Random Schrödinger operators with a background potential

Hayk Asatryan and Werner Kirsch Fakultät für Mathematik und Informatik FernUniversität in Hagen, Germany

1 Notations, assumptions

We consider Schrödinger operators on $L^2(\mathbb{R})$ of the form

$$H_{\omega} = -\frac{d^2}{dx^2} + U + V_{per} + V_{\omega}.$$
 (1)

We assume that the background potential U belongs to the space of real valued uniformly square integrable functions

$$L^{2}_{\text{loc, unif}} = \{F : \mathbb{R} \to \mathbb{R} \mid \sup_{x \in \mathbb{R}} \int_{x-1}^{x+1} |F(x)|^{2} dx < \infty\}$$
(2)

and

$$U(x) \to a^{-}$$
 as $x \to -\infty$, $U(x) \to a^{+}$ as $x \to +\infty$. (3)

Moreover, V_{per} is a 1-periodic real valued function in $L^2_{loc, unif}$. V_{ω} is a random alloy-type potential of the form

$$V_{\boldsymbol{\omega}}(x) = \sum_{k=-\infty}^{\infty} q_k(\boldsymbol{\omega}) f(x-k) \quad (x \in \mathbb{R}),$$
(4)

where q_k are independent random random variables with a common distribution P_0 . We suppose that f, called the single site potential, is a real valued function satisfying

$$|f(x)| \leqslant C \left(1+|x|\right)^{-\gamma} \quad (x \in \mathbb{R})$$
(5)

for some $\gamma > 1$.

We assume for simplicity that supp P_0 is a compact subset of \mathbb{R} . We remark that it would be sufficient that enough moments of P_0 exist. Moreover, f may have local singularities.

Under the above assumptions the potentials U, V_{per} , V_{ω} and there sums belong to $L^2_{loc, unif}$, hence they are H_0 -bounded by [8], Theorem XIII.96 and all operators are essentially self adjoint on $C_0^{\infty}(\mathbb{R})$. We introduce the following notations:

$$H_0 = -\frac{d^2}{dx^2}$$
 (the free Hamiltonian), (6)

$$H_U = H_0 + U \tag{7}$$

$$H_{per} = H_0 + V_{per}, (8)$$

$$H_{U,per} = H_0 + U + V_{per}.$$
(9)

2 The essential spectra of H_{U+V} and $H_{U,per}$

One of the main observations of this section is the following result.

Theorem 2.1. Let $U_1, U_2, V : \mathbb{R} \to \mathbb{R}$ be H_0 -bounded measurable functions and

$$U_j(x) \xrightarrow[x \to -\infty]{} a^-, \quad U_j(x) \xrightarrow[x \to \infty]{} a^+ \quad (j = 1, 2)$$

for some $a^{\pm} \in \mathbb{R}$. Then

$$\sigma_{ess}(H_{U_1+V}) = \sigma_{ess}(H_{U_2+V}).$$

Proof. We need to prove that

$$\sigma_{ess}(H_{U_1+V}) \subset \sigma_{ess}(H_{U_2+V}),$$

 $\sigma_{ess}(H_{U_2+V}) \subset \sigma_{ess}(H_{U_1+V}).$

We'll prove the first inclusion (the proof of the second one is similar). Let

$$\lambda \in \sigma_{ess}(H_{U_1+V}).$$

By Weyl's criterion and Theorem 3.11 in [3] we conclude that there is a Weyl sequence of functions $\varphi_n \in C_0^{\infty}(\mathbb{R})$ such that

$$\|\varphi_n\|_2 = 1 \quad (n \in \mathbb{N}),$$

$$\|(H_{U_1+V} - \lambda I)\varphi_n\|_2 \to 0$$
(10)

such that either

$$\operatorname{supp} \varphi_n \subset (-\infty, n) \quad \text{for all } n \tag{11}$$

or

$$\operatorname{supp} \varphi_n \subset (n, \infty) \quad \text{for all } n \tag{12}$$

holds. Assume (11) is true, then

$$\| (H_{U_1+V} - \lambda I) \varphi_n \|_2 - \| (H_V - (\lambda - a^-) I) \varphi_n \|_2 \to 0,$$

$$\| (H_{U_2+V} - \lambda I) \varphi_n \|_2 - \| (H_V - (\lambda - a^-) I) \varphi_n \|_2 \to 0.$$

and hence

$$\|(H_{U_1+V}-\lambda I) \varphi_n\|_2 - \|(H_{U_2+V}-\lambda I) \varphi_n\|_2 \to 0.$$

From this and (10) we obtain

$$\|(H_{U_2+V}-\lambda I)\varphi_n\|_2\to 0,$$

therefore

$$\lambda \in \sigma_{ess}(H_{U_2+V})$$

L		

As a corollary to the proof of Theorem 2.1 we get

Corollary 2.2. Let $U, V : \mathbb{R} \to \mathbb{R}$ be measurable, H_0 -bounded and

$$U(x) \xrightarrow[x \to -\infty]{} a^{-}, \quad U(x) \xrightarrow[x \to \infty]{} a^{+}$$

(in the usual sense), where $a^{\pm} \in \mathbb{R}$. Then

$$\sigma_{ess}(H_{U+V}) \subset \left(a^{-} + \sigma_{ess}(H_V)\right) \cup \left(a^{+} + \sigma_{ess}(H_V)\right), \tag{13}$$

Remark 2.3. The previous theorem shows that the knowledge of V, a^{\pm} is sufficient for unique determination of $\sigma_{ess}(H_{U+V})$. In fact,

$$\sigma_{ess}(H_{U+V}) = \sigma_{ess}(H_{U_c+V}),$$

where

$$U_c = a^- \chi_{(-\infty,0]} + a^+ \chi_{(0,\infty)}.$$

In general equality in (13) does not hold. However, for the case of periodic potentials we have:

Theorem 2.4. Let $U : \mathbb{R} \to \mathbb{R}$ be measurable, H_0 -bounded and satisfy the conditions

$$U(x) \xrightarrow[x \to -\infty]{} a^{-}, \quad U(x) \xrightarrow[x \to \infty]{} a^{+}$$

and let W be a H_0 -bounded periodic potential, then

$$\sigma_{ess}\left(H_0+U+W\right) = \left(a^- + \sigma_{ess}\left(H_0+W\right)\right) \cup \left(a^+ + \sigma_{ess}\left(H_0+W\right)\right).$$

Remark 2.5. It is well known that under the above assumptions on *W* we have $\sigma_{ess}(H_0 + W) = \sigma(H_0 + W)$. See [8].

Proof. In the view of Corollary 2.2, we need to prove that

$$a^{-} + \sigma_{ess} \left(H_0 + W \right) \subset \sigma_{ess} \left(H_0 + U + W \right), \tag{14}$$

$$a^{+} + \sigma_{ess} \left(H_0 + W \right) \subset \sigma_{ess} \left(H_0 + U + W \right). \tag{15}$$

We'll prove (14) (the proof of (15) is similar). Let

$$\lambda \in a^- + \sigma_{ess} (H_0 + W)$$

i.e. $\lambda - a^- \in \sigma_{ess}(H_0 + W)$.

Then there is a Weyl sequence $\varphi_n \in C_0^{\infty}(\mathbb{R})$ with

1. $\|\varphi_n^-\|_2 = 1 \ (n \in \mathbb{N}),$

2.
$$||(H_0 + W - (\lambda - a^-)I) \varphi_n^-||_2 \to 0$$
,

Since *W* is periodic any shift of φ_n by an integer times the period of *W* is also a Weyl sequence for $H_0 + W + a^-$. Thus we may assume that supp $\varphi_n \subset (-\infty, -n)$. As in the previous proofs one easily sees that this sequence is also a Weyl sequence for $H_0 + U + W$.

3 The essential spectrum of H_{ω}

We turn to the spectrum of H_{ω} . To do so, we first describe the spectrum of $H_0 + V_{\omega}$, i.e. the case U = 0.

We follow the investigation in [4].

Definition 3.1. A potential $W(x) = \sum_{k \in \mathbb{Z}} \rho_k f(x-k)$ is called *admissible*, if $\rho_k \in \text{supp } P_0$ for all *k*. Let us denote by \mathscr{P} the set of all admissible potentials, generated by ℓ -periodic ρ_k for some $\ell \in \mathbb{N}$.

Theorem 3.2. The spectrum $\sigma(H_0 + V_{\omega})$ is independent of ω almost surely and is given (almost surely) by

$$\Sigma := \sigma (H_0 + V_{\omega}) = \overline{\bigcup_{W \in \mathscr{P}} \sigma (H_0 + W)}$$
(16)

For a proof we refer to [4].

In particular, the following result was proved in [4].

Lemma 3.3. If W is a periodic admissible potential and $\lambda \in \sigma(H_0 + W)$ then there are sequences $\varphi_n^+, \varphi_n^- \in L^2(\mathbb{R})$ in the domain of $H_0 + W$, such that

- *1.* $\|\varphi_n^+\| = \|\varphi_n^-\| = 1$
- 2. The supports of φ_n^+ and φ_n^- are compact and satisfy supp $\varphi_n^+ \subset [n,\infty)$ and supp $\varphi_n^- \subset (-\infty,-n]$

3. For almost all ω

$$\| (H_0 + V_\omega - \lambda) \varphi_n^+ \| \rightarrow 0 \text{ and } \| (H_0 + V_\omega - \lambda) \varphi_n^- \| \rightarrow 0$$

From this we conclude

Theorem 3.4. Almost surely

$$\sigma(H_{\omega}) = \sigma(H_0 + V_{\omega} + a^-) \cup \sigma(H_0 + V_{\omega} + a^+)$$
(17)

Proof. By Corollary 2.2 we know that

$$\sigma(H_{\omega}) \subset \sigma(H_0 + V_{\omega} + a^-) \cup \sigma(H_0 + V_{\omega} + a^+).$$
(18)

To prove the converse we observe that for any $W \in \mathscr{P}$

$$\sigma \left(H_0 + W + a^{\pm} \right) \subset \sigma_{ess} \left(H + U + W \right) \tag{19}$$

by Theorem 2.4. It is easy to see (e. g. as in [4]) that almost surely for $W \in \mathscr{P}$

$$\sigma_{ess}(H+U+W) \subset \sigma_{ess}(H+U+V_{\omega}).$$
⁽²⁰⁾

We conclude that

$$\bigcup_{W \in \mathscr{P}} \sigma \left(H_0 + W + a^+ \right) \cup \bigcup_{W \in \mathscr{P}} \sigma \left(H_0 + W + a^- \right) \subset \sigma_{ess} \left(H + U + V_{\omega} \right).$$
(21)

Since the righthand side is a closed set we infer from Theorem 3.2 that almost surely

$$\sigma(H_0 + V_{\omega} + a^-) \cup \sigma(H_0 + V_{\omega} + a^+) \subset \sigma(H_{\omega}).$$
⁽²²⁾

4 The Integrated Density of States

In this section we investigate the integrated density of states of the operators H_{ω} .

Definition 4.1. Let *A* be a self adjoint operator bounded below and with (possibly infinite) purely discrete spectrum $\lambda_1(A) \le \lambda_2(A) \le \lambda_3(A) \le \ldots$ where we count eigenvalues according to their multiplicities. Then we set

$$N(A,E) := \#\{j \mid \lambda_j(A) \le E\}.$$
(23)

For $H = H_0 + W$ (with $W \in L^2_{loc, unif}$) and $a, b \in \mathbb{R}$, a < b we define $H^D_{a,b}$ to be the operator H restricted to $L^2([a,b])$ with Dirichlet boundary conditions both at a and b. Similarly, $H^N_{a,b}$ has Neumann

boundary conditions at *a* and *b*, $H_{a,b}^{D,N}$ has Dirichlet boundary condition at *a* and Neumann boundary condition at *b*, $H_{a,b}^{N,D}$ has Neumann boundary condition at *a* and Dirichlet one at *b*. If for $H = H_0 + W$ the limit

$$\mathscr{N}(E) = \mathscr{N}(H, E) := \lim_{L \to \infty} \frac{1}{2L} N\left(H^{D}_{-L,L}, E\right)$$
(24)

exists for all but countably many *E*, we call $\mathcal{N}(E)$ the *integrated density of states* for *H*.

It is well known that under our assumptions the integrated density of states for $H = H_0 + V_{\omega}$ exists, more precisely:

Theorem 4.2. If V_{ω} satisfies the assumptions of Section 1, then the integrated density of states for $\mathcal{N}(H, E)$ exists and for all but countably many E the following equalities hold:

$$\mathcal{N}(H,E) = \lim_{L \to \infty} \frac{N\left(H^{N}_{-L,L}(E)\right)}{2L} = \lim_{L \to \infty} \frac{\mathbb{E}\left(N\left(H^{D}_{-L,L}(E)\right)\right)}{2L} = \lim_{L \to \infty} \frac{\mathbb{E}\left(N\left(H^{N}_{-L,L}(E)\right)\right)}{2L}.$$
 (25)

(\mathbb{E} denotes expectation with respect to \mathbb{P} .)

For a proof see [5]. The proof there uses the method of Dirichlet-Neumann bracketing (see [8]), in particular it is used:

Theorem 4.3. *If* a < c < b *and* $X, Y \in \{D, N\}$ *, then*

$$N\left(H_{a,c}^{X,D},E\right) + N\left(H_{c,b}^{D,Y},E\right) \leq N\left(H_{a,c}^{X,Y},E\right) \leq N\left(H_{a,c}^{X,N},E\right) + N\left(H_{c,b}^{N,Y},E\right).$$
(26)

For the integrated density of states of the operator $H_{\omega} = H_0 + U + V_{per} + V_{\omega}$ we have the following result.

Theorem 4.4. The integrated density of states $\mathcal{N}(H_{\omega}, E)$ exists and can be expressed in terms of $\mathcal{N}_0(E)$, the integrated density of states of $H_0 + V_{\omega}$ by:

$$\mathscr{N}(H_{\omega}, E) = \frac{1}{2} \mathscr{N}_0(E - a^-) + \frac{1}{2} \mathscr{N}_0(E - a^+)$$
(27)

To prove this result we need the following lemma:

Lemma 4.5. For the integrated density of states \mathcal{N}_0 of $H_0 + V_{\omega}$ we have for any fixed M with M < L and any $X, Y \in \{D, N\}$:

$$\mathcal{N}_{0}(E) = \lim_{L \to \infty} \frac{1}{L} \mathbb{E} \left(N \left((H_{0} + V_{\omega})_{M,L}^{X,Y} \right) \right)$$
(28)

$$= \lim_{L \to \infty} \frac{1}{L} \mathbb{E} \left(N \left((H_0 + V_{\omega})_{-L,-M}^{X,Y} \right) \right)$$
(29)

Proof. By the stationarity of the potential we have

$$\mathbb{E}\left(N\left((H_0+V_{\omega})_{M,L}^{X,Y}\right)\right) = \mathbb{E}\left(N\left((H_0+V_{\omega})_{-(L-M)/2,(L-M)/2}^{X,Y}\right)\right).$$
(30)

Thus, the lemma follows from Theorem 4.2

We know prove Theorem 4.4.

Proof.

$$\mathbb{E}\left(N\left(\left(H_{0}+U+V_{\omega}\right)_{-L,L}^{X,Y}\right)\right) \leq \mathbb{E}\left(N\left(\left(H_{0}+U+V_{\omega}\right)_{-L,-M}^{X,N}\right)\right) + \mathbb{E}\left(N\left(\left(H_{0}+U+V_{\omega}\right)_{-M,M}^{N,N}\right)\right) + \mathbb{E}\left(N\left(\left(H_{0}+U+V_{\omega}\right)_{M,L}^{N,Y}\right)\right). \quad (31)$$

We take M > 0 so large that $|U(x) - a^-| < \varepsilon/2$ for $x \le -M$ and $|U(x) - a^+| < \varepsilon/2$ for $x \ge M$. Let us divide inequality (31) by 2*L*. Then the middle term goes to zero as $L \to \infty$. Moreover in the limit the first term on the right hand side can be bounded by $\frac{1}{2} \mathcal{N}_0(E - a_-) + \varepsilon/2$. Similarly the third term can be bounded by $\frac{1}{2} \mathcal{N}_0(E - a_+) + \varepsilon/2$. Since $\varepsilon > 0$ was arbitrary we proved

$$\mathbb{E}\left(N\left((H_0 + U + V_{\omega})_{-L,L}^{X,Y}\right)\right) \leq \frac{1}{2}\mathcal{N}_0(E - a^-) + \frac{1}{2}\mathcal{N}_0(E - a^+).$$
(32)

The inverse inequality follows if we use Dirichlet, instead of Neumann boundary conditions for the inequalities (31). \Box

References

- [1] Adams R. A., Fournier J. J. F. Sobolev Spaces. Academic Press, 2003
- [2] Eastham M. S. P. *The Spectral Theory of Periodic Differential Equations*. Belfast, Scottish Academic Press, 1973
- [3] Cycon H. L., Froese R. G., Kirsch W., Simon B. Schrödinger Operators. Springer, 2008
- [4] Kirsch W., Martinelli F. *On the spectrum of Schrödinger operators with a random potential.* Comm. Math. Phys. 85, 329–350, 1982
- [5] Kirsch W., Martinelli F. (1982): On the density of states of Schrödinger operators with a random potential. J. Phys. A: Math. Gen. 15 (7), 2139–2156, 1982
- [6] Naimark M. A., Linear differential operators. Part II. London, George G. Harrap & Co., 1968.
- [7] Reed M., Simon B. Methods of Modern Mathematical Physics, vol. 2. Fourier Analysis, Self-Adjointness. – Academic Press, 1975
- [8] Reed M., Simon B. Methods of Modern Mathematical Physics, vol. 4. Analysis of Operators. Academic Press, 1978