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1 Introduction

In this paper we give a survey on a variety of aspects of probability theory em-
phasizing the method of moments. If (Ω,F ,P) is a probability space and E(X)
denotes the expectation value of the random variable X then the kth moment of
X is defined by

mk = mk(X) :=

∫
Xk dP = E

(
Xk
)
.

Many results in probability concern the convergence of random variables XN as
N → ∞. For example the classical Central Limit Theorem says that the random
variables

ΣN :=
1√
N

N∑
i=1

Xi

converge in distribution to a standard normal distribution, provided the Xi are
independent, identically distributed and have expectation 0 and variance 1.

In the context of the Central Limit Theorem convergence in distribution can be
rephrased as

P(ΣN ≤ x) −→ 1√
2π

∫ x

−∞
e−t

2/2 dt for all x ∈ R

The method of moments is a way to prove convergence in distribution by show-
ing that the corresponding moments converge. In this work we investigate under
which conditions such a conclusion is correct and give a number of examples for
which this method can be applied successfully .

Chapter 2 is an introduction to the theory of weak convergence of measures and,
thus, to convergence in distribution. In this chapter we introduce the method of
moments and derive (weak) conditions under which it can be applied.

Chapter 3 is devoted to classical limit theorems for independent, identically dis-
tributed (i. i. d.) random variable, such as the Law of Large Numbers and the
Central Limit Theorem. In connection with the latter theorem we also introduce
and discuss some combinatorial results which will play a role in the rest of the
paper.

In Chapter 4 we discuss a generalization of i. i. d. random variables, namely ex-
changeable random variables. A sequence of random variables is called exchange-
able if their finite dimensional distributions are invariant under permutation of the
variables. Among others, we prove a Law of Large Numbers for such random
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variables, and prove de Finetti’s theorem which gives an interesting and somewhat
surprising representation theorem for a certain class of exchangeable sequences.

The last chapter, Chapter 5 deals with a model which comes from statistical
physics: The Curie-Weiss Model. This model was introduced to describe mag-
netism and in fact is able to predict a phase transition (from paramagnetism to
ferromagnetism). The same system can also be used to describe the behavior of
voters.

We prove various limit theorems for the Curie-Weiss Model. The model depends
on a parameter β which can be interpreted in statistical mechanics as an ‘inverse
temperature’. Our results show that the limit behavior of the Curie-Weiss Model
depends qualitatively on this parameter β. In fact, it changes drastically at the
value β = 1. Such a behavior is known as a ‘phase transition’ in statistical physics.
In terms of voting models this can be interpreted as a sudden change of voting
behavior if the interaction among voters exceeds a certain value.
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2 Weak Convergence

2.1 Measures, Integrals and Function Spaces

By a bounded measure on Rd we always mean a positive measure µ on the Borel-
σ-Algebra B(Rd) with µ(Rd) <∞. A probability measure µ on Rd is a bounded
measure with µ(Rd) = 1.

Examples 2.1. 1. For any x0 ∈ Rd
(
and A ∈ B(Rd)

)
δx0(A) =

{
1, if x0 ∈ A;
0, otherwise.

defines a probability measure on Rd, the Dirac measure in
x0.

2. If λ denotes the Lebesgue measure on Rd, f ∈ L1(Rd, λ)
and f ≥ 0, then

µ = f dλ(A) :=
∫
A

f(x) dλ(x)

defines a bounded measure µ on B(Rd). The function f is
called the Lebesgue density of µ.

If µ is a bounded measure on Rd and f a bounded continuous function on Rd, the
integral

Iµ(f) :=

∫
Rd

f(x) dµ(x) (1)

is well defined.

Definition 2.2. We denote the set of bounded continuous functions on Rd by
Cb(Rd).

Equipped with the sup-norm

‖f‖∞ = sup
x∈Rd
|f(x)| (2)

Cb(Rd) is a Banach space.
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Proposition 2.3. For any bounded measure µ on Rd the mapping
Iµ : Cb(Rd) → R, defined in (1), is a bounded, positive linear functional on
Cb(Rd), i.e.

1. Iµ : Cb(Rd)→ R is a linear mapping:

Iµ(αf + βg) = αIµ(f) + βIµ(g) (3)

for all α, β ∈ R, and f, g ∈ Cb(Rd).

2. Iµ is positive: If f ≥ 0, then Iµ(f) ≥ 0

3. Iµ is bounded: There is a constant C <∞ such that for all f ∈ Cb(Rd)

|Iµ(f)| ≤ C ‖f‖∞ . (4)

In fact, we may choose C = µ(Rd).

If Iµ(f) = Iν(f) for all f ∈ Cb(Rd), then µ = ν.

It is an interesting and useful fact that a converse to Proposition 2.3 is true.

Theorem 2.4. (Riesz representation theorem) If I : Cb(Rd) → R is a bounded,
positive linear functional then there exists a bounded measure µ on Rd, such that

I(f) = Iµ(f) =

∫
f(x) dµ(x) for all f ∈ Cb(Rd) (5)

For a proof of this theorem see e.g. [8].

In the sense of Theorem 2.4 we may (and will) identity measures µ and the corre-
sponding (bounded, positive) linear functionals Iµ.

The Banach space Cb(Rd) has a rather unpleasant feature: It is not separable, i.e.
it contains no countable dense subset. To prove this and for further use below we
introduce a useful class of functions in Cb(Rd).

Definition 2.5. For L > R ≥ 0 we define the function φR,L : R→ [0, 1] by:

φR,L(x) =


1, for |x| ≤ R;
L−|x|
L−R , for R < |x| < L;
0, for |x| ≥ L.

. (6)

We also define (for any dimension d) a function ΦR,L : Rd → [0, 1] by

ΦR,L(x) = φR,L(‖x‖) (7)
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Remark 2.6. ΦR,L is a continuous function which is equal to 1 on the closed ball
BR = {x| ‖x‖ ≤ R} and has support in BL.

We remind the reader that the support suppf of a function f is the closure of the
set {x | f(x) 6= 0}.

Proposition 2.7. There is no countable dense subset in Cb(Rd).

Remark 2.8. We recall that a metric space is called separable if it contains a
countable dense subset. Proposition 2.7 states that Cb(Rd) is not separable.

Proof: We construct an uncountable family F of functions in Cb(Rd) with the
property that f, g ∈ F , f 6= g implies ‖f − g‖∞ ≥ 1. Set fy(x) = Φ 1

10
, 2
10

(x− y)

then supp fi ∩ supp fj = ∅ if i, j ∈ Zd and i 6= j.

We set M = {−1, 1}Zd and for m ∈M

Fm(x) =
∑
i∈Zd

mifi(x) (8)

Fm is a bounded continuous function and Fm(i) = mi, hence for m 6= m
′

‖Fm − Fm′‖∞ ≥ sup
i∈Zd

∣∣∣mi −m
′

i

∣∣∣ ≥ 2 (9)

Since M is uncountable this proves the claim.

2.2 Convergence of measures

We are now going to define a suitable notion of convergence for bounded mea-
sures.

The first idea one may come up with is what we could call “pointwise” conver-
gence: µn → µ if µn(A)→ µ(A) for all A ∈ B(Rd). This notion of convergence
is known as “strong convergence”.

It turns out that demanding µn(A)→ µ(A) for all Borel sets is a to strong require-
ment for most purposes. For example, it is quite desirable that δ 1

n
should converge

to δ0 as n→∞. However, δ 1
n
([−1, 0]) = 0 but δ0([−1, 0] = 1.
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So, instead of asking that the measures µn converge if applied to a Borel set, we
require that the linear functionals Iµn converge, if applied to a bounded continuous
function, more precisely:

Definition 2.9. (weak convergence): Let µn and µ be bounded measures on Rd.
We say that µn converges weakly to µ (denoted µn =⇒ µ) if∫

f(x) dµn(x)→
∫
f(x) dµ(x) (10)

for all f ∈ Cb(Rd).

Remarks 2.10. 1. If µn ⇒ µ then µ(Rd) = lim µn(Rd)

2. δ 1
n

=⇒ δ0

As the names suggest, weak convergence is ”weaker” than strong convergence, in
fact one can prove:

Theorem 2.11 (Portemanteau). If µn and µ are bounded measures on Rd, then
µn =⇒ µ if and only if µn(A) → µ(A) for all Borel sets A with the property
µ(∂A) = 0.

Notation 2.12. If A ⊂ Rd we denote by A the closure, by A0 the inferior and by
∂A = A \ A0 the boundary of A.

There is an extension to this result:

Theorem 2.13. If µn and µ are bounded measures on Rd, then µn =⇒ µ if and
only if ∫

f(x) dµn →
∫

f(x) dµ

for all bounded measurable function f with the property that there is a set A with
µ(A) = 0 such that f is continuous for all x ∈ Rd \ A.

We will not use Theorems 2.11 and 2.13 in the following. For proofs we refer to
[7], Theorem 13.16.

Proposition 2.14. Suppose µn is a sequence of bounded measures on Rd and that

lim
n→∞

∫
f(x) dµn(x) = I(f) (11)

exists for all f ∈ Cb(Rd), then there is a bounded measure µ such that

µn =⇒ µ (12)
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Proof: It is easy to see that the limit I(f) defines a positive bounded linear
functional on Cb(Rd). Thus, by Theorem 2.4 there is a measure µ such that

I(f) =

∫
f(x) dµ(x) (13)

and µn =⇒ µ.
For technical reasons we introduce yet another notion of convergence. To do so
we introduce a subspace of Cb(Rd).

Definition 2.15. We set

C0(Rd) = {f |f is a continuous function on Rd with compact support} (14)

C0(Rd) is a subspace of Cb(Rd). Its closure in Cb(Rd) (with respect to the ‖·‖∞-
norm) is

C∞(Rd) = {f |f continuous and lim
|x|→∞

f(x) = 0}. (15)

Remark 2.16. We haven’t specified whether the function in Cb(Rd) etc. are real
or complex valued. It should be clear from the respective context which alternative
is meant.

We mention that for a complex valued function f with real part f1 and imaginary
part f2 we set (as usual)∫

f(x) dµ(x) =

∫
(f1(x) + if2(x)) dµ(x)

=

∫
f1(x) dµ(x) + i

∫
f2(x) dµ(x) .

In contrast to Cb(Rd) the space C0(Rd) contains a countable dense subset (with
respect to the ‖.‖∞-norm).

Definition 2.17 (vague convergence). Let µn and µ be bounded measures on Rd.
We say that the sequence µn converges vaguely to µ (in symbols µn

v⇒ µ) if∫
f(x) dµn(x)→

∫
f(x) dµn (16)

for all f ∈ C0(Rd).
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Remark 2.18. 1. Vague convergence can be defined for all
Borel measures µ with µ(K) < ∞ for all
compact sets K ⊂ Rd. We will not need this
extension in the following.

2. It is clear that weak convergence implies
vague convergence. The converse is not
true: The sequence µn = δn converges
vaguely to the ”zero-measure” µ(A) = 0
for all A ∈ B(Rd), but it doesn’t converge
weakly. In a sense the measures µn = δn
”run off to infinity”. To avoid this one
may require we will introduce the notion of
‘tightness’ in the following Section 2.3

In Proposition 2.7 we learned that the space Cb(Rd) is not separable, a property
that makes it somewhat hard to deal with that space. One reason to introduce
C0(Rd) is that this space is separable as the following proposition shows.

Proposition 2.19. There is a countable set D0 in C0(Rd) such that for any f ∈
C0(Rd) there is a sequence fn ∈ D0 such that

‖f − fn‖∞ → 0 as n→∞ (17)

Proof: We define PQ to be the set of all polynomials on Rd with rational coef-
ficients. This set is countable.

We define

D0 =
{

Ψ : Rd → R | Ψ(x) = P (x) ΦL,2L(x)

for some P ∈ PQ and some L ∈ N
}

(18)

Now, take f ∈ C0(Rd) and L ∈ N so large that supp f ⊂ BL, hence f = f ·ΦL,2L.

By the Weierstrass approximation theorem there is a sequence Pn ∈ PQ such that

sup
x∈B2L

|f(x)− Pn(x)| → 0 as n→∞ (19)
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Set fn(x) = Pn(x)ΦL,2L then

‖f − fn‖∞ = sup
x∈Rd
|f(x)− fn(x)|

= sup
x∈B2L

|f(x)− Pn(x)ΦL,2L(x)|

= sup
x∈B2L

|f(x)− Pn(x)| → 0

2.3 Tightness and Prohorov’s Theorem

If µ is a bounded measure on Rd then the following is true:
For any ε > 0 there is a compact set Kε ⊂ Rd such that

µ({Kε) < ε . (20)

Indeed, if BN denotes the closed ball of radius N around the origin, then

BN ⊂ BN+1 and
⋃

BN = Rd ,

thus µ(BN)→ µ(Rd) <∞ .

Hence

µ({BN) = µ(Rd)−µ(BN) < ε provided N is large enough.

Definition 2.20. A sequence µn of bounded measures is called tight if for any
ε > 0 there exists a compact set Kε ⊂ Rd such that for all n

µn({Kε) < ε (21)

Remark 2.21. 1. We have seen above that Kε = Kn
ε with (21) exists

for each n, tightness requires that Kε can be chosen
independent of n.

2. To prove tightness it is sufficient to check (21) for
n > N0. Since there are compact set Kj with
µj({Kj) < ε for j = 1, . . . , N0 we have that
K̃ := K ∪

⋃N0

j=1Kj is compact and

µn({K̃) < ε for all n .
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Examples 2.22. 1. The sequence µn = δn is not tight.

2. The sequence µn = (1 − 1
n
)δ 1

n
+ 1

n
δn is

tight.

There is a useful tightness criterion involving moments of measure:

Proposition 2.23. Suppose µn is a sequence of bounded measures on Rd such that∫
‖x‖k dµn(x) ≤ C < ∞ for some k > 0 . (22)

Then the sequence µn is tight.

Proof: We estimate

µn

(
{BR

)
=

∫
χ‖x‖>R(x) dµn(x)

≤
∫
‖x‖k

Rk
dµn(x)

=
C

Rk
.

This implies tightness of the sequence µn.

Proposition 2.24. Suppose the sequence µn of bounded measures on Rd converges
vaguely to the bounded measure µ, i.e. µn

v
=⇒ µ then:

1. µ(Rd) ≤ lim µn(Rd)

2. If
µ(Rd) ≥ lim µn(Rd) (23)

then µn is tight.

Remark 2.25. It follows immediately from Proposition 2.24 that a weakly con-
vergent sequence of measures is tight.

Proof:
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1. Choose ε > 0. Then there exists R > 0 such that µ({BR) < ε
2
. So

µ(Rn) ≤ µ(BR) +
ε

2

≤
∫

ΦR,R+1(x) dµ(x) +
ε

2

≤
∫

ΦR,R+1(x) dµn(x) + ε for n large enough (by (16))

≤ µn(Rd) + ε

The statement follows by taking ε↘ 0.

2. For ε > 0 choose again R > 0 such that µ({BR) < ε
2

holds. Then

µn({BR+1) = µn(Rd)− µn(BR+1)

≤ µn(Rd)−
∫

ΦR,R+1(x) dµn(x)

using assumption (23) and the vague convergence of the µn to µ we get

≤ µ(Rd)−
∫

ΦR,R+1(x) dµ(x) +
ε

2
for n large enough

≤ µ({BR) +
ε

2
< ε

So we proved µn({BR+1) < ε for n large enough, hence the sequence µn is
tight (see Remark 2.21).

Corollary 2.26. If µn
v

=⇒ µ for bounded measures µn, µ on Rd and if
µ(Rd) = lim µn(Rd) then µn =⇒ µ.

Proof: Take f ∈ Cb(Rd) and ε > 0. By Proposition 2.24 there exists R such
that

µ({BR) <
ε

3 ‖f‖∞
and (24)

µn({BR) <
ε

3 ‖f‖∞
for all n (25)
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Then ∣∣∣∣∫ f(x) dµ(x)−
∫
f(x) dµn(x)

∣∣∣∣
=
∣∣∣ ∫ f(x)

(
ΦR,R+1(x) +

(
1− ΦR,R+1(x)

))
dµ(x)

−
∫
f(x)

(
ΦR,R+1(x) +

(
1− ΦR,R+1(x)

))
dµn(x)

∣∣∣
≤
∣∣∣∣∫ f(x)ΦR,R+1(x) dµ(x)−

∫
f(x)ΦR,R+1(x) dµn(x)

∣∣∣∣
+ ‖f‖∞ µn({BR) + ‖f‖∞ µ({BR)

≤
∣∣∣∣∫ f(x)ΦR,R+1(x) dµ(x)−

∫
f(x)ΦR,R+1(x) dµn(x)

∣∣∣∣+
2

3
ε

< ε

if n is large enough, since fΦR,R+1 ∈ C0(Rd).

Theorem 2.27. Suppose µn is a tight sequence of bounded measures on Rd. If µn
converges vaguely to some measure µ then µn converges weakly to µ.

Remarks 2.28. We are going to prove a slightly stronger statement, namely:
If for a tight sequence µn the integrals

∫
f dµn converge to some I(f) for all

f ∈ C0(Rd), then µn converges weakly to some bounded measure µ and I(f) =∫
f(x) dµ(x).

Proof (of Theorem 2.27): Take some f ∈ Cb(Rd). To show that
∫
f(x) dµn(x)

converges it is enough to prove that the (real valued) sequence In(f) is a Cauchy
sequence.

Now

|In(f)− Ik(f)| =

∣∣∣∣∫ f(x) dµn(x)−
∫
f(x) dµk(x)

∣∣∣∣
≤ ‖f‖∞ µn({BL) + ‖f‖∞ µk({BL)

+

∣∣∣∣∫ f(x)ΦL,2L(x) dµn(x)−
∫
f(x)ΦL,2L(x) dµk(x)

∣∣∣∣
16



Since {µn} is tight we may take L so large, that µj({BL) < ε
3‖f‖∞

for all j.

Since
∫
g(x) dµn(x) is a Cauchy sequence for each g ∈ C0(Rd) we may take n, k

so large that∣∣∣∣∫ f(x)ΦL,2L(x) dµn(x)−
∫
f(x)ΦL,2L(x) dµk(x)

∣∣∣∣ < ε

3
.

This proves that for each f ∈ Cb(Rd) there is a (real number) I(f) such that
In(f)→ I(f).

Since the functions In(f) are linear in f the same is true for I(f). In the same
way we get that I(f) ≥ 0 if f ≥ 0. Moreover,

|In(f)| ≤ µn({BL) ‖f‖∞ +

∣∣∣∣∫ f(x) ΦL,L+1(x) dµn(x)

∣∣∣∣
≤ ε ‖f‖∞ +

∫
f(x) ΦL,L+1(x) dµn(x) ‖f‖∞

≤
(∫

f(x) ΦL,L+1(x) dµn(x) + ε

)
‖f‖∞

≤ C ‖f‖∞

For n large enough we have

|I(f)| ≤ 2 |In(f)| ≤ 2C ‖f‖∞ .

Thus f 7→ I(f) is a bounded positive linear functional, hence by Theorem 2.4
there is a µ with I(f) =

∫
f(x) dµ(x) and∫

f(x) dµn(x) = In(f)→ I(f) =

∫
f(x) dµ(x) .

The following theorem is of fundamental importance for the theory of weak con-
vergence, it says that tight sets are sequentially compact.

Theorem 2.29 (Prohorov). Any tight sequence of bounded measures µn with
µn(Rd) ≤ C <∞ for all n has a weakly convergent subsequence.

Proof: By Theorem 2.27 and the remark following it we only have to find a
subsequence µnk such that for any f ∈ C0(Rd)

Ik(f) =

∫
f(x) dµnk(x) (26)

17



converges.

Let D0 = {f1, f2, · · · } be a countable dense subset of C0(Rd) (see Proposition
2.19). Then the sequence In(f1) =

∫
f1(x) dµn(x) is bounded. Consequently

there is a subsequence µ(1)
n of µn such that

∫
f1(x) dµ

(1)
n (x) converges.

By the same argument there is a subsequence µ(2)
n of µ(1)

n such that
∫
f2(x) dµ

(2)
n (x)

converges. In general, if we have a subsequence of µ(k−1)
n such that

∫
fj(x) dµ

(k−1)
n (x)

converges for all j ≤ k − 1 we find a subsequence µ(k)
n of µ(k−1)

n such that (also)∫
fn(x) dµ

(k)
n (x) converges.

We build the diagonal sequence

µ̃n = µ(n)
n (27)

It follows that
∫
fk(x) dµ̃n(x) converges for all k ∈ N. We claim that

∫
f(x) dµ̃n(x)

converges for all f ∈ C0(Rd). In deed, we have∣∣∣∣∫ f(x) dµ̃n(x)−
∫
f(x) dµ̃m(x)

∣∣∣∣
≤

∣∣∣∣∫ f(x) dµ̃n(x)−
∫
fk(x) dµ̃n(x)

∣∣∣∣
+

∣∣∣∣∫ fk(x) dµ̃n(x)−
∫
fk(x) dµ̃m(x)

∣∣∣∣
+

∣∣∣∣∫ fk(x) dµ̃m(x)−
∫
f(x) dµ̃m(x)

∣∣∣∣
≤ ‖f − fk‖∞ (µ̃n(Rd) + µ̃m(Rd))

+

∣∣∣∣∫ fk(x) dµ̃n(x)−
∫
fk(x) dµ̃m(x)

∣∣∣∣
≤ 2C ‖f − fk‖∞ +

∣∣∣∣∫ fk(x) dµ̃n(x)−
∫
fk(x) dµ̃m(x)

∣∣∣∣
for some C.

Now choose fk ∈ D0 such that ‖f − fk‖∞ ≤
ε

4C
and then n,m so large that∣∣∫ fk dµ̃n − ∫ fk dµ̃m∣∣ < ε

2
.

2.4 Separating classes of functions

From Theorem 2.27 we know that for tight sequences µn vague convergence and
weak convergence are equivalent. In other words: If we know that µn is tight then
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it is enough to check convergence of
∫
f(x) dµn(x) for all f ∈ D = C0(Rd)

rather than to check it on Cb(Rd).

In this section we will try to identify other - preferably ”smaller” - sets D for
which this assertion is true.

Definition 2.30. A set of functions D ⊂ Cb(Rd) is called separating (or a

separating class if ∫
f(x) dµ(x) =

∫
f(x) dν(x) (28)

for all f ∈ D implies
µ = ν (29)

Examples 2.31. 1. The set C0(Rd) is separating.

2. IfD is a separating class andD0 is dense inD with respect
to the sup-norm then D0 is separating as well.

3. The set C∞0 (Rd) of infinitely differentiable functions with
compact support is separating.

4. The set D0 defined in the proof of Proposition 2.19 is sep-
arating.

5. D∞ = {f | f(x) = ΦR,L(x − a), a ∈ Rd, R < L ∈ R} is
separating.

The proofs of these facts are left to the reader.

The importance of separating classes is based on the following theorem.

Theorem 2.32. Suppose µn is a tight sequence of bounded measures with

supµn(Rd) <∞ and let D be a separating class of functions.

If
∫
f(x) dµn converges for all f ∈ D then the sequence µn converges weakly to

some bounded measure µ.

Proof: By Prohorov’s Theorem 2.29 we know that any subsequence of µn has
a weakly convergent subsequence. Let νk and ρk be two weakly convergent sub-
sequences of µn and suppose νk ⇒ ν and ρn ⇒ ρ.

Take f ∈ D. By assumption∫
f(x) dµn(x) → a for some a ∈ R
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and consequently for the susequences νk and ρk we also have∫
f(x) dνk(x) → a and

∫
f(x) dρk(x) → a

On the other hand we know∫
f(x) dνk(x) →

∫
f(x) dν(x) and

∫
f(x) dρk(x) →

∫
f(x) dρ(x)

Thus ∫
f(x) dν(x) =

∫
f(x) dρ(x) .

for all f ∈ D. Thus ν = ρ.

Using the elementary lemma below we conclude that µn converges weakly.

Lemma 2.33. Let an be a sequence of real numbers with the property that any
subsequence has a convergent subsequence. Suppose that any convergent subse-
quence of an converges to a independent of the subsequence chosen. Then the
sequence an converges itself to a.

The elementary proof is left to the reader.

An important separating class of functions is given by the trigonometric polyno-
mials.

Proposition 2.34. The set Dtrig = {fp ∈ Cb(Rd) | fp(x) = ei p·x, p ∈ Rd} is

separating.

Notation 2.35. Here and in the following i =
√
−1 and x · y =

∑d
j=1 xj yj for

x, y ∈ Rd.

Definition 2.36. For any bounded measure µwe define the characteristic function
µ̂ : Rd → C (Fourier transform) of µ by

µ̂(p) =

∫
ei p·x dµ(x) (30)

Proposition 2.34 says that µ̂(p) = ν̂(p) for all p implies µ = ν.

For the proof of Proposition 2.34 we need a well known result by Fejér.
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Definition 2.37. We set ΛL = {x ∈ Rd | |xi| ≤ L for i = 1, · · · , d}. A
trigonometric polynomial on ΛL is a (finite) linear combination of functions ei

π
L
n·x

with n ∈ Zd.

We call a continuous function f ∈ C(ΛL) periodic if

f(x1, . . . , xr−1, L, xr+1, . . . , xd) = f(x1, . . . , xr−1,−L, xr+1, . . . , xd)

for r = 1, . . . , d, i.e. if f is the restriction of a 2LZd-periodic continuous function
on Rd.

In particular, any trigonometric polynomial is periodic.

Theorem 2.38. (Fejér) A continuous periodic function f on ΛL can be uniformly
approximated by trigonometric polynomials on ΛL, i.e. there exists a sequence fn
of trigonometric polynomials on ΛL, such that

sup
x∈ΛL

|f(x)− fn(x)| → 0 as n→∞ (31)

A proof of Fejér’s Theorem can be found for example in [4]. There are also varies
proofs available in the internet, for instance in [11].

Proof (Proposition 2.34): Suppose µ is a bounded measure and f ∈ C0(Rd).
Take ε > 0 and L so large that µ({ΛL) < ε

4(‖f‖∞+1)
.

Without loss we may assume that

supp f ⊂ ΛL
2

(32)

By Theorem 2.38 there is a trigonometric polynomial T (x) =
∑
|n|≤M

ane
i π
L
n·x such

that sup
x∈ΛL

|f(x)− T (x)| < ε
4µ(Rd)

and sup
x∈ΛL

|T (x)| ≤ ‖f‖∞ + 1.

Since T is periodic we also have ‖T‖∞ ≤ ‖f‖∞ + 1. Hence∣∣∣∣∫ f(x) dµ(x)−
∫
T (x) dµ(x)

∣∣∣∣ ≤ ∫
ΛL

|f(x)− T (x)| dµ(x) +

∫
{ΛL

|T (x)| dµ(x)

≤ µ(Rd)
ε

4µ(Rd)
+ ‖T‖∞

ε

4(‖f‖∞ + 1)

< ε

We conclude: Knowing
∫
f(x) dµ(x) for trigonometric polynomials f , allows us

to compute the integral for f ∈ C0(Rd) and this determines µ.
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2.5 Moments and weak convergence

Definition 2.39. For a probability measure µ on R and any k ∈ N we define the
kth absolute moment mk(µ) by

mk(µ) =

∫
|x|k dµ(x) (33)

If mk(µ) <∞ we call

mk(µ) =

∫
xk dµ(x) (34)

the kth moment of µ.

Remarks 2.40. 1. Observe that m2k(µ) = m2k(µ).

2. If mk(µ) <∞ then ml(µ) <∞ for all l ≤ k. This
can be seen by applying either Hölder’s inequality
or Jensen’s inequality.

3. The first moment E(µ) := m1(µ) is usually called
the mean or the expectation of µ and the quantity
V(µ) := m2(µ)−m1(µ)2 is called the variance of
µ.

Example 2.41. The Dirac measure µ = δx0 has the moments mk(δx0) = x0
k.

Example 2.42. The normal distributionN (µ, σ2) on R is defined through its den-
sity

nµ,σ2(x) =
1√

2π σ2
e−

(x−µ)2

2σ2 (35)

It easy to see that m1 (N (µ, σ2)) = µ and V (N (µ, σ2)) = σ2.

To express the higher moments of the normal distribution in a closed form, we
introduce the following notation:

Definition 2.43. For n ∈ N we define:

n!! :=

{
n · (n− 2) · (n− 4) · . . . · 1 for n odd
n · (n− 2) · (n− 4) · . . . · 2 for n even

(36)

The moments mk of the normal distribution with mean zero are given in the fol-
lowing proposition:
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Proposition 2.44. The moments of the normal distributionN (0, σ2) are given by:

mk = mk

(
N (0, σ2)

)
=

{
(k − 1)!! (σ2)

k/2 for k even
0 for k odd

(37)

Proof: For k odd, the function xk e−
x2

2 is odd, hence mk = 0.

We have m0 = 1√
2π

∫∞
−∞ e−

x2

2 dx = 1.

For arbitrary k even we compute, using integration by parts

mk+2 =
1√
2π

∫ ∞
−∞

xk+2 e−
x2

2 dx

=
1√
2π

∫ ∞
−∞

xk+1
(
x e−

x2

2

)
dx

=
1√
2π

∫ ∞
−∞

xk+1
(
e−

x2

2

)′
dx

=
1√
2π

∫ ∞
−∞

(
xk+1

)′
e−

x2

2 dx

= (k + 1)
1√
2π

∫ ∞
−∞

xk e−
x2

2 dx

= (k + 1) mk

The assertion follows by induction.
For later use we rewrite the moments of N (0, σ2).

Corollary 2.45. The (even) moments of the distributionN (0, 1) can be written as

m2k =
(2k)!

2k k!
(38)

This follows immediately from (37) and the following Lemma.

Lemma 2.46. For n ∈ N we have

(2n)!! = 2n n! (39)

(2n− 1)!! =
(2n)!

n! 2n
(40)

Proof: Equation (39) is immediate.
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We prove equation (40) by induction:(
2(n+ 1)− 1

)
!! = (2n+ 1) · (2n− 1)!!

= (2n+ 1) · (2n)!

n! 2n

=
(2n+ 1)!

n! 2n

=

(
2(n+ 1)

)
!

(n+ 1)! 2n+1

In many cases expressions like
∫
xk dµ(x) are much easier to analyze than inte-

grals
∫
f(x) dµ(x) for arbitrary f ∈ Cb(R). Thus, it would be very helpful to have

a criterion under which convergence of moments mk(µn) implies convergence.

The first and obvious problem is the fact that the functions pk(x) = xk are not in
Cb(R). In fact,

∫
pk(x) dµ(x) is well defined only under the additional assumption

that mk(µ) <∞.

So, let us suppose for what follows, that mk(µ) <∞ for all k ∈ N.

Definition 2.47. We say that a bounded measure µ is a measure with existing
moments if mk(µ) =

∫
|x|k dµ <∞ for all k ∈ N.

Notation 2.48. Unless stated otherwise we assume from now on that all measures
mentioned have existing moments!

Proposition 2.49. If mk(µ) <∞ for all even k, then µ is a measure with existing
moments.

Proof: For even k we have mk(µ) = mk(µ).
For the odd numbered moments we estimate using the Cauchy-Schwarz inequality

m2k−1(µ) =

∫
|x|2k−1 dµ

≤
(∫
|x|2k dµ

)1/2(∫
|x|2k−2 dµ

)1/2

= (m2k)
1/2 (m2k−2)1/2
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Proposition 2.50. Suppose µn is a sequence of bounded measures with existing
moments and

sup
n
mk(µn) ≤ Ck < ∞ . (41)

If µn =⇒ µ then all moments of µ exist and

mk(µn)→ mk(µ) for all k.

Proof: We estimate:∫
|x|k φL,2L(x) dµ(x) ≤ sup

n

∫
|x|k φL,2L(x) dµn(x)

≤ sup
n

mk(µn)

≤ Ck .

Thus
mk(µ) = sup

L

∫
|x|k φL,2L(x) dµ(x) ≤ Ck < ∞ .

So, all moments of µ exist.

To prove the second assertion of the proposition we estimate∣∣∣ ∫ |x|k dµ − ∫
|x|k dµn

∣∣∣
≤
∣∣∣ ∫ |x|k φL,2L(x) dµ −

∫
|x|k φL,2L(x) dµn

∣∣∣
+

∫
|x|≥L

|x|k dµn +

∫
|x|≥L

|x|k dµ

The first expression in the above sum goes to zero due to weak convergence. The
second summand can be estimated by∫

|x|≥L
|x|k dµn ≤

(∫
|x|2k dµn

)1/2 (
µn(|x| ≥ L)

)1/2

≤ Ck
1/2 µn

(
|x| ≥ L

)1/2

Due to the tightness of the sequence µn, the last expression can be made small by
choosing L large enough. A similar argument works for

∫
|x|≥L |x|

k dµ.

Under the assumption of existing moments, the reasoning of the last chapters
could make us optimistic that convergence of moments, in deed, implies weak
convergence of measures.
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We have already proved in Proposition 2.23 that the convergence (hence bound-
edness) of the second moments implies tighness of the sequence. Thus the only
‘thing’ we have to ‘check’ is whether the polynomials form a separating class of
functions, in other words we have to ‘prove’ that

∫
xk dµ(x) =

∫
xk dν(x) for all

k ∈ N implies µ = ν. Unfortunately, this assertion is wrong unless we impose
some further condition on the probability measure µ.

Definition 2.51. We say that a bounded measure µ on R has moderately growing
moments if all moments exist and

mk(µ) ≤ ACk k! (42)

for some constant A, C and all k ∈ N.

Lemma 2.52. It is sufficient to postulate (42) only for the even moments.

Proof:

µ2k−1 =

∫
|x|2k−1 dµ

≤
(∫
|x|2k dµ

)1/2(∫
|x|2k−2 dµ

)1/2

(by Cauchy-Schwarz)

≤ AC2k−1 (2k)!1/2 (2k − 2)!1/2

≤ AC2k−1 (2k − 2)! (2k − 1)1/2 (2k)1/2

≤ 2AC2k−1 (2k − 1)!

Examples 2.53. 1. If µ has compact support, then µ is a mea-
sure with moderately growing moments.

2. The normal distribution is a measure with
moderately growing moments.

Theorem 2.54. Suppose µ is a bounded measure with moderately growing mo-
ments (satisfying (42), then:
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1. The characteristic function

µ̂(z) =

∫
eizx dµ(x) (43)

is well defined on the strip

S =
{
z = z1 + i z2 ∈ C

∣∣ |z2| < 1
C

}
(44)

in the complex plane C. Here C is the constant from equation (42).

2. The function µ̂ : S → C is analytic.

Proof:

1. For z = z1 + i z2 we estimate

|µ̂(z)| ≤
∫
|ei z x| dµ(x)

≤
∫

e|z2|x dµ(x)

=

∫ ∞∑
k=0

|z2|k

k!
|x|k dµ(x)

=
∞∑
k=0

|z2|k

k!
mk(µ)

≤ A
∞∑
k=0

|z2|k Ck

<∞ for |z2| < C−1

Thus µ̂ is well defined on S.

2. To prove that µ̂ is analytic on S we develop it in a power series around an
arbitrary z0 ∈ R. Suppose |ζ| < C−1, then

µ̂(z0 + ζ) =

∫
eiz0x

∞∑
k=0

ζk

k!
xk dµ(x)

=
∞∑
k=0

(∫ eiz0x xk dµ

k!

)
ζk
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Interchanging sum and integral is justified by the estimate∣∣∣∣ ∫ eiz0x xk dµ(x)

k!

∣∣∣∣ ≤ ∫
|x|k dµ(x)

k!
≤ ACk .

Above C denotes the constant from (42).

Theorem 2.55. Suppose µ is a bounded measure with moderately growing mo-
ments. If for some bounded measure ν

mk(µ) = mk(ν) (45)

for all k ∈ N then
µ = ν (46)

Proof: Since for all even k we have mk(ν) = mk(µ) < ∞ we have that all
moments of ν exist as well and are moderately growing.

Therefore both µ̂ and ν̂ are analytic functions in a strip

S = {z ∈ C | Imz < C−1} .

For |ζ| < C−1 we have as in the proof of Theorem 2.54

µ̂(ζ) =
∞∑
k=0

mk(µ) ζk =
∞∑
k=0

mk(ν) ζk = ν̂(ζ) (47)

Thus, µ̂ and ν̂ agree on a neighborhood of z = 0 and hence in the whole strip S.

Theorem 2.56. Suppose µn is a sequence of bounded measures and mk ∈ R is a
sequence with

mk ≤ ACk k! (48)

for all k ∈ N.

If
mk(µn) → mk (49)

for all k ∈ N then there is a bounded measure µ with mk(µ) = mk and such that

µn =⇒ µ (50)

28



Proof: By Proposition 2.23 we know that µn is tight. So any subsequence has
a convergent subsequence. Suppose µ̃n is a convergent subsequence. Call its limit
µ. According to Proposition 2.50 the measure µ has moments mk. Due to as-
sumption (48) µ has moderately growing moments, thus it is uniquely determined
by the numbers mk. It follows that any subsequence of the µn has a convergent
subsequence with limit µ, thus µn converges weakly to µ.

2.6 Random Variables and Their Distribution

Definition 2.57. Suppose (Ω,A,P) is a probability space and X : Ω → Rd a
random variable (i. e. an

(
A−B(Rd)

)
-measurable function), then the probability

measure PX on B(Rd) defined by

PX(A) = P (X ∈ A) := P {ω ∈ Ω | X(ω) ∈ A} (51)

is called the distribution of X .

We say that the random variables {Xi}i∈I are identically distributed if the distri-
butions PXi are the same for all i ∈ I .

Notation 2.58. In (51) we used the short hand notation P (X ∈ A) for

P {ω ∈ Ω | X(ω) ∈ A}, a convention we will follow throughout this paper.

Definition 2.59. If X1, . . . , XN are realvalued random variables the distribution
PX1 ... XN of the RN -valued random variable

(
X1, X2, . . . , XN

)
is called the joint

distribution of X1, . . . , XN , i. e.

PX1, ... ,XN (A) = P
((
X1, X2, . . . , XN

)
∈ A

)
(52)

for any A ∈ B(RN).

The random variables X1, . . . , XN are called independent if PX1 ... XN is the prod-
uct measure of the PXi , i. e. if

PX1,X2,...,XN

(
A1×A2× . . .×AN

)
= PX1(A1) · PX2(A2) · . . . ·PXN (AN) (53)

A sequence {Xi}i∈N of random variables is called independent if the random vari-
ables X1, X2, . . . , XN are independent for all N ∈ N.

Definition 2.60. IfXn andX are random variables (with values in Rd) we say that
Xn converges in distribution to X , denoted by Xn

D
=⇒ X , if the corresponding

distributions converge, i. e. if PXn =⇒ PX .
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Remark 2.61. Sometimes we also say Xn converges in distribution to a probabil-
ity measure µ or Xn

D
=⇒ µ, if PXn =⇒ µ.

Notation 2.62. If (Ω,A,P) is a probability space we will usually call the expecta-
tion with respect to P by E. So convergence in distribution of Rd-valued random
variables Xn to a random variable X means:

E
(
f(Xn)

)
−→ E

(
f(Xn)

)
for all f ∈ Cb(Rd) (54)

Definition 2.63. SupposeXn are random variables on a probability space (Ω,F ,P).
We say Xn converges P−stochastically to X (notation: Xn

P−→ X), if for any
ε > 0

P(|Xn −X| > ε) −→ 0 as n→∞

Proposition 2.64. SupposeXn are random variables on a probability space (Ω,F ,P).
IfXn converges in distribution to a constant c, thenXn converges P−stochastically
to c.

Proof:

P(|Xn − c| > ε) = 1 − P(|Xn − c| ≤ ε)

≤ 1 − E
(

Φ ε
2
,ε(Xn − c)

)
−→ 0

Finally, we add an observation about the expectation value of products of random
variables which will be useful later.

Lemma 2.65. If X1, X2, . . . , XN are random variables with E(|Xi|N) < ∞ for
all i = 1, . . . , N then

E(|X1 ·X2 · . . . ·XN |) ≤ max
1≤i≤N

E(|Xi|N) <∞ (55)
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Proof: By a repeated application of the Hölder inequality we get

mu E (|X1X2 · . . . ·XN |)

≤ E(|X1|N)1/N E(|X2 · . . . ·XN |N/(N−1))(N−1)/N

≤ E(|X1|N)1/N E(|X2|N)1/N E(|X3 · . . . ·XN |N/(N−2))(N−2)/N

· · ·

≤ E(|X1|N)1/N E(|X2|N)1/N . . . E(|XN |N)1/N

≤ max
1≤i≤N

E(|Xi|N) <∞
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3 Independent Random Variables

3.1 Warm-up: A Law of large numbers

In this section we start with a very easy example: A (weak) version of the law
of large numbers. This serves merely as a warm-up for the more complicated
and more interesting things to come. Assume Xn are independent identically
distributed (i.i.d.) random variables on a probability space (Ω,F ,P). As usual in
this paper we assume that all moments of Xn exist.

Theorem 3.1 (Law of Large Numbers). If Xn are independent, identically dis-
tributed random variables with moderately growing moments, then the random
variables

SN =
1

N

N∑
i=1

Xi

converge P−stochastically to m := E(X1).

Proof: From Theorem 2.56 and Proposition 2.64 we learn that it is enough to
prove that the moments of Sn converge in distribution to (the Dirac measure in)
m. So, let us compute the moments of the random variable SN :

E
(
SN

L
)

=
1

NL

∑
i1,i2,...iL

E
(
Xi1Xi2 · . . . ·XiL

)
(56)

Observe that the sum has NL summands, since the indices can run from 1 to N
independent of each other.

Moreover, by Lemma 2.65 each summand is bounded by E(XL
1 ). We split the

sum in a term for which all the indices are distinct and the rest:

E(SN
L) =

1

NL

∑
i1,i2,...iL

all indices distinct

E(Xi1Xi2 · . . . ·XiL) (57)

+
1

NL

∑
i1,i2,...iL
not all distinct

E(Xi1Xi2 · . . . ·XiL) (58)

In the sum (58) at least two of the indices coincide, thus the number of summands
is bounded by NL−1. Hence, the whole term (58) is bounded by 1

N
E(XL

1 ). Con-
sequently, it converges to zero as N →∞.
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We turn to the expression (57). Due to independence, we have:

E(Xi1 ·Xi2 · . . . ·XiL) =
L∏
`=1

E(XiL) = mL for distinct i1, i2, . . . , iL (59)

Since the indices are all distinct, there are N !
(N−L)!

summands, so

(57) =
1

NL

N !

(N − L)!
mL N→∞−→ mL (60)

From Example 2.41 we know that mL are the moments of the Dirac measure δm,
so SN

D
=⇒ δm in distribution, thus by Proposition 2.64 the theorem follows.

Remark 3.2. The assumption that the random variables are independent and iden-
tically distributed was used in the proof above only to compute the sum (57). To
estimate the sum (58) only a rough estimate of the moments as in Lemma 2.65
was needed.

Remark 3.3. The reader experienced in probability may have noticed that the
above proof is much more complicated than necessary. With a simple use of
the Chebyshev inequality an estimate of the second moment would have been
sufficient. In fact, we will pursue this idea in Section 3.4.

The more complicated argument above was presented to introduce the general
idea which will be used in more sophisticated form again and again in this text.

3.2 Some combinatorics

In section 3.1 and, in fact, throughout this paper we got to estimate sums over
expressions of the form

E(Xi1 ·Xi2 · . . . ·XiL) . (61)

If the random variables Xi are independent and identically distributed, then the
value of expression (61) depends only on the number of times each index i occurs
among the indices in (61).

To make this statement precise we introduce:

Definition 3.4. We define the multiindex i = (i1, i2, . . . , iL) ∈ {1, 2, . . . , N}L.
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1. For j ∈ {1, 2, . . . , N} we set

νj(i) = | {k ∈ {1, 2, . . . , L} | ik = j } | . (62)

Here |M | denotes the number of elements in the set M .

2. For ` = 0, 1, . . . , L we define

ρ`(i) = | {j | νj(i) = `} | (63)

and

ρ(i) = (ρ1(i), ρ2(i), . . . , ρL(i)) (64)

In words: νj(i) tells us how frequently the index j occurs among the indices
(i1, i2, . . . iL) and ρk(i) gives the number of indices that occur exactly k times in
(i1, i2, . . . iL).

Remark 3.5. Setting r = (r1, r2, . . . , rL) = ρ(i) we have

E (Xi1 ·Xi2 · . . . ·XiL) = E

(
N∏
j=1

X
νj(i)
j

)

= E

(
r1∏
j1=1

Xj1 ·
r2∏
j2=1

X2
r1+j2

·
rL∏
jL=1

XL∑L−1
`=1 r`+jL

)

=
L∏
`=1

E
(
X`
`

)r`
Thus, we showed

Proposition 3.6. IfXn, n ∈ N are independent and identically distributed random
variables, then

E (Xi1 ·Xi2 · . . . ·XiL) = E (Xj1 ·Xj2 · . . . ·XjL) (65)

whenever ρ(i1, i2, . . . , iL) = ρ(j1, j2, . . . , jL).

Therefore the following abbreviation is well defined.

Notation 3.7. If r = (r1, r2, . . . , rL) = ρ(i) we set

E
(
X(r)

)
= E

(
Xi1 Xi2 . . . XiL

)
(66)
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To evaluate sums of expressions as in (61) we investigate the combinatorics of
L−tuples of indices.

Lemma 3.8. For each i ∈ {1, 2, . . . , N}L we have:

1. 0 ≤ νj(i) ≤ L and
N∑
j=1

νj(i) = L

2. 0 ≤ ρ`(i) ≤ L, for ` 6= 0 and ρ`(i) = 0 for ` > L,

3.
L∑̀
=0

ρ`(i) = N

4.
L∑̀
=1

ρ`(i) = |{i1, i2, . . . , iL}|

i.e. the sum over the ρ` is the number of distinct indices in i.

5.
L∑̀
=1

` ρ`(i) = L

The proof of the Lemma is left to the reader.

Definition 3.9. Let us set N = {1, 2, . . . , N} and L = {0, 1, 2 . . . , L}. We call
an L−tuple r = (r1, r2, . . . , rL) ∈ {0, 1, . . . , L}L a profile if

L∑
`=1

` r` = L . (67)

Given a profile r we define

W (r) = WL(r) =
{
i ∈ N k | ρ(i) = r

}
(68)

and w(r) = wL(r) = |
{
i ∈ N k | ρ(i) = r

}
| (69)

From Proposition (3.6) we learn that the expectation value E(Xi1 ·Xi2 · . . . ·XiL)
for i.i.d. random variables depends only on the profile of (i1, i2, . . . iL). More
generally this is true for exchangeable random variables. We’ll have more to say
about this in Chapter 4.
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Definition 3.10. We denote the set of all profiles in LL by Π(L) or simply by Π, if
L is clear from the context, thus

Π := Π(L) :=

{
(r1, r2, . . . , rL) ∈ {0, 1, . . . , L}L |

L∑
`=1

` r` = L

}
(70)

For later use, we define some subsets of Π:

Πk := {r ∈ Π(L) | r1 = k} (71)

Π+ := {r ∈ Π(L) | r1 > 0} (72)

Π0 := {r ∈ Π(L) | r` = 0 for all ` ≥ 3} (73)

Π+ := {r ∈ Π(L) | r` > 0 for some ` ≥ 3} (74)

Remark 3.11. We may combine the sub- and superscripts in the previous defini-
tion, for example

Π+
k = {r ∈ Π(L) | r1 = k and r` > 0 for some ` ≥ 3} (75)

In particular the set Π0
0 consists of those r with r` = 0 for all ` 6= 2. Note that

Π0
0 = ∅ if L is odd.

The above defined sets decompose Π into disjoint subsets in various ways, for
example

Π =
L⋃
k=0

Πk

= Π+ ∪ Π0
0 ∪ Π+

0

and so on.

We emphasize that the number |Π| does not depend on N , in fact, we have the
following very rough estimate:

Lemma 3.12. |Π(L)| ≤ (L+ 1)L

Proof: Since 0 ≤ r` and
L∑̀
=1

` r` = L we have 0 ≤ r` ≤ L. Hence there

are at most L + 1 possible values for each of the L components of the L−tuple
(r1, r2, . . . , rL).

We note the following important observation
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Theorem 3.13. For independent identically distributed random variables Xi we
have

N∑
i1,i2,...iL=1

E (Xi1Xi2 · . . . ·XiL) =
∑
r∈Π

wL(r)E
(
X(r)

)
=
∑
r∈Π

wL(r)
L∏
`=1

E
(
X`

1

)r` (76)

It is clear now that a good knowledge about wL(r) will be rather useful. In fact,
we have

Theorem 3.14. For r ∈ Π(L) set r0 = N −
∑L

`=1 r`, then

wL(r) =
N !

r1! r2! . . . rL! r0!

L!

1!r1 2!r2 3!r3 . . . L!rL
(77)

Much of the rest of this section is devoted to the proof of Theorem 3.14. We start
with a little digression about multinomial coefficients.

About multinomial coefficients

Definition 3.15. For m1,m2, . . . ,mK ∈ N with
∑K

k=1 mk = M we define the
multinomial coefficient(

M

m1 m2 . . . mK

)
=

M !

m1!m2! . . . mK !
. (78)

The multinomial coefficients are generalizations of the binomial coefficients
(
M
m

)
,

more precisely:
(
M
m

)
=
(

M
mM−m

)
.

The binomial coefficient
(
M
m

)
gives the number of ways to choose m objects from

M possible elements, in other words: to partition a set of M elements into a set
of m object ( ‘the chosen ones’) and a set of M −m objects (‘the rest’).

The multinomial coefficient counts the partitions into (in general) more than two
sets.

Proposition 3.16. Let m1,m2, . . . ,mK be positive integers with
∑K

k=1 mk = M .

The multinomial coefficient (
M

m1 m2 . . . mK

)
(79)
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counts the number of ways to distribute the M elements of a set C0 into K classes
C1, C2, . . . , CK in such a way that the class C1 contains exactly m1 elements, C2

m2 elements and so on.

Proof: There are
(
M
m1

)
ways to choose the elements of class C1.

Then there are
(
M−m1

m2

)
ways to choose the elements of C2 from the remaining

M −m1 objects of C0.

Then there are
(
M−m1−m2

m3

)
possibilities to choose the elements of C3 from the

remaining M −m1 −m2 objects of C0.

And so on . . .

This gives a total of

(
M

m1

)
·
(
M −m1

m2

)
·
(
M −m1 −m2

m3

)
· . . . ·

(
M −

∑K−1
k=1 mk

mK

)
(80)

possible ways to partitionM objects in the way prescribed. This expression equals(
M

m1 m2 . . . mK

)
(81)

The multinomial coefficient can also be used to compute the number of M -tuples
(‘words of length M ’) which can be built from a finite set A (‘alphabet’) with pre-
scribes number of occurrences of the various elements (‘characters’) of A, more
precisely:

Proposition 3.17. Suppose A = {a1, a2, . . . , aK} is a set with K elements, let
M ≥ K and m1,m2, . . . ,mK be (strictly) positive integers with

∑K
k=1 mk = M ,

then the number of distinct M -tuples for each k containing ak exactly mk times is
given by the multinomial coefficient(

M

m1 m2 . . . mK

)
(82)

Proof: The idea of the proof is to use the numbers fromM = {1, 2, . . . ,M}
to mark the positions in the M -tuple (w1, w2, . . . , wM).

To implement this idea, we partition the setM into K classes A1, . . . , AK such
that Ak contains exactly mk elements.
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Then we construct the M -tuple (w1, w2, . . . , wM) by setting

w` = ak if and only if ak ∈ A` (83)

This gives an M -tuple with the prescribed distribution of elements of A and each
M -tuple with this property is obtained in this way.

The number of such partitions ofM is given by(
M

m1 m2 . . . mK

)
(84)

as we saw in Proposition 3.16.

This ends our detour about multinomial indices. We turn to the proof of

Theorem 3.14.

Proof (Theorem 3.14): Let us construct an L−tuple (i1, i2, . . . iL) of elements
ofN with profile (r1, r2, . . . , rL). To do so we first partition the setN into classes
R1, R2, . . . , RL and R0. The class R` will be interpreted as those numbers in N
which are going to occur exactly ` times in the tuple, in particular the elements in
R0 will not occur at all in (i1, i2, . . . iL). We want exactly r` elements in the class
R`, including r0 = N −

∑L
`=1 r` elements in R0.

According to Proposition 3.16, the number of such partitions is(
N

r1 r2 . . . rL r0

)
=

N !

r1! r2! . . . rL! r0!
(85)

which is the first fraction in (77).

Next, we have to construct an L-tuple i = (i1, i2, . . . , iL) which contains each of
the r1 elements in R1 exactly once, each of the r2 elements of R2 twice and so on.
By Proposition 3.17 the number of ways this can be done is given by:

(
L

1 1 . . . 1︸ ︷︷ ︸
r1-times

2 2 . . . 2︸ ︷︷ ︸
r2-times

3 3 . . . 3︸ ︷︷ ︸
r3-times

. . . LL . . . L︸ ︷︷ ︸
rL-times

)
=

L!

1!r1 2!r2 3!r3 . . . L!rL
(86)

Observe that the right hand side of (86) is indeed a multinomial coefficient since

L∑
`=1

` r` = L
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This proves the theorem.

The following Corollary to Theorem 3.14 will be useful in the following sections.

Corollary 3.18. For r ∈ Π(L) we have

wL(r) ≈ C(r) N
∑L
`=1 r` as N →∞ (87)

where the constant C(r) is given by

C(r) =
1

r1! r2! . . . rL!

L!∏L
`=1 `!

r`
≤ L! (88)

Notation 3.19. The expression

aN ≈ bN as N −→∞

is an abbreviation for
lim
N→∞

aN
bN

= 1

We used this Corollary tacitely and in a weak form already in the proof of Theorem
3.1, when we concluded that the contribution of those i with

∑L
`=2 ρ`(i) > 0 is

negligible compared to the normalization 1
N

.

3.3 The central limit theorem

We are now prepared to prove the following (version of the) central limit theorem

Theorem 3.20 (Central Limit Theorem). Let Xn be a sequence of in depen-
dent identically distributed random variables with E(|Xn|k) < ∞ for all k and
denote by m = E(X1) = E(Xn), σ2 = V(X1) = E(X2

1 )− E(X1)2 their common
mean and variance.

Then the random variable

ΣN =
1√
N

N∑
i=1

(
Xi − E

(
Xi

) )
(89)

converges in distribution to a normal distribution N (0, σ2) with mean zero and
variance σ2.
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Proof: By theorem 2.56 it is sufficient to prove that the moments of ΣN con-
verge to those of N (0, σ2).

Without loss of generality we may assume that m1 = E(Xi) = 0.

We compute:

E
(

(ΣN)L
)

=
1

NL/2

∑
i1,i2,...iL

E
(
Xi1Xi2 · . . . ·XiL

)
=

1

NL/2

∑
r∈Π

wL(r) E
(
X(r)

)
=

1

NL/2

∑
r∈Π+

wL(r) E
(
X(r)

)
(90)

+
1

NL/2

∑
r∈Π0

0

wL(r) E
(
X(r)

)
(91)

+
1

NL/2

∑
r∈Π+

0

wL(r) E
(
X(r)

)
(92)

where the sets Π+, Π0
0 and Π+

0 are defined in Definition 3.10.

We handle the summands in (90)-(92) separately.

1. We start with (90). So, take i ∈ Π+.Then r1(i) > 0 and there is an index,
say ij , which occurs only once. Since the Xi are independent and

E(Xi) = 0 we have

E
(
Xi1 ·Xi2 · . . . ·XiL

)
= E

(
Xij

)
E
(∏
`6=j

Xi`

)
= 0

Therefore, the summand (90) vanishes.

2. We turn to (92), the third expression in the above sum. For r ∈ Π+
0 we have

r1 = 0 and r` ≥ 1 for some ` ≥ 3.

Consequently, since

L∑
`=1

` r` = L
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we get

L∑
`=1

r` =
1

2

(
2r2 + 2

L∑
`=3

r`
)

≤ 1

2

(
2r2 +

2

3

L∑
`=3

` r`
)

≤ 1

2

(
2r2 +

L∑
`=3

` r` −
1

3

L∑
`=3

` r`
)

≤ 1

2

(
2r2 +

L∑
`=3

` r` − 1
)

=
1

2

L∑
`=1

` r` −
1

2
= L/2− 1/2 (93)

Using Corollary 3.18, Lemma 3.12 and Lemma 2.65 we estimate:

∣∣∣ 1

NL/2

∑
r∈Π+

0

wL(r) E
(
X(r)

) ∣∣∣ ≤ NL/2−1/2

NL/2
L! (L+ 1)L E

(
|X1|L

)

For N →∞ the last expression goes to zero. (Remember: L is fixed!)

It follows that both (90) and (92) don’t contribute to the limit of the mo-
ments.

3. Finally we consider the second term, i. e. (91).

The class Π0
0 consist of those r for which r` = 0 for ` 6= 2. Since∑

`r` = L Π0
0 = ∅ for odd L and consist of exactly one element, namely

(0, L/2, 0, . . . , 0) for even L.

Thus, for odd L

1

NL/2

∑
r∈Π0

0

wL(r) E
(
X(r)

)
= 0 (94)
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For even L = 2K we have

1

NL/2

∑
r∈Π0

0

wL(r) E
(
X(r)

)
=

1

NK
wL
(
(0, K, 0, . . . , 0)

)
E
(
X1

2
)K

=
1

NK

N !

(K)! (N −K)!

(2K)!

2K
(
σ2
)K

=
1

NK

N !

(N −K)!
(2K − 1)!!

(
σ2
)K by Lemma 2.46

→ (2K − 1)!!
(
σ2
)K as N →∞ (95)

Summarizing, we have shown that E(ΣN
L) converges to (L − 1)!! (σ2)

L/2 if L
is even and to 0 if L is odd. Thus E(ΣN

L) converges to the Lth moment of the
normal distribution N (0, σ2) (see 2.42).

This finishes the prove of Theorem 3.20.

Remark 3.21. The argument in estimate 2 of summand (92) didn’t use the inde-
pendence of the random variables, in fact, all that was needed of the Xi was that
supi E

(
‖Xi‖L

)
<∞. We will use this observation in later chapters.

3.4 More on the law of large numbers

In this section we use the insight from the previous section for a closer look at
the law of large numbers. In particular, we will say something about the rate of
convergence in the weak form of this theorem. As a ”byproduct” this implies the
strong law of large numbers.

The following inequality (or rather collection of inequalities) is a central tool in
our proof, and, in fact, in probability theory.

Theorem 3.22. (Chebyshev-Markov inequality):

Suppose X is a random variable on the probability space (Ω,F ,P). If f : R≥0 →
R≥0 is a non decreasing function then

P(|X| > a) ≤ E(f(X))

f(a)
(96)
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Proof:

P(|X| > a) =

∫
χ{|X|>a}(w) dP(w) (97)

≤
∫
χ{|X|>a}(w)

f(|X|)(w)

f(a)
dP(w) (98)

≤
∫
f(|X|)
f(a)

dP =
E(f(X))

f(a)
(99)

We used that f(X)
f(a)
≤ 1 whenever X > a.

Corollary 3.23. For all p > 0 :

P(|X| > a) ≤ 1

ap
E(|X|p) (100)

Chebyshev’s inequality

P(|X − E(X)| > a) ≤ 1

a2
E(|X − E(X)|2) (101)

=
V(X)

a2
(102)

follows immediately from Corollary 3.23 with p = 2.

The importance of the Chebyshev-Markov inequality comes from the fact that it is
usually easier to deal with expectation (e.g. moments) than to compute probabil-
ities. The previous sections of this chapter are a - we hope convincing - example
for this observation.

Now we use the Chebyshev-Markov inequality together with the techniques from
the previous sections to estimate the probability P(| 1

N
E(Xi − E(Xi))| > a).

Theorem 3.24. Suppose Xi are independent random variables on a probability
space (Ω,F ,P). Suppose furthermore that sup

i∈N
E(XK

i ) ≤ MK < ∞ for each

K ∈ N.
Then for any L ∈ N there is a constant CL such that for any a > 0

P
( ∣∣∣ 1

N

N∑
i=1

(Xi − E(Xi))
∣∣∣ > a

)
≤ CL
a2LNL

(103)

Remark 3.25. The constant CL can be chosen to be

CL =
(2L+ 1)2L(2L)!

22L
sup
i∈N

E((Xi − E(Xi))
2L) (104)
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Remark 3.26. Theorem 3.24 is a kind of a quantitive version of the weak law of

large numbers. It asserts that P(| 1
N

N∑
i=1

(Xi − E(Xi))| > a) not only converges to

zero, but it converges faster than any power of N .

Proof: Using the Chebyshev-Markov inequality we obtain

P
( ∣∣∣ 1

N

N∑
i=1

(Xi − E(Xi))
∣∣∣ > a

)
(105)

= P
( ∣∣∣ 1√

N

N∑
i=1

(Xi − E(Xi))
∣∣∣ > a N

1
2

)
(106)

≤ 1

a2LNL
E
( ∣∣∣ 1√

N

N∑
i=1

(
Xi − E(Xi)

)∣∣∣2L) (107)

In the proof of Theorem 3.20 we have shown that the above expecation converge
(as N →∞), in particular, they are bounded. This is the assertion of the theorem.

To give an explicit estimate of the constant we redo the estimate of the expectation.
We set Yi = Xi − E(Xi).

E
(

(
1√
N

N∑
i=1

Yi)
2L
)
≤ 1

NL

∑
r∈Φ(2L)

w(r)
∣∣∣E(Y (r)

)∣∣∣ (108)

=
1

NL

∑
r∈Φ0

w(r)
∣∣∣E(Y (r))

∣∣∣ (since E(Yi) = 0) (109)

≤
∑
r∈Φ0

(2L)!

22L
sup
i∈N

E(Y 2L
i ) (due to Corollary 3.18 and Lemma 2.65) (110)

≤(2L+ 1)2L(2L)!

22L
sup
i∈N

E(Y 2L
i ) (by Lemma 3.12) (111)

We single out the following result:

Corollary 3.27. Under the assumptions of Theorem 3.24 we have

E
(

(
1√
N

N∑
i=1

(Xi − E(Xi))
2L
)
≤ (2L+ 1)2L(2L)!

22L
sup
i∈N

E
((
Xi − E(Xi)

)2L
)

(112)
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Theorem 3.28 (Strong law of large numbers).
Suppose Xi are independent random variables on a probability space (Ω,F ,P).

Suppose furthermore that sup
i∈N

E(XK
i ) ≤MK <∞ for all K.

Then

SN := lim
N→∞

1

N

N∑
i=1

(Xi − E(Xi)) = 0 P-almost surely, (113)

i.e. P
(

lim
N→∞

SN = 0
)

= P
(

lim
N→∞

1

N

N∑
i=1

(
Xi − E(Xi)

)
= 0
)

= 1. (114)

Remark 3.29. If all E(Xi) are equal then 1
N

N∑
i=1

Xi → E(X1) P-almost surely.

We start the proof of the theorem with a discussion of the limes superior and limes
inferior of a sequence of sets and the celebrated Borel-Cantelli Lemma.

Definition 3.30. Let (Ω,F ,P) be a probability space and An ∈ F a sequence of
sets. We define

1. lim supnAn :=
∞⋂
n=1

∞⋃
m=n

Am is called the lim-sup of the An.

2. lim infnAn :=
∞⋃
n=1

∞⋂
m=n

Am is called the lim-inf of the An.

Lemma 3.31. 1. lim sup
n→∞

An = {ω | ω ∈ An for infinitely many n} .

2. lim inf
n→∞

An = {ω | ω ∈ An for all n large enough} .

Proof: Define Bn =
∞⋃
m=n

Am. So, ω ∈ Bn iff (i.e. if and only if) there is an

m ≥ n with ω ∈ Am. By definition

lim sup
n→∞

An =
∞⋂
n=1

Bn (115)

Consequently, ω ∈ lim supn→∞An iff ω ∈ Bn for all n which is the case iff
ω ∈ An infinitely often.

The following proposition is ‘one half’ of the famous Borel-Cantelli-Lemma.
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Proposition 3.32. Suppose (Ω,F ,P) is a probability space and An ∈ F .

1. If
∞∑
n=1

P(An) <∞, then P
(
lim sup
n→∞

An
)

= 0.

2. If
∞∑
n=1

P({An) <∞, then P
(
lim inf
n→∞

An
)

= 1.

Proof: 1. Set (as in the proof above) Bn =
∞⋃
m=n

Am .

Then Bn ⊃ Bn+1 and lim inf
n→∞

An =
∞⋂
n=1

Bn. Thus

P
(
lim inf
n→∞

An
)

= lim
n→∞

P(Bn) ≤ lim
n→∞

∞∑
m=n

P(Am)

Since
∞∑
m=1

P(Am) <∞ we know
∞∑
m=n

P(Am)→ 0 as n→∞.

2. lim inf
n→∞

An = {
∞⋂
n=1

∞⋃
m=n

{Am.

Thus 2. follows from 1.

Proposition 3.33. Let Yn be a sequence of random variables on the probability
space (Ω,F ,P), set Am,k = {ω | |Ym| ≥ 1

k
} and A = {ω | lim

n→∞
Yn = 0}. If

∞∑
m=1

P(Am,k) <∞ for all k ∈ N then P(A) = 1.

Proof:

A = {ω | ∀k ∈ N ∃n ∈ N ∀m ≥ n |Ym| <
1

k
} (116)

=
⋂
k∈N

⋃
n∈N

⋂
m≥n

Am,k (117)

Defining Mk =
⋃
n∈N

⋂
m≥n

Am,k we have Mk+1 ⊂Mk and consequently

P(A) = lim
k→∞

P(Mk) (118)
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P(Mk) = P(
⋃
n∈N

⋂
m≥n

Am,k) (119)

= P(lim inf
n→∞

An,k) (120)

= 1 (121)

since
∞∑
n=1

P({An,k) =
∞∑
n=1

P(|Yn| > 1
k
) < ∞ by assumption, hence P(A) = 1.

Proof (Theorem 3.28): Defining

AN,k := {|SN | ≥
1

k
}

and applying Proposition 3.33 we have to prove that

∞∑
N=1

P
(
AN,k

)
< ∞ .

By Theorem 3.24 we have

P
(∣∣SN ∣∣ > 1

k

)
≤ C4 k

4 1

N2

which proves the assertion.
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4 Exchangeable Random Variables

4.1 Basics

In this section we discuss the notion of exchangeability for sequences of random
variables. Independent and identically distributed random variables constitute a
particular case of exchangeable random variables, but the latter notion is consid-
erably more general.

Definition 4.1. A sequence X1, . . . , XN of random variables on a probability
space (Ω,A,P) is called exchangeable, if for any set A ∈ A and any permuta-
tion π of {1, . . . , N} we have

P
(

(X1, . . . , XN) ∈ A
)

= P
(

(Xπ(1), . . . , Xπ(N)) ∈ A
)

(122)

An infinite sequence X1, X2, . . . of random variables is called exchangeable, if
the finite sequences X1, . . . , XN are exchangeable for any N .

Examples 4.2.

1. A (finite or infinite) sequence of independent, identically distributed random
variables is exchangeable.

2. Suppose X1, X2, . . . are independent, identically distributed random vari-
ables and the random variable X is independent of the Xi, then the se-
quence Yi = X +Xi is exchangeable. Note that the Yi are not independent
in general. The sequence Yi = X is a special case (with Xi = 0).

3. Prominent examples for sequences of exchangeable variables are given by
various versions of Polya’s urn scheme. We start with an urn containing
P balls with a label 1 and M balls labeled −1. We draw balls (as long as
the urn is not empty) and note the numbers on the balls. We denote these
(random) numbers by X1, X2, . . ..

(a) In the first version we return each drawn ball into the urn before we
draw the next ball. This is known as ‘sampling with replacement’ and
leads to independent identically distributed random variables.

(b) If we don’t replace drawn balls we obtain ‘sampling without replace-
ment’. This process comes to a halt after M +P steps since the urn is
empty then.
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(c) In the general scheme after drawing a ball (without replacement) we
put ` (new) balls with the same number as the drawn one into the urn.
Thus ` = 1 is equivalent to sampling with replacement, ` = 0 to
sampling without replacement.

For ` = 1, 2, . . . the random variables X1, X2, . . . given by Poly’s urn
scheme are an infinite sequence of exchangeable random variables.

For ` = 0 (sampling without replacement) the random variables X1, . . . XN

are exchangeable for N ≤M + P .

Proposition 4.3. If X1, X2, . . . , XN , N ≥ 2 is a sequence of exchangeable ran-
dom variables then the covariance

Cov
(
Xi, Xj

)
:= E(XiXj)− E(Xi)E(Xj) (123)

of Xi and Xj is bounded from below by

Cov
(
Xi, Xj

)
= E(XiXj)− E(Xi)E(Xj) ≥ −

1

N − 1
V(Xi)

for all i, j ∈ N = {1, 2, . . . , N}.

In particular, if {Xi}i∈N is an infinite sequence of exchangeable random variables
then

E(XiXj)− E(Xi)E(Xj) ≥ 0

Proof: We set
X̃i = Xi − E(Xi) = Xi − E(X1) .

then X̃i are exchangeable and E(X̃i) = 0.

We will prove that E(X̃1X̃2) ≥ − 1
N−1

E(X1
2). From this the assertion of the

proposition follows immediately.

Since the X̃i are exchangeable we have

E(X̃1X̃2) =
1

N(N − 1)

N∑
i,j=1

i 6=j

E(X̃iX̃j)

=
1

N(N − 1)

N∑
i,j=1

E(X̃iX̃j)−
1

N(N − 1)

N∑
i=1

E(X̃2
i )

=
1

N(N − 1)
E((

N∑
i=1

X̃i)
2)− 1

N − 1
E(X̃2

1 )

≥ − 1

N − 1
E(X̃2

1 )
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Example 4.4. Consider Polya’s urn scheme with ` = 0 (sampling without replace-
ment) and with P balls labeled ’+1’ and M balls with ’-1’. We assume M,P ≥ 1
and set N = M + P .

Then

E(X1X2)− E(X1)E(X2) = − 1

N − 1
V(X1) . (124)

It follows that Polya’s urn scheme cannot be extended to an exchangeable se-
quence X1, . . . , XL beyond L = N .

Proof (of (124)): We have

E(X1) = E(X2) =
P −M
P +M

and

V(X1) = E(X1
2)− E(X1)2 = 1 −

(P −M
P +M

)2

.

We compute

E(X1X2) =
P

P +M

P − 1

P +M − 1
+

M

P +M

M − 1

P +M − 1

− P

P +M

M

P +M − 1
− M

P +M

P

P +M − 1

=
(P −M)2 − (P +M)

(P +M)2 − (P +M)
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So, we conclude

E(X1X2)− E(X1)E(X2)

=
(P −M)2 − (P +M)

(P +M)(P +M − 1)
− (P −M)2

(P +M)2

= − 1

N − 1

(
(P −M)2 (P +M − 1)

(P +M)2
− (P −M)2 − (P +M)

P +M

)

= − 1

N − 1

(
1− (P −M)2

(P +M)2

)

= − 1

N − 1
V
(
X1

)

4.2 A Law of Large Numbers

In this section we consider averaged partial sums SN = 1
N

∑N
i=1Xi of exchange-

able random variables. For independent, identically distributed random variables
this SN converges in distribution to the probability measure carried by the single
point E(X1) (under very mild conditions, see Theorem 3.1). For exchangeable
random variables SN converges in distribution as well (again under mild condi-
tions). However, generally speaking, it converges to a more complicated measure,
which is not concentrated in a single point.

Theorem 4.5. If {Xi}i∈N is a sequence of exchangeable random variables with
moderately growing moments, then the normalized sums

SN =
1

N

N∑
i=1

Xi (125)

converge in distribution to a probability measure µ.

The support supp(µ) of µ is contained in the (possibly infinite) interval[
inf(suppPX1), sup(suppPX1)

]
and the moments mk(µ) of µ are given by:

mk(µ) = E(X1 · . . . ·Xk) (126)
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Definition 4.6. We call the measure µ of Theorem 4.5 the de Finetti measure
associated with the sequence {Xi}i∈N.

Proof (Theorem 4.5): An application of the Hölder inequality gives (see Lemma
2.65) ∣∣E(X1, X2, . . . , XK)

∣∣ ≤ E(|X1|K) (127)

thus, according to Theorem 2.55, there is at most one measure with

mK(µ) = E(X1 · . . . ·XK)

We compute

E(S K
N ) =

1

NK
E
( ( N∑

i=1

Xi

)K )
=

1

NK

N∑
i1,...,iK=1

E
(
Xi1 , Xi2 , . . . , XiK

)
=

1

NK

∑
i1,...,iK

all distinct

E
(
X1, X2, . . . , XK

)
+

1

NK

∑
i1,...,iK

not all distinct

E
(
Xi1 , Xi2 , . . . , XiK

) (128)

The first term in (128) equals

1

NK

N !

(N −K)!
E(X1, X2, . . . , XK)

which converges to

E(X1, X2, . . . , XK) as N →∞

since 1
NK

N !
(N−K)!

→ 1 for K fixed and N →∞.

The second term in (128) can be bounded in absolute value by:

(1− 1

NK

N !

(N −K)!
)E(|X1|K)

Consequently it converges to zero (for N →∞).
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4.3 Random variables of de-Finetti-type

In this section we introduce a class of examples of exchangeable random variables
with values in {+1,−1} (or any other set with exactly two elements). These
example are ”mixtures” of i.i.d. random variables in a sense we will make precise
below.

Definition 4.7. For −1 ≤ r ≤ 1 let P (1)
r be the probability measure on {−1, 1}

with
P (1)
r (1) =

1

2
(1 + r) and P (1)

r (−1) =
1

2
(1− r) (129)

such that the expectation of a P (1)
r -distributed random variable X1 is given by

E(1)
r (X1) = r

We also let P (N)
r denote the N -fold product measure

P (N)
r =

N⊗
i=1

P (1)
r (130)

on {−1, 1}N , such that

P (N)
r

(
(x1, x2, . . . , xN)

)
=

N∏
i=1

P (1)
r (xi)

=
1

2N
(1 + r)n+(x1,...,xN ) (1− r)n−(x1,...,xN ) (131)

where xi ∈ {−1, 1} and n±(x1, . . . , xN) = #{i ∈ {1, . . . , N} | xi = ±1}. As
usual we denote the expectation with respect to P (N)

r by E(N)
r .

Remark 4.8. If ξ1, ξ2, . . . , ξN are independent random variables with common
distribution P (1)

r then the ξi can be realized on {−1, 1}N with measure P (N)
r

Notation 4.9. We write Pr instead of P (N)
r if N is clear from the context.

Definition 4.10. Let µ be a probability measure on [−1, 1]. We say that a

sequence X1, . . . , XN of {−1, 1}-valued random variables is of de Finetti type
with de Finetti measure µ if

P(X1 = a1, X2 = a2, . . . , XN = aN)

=

1∫
−1

P
(N)
t

(
(a1, a2, . . . , aN)

)
dµ(t)

=
1

2N

∫ 1

−1

(1 + t)n+(a1,...,aN ) (1− t)n−(a1,...,aN ) dµ(t) (132)
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An infinite sequence X1, X2, . . . is called of de Finetti type if X1, . . . , XN is of de
Finetti type for each N ∈ N.

We define the probability measure Pµ on {1,+1}N by

Pµ(x1, x2, . . . , xN) =

∫ 1

−1

P
(N)
t

(
(x1, x2, . . . , xN)

)
dµ(t) (133)

where

Pµ(x1, x2, . . . , xN) (134)

is a short hand notation for

Pµ
(
{ω ∈ {1,+1}N | ω1 = x1, ω2 = x2, . . . , ωN = xN}

)
(135)

Remark 4.11. A sequence X1, X2, . . . of de Finetti type is obviously exchange-
able. It is a remarkable result of Bruno de Finetti that ‘the converse’ is true, more
precisely:

Any infinite {−1, 1}-valued sequence of exchangeable random variables is actu-
ally of de Finetti type ([3], see also Theorem 4.16 below).

If we regard the random variables X1, . . . , XN as functions on the probability
space ({−1, 1}N , P ({−1, 1}N), P

(N)
t ) then the X1, . . . , XN are independent un-

der the measure P (N)
t with common distribution P (1)

t .

We denote the expectation with respect to Pt = P
(N)
t by Et = E

(N)
t and the

expectation with respect to Pµ by Eµ.

Proposition 4.12. Suppose X1, . . . , XN is a sequence of random variables of de
Finetti type with de Finetti measure µ, then

1. For any function F : {−1, 1}N → R we have

Eµ
(
F (X1, X2, . . . , XN)

)
=

∫
Et(F (X1, . . . , XN)) dµ(t) (136)

2.

Eµ (X1, X2, . . . , XK) =

1∫
−1

tK dµ(t) = mK(µ) (137)
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3. Covµ(X1, X2) : = Eµ(X1X2)− Eµ(X1)Eµ(X2)

=

∫
t2 dµ(t)−

(∫
t dµ(t)

)2

≥ 0 (138)

4. X1, . . . , XN are independent if and only if µ is concentrated in a single
point, i.e. µ = δm, with m =

∫
t dµ(t).

5. The random variables SN = 1
N

∑
Xi converge in distribution to the mea-

sure µ.

Proof:

1) follows immediately from Definition 4.10.

2) From Definition 4.7 we get Et(X1) = t and consequently from the indepen-
dence of the Xi (under Pr)

Et(X1, X2, . . . , XK) = Et(X1)Et(X2) . . . Et(XK)

= tK (139)

3) With m :=
∫
t dµ(t) we compute

Covµ(X1, X2) =

∫
t2 dµ(t)−

(∫
t dµ(t)

)2

(140)

=

∫
(t−m)2 dµ(t) (141)

So, positivity follows.

4) The expression
∫

(t − m)2 dµ(t) can vanish only if µ = δm. If the Xi are
independent (with respect to P) the covariance Cov(X1, X2) must vanish, so µ
has to be δm.

On the other hand, if µ = δm then

Pµ(X1 = a1, . . . , XN = aN) = Pm(X1 = a1, . . . , XN = aN) (142)

hence the Xi are independent in this case.

5) We know already from Theorem 4.5 that SN converges in distribution to a
measure ν with

mK(ν) = Eµ(X1 ·X2 · . . . ·XK) = mK(µ)

Hence ν = µ.
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4.4 Sequences of de-Finetti-type

In this section we study sequences
{
X

(N)
1 , . . . , X

(N)
N

}
N∈N of de-Finetti-type with

corresponding de-Finetti-measures µN and their behavior for N →∞.

Definition 4.13. For each N ∈ N let X(N)
1 , . . . , X

(N)
N be a sequence of de-Finetti-

type with de-Finetti-measure µN .

Then the scheme {
{X(N)

1 }Ni=1

}
N=1,2,...

is called a de-Finetti sequence.

We say that a de Finetti sequence converges in distribution to a probability mea-
sure Pµ on {−1, 1}N if for each M ≤ N

PµN (x1, . . . , xM)→ Pµ(x1, . . . , xM) (143)

In this case we write PµN =⇒ Pµ.

Proposition 4.14. If µN =⇒ µ then PµN =⇒ Pµ.

The proof follows immediately from the definition.

Theorem 4.15. If µN =⇒ µ then

1

N

N∑
i=1

X
(N)
i

D
=⇒ µ (144)

Proof: We compute the moments of the random variables SN = 1
N

N∑
I=1

X
(N)
i .

As in (128) we write

EµN (SKN ) =
1

NK

N !

(N −K)!
EµN (X1 ·X2 · . . . ·XK)

+
1

NK

∑
i1,...,iKnot all distinct

EµN (Xi1 ·Xi2 · . . . ·XiK ) (145)

Since by assumption µN =⇒ µ we know that the first term of (145) converges to
Eµ(X1 ·X2 · . . . ·XK). The second term can be bounded by 1

NK (1− N !
(N−K)!

) and
thus goes to zero as N goes to infinity.

59



4.5 The Theorem of de Finetti

Let X1, X2, . . . be a sequence of {−1, 1}-valued random variables. Due to ex-
changeability the distribution of X1, · · · , XN is determined by the quantities

pNk = P(X1 = −1, X2 = −1, · · · , Xk = −1, Xk+1 = 1, · · · , XN = 1) (146)

with k = 0, 1, . . . , L.

In particular,

P
(
#{i ≤ L|Xi = −1} = k

)
=

(
N

k

)
pNk (147)

and

E(X1 · · ·XN) =
N∑
k=0

(−1)k
(
N

k

)
pNk (148)

Theorem 4.16 (de Finetti). If {Xi}i∈N is an infinite sequence of {−1, 1}-valued
exchangeable random variables and µ its associated de Finetti measure then

P(X1 = a1, X2 = a2, . . . , XN = aN) =

1∫
−1

P
(N)
t

(
(a1, a2, . . . , aN)

)
dµ(t) .

In other words: Each infinite sequence of {−1, 1}-valued exchangeable random
variables is of de Finetti type.

Proof: Given the measure µ we know due to Theorem 4.5 that

Ek := E
(
X1 ·X2 · . . . ·Xk

)
=

∫
tk dµ . (149)

Hence it is sufficient to show that the quantities pNk for k = 0, . . . , N can be
computed from the knowledge of the Ek (again for k = 0, . . . , N , where E0 = 1).

We prove this by induction over N .

Induction basis: Let N = 1 then a short computation shows that

p1
0 =

1

2

(
1 + E(X1)

)
and

p1
1 =

1

2

(
1− E(X1)

)
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Induction step: Suppose, we can compute the numbers pNk from the knowl-
edge of the Ek = E

(
X1 ·X2 · . . . ·Xk

)
for k = 0, . . . , N .

We have:

pN+1
k = P

(
X1 = −1, . . . , Xk = −1, Xk+1 = 1, . . . , XN = 1, XN+1 = 1

)
and

pN+1
k+1 = P

(
X1 = −1, . . . , Xk = −1, Xk+1 = −1, Xk+2 = 1 . . . , XN = 1, XN+1 = 1

)
= P

(
X1 = −1, . . . , Xk = −1, Xk+1 = 1, Xk+2 = 1 . . . , XN = 1, XN+1 = −1

)
hence

pN+1
k+1 + pN+1

k = pNk (150)

It follows that the numbers pN+1
k for k = 1, . . . , N + 1 can be computed from the

quantities pNk and the number pN+1
0 .

More precisely, since pN+1
k = pNk−1 − pN+1

k−1 we conclude

pN+1
k =

k∑
l=1

(−1)l+1pNk−l + (−1)kpN+1
0 (151)

Setting

ANk =
k∑
l=1

(−1)l+1pNk−l (152)

and

pL+1
k = ALk + (−1)kpL+1

0 (153)

we obtain

E(X1 · · · · ·XN+1) =
N+1∑
k=0

(−1)k
(
N + 1

k

)
pN+1
k

=
N∑
k=0

ANk +
N+1∑
k=0

(
N + 1

k

)
pN+1

0

=
N∑
k=0

ANk + 2N+1pN+1
0 (154)
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Note that ANk depends only on the pNk , hence, by induction hypothesis, ANk can be
computed by E(X1 · · · · ·XL) with L ≤ N . Hence, pN+1

0 can be computed from
the E(X1, · · · , XL), L ≤ N + 1 by (154). Knowing pN+1

0 we can compute the
pN+1
k for k = 1, · · · , N + 1 from (153).

Remark 4.17 (Example 4.4 revisited). A finite sequence X1, X2, . . . , XN of ex-
changeable random variables is not necessary of de-Finetti-type. We have seen
in Example 4.4 that we may have Cov(Xi, Xj) < 0. For de-Finetti-type random
variables this is impossible due to Proposition 4.12.
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5 The Curie-Weiss Model

5.1 Introduction

Probably the simplest nontrivial system of statistical physics is the Curie-Weiss
model. It describes (a caricature of) a magnetic system where the N elementary
magnets X1, X2, . . . , XN can take only two values: +1 (‘spin up’) and −1 (‘spin
down’). The Xi are {−1,+1}-valued random variables for which ‘alignment’ is
more likely than non alignment, i. e. the probability that two random variables
(‘spins’) Xi and Xj agree (‘are aligned’) is higher than for independent random
variables. Such a behavior is typical for ‘ferromagnets’.

The distribution of N independent {−1, 1}-valued random variables with a sym-
metric distribution

(
i. e. with P0(Xi = 1) = P0(Xi = −1) = 1

2

)
is given by:

P0

(
X1 = x1, X2 = x2, . . . , XN = xN

)
=

1

2N
(155)

where we chose to call the probability measures P0 rather than the generic P to
distinguish it from the measure Pβ to be defined below.

In statistical physics the distribution of elementary quantitiesX1, X2, . . . , XN like
spins is usually defined via an ‘energy functional’, i. e. a real valued function

H = H(x1, x2, . . . , xN) . (156)

In our caseH is a function on {−1,+1}N , the ‘configuration space’ of all possible
spin combinations. It represents the ‘energy’ of a physical system of N spins
when the spins take values x1, x2, . . . , xN ∈ {−1,+1}N . Physical systems are
more likely in a configuration with small energy H .

A second fundamental quantity of statistical physics is ‘temperature’ T , which
enters the distribution we are going to define via the quantity β = 1

T
the ‘inverse

temperature’. Low temperature (large β) means that the fluctuations of the system
are small, while high temperature (small β) results in strong fluctuations of the
system.

The probability distribution corresponding to the energy function H at inverse
temperature β ≥ 0 is given by

Pβ
(
X1 = x1, X2 = x2, . . . , XN = xN

)
= Z−1 e−β H(x1,x2,...,xN ) P0

(
X1 = x1, X2 = x2, . . . , XN = xN

)
= Z−1 1

2N
e−βH(x1,x2,...,xN ) (157)
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In formula (157) Z is a normalization constant which forces the total probability
to be equal to 1, i.e.

Z =
1

2N

∑
x1,x2,...,xN∈{−1,+1}

e−β H(x1,x2,...,xN ) .

We may write (157) in the shorter form:

Pβ = Z−1 e−βH P0 (158)

i. e. the measure Pβ has the density Z−1 e−βH(·) with respect to P0.

Although Z = Zβ N obviously depends both on β and on N , it is common to sup-
press these indices in the notation. Moreover, even when we change the model or
its representation we usually keep the bad, but common habit to call the normal-
ization constant Z although its value may change from line to line. So, whenever
we write P = Z−1 e−βH P0 we implicitly agree that Z is the summation constant
which make P a probability measure.

If we add a constant C to an energy function H the corresponding measures are
the same, more precisely:

Lemma 5.1. If

Pβ = Z−1 e−βH P0 and P̃β = Z̃−1 e−β(H+C) P0

then Pβ = P̃β

Proof: We have

Z =
∑

x1,x2,...,xN∈{−1,+1}

e−β H(x1,x2,...,xN ) and

Z̃ =
∑

x1,x2,...,xN∈{−1,+1}

e−β (H(x1,x2,...,xN )−C)

= Z eβC

Hence
P̃β = Z̃−1 e−β(H+C) P0 = Z−1 eβCeβHeβCP0 = Pβ

A measure of the form (158) is called a canonical ensemble in physics. Canonical
ensembles are used to describe thermodynamical systems in thermal equilibrium
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with a ‘heat bath’, i. e. for systems with a temperature T which is kept fixed.
At absolute temperature T = 0 the system will be in the state (or states) which
minimizes (or minimize) the energy H , thermal fluctuations which may distract
the system from equilibrium are absent for T = 0.

For T > 0 thermal fluctuations will distract the system from its energy minimum,
but the probability Pβ still has its maximum at the minimum of the energy H . If
we increase T , the thermal fluctuations become bigger and bigger. In particular,
if T = ∞ (i. e. if β = 0) the system is completely dominated by thermal fluctua-
tions, the energy landscape H become completely irrelevant. In deed, as one sees
from the definition of Pβ , the measure P0 makes the random variables (‘spins’)
independent.

In statistical physics, one is interested in the behavior of the measure Pβ and var-
ious quantities thereof in the limit N → ∞. For example the mean magnetiza-
tion 1

N

∑N
i=1Xi is an interesting quantity which we will investigate in the limit

N →∞.

The physical properties of the system under consideration will certainly depend
on the particular energy function H . In the following we will deal with a specific
energy function, namely the one for the Curie-Weiss model. There is, of course, a
variety of other spin models, most notably the celebrated Ising model. For these
models we refer to the literature, for example [10], [9], [2] and references therein.

The energy for the Curie-Weiss model is given by

H̃(x1, x2, . . . , xN = −1

2

N∑
i=1

(
xi ·

1

N

N∑
j=1

j 6=i

xj

)
(159)

In this expression the magnetization xi of the spin i correlates (‘interacts’) with
the mean magnetization 1

N

∑
xj of all the other spins. Expression (159) makes

it more likely (‘preferable’) for each spin Xi to take the value 1 (resp. −1) if the
average of all other spins is positive (resp. negative). In fact, in these cases the
energy is smaller (there is a minus sign in front of the sum), thus the probability
given in (158) is bigger. Thus we expect that there is a tendency for the spins to
be aligned.

We may rewrite H̃ as

H̃(x1, . . . , xN) = −1

2

1

N

N∑
i,j=1

i 6=j

xi xj

65



= − 1

2N

N∑
i,j=1

xi xj +
1

2N

N∑
i=1

xi
2

= − 1

2N

N∑
i,j=1

xi xj +
1

2

= − 1

2N

( N∑
i=1

xi

)2

+
1

2

So, if we set

H(x1, . . . , xN) = − 1

2N

( N∑
i=1

xi

)2

(160)

we may write according to Lemma 5.1

Pβ = Z−1 eβH (161)

for the probability distribution associated with (159) In the following we will al-
ways work with the energy function (160) rather than with (159).

Remark 5.2 (Warning). When we deal with independent identically distributed
randomXi it’s of no importance whether we start with an infinite sequence {Xi}i∈N
and restrict to X1, . . . , XN or start with a finite sequence X1, . . . , XN ′ with N ′ ≥
N and restrict it to X1, . . . , XN .

In other words, there is a probability measure P associated to the infinite sequence
{Xi}i∈N on the infinite dimensional space RN and the measures corresponding to
the finite sequences X1, . . . , XN are just the projections of P to finite dimensional
subspaces.

In the case of the Curie-Weiss model this is not true. Above we introduced for
any N the random variables X1, X2, . . . , XN ‘the’ Curie-Weiss measure Pβ . We
have to admit now that this is an abuse of notation as ‘the’ measure Pβ = P (N)

β

depends (explicitly) on N , and so does H!

In fact there is not a single Curie-Weiss model, but there is sequence of Curie-
Weiss models, a different one for each N .

Moreover, if X1, . . . , XN are distributed according to P (N)
β , then it is not true that

the subsequence X1, . . . , XM for M < N is distributed according to P (M)
β .

Even worse: There is no probability measure on the infinite dimensional space the
restrictions of which give the distribution of the finite subsequences. In fact, we
can not define what it means for an infinite sequence to be Curie-Weiss distributed.
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Consequently, it would make sense to make this dependence on N explicit by
writing X

(N)
1 , X

(N)
2 , . . . , X

(N)
N instead of X1, X2, . . . , XN and P (N)

β rather than
Pβ .

Following the tradition we will not do so most of the time hoping that the confu-
sion of the reader will be limited. In fact, we will be interested in properties of
‘the’ Curie-Weiss model which ‘hold true for large N ’.

We formalize the above considerations in the following definition.

Definition 5.3. For any integer N ∈ N and any β ≥ 0 we define the N -spin
Curie-Weiss measure P (N)

β with inverse temperature β on {−1,+1}N by

P (N)
β

(
x1, x2, . . . , xN

)
=

1

Z
(N)
β

e
β
2N

(
∑N
i=1 xi)

2

(162)

where
Z

(N)
β =

∑
x1,x2,...,xN∈{−1,+1}

e
β
2N

(
∑N
i=1 xi)

2

The Curie-Weiss model (for given N and β) consists of P (N)
β -distributed random

variables X(N)
1 , X

(N)
2 , . . . , X

(N)
N .

Notation 5.4. Whenever there is no danger of confusion we drop the superscript
N in the above defined quantities.

The Curie-Weiss model is interesting because on the one hand it is simple enough
to allow many explicit calculations and on the other hand it is complex enough
to show the important phenomenon of a phase transition. A ’phase transition’
occurs if some physical quantity, for example the magnetization 1

N

∑
Xi, changes

its behaviour (in the N → ∞ -limit) qualitatively if the inverse temperature β
exceeds a certain threshold. We will discuss this phenomenon in detail below.

The Curie-Weiss model can also be used to model voting behavior in a large set
of voters which can only vote ‘Yes’ or ‘No’. This model describes an interaction
between the voters who try to convince each other. For further reading on this
aspect see [5] and [6].

5.2 Curie-Weiss as a model of de Finetti type

From the very definition of the Curie-Weiss model it is clear that it is a sequence
of exchangeable random variables. However, it is not so obvious that it is actually
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a sequence of de Finetti type. That this is indeed the case is the main topic of the
current section.

We start with a lemma which will allow us to rewrite the Curie-Weiss probability
in the desired form.

Lemma 5.5. For each a ∈ R we have

e
a2

2 =
1√
2π

+∞∫
−∞

e−
s2

2
+sads (163)

Proof:

√
2π =

+∞∫
−∞

e−
s2

2 ds =

+∞∫
−∞

e−
(s−a)2

2 ds = e−
a2

2

+∞∫
−∞

e−
s2

2
+as ds

Theorem 5.6. If P(N)
β denotes the Curie-Weiss measure on {−1, 1}N then

P(N)
β (x1, . . . , xN) = Z−1

∫ 1

−1

P
(N)
t (x1, . . . , xN)

e−
N
2
Fβ(t)

1− t2
dt (164)

where

Fβ(t) =
1

β

( 1

2
ln

1 + t

1− t

) 2

+ ln
(
1− t2

)
(165)

and

Z =

1∫
−1

e−
N
2
Fβ(t)

1− t2
dt . (166)

Remark 5.7. Theorem 5.6 says that P(N)
β is a measure of de Finetti type with de

Finetti measure

µ(dt) =
1

Z

e−
N
2
Fβ(t)

1− t2
dt on [−1, 1].
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Proof: Take (x1, . . . , xN) ∈ {−1,+1}N . Using Lemma 5.5 we write

e
β
2N

(
∑
xi)

2

= (2π)−
1
2

∫ +∞

−∞
e−

s2

2 e
√

β
N

(
∑
xi)s ds

=
( N

2πβ

) 1
2

∫ +∞

−∞
e−

N
2β
y2

N∏
i=1

exiy dy

where we put y =

√
β

N
s.

=
( N

2πβ

) 1
2

∫ ∞
−∞

e−N( 1
2β
y2−ln cosh y)

N∏
i=1

exiy

cosh y
dy

Now we change variables setting t = tanh y. Below (Lemma 5.8) we compute

y = tanh−1 t =
1

2
ln(

1 + t

1− t
)

dt

dy
= (1− tanh2 y)

ln cosh y = −1

2
ln(1− tanh2 y)

ey

2 cosh y
=

1

2
(1 + t) and

e−y

2 cosh y
=

1

2
(1− t)

Thus we obtain∫
e−N( 1

2β
y2−ln cosh y)

N∏
i=1

exiy

2 cosh y
dy

=

∫
e−

N
2

( 1
β

( 1
2

ln 1+t
1−t )

2+ln(1−t2))
( N∏
i=1

1

2
(1 + xit)

)
· 1

1− t2
dt

=

∫
P

(N)
t (x1, . . . , xN)

e−
N
2
Fβ(t)

1− t2
dt (167)

With the correct normalizing constant Z this proves the assertion.

Lemma 5.8. For x ∈ R and |t| < 1 we have

1. tanh−1 t =
1

2
ln

(
1 + t

1− t

)
2. tanh′(x) = 1− tanh2 x
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3. ln cosx = −1

2
ln(1− tanh2 x)

4. ex

2 coshx
=

1

2
(1 + tanh x)

e−x

2 coshx
=

1

2
(1− tanhx)

Proof:

1.
1

2
ln

(
1 + tanhx

1− tanhx

)
=

1

2
ln

(
coshx+ sinhx

coshx− sinhx

)
=

1

2
ln

2ex

2e−x
= x

2.
tanh′(x) =

d

dx

(
sinh(x)

cosh(x)

)
=

cosh2(x)− sinh2(x)

cosh2(x)
= 1− tanh2(x)

3.
e−

1
2

ln(1−tanh2 x) = e− ln(1−tanh2 x)
1
2 =

1

(1− tanh2 x)
1
2

= coshx

4.
ex

coshx
=

1

2

(ex + e−x) + (ex − e−x)
coshx

=
coshx+ sinhx

coshx
= 1 + tanhx
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Proposition 5.9. Suppose X1, X2, . . . , XK are P(N)
β -distributed Curie-Weiss ran-

dom variables, then

ENβ
(
X1X2 . . . XK

)
= Z−1

∫ 1

−1

tK
e−

N
2
Fβ(t)

1− t2
dt (168)

where again

Fβ(t) =
1

β
(
1

2
ln

1 + t

1− t
)2 + ln(1− t2)

and ENβ denotes expectation with respect to P(N)
β .

Proof: From Theorem 5.6 we know that

ENβ
(
X1X2 . . . XK

)
= Z−1

∫ 1

−1

E
(N)
t (X1, . . . , XN)

e−
N
2
Fβ(t)

1− t2
dt

= Z−1

∫ 1

−1

tK
e−

N
2
Fβ(t)

1− t2
dt

where we used that the random variables X1, X2, . . . , XK are independent under
the probability measure P (N)

t and E(N)
t (Xj) = t for all j.

5.3 Laplace’s method

The Laplace method is a technique to analyze integrals of the form∫
e−

N
2
F (x) φ(x) dx (169)

asymptotically as N →∞.

The main idea of the method is the insight that the leading contribution of the
integral comes from the minimum of the function F .

For example, if F (x) ≈ F ′′(0)x2 and φ(x) ≡ 1 then we might expect that∫ ∞
0

e−
N
2
F (x) dx ≈

∫ ∞
0

e−
N
2
F ′′(x0)x2 dx

=
1√

N F ′′(0)

∫ ∞
0

ey
2/2 dy

=
1

2

√
2π

F ′′(0)

1√
N
.
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The following theorem makes the above intuition rigorous.

Theorem 5.10 (Laplace Method). Suppose a ∈ R, b ∈ R ∪ {∞}, a < b

and F : [a, b)→ R is a function whose absolute minimum is at x = a.

Assume:

1. For every δ > 0
inf

x>a+δ
F (x) > F (a) (170)

2. There are constants A and C and δ0 > 0, k > 0 and η > 0 such that for all
x with a ≤ x ≤ a+ δ0∣∣(F (x)− F (a)

)
− A(x− a)k

∣∣ ≤ C(x− a)k+η (171)

3. φN , φ : [a, b)→ R are functions such that for a δ1 > 0

sup
x∈[a,a+δ1]

|φN(x)− φ(x)| → 0 (172)

and φ(x) is continuous at x = a

4. There is a function φ̃ : [a, b)→ R such that

|φ(x)|+ |φN(x)| ≤ φ̃(x) (173)

for all N and x ∈ [a, b) and
b∫

a

e−
N
2
F (x) (x− a)` φ̃(x) dx <∞ (174)

for all N ≥ N0 and an ` ≥ 0.

Then we have:

lim
N→∞

e
N
2
F (a)(AN)

`+1
k

b∫
a

e−
N
2
F (x)(x− a)`φN(x) dx

= φ(a)

∫ ∞
0

e−
yk

2 y` dy (175)

= φ(a)
2
`+1
k

k
Γ(
`+ 1

k
) (176)

72



For the reader’s convenience we recall

Definition 5.11. For x > 0 we define the Gamma function Γ by

Γ(x) :=

∫ ∞
0

tx−1 e−t dt (177)

Proof (Theorem 5.10): Without loss of generality we assume that a = 0 and
F (a) = 0.

We have∫ b

0

e−
N
2
F (x)x`φN(x)dx =

δ∫
0

e−
N
2
F (x)x`φN(x)dx+

b∫
δ

e−
N
2
F (x)x`φN(x)dx

(178)
for a 0 < δ < δ0 to be chosen later.

The second integral can be estimated using Assumptions 1 and 4 assuming in
addition F (x) ≥ B > 0 for x > δ

b∫
δ

e−
N
2
F (x)x`φN(x)dx ≤ e−

N−N0
2

B

∫
e−

N0
2
F (x)x`φ̃(x)dx . (179)

By Assumption 4 this term goes to zero, even if multiplied by N
`+1
k .

We turn to the first integral in (178): For x ≤ δ0 we may write F (x) = Axk+r(x)
with |r(x)| ≤ Cxk+η according to Assumption 2.

We have

δ∫
0

e−
N
2
F (x)x`φN(x) dx =

δ∫
0

e−
N
2

(Axk+r(x))x`φN(x) dx

= (NA)−
`+1
k

δ(NA)
1
k∫

0

e−
yk

2 e
−N

2
r( y

(NA)1/k
)
y` φN(

y

(NA)
1
k

) dy (180)

where we put y = (NA)
1
k x.

Since φN → φ uniformly in a neighborhood of 0 and φ is continuous there we
conclude that

φN

( y

(NA)
1
k

)
→ φ(0) as N →∞ .
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Moreover, since

r
( y

(NA)
1
k

)
≤ C

yk+η

(NA)
k+η
k

(181)

We learn that
N r(

y

(NA)
1
k

)→ 0

thus

e
−N

2
r( y

(NA)1/k
) → 1 for each y.

Consequently, the integral

δ(NA)
1
k∫

0

e−
yk

2 e
−N

2
r
(

y

(NA)
1
k

)
y` φN(

y

(NA)
1
k

) dy

=

∞∫
0

e−
yk

2 χ
[0,δ(NA)

1
k ]

(y) e
−N

2
r
(

y

(NA)
1
k

)
y` φN(

y

(NA)
1
k

) dy (182)

converges to φ(0)
∞∫
0

e−
yk

2 y`dy provided we can show that the integrand in (182)

is dominated by an integrable function.

Due to the uniform convergence of φN and the continuity (at 0) of φ the term
φN( y

(NA)
1
k

) is uniformly bounded for y ∈ [0, δ(NA)
1
k ], if δ is small enough.

Again for y < δ(NA)
1
k we estimate using Assumption 2 and (181)

N

∣∣∣∣∣r( y

(NA)
1
k

)

∣∣∣∣∣ ≤ CN

A
k+η
k N

k+η
k

yηyk ≤ C

A
k+η
k N

1
k

δηN
η
kA

η
k yk ≤ 1

4
yk (183)

if δ is small enough.

Thus we have shown that for suitable δ > 0 the integrand in (182) is dominated
by the integrable function

Dy`e−
yk

4

where D is a constant. This justifies the interchanging of the limit and the integral
above and thus finishes the proof (175). To prove (176) we make the change of
variables t = yk

2
in (176).
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The conditions on the function F in Theorem 5.10 can be checked easily for
smooth functions. The following corollary is a typical example for the use of
this strategy.

Corollary 5.12. Suppose F : (c, d)→ R (with c ∈ R∪{−∞} and d ∈ R∪{∞})
is k+ 1 -times continuously differentiable for an even k and assume that for some
a ∈ (c, d):

F (a) = F
′
(a) = · · · = F (k−1)(a) = 0 and F k(a) > 0 (184)

and F
′
(x) 6= 0 for x 6= a.

Suppose furthermore that φ : (c, d) → R is continuous at a with φ(a) 6= 0 and

such that
d∫
c

e−F (x) |φ(x)| |x− a|` dy <∞.

Then

1. For even `∫ d

c

e−
N
2
F (x) (x− a)` φ(x) dx

≈ φ(a)
( k!

F (k)(a)

) `+1
k
( 2

N

) `+1
k 2

k
Γ(
`+ 1

k
) as N →∞ (185)

2. For odd `

N
`+1
k

∫ d

c

e−
N
2
F (x) (x− a)` φ(x) dx → 0 (186)

Notation 5.13. Above we used (and will use throughout) the expression

a(N) ≈ b(N) as N →∞ (187)

as a shorthand notation for

lim
N→∞

a(N)

b(N)
= 1 (188)

Proof (Corollary): The assumptions on F imply that F has a unique minimum
at x = a and inf

|x−a|≥δ
F (x) > 0 for every δ > 0.
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By Taylor’s formula we have

F (x) =
F (k)(a)

k!
(x− a)k + r(x− a)

with |r(x)| ≤ C |x|k+1 near a

since F (k+1) exists and is continuous.

Thus we may apply Theorem 5.10 to both the integrals

d∫
a

e−
N
2
F (x)(x− a)`φ(x)dx and

a∫
c

e−
N
2
F (x)(x− a)`φ(x)dx

For even ` we have
a∫
c

e−
N
2
F (x)(x− a)`φ(x)dx =

−c∫
−a

e−
N
2
F (−x)

(
x− (−a)

)`
φ(−x)dx

Since these integrals give the same asymptotic result, part (i) of the Corollary
follows from Theorem 5.10.

If ` is even then
a∫
c

e−
N
2
F (x)(x− a)`φ(x)dx = −

−c∫
−a

e−
N
2
F (−x)

(
x− (−a)

)`
φ(−x)dx

and Theorem 5.10 implies part (ii).

As an illustration of the Laplace method we make a slight detour and prove the
Stirling formula, a well known asymptotic expression for N !.

We first need:

Lemma 5.14. 1. For all x > 0 we have Γ(x+ 1) = xΓ(x).

2. For N ∈ N we have N ! = Γ(N + 1)

Proof: For all x > 0 we compute using integration by parts

Γ(x+ 1) =

∞∫
0

tx e−tdt = x

∞∫
0

tx−1e−tdt (189)
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This proves 1.

We prove 2. by induction

Γ(1) =

∞∫
0

e−tdt = 1 = 0! (190)

For the induction step we use 1.:

Γ(N + 1) = N · Γ(N) = N · (N − 1)! = N !

Proposition 5.15. (Stirling Formula)

N ! ≈ NNe−N
√

2πN as N →∞ . (191)

Proof:

N ! =

∞∫
0

tNe−tdt = NN+1

∞∫
0

sNe−Ns ds

where we changed variables t = Ns

= NN+1

∞∫
0

e−N(s−ln s) ds

Setting F (s) = s − ln s we find that F has a strict minimum at s = 1 and
F
′′
(1) = 1.

Applying Corollary 5.12 we obtain
∞∫

0

e−N(s−ln s)ds ≈ e−N
√

2

N
1
2

2

∞∫
0

e−s
2

ds

We compute
∞∫

0

e−s
2

ds =
1√
2

∞∫
0

e
−x2
2 dx =

1

2

1√
2

∞∫
−∞

e−
x2

2 dx =
1

2

√
π

This gives the result.
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5.4 Correlations for the Curie-Weiss model

In this section we compute the correlations for Curie-Weiss random variables
asymptotically. To do so we use (168) of Proposition 5.9 to estimate the cor-
relations

E(N)
β

(
X1 ·X2 · . . . ·Xk

)
(192)

via Laplace’s method.

In order to apply Corollary 5.12 we have to find and analyze the minima of the
function

Fβ(t) =
1

β

(1

2
ln

1 + t

1− t
)2

+ ln(1− t2) (193)

for t ∈ (−1, 1).

We show:

Proposition 5.16.

1. For β < 1 the function Fβ has a unique minimum at t = 0. F
′

β(0) = 0 and
F
′′

β (0) = 2
(

1
β
− 1
)
> 0

2. For β = 1 the function Fβ has a unique minimum at t = 0. F
′

β(0) =

F
′′

β (0) = F
′′′

β (0) = 0 and F (iv)
β (0) = 4 > 0

3. For β > 0 the function Fβ has a unique minimum in [0, 1) at t0 > 0 and
a unique minimum in (−1, 0] at −t0 < 0. F

′

β(t0) = F
′

β(−t0) = 0 and
F
′′

β (t0) = F
′′

β (−t0) > 0. t0 is the unique strictly positive solution of t0 =

tanh βt0. Fβ has a local maximum at t = 0 with F
′

β(0) = 0 and F
′′

β (0) =

2
(

1
β
− 1
)
< 0.

Proof: We compute two derivatives of Fβ:

Fβ
′(t) =

1

1− t2
( 1

β
ln

1 + t

1− t
− 2t

)
(194)

Fβ
′(t) = 0 is equivalent to

1

2
ln

1 + t

1− t
= βt (195)

Since 1
2

ln 1+t
1−t = tanh−1 t (see 5.8) this is equivalent to

tanh βt = t (196)
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This is satisfied for t = 0 for all β.

Fβ
′′(t) =

2

(1− t2)2

( (
1

β
−
(
1− t2

))
− 2t

(
1

2 β
ln

1 + t

1− t
− t
) )

(197)

Thus

Fβ
′′(0) = 2

( 1

β
− 1
) 

> 0 for β < 1

= 0 for β = 1

< 0 for β > 1

(198)

Consequently t = 0 is a local minimum for β < 1 and a local maximum for
β > 1.

Let us analyze the case β < 1. Due to the symmetry Fβ(t) = Fβ(−t) it suffices
to look at t ≥ 0. Setting g(t) = tanh βt and f(t) = t we see that

g(0) = f(0) = 0 (199)

and

g′(t) =
β

cosh2(βt)
< 1 = f ′(t) (200)

for all t ∈ [0, 1) and β < 1 thus there is no strictly positive solution for

tanh βt = t (201)

if β < 1.

Moreover, the same argument shows that t > tanh βt for β < 1 and all t ∈
(0, 1). It follows that F ′β(t) is strictly positive for t ∈ (0, 1) thus Fβ(t) is strictly
monotone there.

We turn to the case β > 1. Under this assumption

g(0) = f(0) = 0 (202)
g′(0) = β > 1 = f ′(t) (203)

and g(t)→ 1, f(t)→∞ as t→∞ (204)

Thus there exists a strictly positive solution t0 of

tanh βt = t (205)

Since tanh βt < 1 we conclude t0 < 1.
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Moreover, we have that g′(t) = β
cosh2(βt)

is decreasing for t ≥ 0, hence the positive
solution t0 is unique. We have g(t) > t for 0 < t < t0 and g(t) < t for t > t0. It
follows that g′(t0) < 1.

Using that 1
2

ln 1+t0
1−t0 = βt0 we compute

Fβ
′′(t0) =

2

(1− t20)2

( 1

β
− (1− t20)

)
(206)

and

1

β
− (1− t20) =

1

β
− (1− tanh2 βt0) =

1

β
− 1

β
g′(t0) > 0 (207)

The case β = 1 involves a straight forward but tedious computation. We got to
compute F1

′′′(t) and F (iv)
1 (t). It turns out that F1

′′′(0) = 0 and F iv
1 (0) = 4.

Moreover, F ′1(t) > 0 for t > 0, hence F1(t) is strictly monotone for t ∈ (0, 1).

Theorem 5.17. Suppose X1, X2, · · · , X` are P(N)
β -distributed Curie-Weiss ran-

dom variables.

If ` is even, then

1. if β < 1

E(N)
β

(
X1 ·X2 ·X`

)
≈ (l − 1)!!

( β

1− β

) `
2 1

N
`
2

as N →∞ (208)

2. if β = 1 there is a constant c` such that

E(N)
β

(
X1 ·X2 ·X`

)
≈ c`

1

N
`
4

(209)

3. if β > 1

E(N)
β

(
X1 ·X2 ·X`

)
≈ m(β)` (210)

where t = m(β) is the strictly positive solution of tanh βt = t.

If ` is odd then E(N)
β

(
X1 ·X2 ·X`

)
= 0 for all β.

Remark 5.18. In the case β = 1 the constant c` is given by 12
`
4

Γ( `+1
4

)

Γ( 1
4

)
as the proof

will show.
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Proof: We set

ZN(`) =

1∫
−1

e−
NFβ(t)

2

1− t2
t`dt (211)

Since Fβ(t) = Fβ(−t) we know that Zk(`) = 0 for ` odd. For even ` we apply
Corollary 5.12. Together with Proposition 5.16 we obtain the following:

For β < 1

ZN(`) ≈ (
4

F
′′
β (0)

)
`+1
2 Γ(

`+ 1

2
)N−

`+1
2 (212)

= (
β

1− β
)
`+1
2 Γ(

`+ 1

2
)N−

`+1
2 2

`+1
2 (213)

Consequently

E(N)
β (X1 ·X2 ·X`) =

ZN(`)

ZN(0)
(214)

≈
Γ( `+1

2
)

Γ(1
2
)

(
β

1− β
)
`+1
2 N−

`
2 2

`
2 (215)

Using the fact that for even `

2
`
2

Γ( `+1
2

)

Γ(1
2
)

= (`− 1)!! (216)

(a proof will be given below).

We arrive at (208). For β = 1 we know from Proposition 5.16 that F (k)
β (0) = 0

for k = 0, 1, 2, 3 and F (4)
β (0) = 4 > 0.

Hence Corollary 5.12 gives

ZN(`) ≈ 12
`+1
4 · 1

2
· Γ(

`+ 1

4
) ·N−

`+1
4 (217)

This gives the result for β = 1 with c` = 12
`
4

Γ( `+1
4

)

Γ( 1
4

)
. The proof for β > 1 goes

along the same lines (and is somewhat easier than the two other cases).

Lemma 5.19. For even ` ≥ 2 we have

2
`
2

Γ( `+1
2

)

Γ(1
2
)

= (`− 1)!! (218)

81



Proof: Set ` = 2r. We do induction over r.

For r = 1 we use Lemma 5.14 to prove

2
Γ(1 + 1

2
)

Γ(1
2
)

= 2
1

2

Γ(1
2
)

Γ(1
2
)

= 1 = 0! (219)

The induction step is similar:

2r+1 Γ(r + 1 + 1
2
)

Γ(1
2
)

= 2(r +
1

2
)2r

Γ(r + 1
2
)

Γ(1
2
)

(220)

= (2r + 1)(2r − 1)!! = (2r + 1)!! (221)

5.5 The law of large numbers for the Curie-Weiss model

In this section we investigate the large-N-behavior of normalized sums

mN =
1

N

N∑
i=1

Xi (222)

of Curie-Weiss distributed random variables Xi.

In physics, where Curie-Weiss random variables serve as models for (ferro-) mag-
netic systems, the quantitymN gives the mean magnetization of the system. In the
theory of voting systems [5] mN models the result of the voting of N voters. For
example, a simple majority is established if mN > 0. More generally, a qualified
majority, meaning the number of ”Yes”-votes is bigger than q N , is established if
mN > 2q − 1.

In the following we will show that the behavior of mN (as N → ∞) changes
drastically at β = 1. More precisely, if β ≤ 1 then

mN
D

=⇒ δ0 (223)

while for β > 1 we prove

mN
D

=⇒ 1

2
(δ−m(β) + δm(β)) (224)

where t = m(β) is the (strictly) positive solution of t = tanh(βt) (see Theorem
5.17.3).

In physical terms: At inverse temperature β = 1 there is a phase transition from
paramagnetism to ferromagnetism.
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Theorem 5.20. Suppose the random variables X1, · · · , XN are P(N)
β -distributed

Curie-Weiss random variables and set mN = 1
N

N∑
i=1

Xi then

1. If β ≤ 1 then

mN
D

=⇒ δ0 (225)

2. If β > 1 then

mN
D

=⇒ 1

2
(δ−m(β) + δm(β)) (226)

where m(β) is the unique (strictly) positive solution of

tanh(βt) = t (227)

Remark 5.21. If we setm(β) = 0 for β ≤ 1 we obtainmN
D

=⇒ 1
2
(δ−m(β)+δm(β))

for all β.

Proof: As usual we investigate the moments of mN :

E(mN
`) =

1

N `
E
( ( N∑

i=1

Xi

)` )
=

1

N `

N∑
i1,··· ,i`=1

E
(
Xi1Xi2 · · ·Xi`

)
(228)

We note that |E(Xi1Xi2 · · ·Xi`)| ≤ 1. We split the sum (228) in two parts. First,
we consider those tuples (i1, · · · , i`) for which at least one index occurs at least
twice. The number of such indices is at most C`N `−1 (with C` independent ofN ).

Thus

1

N `

N∑
i1,··· ,i`=1

some index occurs twice

E
(
Xi1Xi2 · · ·Xi`

)
≤ C`

1

N
→ 0 (229)
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Hence asymptotically (as N →∞)

E(mN
`) ≈ 1

N `

N∑
i1,··· ,i`=1

no index repeated

E(Xi1 · · ·Xi`)

=
1

N `

N∑
i1,··· ,i`=1

no index repeated

E(X1X2 · · ·X`)

≈ 1

N `
N ` E(X1X2 · · ·X`)

≈ E(X1X2 · · ·X`) (230)

the last term goes to zero if β ≤ 1 by Theorem 5.17 and to m(β)` for β > 1 and
even `, it equals zero for odd `. This proves the Theorem.

Remark 5.22. All we needed for part 1 of Theorem 5.20 was that for all ` the
expectations satify that E(X1X2 · · ·X`) → 0 (together with the existence of all
moments).

5.6 Central limit theorems for the Curie-Weiss model

We turn to central limit theorems for Curie-Weiss random variables. Since 1
N

N∑
i=1

Xi

does not converge to zero if β > 1, it is clear that for this case 1√
N

N∑
i=1

Xi has no

chance to converge.

Thus, we suppose β ≤ 1 for the rest of this section postponing a closer look at
fluctuation for β > 1 to the next section.

We will see in the following that, in deed,

ΣN :=
1√
N

N∑
i=1

Xi (231)

converges to a normal distribution as long as β < 1.
Although V(Xi) = E(X2

i ) = 1 (in fact X2
i = 1) the limit distribution of ΣN is

not N (0, 1) but N (0, 1
1−β ).
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In fact,

E(Σ2
N) =

1

N

N∑
i,j=1

E(XiXj)

=
1

N

(
N +

∑
i 6=j

E(XiXj)
)

≈ 1 +
N(N − 1)

N

β

1− β
1

N

where we used E(X2
i ) = 1 and E(XiXj) ≈ β

1−β
1
N

for i 6= j by Theorem 5.17.1.
So

V(ΣN) = E(Σ2
N) ≈ 1

1− β
. (232)

This calculation explains why to expectN (0, 1
1−β ) as the limit distribution. It also

suggests that ΣN will not converge for β = 1.

In fact, to make V
(

1
Nα

∑
Xi

)
converge for β = 1, we got to choose α = 3

4
as the

following computation shows (we use Theorem 5.17.2).

E
(( 1

Nα

∑
Xi

)2
)

=
1

N2α

N∑
i,j=1

E(XiXj)

=
1

N2α

(
N +

∑
i 6=j

E(XiXj)
)

≈ N1−2α +
N(N − 1)

N2α
c2

1

N1/2

It turns out that the fluctuations at the critical (inverse) temperature β = 1 are, in
deed, of order N

3
4 (rather than N

1
2 as for β < 1), i.e.

Σ
′

N =
1

N
3
4

N∑
I=1

Xi (233)

converge to a limit distribution. Moreover, the limit measure is not a normal
distribution.

Recalling notations and strategy of the proof

We start our discussion with the case β < 1. It should not come as a surprise, that
again we have to deal with expectations of the form

E(Xi1 · · ·XiL) (234)
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and a substantial part of the proofs consists of careful bookkeeping.

In the following, we recall and apply notations from section 3.2.

For each multiindex i = (i1, · · · , iL) the quantities ρ`(i) count the number of
indices i1, · · · , iL that occur exactly `-times in i.

Since Curie-Weiss random variables are exchangeable it is clear that

E(Xi1Xi2 · · ·XiL) (235)

depends only on r = ρ(i) = (ρ1(i), · · · , ρL(i)).

We set

E
(
X(r)

)
= E(Xi1Xi2 · · ·XiL) (236)

if r = ρ(i).

Therefore, we can write

E
(( 1

N1/2

N∑
i=1

Xi

)L)
=

1

NL/2

∑
r∈Π

wL(r) E
(
X(r)

)
(237)

Here, as in section 3.2 Π denotes the set of all L-profiles and wL(r) counts the
number of multi-indices i with ρ(i) = r (see Definitions 3.9 and 3.10 for details).

From these definitions we also recall that Π0
k denotes the set of profiles r with

r1 = k and r` = 0 for all ` > 2. Also, Π+
k denotes the set of profiles r with r1 = k

and r` > 0 for some ` > 2.

The strategy of our proof follows the one for independent, identically distributed
random variables in Section 3.3. We split the sum in (237) into the sums over the
sets Π0

k with k = 0, 1, . . . , L and the sets Π+
k .

We saw already in Section 3.3 (cf. Remark 3.21) that the sum over Π+
0 is negligible

in the limit. Independence was not used in the corresponding estimate.

Again as in the independent case, the contribution from the set Π0
0 is easily seen

to be 1.

For independent random variables (with expectation 0) we have E(X(r)) = 0
if r1 > 0, hence the sets Π0

k and Π+
k for k > 0 do not contribute at all. This

is different in the current context. It turns out that the sets Π+
k do not contribute

to the limit, but the sum over the sets Π0
k does. It is here where the correlation

estimates of Theorem 5.17 will play a crucial role.
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Results and proofs

Theorem 5.23. Let X1, · · · , XN be PNβ -distributed Curie-Weiss random variable
with β < 1 then

ΣN =
1√
N

N∑
i=1

Xi
D

=⇒ N (0,
1

1− β
) (238)

Proof: As above we write:

E
(( 1

N1/2

N∑
i=1

Xi

)L)
=

1

NL/2

∑
r∈Π

wL(r) E
(
X(r)

)
=

1

NL/2

L∑
k=0

∑
r∈Π0

k

wL(r) E
(
X(r)

)
(239)

+
1

NL/2

L∑
k=0

∑
r∈Π+

k

wL(r) E
(
X(r)

)
(240)

To discuss the expressions wL(r) E
(
X(r)

)
we start with the case r ∈ Π+

k :

Lemma 5.24. Let X1, · · · , XN be PNβ -distributed Curie-Weiss random variable
with β < 1. Suppose the L− profile r belongs to Π+

k . Then

1. There is a constant C1 independent of N such that∣∣∣E(X(r)
)∣∣∣ ≤ C1

1

Nk/2
. (241)

2. The number wL(r) of index tuples i with profile r satisfies

wL(r) ≤ L! N (L+k−1)/2 (242)

Proof (Lemma 5.24): We have

Xi
` =

{
1, if ` is even;
Xi, if ` is odd.

Thus, if r ∈ Π+
k , we obtain

E
(
X(r)

)
= E

(
X1X2 . . . X`

)
for some ` ≥ k.
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From this Theorem 5.17 gives the claim 1.

From Corollary 3.18 we learn

wL(r) ≤ L! N
∑L
`=1 r`

≤ L! Nk+ 1
2

∑L
`=2 ` r`−

1
2 (we used that r` > 0 for some ` > 2)

≤ L! N
k
2

+ 1
2

∑L
`=1 ` r`−

1
2

≤ L! N
1
2

(L+k)− 1
2

Continuing the proof of Theorem 5.23 we observe that for r ∈ Π+
k

wL(r) E
(
X(r)

)
≤ L! N

1
2

(L+k)− 1
2 C1

1

Nk/2
≤ C2 N

L
2
− 1

2

Thus

1

NL/2

L∑
k=0

∑
r∈Π+

k

wL(r) E
(
X(r)

)
converges to zero as N →∞ (and L is fixed).

We turn to the case r ∈ Π0
k. Since r` = 0 for ` ≥ 3 we have k + 2r2 = L. Thus

either both k and L are odd or both are even. If k is odd then

E
(
X(r)

)
= E

(
X1X2 . . . Xk

)
= 0 (243)

by Theorem 5.17. Hence we may suppose that both k and L are even.

Lemma 5.25. Let X1, · · · , XN be PNβ -distributed Curie-Weiss random variable
with β < 1. Let k and L be even. Suppose the L− profile r belongs

to Π0
k. Then

1. For large N

E
(
X(r)

)
≈ (k − 1)!!

( β

1− β
)k/2

N−k/2. (244)

2. The number wL(r) of index tuples i with profile r satisfies

wL(r) ≈ L!

k! (L−k
2

)! 2(L−k)/2
N (L+k)/2 (245)
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Proof (Lemma 5.25): Since for r ∈ Π0
k we have E

(
X(r)

)
= E

(
X1X2 . . . Xk

)
assertion 1 follows immediately from Theorem 5.17.

Assertion 2 is a simple consequence of Theorem 3.14.

Finally, we collect the various observations and get for even L

E
(( 1

N1/2

N∑
i=1

Xi

)L)

≈ 1

NL/2

L/2∑
`=0

∑
r∈Π0

2`

wL(r) E
(
X(r)

)

≈ 1

NL/2

L/2∑
`=0

L!

(2`)! (L
2
− `)! 2L/2−`

NL/2+` (2`− 1)!!
( β

1− β
)`
N−`

=

L/2∑
`=0

L!

(2`)! (L
2
− `)! 2L/2−`

(2`− 1)!!
( β

1− β
)`

we use Lemma 2.46 to express (2`− 1)!!:

=
L!

(L/2)! 2L/2

L/2∑
`=0

(L/2)!

(L/2− `)! `!
( β

1− β
)`

= (L− 1)!!
( 2

1− β
)L/2 (246)

Thus we have proved that the moments of ΣN converge to the moments ofN (0, 1
1−β ).

This completes the proof of Theorem 5.23.

We turn to the case of the ‘critical’ inverse temperature β = 1.

Theorem 5.26. Let X1, · · · , XN be PNβ -distributed Curie-Weiss random variable
with β = 1 and denote by µ1 the measure on R with density

φ1(x) = 2 (12)−1/4 Γ(1/4)−1 e−
1
12
x4

then

Σ′N =
1

N3/4

N∑
i=1

Xi
D

=⇒ µ1 . (247)
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Remark 5.27. The measure µ1 is indeed a probability measure and its moments
mk(µ1) are given by

mk(µ1) =

{
12

k
4

Γ( k+1
4

)

Γ( 1
4

)
, for even k;

0, for odd k.
(248)

Proof (Remark): For even k we have∫ +∞

−∞
xk e−

1
12
x4 dx =

1

2
(12)

k+1
4

∫ ∞
0

t
k−3
4 e−t dt

=
1

2
(12)

k+1
4 Γ(

k + 1

4
)

by a change of variable t = 1
12
x4.

Proof (Theorem 5.26): For r ∈ Πk we have by Theorem 5.17:∣∣∣E(X(r)
)∣∣∣ ≤ C1

1

Nk/4
.

and
wL(r) ≤ C N

∑L
`=1 r` ≤ C N

1
2

(k+L)

since
L∑
`=1

r` = k +
L∑
`=2

r` ≤ k +
1

2

L∑
`=2

2r`

≤ 1

2
k +

1

2

L∑
`=1

2r` =
1

2
(k + L)

Thus
1

N
3
4
L
wL(r)

∣∣E(X(r)
)∣∣ ≤ C ′N−

1
4

(L−k) .

This term goes to zero unless k = L.

We conclude

E
(( 1

N3/4

N∑
i=1

Xi

)L)

=
1

N
3
4
L

L−1∑
k=0

∑
r∈Πk

wL(r) E
(
X(r)

)
+

1

N
3
4
L

∑
r∈ΠL

wL(r) E
(
X(r)

)
≈ 1

N
3
4
L

∑
r∈ΠL

wL(r) E
(
X(r)

)
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For r ∈ ΠL we have

wL(r) ≈ NL (by Theorem 3.14)

and

E
(
X(r)

)
≈

{
12

L
4

Γ(L+1
4

)

Γ( 1
4

)
1

NL/4 , for even L;

0, for odd L.
(by Theorem 5.17)

From this the theorem follows.

5.7 Fluctuation of the magnetization for large β

The distribution of 1
N

∑
Xi converges to the measure 1

2
(δ−m(β) + δm(β)). m =

m(β) is the biggest solution to

tanh(βm) = m (249)

m(β) > 0 if β > 1 (m(β) = 0 if β ≤ 1).

Consequently for β > 1, the random variables

1√
N

∑
(Xi − c) (250)

cannot converge no matter how we choose the constant c.

Nevertheless, it would be interesting to know how the mean magnetization 1
N

∑
Xi

fluctuates around its ”limit points” ±m(β). To formalize this we consider the dis-

tribution of ΣN = 1√
N

N∑
i=1

(
Xi −m(β)

)
under the condition that 1

N

N∑
i=1

Xi > 0.

This conditional probability is defined as

Pβ

(
ΣN ∈ A

∣∣∣ 1

N

N∑
i=1

Xi > 0
)

=

Pβ

(
ΣN ∈ A ∧ 1

N

N∑
i=1

Xi > 0
)

Pβ( 1
N

∑
Xi > 0)

(251)

We know that Pβ( 1
N

∑
Xi > 0) is strictly positive and, in fact, converges to 1

2
.

We remark that we could as well consider

Pβ

(
ΣN ∈ A | |

1

N

N∑
i=1

Xi −m(β)| < α
)

(252)
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which gives the same result as the choice above as long as 0 < α < 2m(β).

It will be sufficient to investigate the convergence behaviour of the random vari-
able

ΣN =
1√
N

N∑
i=1

(Xi −m(β))χ
{ 1
N

N∑
i=1

Xi>0}
(253)

To shorten notation we set

P+
ΣN

(A) = Pβ

(
ΣN ∈ A |

1

N

N∑
i=1

Xi > 0
)

(254)

and
χ+
N = χ

{ 1
N

N∑
i=1

Xi>0}
. (255)

Theorem 5.28. Suppose β > 1 and m = m(β) is the unique positive solution
of tanh(βm) = m. Then the distribution P+

ΣN
of ΣN = 1√

N

∑
(Xi − m(β))

conditioned on 1
N

N∑
i=1

Xi > 0 converges to a normal distribution N (0, σ2) with

σ2 =
1−m(β)

1− β(1−m(β))
(256)

Proof: We set

ζN(L) =

1∫
−1

e−
N
2
Fβ(t)

1− t2
Et

( L∑
N

χ+
N

)
dt (257)

where as usual Fβ(t) = 1
β
(1

2
ln(1−t

1+t
))2 + ln(1− t2) since

Eβ
(

ΣN
L | 1

N

∑
Xi > 0

)
=
ζN(L)

ζN(0)
(258)

we have to analyze the large-N -behaviour of ζN(L). For β > 1 the function Fβ
has two minima ±m(β) with Fβ(−m(β)) = Fβ(m(β)).

From Theorem 5.10 we expect that the asymptotics of (257) is dominated by the
behavior of the integrand near t = ±m(β), in fact, we will see that t = −m(β)
does not play a rule due to the condition 1

N

∑
Xi > 0. To simplify notation we

will write m instead of m(β). We will also assume that Fβ(m) = Fβ(−m) = 0.
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This can be achieved by multiplying numerator and denominator of (258) by the
same constant, thus not changing the value of the quotient.

To evaluate (257) we cannot use Theorem (257) directly since we have no explicit
expression for Et

(
ΣN

Lχ+
N

)
.

Our strategy will be to evaluate

ξN(L) =

1∫
m
2

e−
N
2
Fβ(t)

1− t2
Et

(
ΣN

L
)
dt (259)

instead and prove that the difference to ζN(L) is asymptotically negligible.

First, we decompose ζN(L) in three parts

ζN(L) =

−m
2∫

−1

e−
N
2
Fβ(t)

1− t2
Et

(
ΣN

Lχ+
N

)
(= ζ−N(L)) (260)

+

m
2∫

−m
2

e−
N
2
Fβ(t)

1− t2
Et

(
ΣN

Lχ+
N

)
(= ζ0

N(L)) (261)

+

1∫
m
2

e−
N
2
Fβ(t)

1− t2
Et

(
ΣN

Lχ+
N

)
(= ζ+

N(L)) (262)

Now, we prove that (260) and (260) do not contribute asymptotically.

Lemma 5.29. For each M ∈ N there is a constant CM <∞ such that

ζ−N(L) =

− 1
2
m∫

−1

e−
N
2
Fβ(t)

1− t2
Et

(
ΣN

Lχ+
N

)
dt (263)

≤ CM
NM

(264)

Proof: (Lemma):

By the Cauchy-Schwarz inequality

Et

(
ΣN

Lχ{ 1
N

∑
Xi>0}

)
≤ Et

(
ΣN

2L
) 1

2
Pt(

1

N

∑
Xi > 0)

1
2 (265)
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Due to Theorem 3.24 we have

Pt(
1

N

∑
Xi > 0) ≤ CM

N2M
(266)

for all t ∈]− 1, 1
2
m[.

Thus

ζ−N(L) ≤ C

NM

0∫
−1

e−
N
2
Fβ(t)

1− t2
Et

(
ΣN

2L
)
dt (267)

≤ C l

NM
(268)

We used that the moments Et(ΣN
2L) are bounded (in t and in N ) (see Corollary

3.27).
Next we consider the ”portion” of ζN between −m(β)

2
and +m(β)

2
.

Lemma 5.30. There is a constant CL and a δ > 0 such that

ζ0
N(L) =

+
m(β)

2∫
−m(β)

2

e−
N
2
Fβ(t)

1− t2
Et

(
ΣN

Lχ+
N

)
dt (269)

satisfies
|ζ0
N(L)| ≤ CLe

−Nδ (270)

Proof: Since Fβ(t) has unique minima at ±m(β) there exists a δ > 0 such that
Fβ(t) > 2δ for all t ∈ [−m(β)

2
, m(β)

2
].

Consequently

ζ0
N(L) ≤ e−Nδ

m(β)
2∫

−m(β)
2

1

1− t2
dt sup

t,N
Et

(
ΣN

2L
) 1

2
(271)

It remains to estimate

ζ+
N(L) =

1∫
m(β)

2

e−
N
2
Fβ(t)

1− t2
Et

(
ΣN

Lχ+
N)
)
dt (272)
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We write

ζ+
N(L) =

1∫
m(β)

2

e−
N
2
Fβ(t)

1− t2
Et

(
ΣN

L
)
dt (273)

−
1∫

m(β)
2

e−
N
2
Fβ(t)

1− t2
Et

(
ΣN

L(1− χ+
N)
)
dt (274)

The final expression can be estimated in a similar way as ζ−N(L), since

Et(1− χ+
N) = Pt({

1

N

N∑
i=1

Xi ≤ 0}) (275)

which is very small for t ≥ m(β)
2

.

Thus it remains to estimate

ζ++
N (L) =

1∫
m(β)

2

e−
N
2
Fβ(t)

1− t2
Et

(
ΣN

L
)
dt (276)

We have

Et

(
ΣN

L
)

=
1

N
L
2

Et

(( N∑
i=1

(Xi −m(β))
)L) (277)

setting Yi = Xi −m(β) we see that

Et(Yi1 · · ·YiL) = Et(Yj1 · · ·YjL) (278)

whenever r = ρ(i) = ρ(j) hence the above expressions depend only on r = ρ(i)
so we write

Et
(
Y (r)

)
= Et(Yi1 · · ·YiL) (279)

for r = ρ(i).

Now, we can expand

Et

(
ΣN

L
)

=
1

N
L
2

∑
r∈Π

wL(r)Et
(
Y (r)

)
(280)

For k = r1 we may write

Et
(
Y (r)

)
= Et(Y1)kEt(Y (r

′
)) (281)

with r′ = (0, r2, r3, · · · , rL).
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Lemma 5.31. For r ∈ Πk we have for even k

∣∣∣ 1∫
m
2

e−
N
2
Fβ(t)

1− t2
Et(Y (r)) dt

∣∣∣ ≤ CL

N
k
2

(282)

and for odd k

N
k
2

1∫
m
2

e−
N
2
Fβ(t)

1− t2
Et(Y (r)) dt→ 0 (283)

Proof: The Lemma follows from Corollary 5.12.
So far we proved that

ζN(L) ≈ ζ++
N (L) =

1∫
m
2

e−
N
2
Fβ(t)

1− t2
Et

(
ΣN

L
)
dt (284)

=
1

N
L
2

∑
r∈Π

wL(r)

1∫
m
2

e−
N
2
Fβ(t)

1− t2
Et
(
X(r)

)
dt (285)

We set E(r) =
1∫
m
2

e
−N2 Fβ(t)

1−t2 Et(X(r)) dt. If r ∈ Π+
k we have by Lemma 5.31

|E(r)| ≤ CN−
k
2 (286)

and by Corollary 3.18 (see also (93))

wL(r) ≤ CN
k+L
2
− 1

2 (287)

Consequently, the terms 1

N
L
2
wL(r)E(r) go to zero for r ∈ Π+

k .

Thus we have

ζN(L) ≈ 1

N
L
2

L∑
k=0

∑
r∈Π0

k

wL(r)E(r) (288)

For r ∈ Π0
k we know k+ 2r2 = L, so either k and L are both odd or they are both

even. If k is odd N
k
2 E(r)→ 0, so ζN(L)→ 0 if L is odd.

Finally, we arrive at

ζN(2M) ≈ 1

NM

M∑
k=0

∑
r∈Π0

2k

wN(r)E(r) (289)
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Lemma 5.32. For r ∈ Π0
2k with L = 2M

E(r)

ζN(0)
≈ (1−m2)M

( β(1−m2)

1− β(1−m2)

)k
(2k − 1)!!

1

Nk
(290)

Proof: The function Fβ has a unique minimum in [m
2
, 1], namely t = m (see

the computation in Proposition 5.16).

We computed

F
′′

β (m) =
2

1−m2

1− β(1−m2)

β(1−m2)
(> 0) (291)

To apply Corollary 5.12 we compute for r ∈ Π0
2k, so

r = (2k,M − k, 0, · · · , 0) (292)

Et(X(r)) = Et(X1)2k Et(X
2
1 )M−k (293)

= (t−m)2k(1− 2mt+m2)M−k (294)

Applying Corollary 5.12 we get

E(r) ≈ (1−m2)M−k(1−m2)
( β(1−m2)

1− β(1−m2)

) 2k+1
2 · 2

2k+1
2 Γ

(2k + 1

2

)
· 1

N
2k+1

2

(295)
Since

ζN(0) = E(0) (0 is the unique element in Π for L = 0) (296)

we obtain

E(r)

ζN(0)
≈ (1−m2)M

( β(1−m2)

1− β(1−m2)

)k
2k

Γ(2k+1
2

)

Γ(1
2
)

1

Nk
(297)

= (1−m2)M
( β(1−m2)

1− β(1−m2)

)k
(2k − 1)!! · 1

Nk
(298)

where we used Lemma 5.19.
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To finish the proof of Theorem 5.28 we sum over k:

1

NM

M∑
k=0

∑
r∈Π0

2k

w2M(r)
E(r)

E(0)
(299)

≈ 1

NM

M∑
k=0

NM+k (2M)!

(2k)!(M − k)! 2M−k
(1−m2)M (300)

·
( β(1−m2)

1− β(1−m2)

)k
· (2k − 1)!! · 1

Nk
(301)

= (1−m2)M
M∑
k=0

M !

k!(M − k)!

(2M)! k!

M ! (2k)! 2M−k
(302)

· (2k − 1)!! ·
( β(1−m2)

1− β(1−m2)

)k
(303)

= (1−m2)M(2M − 1)!!
M∑
k=0

(
M

k

) ( β(1−m2)

1− β(1−m2)

)k
(304)

= (1−m2)
L
2 (L− 1)!!

( 1

1− β(1−m2)

)L
2

(305)
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