theorem uses the Toeplitz opera-
tors defined by the semi-infinite matrix {Aj−k}j,k∈Z+ and acting in l2(Z+). The
restrictions of the Toeplitz operators are the upper left blocks {Aj−k}L

j,k=0 of the
semi-infinite matrix. On the other hand, in this paper we use the convolution oper-
ators (1.2) defined by the doubly infinite matrix {Aj−k}j,k∈Z, acting in l2(Z) and
having the central blocks (1.4) as their restrictions. The latter setting seems more
appropriate for our goal in this paper of dealing with ergodic operators, where the
setting is standard. The same setting is widely used in multidimensional analogues
of Szegő’s theorem.

Using the identity log DetAΛ = Tr logAΛ we can rewrite (1.7) as

Tr logAΛ = |Λ|
∫ 1

0

log a(p) dp+
∞∑

j=1

jlj l−j + o(1), |Λ| → ∞, (1.10)

that is, as a two term asymptotic trace formula for the operator AΛ, written via
the ‘limiting’ operator A. This suggests a generalization of the formula, in which
log is replaced by a function ϕ : R → C of a certain class.

The one term asymptotic formula generalizing (1.9) is well known (see, for
instance, [4], § 5.2):

Trϕ(AΛ) = |Λ|
∫

T
ϕ(a(p)) dp+ o(|Λ|), |Λ| → ∞. (1.11)

The formula is valid for any bounded continuous ϕ.
For the corresponding two-term asymptotic formula

Trϕ(AΛ) = |Λ|
∫

T
ϕ(a(p)) dp+ T2 + o(1), |Λ| → ∞, (1.12)

where T2 is a functional of ϕ and a which is independent of Λ, see, for instance, [1],
[3], [5] and the references there.
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Analogous formulae hold in the continuous case, that is, for the convolution
operators in L2(R) and their restrictions, as well as in the multidimensional case,
that is, for the convolution operators in l2(Zd) and L2(Rd) and their restrictions
to the family {ΛL} of compact domains that expand homothetically into the whole
space, see [5],

ΛL =
{
x ∈ Zd :

x

L
∈ Λ1

}
,

where Λ1 ∈ Rd has a C1 boundary. In this case the leading term is proportional to
the volume |ΛL| of ΛL, that is, to Ld, while the subleading term is proportional
to Ld−1, that is, to the area |∂ΛL| of the surface ∂ΛL of ΛL, see, for instance, [1], [3]
and [5]).

It is important to stress that while the leading term, proportional to Ld, of (1.12)
is fairly insensitive to the smoothness of ϕ and a, the subleading term is propor-
tional to Ld−1 if ϕ and a are smooth enough, for instance, if a has Hölder continuous
derivative and ϕ is C∞ on the spectrum of A. If, however, the symbol has singulari-
ties and/or zeros, the order of the subleading term can grow more rapidly, see [2], [6]
and [7]. An important example is when the symbol is the indicator of an interval ∆
of the spectrum of A. In this case, if d = 1 the two-term asymptotic formula is

Trϕ(AΛ) = |Λ|
(
(1− |∆|)ϕ(0) + |∆|ϕ(1)

)
+ S2 log |Λ|+ o(log |Λ|), |Λ| → ∞,

(1.13)
where S2 is a functional of ϕ, independent of |Λ| [7]. Likewise, for d > 1 the leading
term is analogous to that for d = 1 and, in particular, is proportional to Ld, while
the subleading term is proportional to Ld−1 logL [6]–[8].

This sensitivity of the subleading term to the smoothness of ϕ and a can be
compared with the sensitivity of the subleading term in the Euler-Maclaurin formula
for approximating the integral of a continuous function by its integral sum.

Thus, the two term asymptotic formula for Trϕ(AΛ), where AΛ is the restriction
of a convolution operator A to a bounded domain, is determined by the functional
parameters a and ϕ.

Note now that the convolution operators in l2(Zd) and L2(Rd), d > 1 admit
a natural generalization, known as ergodic (or metrically transitive) operators [9].
We recall their definition in the technically simple case of l2(Z).

Let

(Ω,F , P ) (1.14)

be a probability space and T be a measure preserving automorphism of Ω.
It is worth mentioning two important cases of the structure (Ω,F , P, T ) known

as an abstract dynamical system. The first corresponds to the sequence {ξj}j∈Z of
i.i.d. random variables. Here Ω = RZ, F is the σ-algebra generated by the cylinders
in RZ, P is the product measure corresponding to the common probability law F
of the ξj and

T{ξj}j∈Z = {ξj+1}j∈Z (1.15)

is the right shift for sequences.
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In the second case Ω = T, F is the Borel algebra of T, P is the Lebesgue measure
on T and

Tω ≡ ω + α (mod 1), (1.16)

where α ∈ [0, 1) is an irrational number.
An important property, common to both cases, is that there is no set in F ,

apart from Ω and ∅, invariant with respect to T . An abstract dynamical system
possessing this property is called ergodic (or metrically transitive). The property
is elementary in the second case and follows from Kolmogorov’s zero-one law in the
first case. From now on we will consider only ergodic dynamical systems, although
certain results below are also valid without this assumption.

Now, a sequence {ξj}j∈Z of real valued measurable functions on an abstract
dynamical system is called an ergodic process if for every t ∈ Z we have

ξj(T tω) = ξj+t(ω) ∀ j ∈ Z (1.17)

with probability 1. The standard way to represent an ergodic process is via a mea-
surable function X : Ω → R and the shift operator

ξj(ω) = X (T jω). (1.18)

Likewise, a measurable function A = {Ajk}j,k∈Z whose values are bounded opera-
tors in l2(Z) is called an ergodic operator if for every t ∈ Z we have

Aj+t,k+t(ω) = Ajk(T tω) ∀ j, k ∈ Z (1.19)

with probability 1. Choosing Ω = {0} in (1.14), we obtain from (1.19) that A is
a convolution operator (1.2). Thus, ergodic operators comprise a generalization
of convolution operators, while the latter can be viewed as nonrandom ergodic
operators.

Analogous definitions can be given in the multidimensional discrete case of Zd

and the continuous case of Rd, see [9], § 1D.
An important example of an ergodic operator is the one-dimensional discrete

Schrödinger operator in l2(Z) defined as

H = H0 + V, (H0u)j = −uj−1 − uj+1, (V u)j = vjuj , j ∈ Z, (1.20)

and having an ergodic process {vj}j∈Z as its potential V , that is (see (1.18)),

vj(ω) = V (T jω), j ∈ Z, (1.21)

for some measurable V : Ω → R.
The two most widely studied cases of ergodic potentials (1.21) correspond to

the two ergodic systems and processes mentioned above, that is, a sequence of
i.i.d. random variables and a sequence, defined by a continuous periodic function
V : T → R and an irrational number α ∈ (0, 1) via the formula (see (1.16))

vj(ω) = V (αj + ω). (1.22)
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These two classes of ergodic potentials (processes) can be viewed as the ‘extreme’
cases of the set of all ergodic processes with respect to the intuitive notion of ‘ran-
domness’, since the i.i.d. case is intuitively the ‘most random’, while the quasiperi-
odic case is intuitively ‘least random’.

An analogue of Szegő’s theorems for ergodic operators could be viewed as follows.
Let H be a selfadjoint ergodic operator in l2(R) and let a : R → C and ϕ : C → C
be sufficiently ‘good’ functions. Then

A = a(H) (1.23)

is a normal ergodic operator (see [9], Theorem 2.7). Denote its matrix by {Ajk}j,k∈Z
and the restriction of A to Λ by AΛ = {Ajk}j,k∈Λ (cf. (1.4)) where Λ is given
by (1.3). We are again interested in the asymptotic behaviour of the quantity

Trϕ(AΛ) = Trϕ(aΛ(H)), |Λ| → ∞, (1.24)

determined by the triple
(H, a, ϕ), (1.25)

consisting of an underlying ergodic operator H and functions a : R → C and
ϕ : C → C, which we call the symbol and the test function.

In the case of discrete convolution operators corresponding to Ω = {0} in (1.14)
the role of H is played by the selfadjoint operator p̂ related to the unitary shift
operator

(Uψ)j = ψj+1, {ψj}j∈Z ∈ l2(Z),

by the formula U = eip̂. In the case of continuous (integral) convolution operators
in L2(R) id/dx plays the role of H. The operator p̂ is not widely used in this
context. However, if the symbol (1.5) is even (the matrix of A in (1.2) is real and
symmetric), then a(p) = t(cos 2πp) where

t(x) =
∞∑

j=0

ajTj(x),

and {Tj} are the Tchebyshev polynomials of the first kind: Tj(cos 2πp) = cos 2πjp.
Since cos 2πp is the symbol of the second finite difference, that is, the Schrödinger
operator H0 of (1.20) with zero potential, we can choose this operator as H in the
representation (1.23) of convolution operators. This illustrates an analogy between
the Szegő’s theorems for convolution and ergodic operators, according to which, in
order to pass from convolution to ergodic operators, we just have to replace the
Schrödinger operator H0 with zero potential by the Schrödinger operator (1.20)
with a nontrivial ergodic potential.

The leading term of (1.24) for ergodic operators is known and is a natural ana-
logue of the leading term of (1.11)– (1.12) for convolution operators. To write
down this term we need the notion of the integrated density of states of ergodic
operators. Let {λ(Λ)

l }L
l=−L be the eigenvalues (counting their multiplicity) of the

restriction AΛ of an ergodic operator A, let δx be the atomic measure of unit mass
at x ∈ R and let

NΛ =
L∑

l=−L

δ
λ

(Λ)
l

, NΛ = |Λ|−1NΛ (1.26)
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be the counting measure and the normalized counting measure of eigenvalues of AΛ.
Then there exists a nonrandom nonnegative measure N of total mass 1,

N(R) = 1, (1.27)

such that for any piece-wise continuous bounded function ϕ : R → C we have

lim
|Λ|→∞

∫
ϕ(λ)NΛ (dλ) =

∫
ϕ(λ)N (dλ) (1.28)

with probability 1, and for any interval ∆ ⊂ R

N(∆) = E{(E A(∆))00}, (1.29)

where E{. . .} denotes the expectation with respect the probability measure P
of (1.14) and EA = {(EA)jk}j,k∈Z is the resolution of identity for A. The oper-
ator EA(∆) is also ergodic for any ∆ ⊂ R, see [9], Theorem 2.7.

The expression (1.24) can obviously be written as

L∑
l=−L

ϕ(λ(Λ)
l ) =

∫
ϕ(λ)NΛ (dλ) (1.30)

and is known in statistics as the linear statistics of the random variables {λ(Λ)
l }L

l=L

and ϕ is called the test function. It follows from (1.26), (1.28) and (1.29) that, with
probability 1,

Trϕ(AΛ) = |Λ|
∫
ϕ(λ)N (dλ) + o(|Λ|) = |Λ|E{ϕ00(A)}+ o(|Λ|), |Λ| → ∞.

(1.31)
Note that if A is a convolution operator, then

(E A(∆))jk =
∫

T
e2πi(j−k)pχ∆(a(p)) dp, (1.32)

where χ∆ is the indicator function of ∆, and (1.29) implies

N(∆) = mes{p ∈ T : a(p) ∈ ∆}.

As a result the right-hand side of (1.31) becomes the right-hand side of (1.11).
We conclude that (1.31) can be viewed as a generalization of (1.11).

To understand the order of magnitude of the subleading term in (1.31) for ergodic
operators we note first that if A is a convolution operator, then roughly speaking
λ

(Λ)
l = a(2πl/|Λ|), if Λ is large enough (see, for instance, [4], §§ 5.2–5.3). Thus,

recalling the Euler-Maclaurin formula we can hope that the subleading term will
be independent of Λ if a is smooth enough. This is indeed the case according
to (1.7)–(1.12). On the other hand, if A is ergodic and ‘sufficiently’ random, then
it is reasonable to suppose that its eigenvalues will also be ‘sufficiently’ random
and then one would guess that the leading term of (1.30) has to be given by the
Law of Large Numbers, that is, it has to be nonrandom and proportional to |Λ|,
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while the subleading term has to be given by the Central Limit Theorem, that is,
it has to be |Λ|1/2 times a Gaussian random variable. According to (1.31) this
heuristic argument predicts the correct form of the leading term. Moreover, it was
shown in [10] and [11] that the counting measure (1.26) for ∆ = (−∞, µ], µ ∈ R, of
the discrete Schrödinger operator (1.20) with an i.i.d. potential and its continuous
analogue with a random Markov potential satisfies the Central Limit Theorem.
This is a particular case of (1.24), in which H is the given Schrödinger operator,
a(λ) = λ and ϕ(λ) = χ(−∞,µ](λ), the indicator of (−∞, µ], µ ∈ R. Likewise, we
prove below the Central Limit Theorem for Trϕ(aΛ(H)), in which H is again (1.20)
with random i.i.d. potential, a(λ) = λ and ϕ(λ) = (λ− x)−1 or ϕ(λ) = log(λ− x)
for some x ∈ R (see Theorems 2.1 and 2.2). We conclude that the above heuristic
argument applied to certain random operators correctly predicts the form of the
subleading term of the two term trace formula on the left of (1.31), which can differ
from that for convolution operators (that is, nonrandom ergodic operators), given
by Szegő’s theorem.

Moreover, in § 2 we argue that for random ergodic operators in l2(Zd), d > 1, the
following two term asymptotic trace formula is valid in the sense of distributions:

Trϕ(AΛ) = Ld

∫
ϕ(λ)N (dλ) + Ld/2ξ +O(Ld−1), L→∞, (1.33)

where L is a length parameter of the domain Λ (that is, |Λ| is proportional to Ld

and |∂Λ| is proportional to Ld−1), say the length of an edge of a cube centred at
the origin, and ξ is the Gaussian random variable. Thus, for d = 1 the subleading
term in (1.33) is the second term on the right, for d = 2 the second and the third
terms are of the same order of magnitude in |Λ|, although the second term seems
more important, since its Gaussian fluctuations have unbounded amplitude. Then,
starting from d = 3 the term of the order of Ld−1, that is, the contribution of
surface of Λ, becomes subleading (and has to be found explicitly), while the second
term on the right-hand side of (1.33), which is due to the ‘volume’ fluctuations of
the whole sum (1.30), has a lower order of magnitude than the surface term.

The above is reminiscent of the well known Larkin-Imry-Ma criterion in statis-
tical physics on the lower critical dimension of phase transition in the ferromag-
netic n-vector (or classical Heisenberg) model with short range interaction and
a (quenched) random i.i.d. external field of zero mean [12], [13]. In this case the
surface term O(Ld−1) is the energy of the flip of a domain wall of length L, while
the energy of orientation of spins along the field is O(Ld/2). If this energy domi-
nates, then the spins are chaotically oriented and there is no ferromagnetic order.
An argument similar to the above implies that this is the case for d = 1, 2.

We have said that for smooth test functions and discontinuous symbols (for exam-
ple, a = χ∆, the indicator of a spectral interval ∆) the subleading term in Szegő’s
asymptotic formula is logarithmic in L in the one-dimensional case (see (1.13)
and [6]–[8]). On the other hand, in Theorem 2.4 we show that for ϕ(λ) = λ(1− λ)
and a = χ∆, where ∆ is an interval in the spectrum of the Schrödinger opera-
tor (1.20) with an i.i.d. potential, an analogue of Szegő’s asymptotic formula con-
tains neither the leading term O(|Λ|), nor the Gaussian subleading term O(|Λ|1/2)
from (1.33), more precisely, it is the sum of two ergodic processes, bounded with
probability 1, with respect to L in (1.3). While it is natural to expect that there
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will be no nonrandom ‘volume’ contribution O(|Λ|) to (1.23) (in this case a(H) is
the spectral projection EH(∆) and for ergodic projections the support of measure
N of (1.27)–(1.29) is {0, 1}, cf. the first term on the right of (1.13), the absence
of the random fluctuating O(|Λ|1/2) term is one more new phenomenon indicating
how sensitively the term depends on the test function. Likewise, the boundedness
of the ‘surface term’ in the case of discontinuous symbols (instead of its logarith-
mic form for convolution operators, see (1.13) for d = 1) is also new and is closely
related to the pure point character of the spectrum, which is quite common for
one-dimensional random operators and multidimensional operators for a sufficiently
large potential but is absent for the convolution operators.

We have discussed the form of the two term asymptotic trace formula in the case
of random ergodic operators. There is, however, another widely studied class of
both continuous and discrete ergodic operators, which we mentioned above, whose
coefficients are almost periodic. Even though the stochastic properties of almost
periodic coefficients are rather poor, the existence of ergodic structure proves to
be rather useful in the spectral analysis of the corresponding operators. See, for
instance, [14] and [9]. In § 2.2 we consider the one-dimensional Schrödinger oper-
ator (1.20) with quasiperiodic potential (1.22), where V is a sufficiently smooth
periodic function of period 1 and α ∈ (0, 1) is a Diophantine irrational number.
We show (see Theorem 2.6) that for a(λ) = λ and ϕ(λ) = (λ− x)−1, where x does
not lie in the spectrum of H, that is, for the same case of smooth symbol and test
function as in Theorem 2.1 for the Schrödinger operator with i.i.d. potential, the
two term asymptotic formula again differs from that for the convolution operators,
although this time the difference is ‘minimal’: the leading term O(|Λ|) of the for-
mula is a natural analogue of the leading term of (1.12) and (1.21), however the
O(1) subleading term is not constant but quasiperiodic in L from (1.3). Moreover,
for ϕ(λ) = λ(1−λ) and a = χ∆, that is, for the same case of discontinuous symbol
and smooth test function as in Theorem 2.4 for the Schrödinger operator with i.i.d.
potential, the trace formula is similar to that in Theorem 2.4, provided that ∆ is
in the pure point spectrum of the quasiperiodic operator in question. This is again
different from the logarithmic growth in |Λ| in the corresponding trace formula for
convolution operators (see more in Remark 2.5).

§ 2. The main results

In this section we present the main results of the paper and make some comments.
The technical results used in the proofs are given in § 3. We stress that in what
follows we will always use the ergodic Schrödinger operator (1.20) as the underlying
operator H in the triple (1.25). Since the goal of the paper is to discuss new
phenomena for ergodic operators in the setting of Szegő’s theorem, we confine
ourselves to the technically simple cases with symbols a(λ) = λ and a(λ) = χ∆(λ),
where ∆ is an interval in the spectrum of H and test functions ϕ(λ) = (λ− x)−1,
ϕ(λ) = log(λ−x), where x is outside the spectrum of H, and ϕ(λ) = λ(1−λ). We
will also comment on several other choices of the pair (a, ϕ). Note that the case
ϕ(λ) = log(λ − x) corresponds to the original setting for Szegő’s theorem, see the
left-hand side of (1.10)).
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We will assume for technical simplicity that the ergodic potential {vj}j∈Z in the
Schrödinger operator (1.20) is bounded:

|vj | 6 V0 <∞, j ∈ Z. (2.1)

2.1. Random operators. We will consider here the case of the intuitively ‘most
random’ i.i.d. potentials (see the text after formula (1.22)).

Let σ(H) ⊂ R be the spectrum of H and let

G = (H − x)−1 = {Gjk}j,k∈Z, x ∈ R \ σ(H), (2.2)

be the resolvent of H. Denote by HΛ the restriction of H to the interval Λ of (1.3)
and by

GΛ = (HΛ − x)−1 = {(GΛ)jk}j,k∈Λ (2.3)

the resolvent of HΛ. The bounds

|Gjk| 6 ∥G∥ 6
1

dist(x, σ(H))
, |(GΛ)jk| 6 ∥GΛ∥ 6

1
dist(x, σ(H))

, (2.4)

are valid for the resolvent of any selfadjoint operator. It is important that the
bounds depend only on dist(x, σ(H)) and, in particular, are independent of the
potential and Λ.

It follows from (1.20) and (2.1) that ∥H∥ 6 ∥H0∥ + ∥V ∥ 6 2 + V0, hence
σ(H) ⊂ [−2− V0, 2 + V0] and

dist(x, σ(H)) > max{0, |x| − (2 + V0)}. (2.5)

Theorem 2.1. Let H be the Schrödinger operator (1.20) whose potential is
a sequence of i.i.d. random variables satisfying (2.1) and let G and GΛ be defined
in (2.2) and (2.3). Fix x ∈ R and assume that

ε :=
2

|x| − V0
∈ (0, 1). (2.6)

Then the random variable

|Λ|−1/2
(
TrGΛ − |Λ|E{G00}

)
(2.7)

converges in distribution to the Gaussian random variable of zero mean and nonzero
finite variance 0 < σ2 <∞ (its form is given in (3.14)).

Proof. Note first that (2.5) and (2.6) imply that

dist(x, σ(H) > δ :=
2− 2ε
ε

> 0, (2.8)

and, in view of (2.4), we have the bounds

|Gjk| 6 ∥G∥ 6 δ−1 <∞, |(GΛ)jk| 6 ∥GΛ∥ 6 δ−1 <∞, (2.9)

showing that the resolvents G and GΛ are well defined.
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Denote by HZ\Λ the restriction of H to the complement Z \Λ of Λ. Writing the
resolvent formula for the pair G and (HZ\Λ ⊕HΛ − x)−1 = GΛ(x)⊕ (HZ\Λ − x)−1,
we obtain

(GΛ)jk = Gjk + (RΛ)jk, j, k ∈ Λ, (2.10)

where
(RΛ)jk = −(GΛ)jLGL+1,k − (GΛ)j,−LG−L−1,k. (2.11)

Thus
TrGΛ :=

∑
j∈Λ

(GΛ)jj =
∑
j∈Λ

Gjj + rΛ, (2.12)

where
rΛ = TrRΛ. (2.13)

Using the inequalities∣∣∣∣ ∑
j∈Λ

(GΛ)jLGL+1,j

∣∣∣∣2 6
∑
j∈Λ

|(GΛ)jL|2
∑
j∈Λ

|GL+1,j |2 6 (G∗ΛGΛ)LL(GG∗)L+1,L+1,

analogous inequalities with −L and −(L + 1) instead of L and L + 1 and (2.9),
we obtain

|rΛ| 6
2
δ2
, (2.14)

that is, the second term on the right of (2.12) is O(1), |Λ| → ∞ for every realization
of the random potential, since our argument is in fact deterministic.

Since the potential V = {vj}j∈Z of (1.20) is a collection of i.i.d. random variables,
H is an ergodic operator (see [9], Corollary 2.6). It then follows from Theorem 2.7
and Lemma 2.8 of [9] that the resolvent (H − z)−1 is also ergodic for z /∈ σ(H),
hence {Gjj}j∈Z is an ergodic sequence (see (1.19)), in particular,

E{Gjj} = E{G00} ∀ j ∈ Z.

This and (2.12) imply for (2.7)

|Λ|−1/2
(
TrGΛ − |Λ|E{G00}) = |Λ|−1/2

∑
j∈Λ

(Gjj −E{Gjj}
)

+ r̃Λ, (2.15)

where

|r̃Λ| 6
4

|Λ|1/2δ2
. (2.16)

Thus the proof of the theorem reduces to the proof of the Central Limit Theorem
for the diagonal entries of the resolvent of the one-dimensional Schrödinger opera-
tor (1.20) with i.i.d. potential. This is proved in Lemma 3.3 under condition (2.6).

The proof is complete.

Here is one more example of the validity of the general formula (1.33) for d = 1,
an analogue of Szegő’s original theorem (1.10).
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Theorem 2.2. Let H be the Schrödinger operator (1.20) whose potential is
a sequence of i.i.d. random variables satisfying (2.1), let HΛ be its restriction to Λ
given in (1.3) and set

L = log(H − x) = {Ljk}j,k∈Z, (2.17)
LΛ = log(HΛ − x) = {(LΛ)jk}j,k∈Λ, (2.18)

where x is bounded, nonpositive and satisfies (2.6). Then the random variable

|Λ|−1/2
(
TrLΛ − |Λ|E{L00}

)
converges in distribution to the Gaussian random variable of zero mean and nonzero
finite variance 0 < σ̂2 <∞ (see (3.41)).

Proof. Note first that according to (2.8) we have

H − x > |x| − (V0 + 2) >
2− 2ε
ε

> 0,

hence the operators (2.17) and (2.18) are well defined (cf. (1.6)).
We will use the representation

log(H − x) = log |x|+
∫ 1

0

H(sH − x)−1 ds (2.19)

and its analogue for HΛ ⊕HZ\Λ. This implies (cf. (2.10)–(2.13))

TrLΛ =
∑
j∈Λ

Ljj +
∑
j∈Λ

(R̂Λ)j ,

where (cf. (2.10), (2.11))

(R̂Λ)j = −x
∫ 1

0

(
(sHΛ − x)−1

)
j,L

((sH − x)−1)L+1,j ds

− x

∫ 1

0

(
(sHΛ − x)−1

)
j,−L

((sH − x)−1)−L−1,j ds.

Since the integrand in the last formula is similar to the right-hand side of (2.11),
we obtain analogues of (2.15) and (2.16):

|Λ|−1/2
∑
j∈Λ

(
(LΛ)jj −E{Ljj}

)
= |Λ|−1/2

∑
j∈Λ

(Ljj −E{Gjj}) + r̂Λ,

where
|r̂Λ| 6

4x0

δ2
,

and δ is defined in (2.8).
Thus the proof of the theorem reduces to the proof of the Cental Limit Theorem

for the diagonal entries of the operator L in (2.17). This is proved in Lemma 3.3.
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Remark 2.3. (i) In Theorems 2.1 and 2.2 we consider triples (1.25) in which H is
the one-dimensional Schrödinger operator with random potential, a(λ) = λ and ϕ
is a smooth function on the spectrum of H. In this connection it must be noted
that the case with the same H and a and with ϕ(λ) = χR−(λ − µ), µ ∈ R, that
is, with a discontinuous test function, was examined in the papers [10] and [11]
mentioned above. It corresponds to the linear statistic (1.30) equal to the counting
function for the eigenvalues (1.26). It was shown in [10] and [11] that the random
variable (

NΛ(µ)− |Λ|N((−∞, µ])
)
|Λ|−1/2,

where N is defined in (1.28) and (1.29), converges in distribution to a Gaussian
random variable with zero mean and positive variance, so that the Central Limit
Theorem holds in this case too.

(ii) The multidimensional case d > 1 of Theorems 2.1 and 2.2 is similar and will
be presented elsewhere. In this case we have

(Hu)j = −
∑

|k−j|=1

uk + vjuj , j ∈ Zd,

instead of (1.20) and

(RΛ)jk =
∑

|t−s|=1, t∈Λ, s∈Zd\Λ

(GΛ)jtGs,k

instead of (2.11). Thus, an argument similar to that leading to (2.14) yields

|r̃Λ| 6
|∂Λ|
δ2

in this case, where now Λ is, say, a cube in Zd centred at the origin and |∂Λ| is
the number of points in Zd satisfying the conditions |t− s| = 1, t ∈ Λ, s ∈ Zd \ Λ.
The Central Limit Theorem for the ergodic sequence {Gjj}j∈Zd is also valid in
this case.

Theorems 2.1 and 2.2 present two cases of the general setting (1.25) for the two
term asymptotic trace formula (see (1.33)) analogous to Szegő’s theorem where H
is the one-dimensional Schrödinger operator with random i.i.d. potential and a and
ϕ are smooth (even real analytic). In both cases the subleading term is given by the
Central Limit Theorem. It is then reasonable to believe that the same is true for a
sufficiently large class of smooth symbols and test functions. Moreover, according
to [10] and [11] it is also true for certain discontinuous test functions and smooth
symbols. It is also easy to show that the counting measure of the convolution
operatorH0 satisfies NΛ(∆) = c(∆)|Λ|+O(1) as |Λ| → ∞. These cases demonstrate
the robustness of the order of magnitude of the subleading terms in the two term
asymptotic formula for (1.24) with respect to the smoothness of the test functions
in the triple (1.25) (provided that the symbol is smooth) both for convolution and
random ergodic operators. On the other hand, it follows from the next theorem
that the asymptotic form of the trace (1.24) is sensitive to the smoothness of the
symbol. Namely, we consider the triple (1.25) with ϕ(λ) = λ(1 − λ), the same
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H and a = χ∆, the indicator function of an interval ∆, that is, the case where
a(H) = EH(∆) is the spectral projection of H corresponding to a spectral interval
∆. This case proves to be different from both the case of convolution operators and
of a discontinuous symbol (see (1.13) and [6]–[8]) and the case of random operators
and smooth symbols, in particular those of [10], [11] and Theorems 2.1 and 2.2.

Theorem 2.4. Let H be the Schrödinger operator (1.20) whose potential is
a sequence of i.i.d. random variables satisfying (2.1) and having bounded proba-
bility density, let EH(∆) be the spectral projection of H corresponding to a spectral
interval ∆ ∈ σ(H) such that

N(∆) ∈ (0, 1), (2.20)

where N is defined in (1.27)–(1.29). Then there exist nonzero random variables t± ,
measurable with respect to the σ-algebra F∞

−∞ , generated by {vj}j∈Z (see (2.22),
(2.26) and (2.28)) and with probability 1 giving the asymptotic formula

Tr (EH(∆))Λ
(
1Λ− (EH(∆))Λ

)
= t+(TLω)+ t−(T−Lω)+o(1), L→∞, (2.21)

for the restriction (EH(∆))Λ of EH(∆) to the interval Λ = [−L,L].

Proof. Denoting
EH(∆) = {Pjk}j,k∈Z, (2.22)

we can write the left-hand side of (2.21) as

L∑
j,k=−L

Pjk(δjk − Pjk) =
L∑

j=−L

(
Pjj −

∑
k∈Z

|Pjk|2 +
∑
|k|>L

|Pjk|2
)

=
L∑

j=−L

∑
k>L

|Pjk|2 +
L∑

j=−L

∑
k<−L

|Pjk|2, (2.23)

where we have used ∑
k∈Z

|Pjk|2 = Pjj ,

which is valid for any orthogonal projection. The first sum on the right of (2.23) is

t+L :=
L∑

j=−L

∑
k>L

|Pjk|2 =
L∑

j=−∞

∑
k>L

|Pjk|2 +
∑

j<−L

∑
k>L

|Pjk|2 = s′L + s′′L. (2.24)

We will now use a basic result from the spectral analysis of the one-dimensional
Schrödinger operator with an i.i.d. potential, according to which there exist C <∞
and γ > 0 providing the bound

E{|Pjk(ω)|} 6 Ce−γ|j−k|; (2.25)

see, for instance, the recent surveys [15] and [16]. The bound is a manifestation
of complete localization, that is, the pure point character of the spectrum and the
exponential decay of the eigenfunctions of the one-dimensional Schrödinger operator
with i.i.d. potential.
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It follows from the bound and the inequality |Pjk| 6 1, which is valid for any
orthogonal projection, that

E{s′′L} 6 C1e
−γ1L,

where C1 <∞ and γ1 > 0 do not depend on L. This and the Borel-Cantelli lemma
imply that s′′L of (2.24) vanishes with probability 1 as L→∞, that is,

t
(L)
+ = s′L + o(1), L→∞.

As for the term s′L in (2.24), recall that {Pjk(ω)}j,k∈Z is the matrix of the ergodic
operator EH(∆). Thus, its entries satisfy (1.19), in particular, PL−j,k+L(ω) =
P−j,k(TLω), and we can write

s′L =
∞∑

j=0

∞∑
k=1

|PL−j,k+L|2 = t+(TLω),

where

t+(ω) =
∞∑

j=0

∞∑
k=1

|P−j,k(ω)|2. (2.26)

The terms in the above series are nonnegative measurable functions, thus the series
is convergent with probability 1 if the series of expectations of its terms is conver-
gent, that is, if

∞∑
j=0

∞∑
k=1

E{|P−j,k|2} <∞.

This is again guaranteed by (2.25) and we conclude that t+(ω) in (2.26) is a well-
defined measurable function and that with probability 1 we have

t
(L)
+ = t+(TLω)) + o(1), L→∞. (2.27)

An analogous argument shows that the second sum on the right-hand side of (2.23)
is t−(T−Lω) + o(1) as L→∞ with probability 1, where

t−(ω) =
∞∑

j=0

∞∑
k=1

|Pj,−k(ω)|2. (2.28)

We will show that t± are not identically zero. Assume the converse, that is, say,
that t+(ω) = 0 with probability 1. It then follows from (2.26) that P−j,k(ω) = 0
with probability 1 for j = 0, 1, . . . and k = 1, 2, . . . . This, together with the relation
Ps−j,k+s(ω) = P−j,k(T sω), which is valid for every s ∈ Z (see (1.19)), and the fact
that EH(∆) = {Pjk}j,k∈Z is Hermitian, imply that Pjk(ω) = 0, j ̸= k, that is, the
spectral projection EH(∆) is diagonal. Since EH(∆) commutes with H, it can be
either zero or the identity, so that, in view of (1.29)), N(∆) ∈ {0, 1}. However, this
is incompatible with (2.20).

The same argument applies to the random variable t− in (2.28). The proof is
complete.
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Remark 2.5. The argument leading to (2.23) is valid for any orthogonal projection
in l2(Z). In addition, it follows from (1.32) for the spectral projection (2.22) of
a convolution operator that

|Pjk| =
|sinκ(j − k)|
|j − k|

, j, k ∈ Z, (2.29)

where κ is determined by a and ∆. As a result, the right-hand side of (2.23) is
const · log |Λ| as |Λ| → ∞. This is a simple example of logarithmic terms in Szegő’s
theorem with a discontinuous symbol, which have been mentioned more than once
above (see, for instance, (1.13)).

2.2. Quasiperiodic operators. We will consider here the case where the
one-dimensional discrete Schrödinger operator (1.20) with quasiperiodic poten-
tial (1.22) plays the role of H in (1.25); it is intuitively the ‘least random’ ergodic
potential (1.18) (see the text after (1.22)).

Theorem 2.6. Let H be the one-dimensional discrete Schrödinger operator (1.20)
in l2(Z) with quasiperiodic potential (1.22) satisfying (2.1). Assume that the func-
tion V in (1.22) has [β] + 3 bounded derivatives and that the frequency α ∈ (0, 1)
of (1.22) is Diophantine, that is, it admits the bound

|αl −m| > C

lβ
, β > 1, (2.30)

valid for all integers m and all positive integers l. Then the resolvent GΛ(ω) =
(HΛ − z)−1 , where HΛ is the restriction of to Λ of (1.3),

dist{z, σ(H)} > η0 > 2, (2.31)

and σ(H) is the spectrum of H , satisfies:∑
|j|6L

(GΛ(ω))jj = (2L+ 1)
∫

T
G00(ω) dω

+ r+(αL+ ω) + r−(−αL+ ω) + o(1), L→∞, (2.32)

where r± are continuous 1-periodic functions (see (2.40) for explicit formulae
for r±).

Remark 2.7. The Diophantine numbers have Lebesgue measure 1 in T, see [17],
Theorem 32, for instance.

Proof of Theorem 2.6. From Lemma 3.5 we have∑
|j|6L

(GΛ(ω))jj =
∑
|j|6L

Gjj(ω)−
∑
|j|6L

GL,jGj,L+1(1 +GL,L+1)−1

−
∑
|j|6L

G−L,jGj,−L−1(1 +G−L,−L−1)−1 +O(e−2bL)

= T1 + T2 + T3 +O(e−2bL), L→∞. (2.33)
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It follows from (1.16), (1.19) and Lemma 3.1 that

Gj+L,k+L(ω) = Gjk(αL+ ω), (2.34)

in particular, GL,L+1(ω) = G01(αL+ω). In addition, we have from (3.1) and (2.34)
(cf. (2.27))

∑
j∈Λ

GL,j(ω)Gj,L+1(ω) =
L∑

j=−∞
GL,j(ω)Gj,L+1(ω) +O(e−2bL)

=
0∑

j=−∞
G0j(αL+ ω)Gj1(αL+ ω) +O(e−2bL), L→∞.

Thus the term T2 in (2.33) is

T2 = g+(αL+ ω) +O(e−2bL), L→∞,

g+(ω) = (1−G01(ω))−1
0∑

j=−∞
G0,j(ω)Gj,1(ω),

(2.35)

that is, T2 is quasiperiodic in L up to an exponentially small error.
The term T3 on the right of (2.33) has an analogous asymptotic form

T3 = g−(−αL+ ω) +O(e−2bL), L→∞,

g−(ω) = (1−G0,−1(ω))−1
∞∑

j=0

G0,j(ω)Gj,−1(ω).
(2.36)

Consider now the term T1 in (2.33). According to Lemma 3.6, G00 has [β] + 3
continuous derivatives in ω ∈ T. Thus its Fourier coefficients

gl =
∫

T
e−2πilωG00(ω) dω

admit the bound

|gl| 6
C

|l|[β]+3
, |l| > 1, (2.37)

for some C <∞. This and the Fourier series in ω for G00 imply that

T1 :=
∑
j∈Λ

Gjj(ω) = (2L+ 1)g0 +
∑

l∈Z\{0}

gl
sinπαl(2L+ 1)

sinπαl
e2πilω

= (2L+ 1)
∫

T
G00(ω) dω + f+(αL+ ω)− f−(−αL+ ω), (2.38)

where
f±(ω) =

∑
l∈Z\{0}

gl

2i sinπαl
e2πil(ω±α/2). (2.39)
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According to (2.30), for l ̸= 0 we have

| sinπαl| = | sinπ(αl −m)| > 2|αl −m| > 2C
|l|β

,

and then (2.37) implies that the Fourier series on the right of (2.39) is abso-
lutely convergent and the functions f± are continuous. This, (2.33), (2.35), (2.36)
and (2.39) imply (2.32) with

r±(ω) = ±f±(ω) + g±(ω). (2.40)

Remark 2.8. (i) The conditions of Theorem 2.6 are not optimal. Without discussing
this point in detail we just mention that the theorem is also valid for the unbounded
quasiperiodic potential

vj = g tanπ(αj + ω).

The corresponding proof can be obtained using the techniques presented in [19],
Ch. 18.

(ii) Consider the case α = m/n in (1.22), where n is positive integer and
0 6 m < n, that is, the case of periodic potential of period n. Note that any
periodic potential can be viewed as ergodic just by randomizing the origin of the
interval of periodicity by the uniform measure. Hence, in (1.22) it suffices to con-
sider ω = 0, 1/n, 2/n, . . . , (n − 1)/n. Here, using the same argument as in the
quasiperiodic case, the terms T2 and T3 in (2.33) are periodic in L up to an expo-
nentially small error. To obtain the first term T1 we write

|Λ| = 2L+ 1 = νn+ µn, ν =
[
|Λ|
n

]
∈ N, µ =

{
|Λ|
n

}
∈ Q,

and µ is n-periodic in |Λ|. Taking into account the periodicity of the diagonal
matrix elements {Gjj}, for ω = m/n we obtain

∑
j∈Λ

Gjj(ω) = ν

n−1∑
j=0

Gjj(ω) +
µn−1∑
j=1

Gjj(ω)

= |Λ|n−1
n−1∑
j=0

G00

(
j

n
+ ω

)
+

µn−1∑
j=1

Gjj(ω)− µ

n−1∑
j=0

Gjj(ω),

where the second and the third terms on the right are periodic in |Λ| with period n,
since µ has this property. To interpret this result in parallel with the quasiperiodic
case we recall that ω = m/n for some m ∈ [0, n − 1] and omit ω in the first term
on the right. An analogous argument applies for any periodic sequence in place
of (1.22) with α = m/n.

(iii) The argument proving the asymptotic behaviour (2.35) and (2.36) is applica-
ble for any ergodic potential. Thus, in general the resolvent of the one-dimensional
Schrödinger equation with ergodic potential (cf. (2.21)) satisfies∑
|j|6L

(GΛ(ω))jj =
∑
|j|6L

Gjj(ω) + g+(TLω) + g−(T−Lω) +O(e−2bL), L→∞,

(2.41)
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where g± are given by (2.35) and (2.36). Furthermore, the leading term of the
asymptotics for the first term on the right of (2.41) as L→∞ is again general and
equals (2L+1)E{G00(ω)} by the ergodic theorem. As for the subleading term, it is
either O(L1/2) in the case of random potential (see Theorems 2.1 and 2.2 or O(1) in
the case of quasiperiodic potential (see (2.38)). In particular, if the potential is zero,
then G is a convolution operator with the symbol â(p) = (2 cos 2πp−z)−1. Thus, it
is natural to expect that the right-hand side of (2.41) coincides with the derivative
with respect to z of the right-hand side of Szegő’s formula (1.10), in which {lj}j∈Z
are the Fourier coefficients of log â(p). A standard but rather tedious calculation
shows that this is indeed the case.

(iv) The main ingredient in the proof of Theorem 2.4 for the random Schrödinger
operator is the bound (2.25). An analogous bound is valid for certain almost peri-
odic operators and is closely related to the existence of the pure point component
in their spectrum, typical if the potential is large enough [14], [18], [9]. Thus, the
results of Theorem 2.4 are also valid for these quasiperiodic operators, which points
to the rather general nature of the asymptotic formula (2.21), that is, the bound-
edness of the expression (1.24) for certain discontinuous symbols and Schrödinger
operators with pure point spectrum. On the other hand, the absolutely continuous
component of the spectrum typical for one-dimensional Schrödinger operators with
quasiperiodic potentials of small amplitude is often nowhere dense (Cantor). This,
with the results of [19], encourage us to believe that in this case the growth of the
right-hand side of (2.23) can be quite close to linear. Note that for any orthogonal
projection in l2(Z) the right-hand side is o(|Λ|) as |Λ| → ∞.

§ 3. Auxiliary results

We begin with the following lemma.

Lemma 3.1. Let H be the one-dimensional Schrödinger operator (1.20) with i.i.d.
random potential and G and L be defined by (2.2) and (2.17). Assume that (2.6)
holds. Then

(i) there exist C <∞ and b > 0 depending only on ε from (2.6) and such that

|Gjk| 6 Ce−b|j−k|, j, k ∈ Z, (3.1)

|Ljk| 6 Ce−b|j−k|, j, k ∈ Z, x < 0; (3.2)

(ii) for any positive integer P we have the representation

Gjj = GP
jj +RP

jj , j ∈ Z, (3.3)

Ljj = LP
jj + R̂P

jj , j ∈ Z, (3.4)

where GP
jj and LP

jj depend only on {vk}|j−k|6P (that is, they are measurable with
respect to the σ-algebra F j+P

j−P generated by {vk}|j−k|6P ) and

|GP
jj | 6 C, |RP

jj | 6 Ce−bP , (3.5)

|LP
jj | 6 C, |R̂P

jj | 6 Ce−bP . (3.6)
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Proof. Writing out the Neumann-Liouville series for G

Gjk =
∞∑

l=0

(−1)l
(
(V − x)−1(H0(V − x)−1)l

)
jk

(3.7)

and taking the inequalities ∥H0∥ 6 2 and

∥(V − x)−1∥ 6
(
dist{x, [−V0, V0]}

)−1
6

∣∣|x| − V0

∣∣−1
,

into account, we conclude that the series is convergent, since in view of (2.6),∣∣((V − x)−1(H0(V − x)−1)l)jk

∣∣ 6
∥∥((V − x)−1(H0(V − x)−1)l)

∥∥ 6 εl.

In addition, (V − z)−1 is a multiplication operator and (H0)jk is not zero only if
|j − k| = 1, thus the term (V − z)−1(H0(V − z)−1)l)jk in the series (3.7) is not
zero only if l > |j − k|. Hence, the series starts from l = |j − k| and is bounded by
ε|j−k|(1− ε)−1. This is equivalent to (3.1) with

C = (1− ε)−1, ε = e−b. (3.8)

Likewise, the first P terms of (3.7) contain (Vt − z)−1 with |j − t| 6 P , the sum
from l = 0 to l = P − 1 is bounded by (1− ε)−1 and the sum from l = P to l = ∞
is bounded by εP (1 − ε)−1. Denoting the first sum by GP

jj(z) and the second by
RP

jj(z) and using (3.8), we obtain (3.3) and (3.5).
The proofs of (3.2), (3.4) and (3.6) reduce to the above upon using (2.19). The

proof is complete.

Remark 3.2. The bound in (3.1) is rather simple and rough. For more sophisticated
bounds see [20].

Lemma 3.3. Let the sequence {Gjj}j∈Z be defined in (2.2), where G is the resol-
vent of the one-dimensional Schrödinger operator (1.20) with random i.i.d. potential
satisfying (2.1) and (2.6). Then:

(i) if
G◦jj := Gjj −E{Gjj}, (3.9)

and
Cj−k = E{G◦jjG

◦
kk} (3.10)

is the covariance of {Gjj}j∈Z , then there exist C <∞ and b > 0 such that

|Cj−k| 6 Ce−b|j−k|; (3.11)

(ii) if
γΛ =

∑
j∈Λ

Gjj , (3.12)

and
Var

{
|Λ|−1/2γΛ

}
:= |Λ|−1E

{
|γΛ −E{γΛ}|2

}
(3.13)
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is its variance, then

σ2 := lim
Λ→∞

Var
{
|Λ|−1/2γΛ

}
=

∑
j∈Z

Cj ∈ (0,∞); (3.14)

(iii) the random variable

|Λ|−1/2(γΛ −E{γΛ})

converges in distribution to the Gaussian random variable with zero mean and
variance σ2 > 0.

Proof. (i). The dependence of the covariance on the difference j − k follows from
the fact that for any dist{x, σ(H)} > 0 (see (2.9) and (2.8)) the sequence {Gjj}j∈Z
is ergodic. Using Lemma 3.1 and (3.3)–(3.5) with P = |j − k|/3, we obtain that
the corresponding (GP

jj)
◦ and (GP

kk)◦ are independent random variables with zero
mean, thus

E
{
(G◦jjG

◦
kk

}
= E

{
(GP

jj)
◦(RP

kk)◦
}

+ E
{
(RP

jj)
◦(GP

kk)◦
}

+ E
{
(RP

jj)
◦(RP

kk)◦
}
.

Now, (3.3)–(3.5) imply (3.11) with C = 12(1− ε)−2 and e−b = ε1/3.
(ii) the expression for σ2 in (3.14) and the bound σ2 < ∞ follows from (3.12)

and (3.9)–(3.13). We will prove now that σ2 is positive.
Note first that σ2 is a real analytic function of x outside the spectrum of H.

In addition, it is easy to establish the asymptotic formula

Gjj = −x−1 + vjx
−2 +O

(
1
x3

)
, |x| → ∞,

and this, together with (3.9), (3.10) and (3.13), implies that

σ2 = Var{v0}x−4(1 +O(x−1)), |x| → ∞.

We conclude that there exists x1 ∈ (0,∞) such that σ2 > 0 if |x| > x1 and σ2 has
at most a finite number of zeros if |x| ∈ (x0, x1), x0 = 2(V0 + 1) (see (2.6)).

We will now show that σ2 is strictly positive for all |x| > x0. Here, it is convenient
to consider

τΛ := TrGΛ (3.15)

instead of γΛ of (3.12). Indeed, from (2.12), (2.14) and (3.9)–(3.13) we have

|Λ|−1Var{γΛ} − |Λ|−1Var{τΛ} = O(|Λ|−1/2), |Λ| → ∞. (3.16)

To deal with Var{τΛ} we will use a simple version of the martingale techniques (see,
for instance, [21], Proposition 18.1.1), according to which if {Xj}L

j=−L are random
variables, Φ: R2L+1 → R is bounded and Ψ = Φ(X−L, X−L+1, . . . , XL), then

Var{Ψ} := E
{
|Ψ−E{Ψ}|2

}
=

L∑
l=−L

E
{
|Ψ(l) −Ψ(l+1)|2

}
, (3.17)
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where
Ψ(l) = E{Ψ|FL

l }, Ψ(−L) = Ψ, Ψ(L+1) = E{Ψ}, (3.18)

and F b
a is the σ-algebra generated by {Xj}a6j6b.

We choose Xj = vj , |j| 6 L, and Φ = τΛ, and we obtain

|Λ|−1Var{τΛ} = |Λ|−1
L∑

l=−L

E
{
|M (l)

Λ |2
}
, M

(l)
Λ := τ

(l)
Λ − τ

(l+1)
Λ , (3.19)

where
τ

(l)
Λ = E{τΛ|FL

l }, τ
(−L)
Λ = τΛ, τ

(L+1)
Λ = E{τΛ}. (3.20)

We will now make the dependence of τ (l)
Λ on vl explicit. To this end we use the

rank one perturbation formula for the resolvents G0 and G of a pair of selfadjoint
operators A0 and A0 + vP , where v ∈ R and P is an orthogonal projection on a
unit vector e:

G = G0 − vG0PG0(1 + v(G0e, e))−1, (3.21)

hence
TrG = TrG0 − v(G2

0e, e)(1 + v(G0e, e))−1. (3.22)

We take H|vl=0 as A0, vl as v and the vector el in the canonical basis of l2(Z) as e.
Setting

GΛ|vl=0 = Gl; (3.23)

from (3.21), (3.22) and (3.15) we obtain:

(GΛ)jk = (Gl)jk − vl(Gl)jl(Gl)lk(1 + vl(Gl)ll)−1, (3.24)

τΛ = Tr Gl −
vl(G 2

l )ll

1 + vl(Gl)ll
. (3.25)

Since FL
l+1 and the σ-algebra F l

l generated by vl are independent and Gl does not
depend on vl, using (3.25) we have

τ
(l)
Λ := E{τΛ|FL

l } = E{TrGl|FL
l+1} −

∫
E

{
v′l(G

2
l )ll

1 + v′l(Gl)ll

∣∣∣∣FL
l+1

}
F (dv′l),

τ
(l+1)
Λ := E{τΛ|FL

l+1} = E{TrGl|FL
l+1} −E

{
vl(G 2

l )ll

1 + vl(Gl)ll

∣∣∣∣FL
l+1

}
,

where F is the common probability law of {vj}j∈Z. This and (3.19) yield

M
(l)
Λ = E

{
vl(G 2

l )ll

1 + vl(Gl)ll
−

∫
v′l(G

2
l )ll

1 + v′l(Gl)ll
F (dv′l)

∣∣∣∣FL
l+1

}
. (3.26)

Since Gl in (3.23) does not depend on {vj}j∈Z\Λ, we can replace FL
l+1 in the above

expression by F∞
l+1. Further, recall that throughout this proof we use the finite

volume resolvent GΛ of (2.3). It follows from (2.9), (2.10) and (3.1) that we can
replace GΛ in the above formulae, in particular in (3.26), by G from (2.2) with an
error that vanishes as Λ →∞ and this results in the relation

M
(l)
Λ = M (l) + o(1), Λ →∞,
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valid with probability 1, where

M (l) = −E
{

vl(G2
l )ll

1 + vl(Gl)ll
−

∫
v′l(G

2
l )ll

1 + v′l(Gl)ll
F (dv′l)

∣∣∣∣F∞
l+1

}
, (3.27)

Gl = G|vl=0, and G is the infinite-volume resolvent (2.2). This, with (3.16), allows
us to write

σ2 = lim
Λ→∞

|Λ|−1Var{γΛ} = lim
Λ→∞

|Λ|−1
L∑

l=−L

E{|M (l)|2}. (3.28)

Note now that the sequence {M (l)}l∈Z of (3.27) is ergodic. A simple way to see
this is to use the identity

vl(G2
l )ll

1 + vl(Gl)ll
=

vl(G2)ll

1− vl(G)ll
(3.29)

(see (3.24), (3.25)), and the general relations (1.17) and (1.19). The identity follows
easily from the analogue of (3.24) for the infinite volume resolventsGl = G|vl

andG.
Thus, the summands in (3.28) do not depend on l and we obtain the following

representation for the limiting variance:

σ2 := lim
Λ→∞

|Λ|−1Var{γΛ} = E{|M (0)|2}. (3.30)

Assume now that the right-hand side of the formula is zero. Then M (0) = 0 with
probability 1, in particular, the equality

E
{

v0(G2
0)00

1 + v0(G0)00

∣∣∣∣F∞
1

}
= E

{∫
v′0(G

2
0)00

1 + v′0(G0)00
F (dv′0)

∣∣∣∣F∞
1

}
(3.31)

holds for almost all v0 in the support of F . Fixing an event from F∞
1 and taking

account of the fact that our random potential {vj}j∈Z is nontrivial we conclude that
the equality is possible only if its left-hand side is independent of v0 for fixed (G0)00
and (G2

0)00 (recall that G0 = G|v0 is independent of v0). Denoting the left-hand
side of (3.31) for fixed (G0)00 and (G2

0)00 as f(v0), we obtain

f ′(v0) = E
{

(G2
0)00

(1 + v0(G0)00)2

∣∣∣∣F∞
1

}
= E

{
(G2)00

(1− v0G00)2

∣∣∣∣F∞
1

}
, (3.32)

where we have used (3.29) in the last equality.
Taking (2.1), (2.9) and (2.6) into account we have

(1− v0G00) > 1− V0|G00| > (2− ε)ε−1 > 0. (3.33)

In addition, it follows from the spectral theorem that if E = {Ejk}j,k∈Z is the
resolution of the identity of H of (1.20), then we have with probability 1

(G2)00 =
∫

(EH)(dλ))00
(λ− x)2

> 0, (3.34)
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since the total mass of the measure (EH)00 is 1 with probability 1 (one can also
use (1.29)). Thus the equality f ′(v0) = 0 is impossible. This proves assertion (ii)
of the lemma.

(iii) To prove the third assertion we use Theorem 18.6.3 from [22], according to
which if {Xj}j∈Z are i.i.d. random variables, (Ω,F , P ) is the corresponding proba-
bility space, T is the shift automorphism of Ω given by (1.15), that is, Xj+1 = TXj ,
j ∈ Z, and Y0 is a measurable function on the space, then the Central Limit Theo-
rem is valid for the ergodic sequence Yj(ω) = Y0(T jω), j ∈ Z, ω ∈ Ω (cf. (1.18)) if
Y0 is bounded and satisfies

∞∑
P=1

E
{
|Y0 −E{Y0 | FP

−P }|
}
<∞, (3.35)

where FP
−P is the σ-algebra generated by {Xj}|j|6P . We choose the i.i.d. sequence

{vj}j∈Z of (1.20) as {Xj}j∈Z, and G00 with x satisfying (2.6) as Y0, since, as G
is an ergodic operator, we have Gjj(ω) = G00(T jω). To check condition (3.35) we
use Lemma 3.1 with P = [k/2], and obtain the bound∣∣G00 −E{G00

∣∣FP
−P }| 6

∣∣RP
00 −E{G00

∣∣FP
−P }| 6 2Ce−bP/2 (3.36)

implying (3.35).
The proof of the lemma is complete.

Lemma 3.4. Let the sequence {Ljj}j∈Z be defined by (2.17), where H is the
one-dimensional Schrödinger operator (1.20) with random i.i.d. potential satisfying
the conditions of Theorem 2.2. We have:

(i) if
L◦jj := Ljj −E{Ljj}, (3.37)

and
Dj−k = E{L◦jjL

◦
kk} (3.38)

is the covariance of {Ljj}j∈Z , then there exist C <∞ and b > 0 such that

|Dj−k| 6 Ce−b|j−k|; (3.39)

(ii) if
γ̂Λ =

∑
j∈Λ

Ljj , (3.40)

and
Var

{
|Λ|−1/2γ̂Λ

}
:= |Λ|−1E{|γ̂Λ −E

{
γ̂Λ}|2

}
(3.41)

is its variance, then

σ̂2 := lim
Λ→∞

Var{|Λ|−1/2γ̂Λ} =
∑
j∈Z

Dj > 0; (3.42)

(iii) if (2.6) holds, then the random variable

|Λ|−1/2
(
γ̂Λ −E{γ̂Λ}

)
converges in distribution to the Gaussian random variable with zero mean and
variance σ̂2 > 0.
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Proof. We follow the scheme of proof of Lemma 3.1 and use the same notation.
(i) The proof of assertion (i) uses (2.19), (3.2), (3.4) and (3.6) instead of (3.1),

(3.3) and (3.5).
(ii) Here we repeat almost word for word the argument leading to (3.20), to

obtain

|Λ|−1Var{τ̂Λ} = |Λ|−1
L∑

l=−L

E{|M̂ (l)
Λ |2}, M̂

(l)
Λ := τ̂

(l)
Λ − τ̂

(l+1)
Λ ,

where τ̂Λ = TrLΛ (cf. (3.15)) and

τ̂
(l)
Λ = E{τ̂Λ|FL

l }, τ̂
(−L)
Λ = τ̂Λ, τ̂

(L+1)
Λ = E{τ̂Λ}.

Then, instead of (3.22) we have:

Tr log(HΛ − x) = log Det(HΛ − x) = log Det
(
HΛ

∣∣
vl=0

− x
)

+ log(1 + vl(Gl)ll),

where Gl is defined in (3.23). This leads to an analogue of (3.3) and (3.27):

σ̂2 := lim
Λ→∞

|Λ|−1Var{γ̂Λ} = E{|M̂ (0)|2}, (3.43)

where (cf. (3.27) with l = 0)

M̂ (0) = −E
{

log(1 + v0(G0)00)−
∫

log(1 + v′0(G0)00)F (dv′0)
∣∣F∞

1

}
.

Assume now that the right-hand side of (3.43) is zero. Then M̂ (0) = 0 with
probability 1. This implies, by the same argument as that after formula (3.31),
that the expression log(1 + v0(G0)00) is independent of v0. On the other hand, in
view of (3.22), the derivative of the expression is

∂

∂v0
log(1 + v0(G0)00) =

(G0)00
1 + v0(G0)00

= G00,

and from the spectral theorem (cf. (3.34)) we have

G00 =
∫

(E H(dλ))00
(λ− x)

> 0,

since, according to the conditions of Theorem 2.2, x is to the left of the spec-
trum of H and the total mass of measure (E H)00 is 1 with probability 1. Hence
log(1+v0(G0)00) is strictly monotonic in v0. The contradiction thus obtained proves
assertion (ii) of the lemma.

(iii) To prove this assertion we again use Theorem 18.6.3 from [22], according
to which we have to check condition (3.35) for Y = L00. This is straightforward
using (2.19) and (3.36).

The lemma is proved.
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Lemma 3.5. Let H be the Schrödinger operator (1.20), let HΛ be its restriction to
the interval Λ given in (1.3), and let {Gjk(z)}j,k∈Z and {(GΛ(z))jk}j,k∈Λ be their
resolvents satisfying (2.31). Then for all j ∈ Λ and b > 0 from (3.1):

(GΛ(z))jj = Gjj −GL,jGj,L+1(1 +GL,L+1)−1

−G−L,jGj,−L−1(1 +G−L,−L−1)−1 +O(e−2bL), L→∞.

Proof. It follows from (2.10) and (2.11) that

(GΛ(z))jk = Gjk −Gj,L+1(GΛ)L,k +Gj,−L−1(GΛ)−L,k, j, k ∈ Λ. (3.44)

Writing the formula for j = L, we obtain

(GΛ(z))Lk = GL,k(1 +GL,L+1)−1 +GL,−L−1(1 +GL,L+1)−1(GΛ)−L,k, k ∈ Λ.

Now relations (2.31), (3.1) and the conditions of the lemma imply that the second
term on the right is O(e−2bL), that is,

(GΛ(z))L,k = GL,k(1 +GL,L+1)−1 +O(e−2bL), L→∞. (3.45)

Analogous argument applies to the third term in (3.44), yielding (3.45) with −L
and −(L+1) instead of L and L+1. Plugging these asymptotic relations into (3.44),
we obtain the assertion of the lemma.

Lemma 3.6. Under the conditions of Theorem 2.6 the matrix element G00 of (2.2)
has [β] + 3 continuous derivatives in ω .

Proof. Denote V (p), p = 0, 1, . . . , [β]+3, the multiplication operator in l2(Z) defined
by the sequence

{v(p)
j }j∈Z, v

(p)
j =

∂p

∂ωp
V (αj + ω).

It follows from the conditions of Theorem 2.6 that

∥V (p)∥ = sup
j∈Z

|v(p)
j | 6 max

ω∈T
|V (ω)| := v(p).

Now, by using the resolvent identity, (2.31) and the Schwarz inequality, we obtain

∂

∂ω
G00(ω) = −(GV (1)G)00 6 v(1)

∑
j∈Z

|Gj0|2 = v(1)(G2)00 6
q(1)

dist2(z, σ(H))
.

An analogous argument applies to higher derivatives, which completes the proof.
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[3] B. Simon, Szegő’s theorem and its descendants Spectral theory for L2 perturbations
of orthogonal polynomials, M.B. Porter Lectures, Princeton Univ. Press, Princeton,
NJ 2011, xii+650 pp.
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