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1 Notations, assumptions

We consider Schrodinger operators on L2(R) of the form

2

d
Hy = _E +U +Vper+Vw~ (D

We assume that the background potential U belongs to the space of real valued uniformly square

integrable functions

x+1
Lot = {FiR>R[sup [ [F)Pdx < ) @
xeR Jx—1
and
U(x) — a as x— —oo, U(x) — a® as x— +oo. 3)

Moreover, V)., is a 1-periodic real valued function in L{ . unif-

Ve is a random alloy-type potential of the form
Vo(x) = Y, al(@)f(x—k) (x€R), )
k=—c0
where ¢g; are independent random random variables with a common distribution F.
We suppose that f, called the single site potential, is a real valued function satisfying

f@I<CA+R)T (xeR) )

for some y > 1.
We assume for simplicity that supp Py is a compact subset of R. We remark that it would be sufficient

that enough moments of Py exist. Moreover, f may have local singularities.



Under the above assumptions the potentials U, V), Vi and there sums belong to L

2
loc, unif®

hence they

are Ho-bounded by [8], Theorem XIII.96 and all operators are essentially self adjoint on C;’(R).

We introduce the following notations:

2
Hy = —— (the free Hamiltonian),
dx
Hy = Hy+U

Hper = HO+Vper7
HU,per = HO+U+Vper-

2 The essential spectra of Hy v and Hy .,

One of the main observations of this section is the following result.

Theorem 2.1. Let U;,U;,V : R — R be Hy-bounded measurable functions and

. - . + P —
Uj(x) ——a " Ujlx) —pa" (=12

for some a* € R. Then

Oess (HUI +V) = Ogss (HU2+V) .

Proof. We need to prove that

Ogcss (HUI +V) C Opss (HU2+V) 5
Oess (HU2+V) C Opss (HU1+V) .

We’ll prove the first inclusion (the proof of the second one is similar). Let

A€ Opss (HUI +V) .

(6)
(7
®)
(€))

By Weyl’s criterion and Theorem 3.11 in [3] we conclude that there is a Weyl sequence of functions

¢, € Cy’(R) such that

[@ull, =1 (n€N),
H(HU1+V _/ll) (Pn”z —0

such that either
supp @, C (—oo,n) foralln
or

supp @, C (n,) foralln

(10)

(1)

(12)



holds. Assume (11) is true, then
(Huy v = A1) @ully = || (Hv = (A = a™) I) @ul|, =0,

|(Hyysv —AL) @ull, — || (Hy — (A —a™) 1) @u][, = 0

and hence
||(HU1+V —7”) q)n”z - ||(HU2+V - AI) (PnHz — 0.

From this and (10) we obtain
[(Huy+v — A1) @ull, — 0,

therefore
A € Opgss (HU2+V) .

O
As a corollary to the proof of Theorem 2.1 we get
Corollary 2.2. Let U,V : R — R be measurable, Hy-bounded and
Uix) ——a, Ukx)—at
X—r—o0 X—ro0
(in the usual sense), where a* € R. Then
Opss (HU+V) C (Cl_ —+ Opss (HV)) U (a+ + Opss (HV)) , (13)

Remark 2.3. The previous theorem shows that the knowledge of V,a™ is sufficient for unique deter-

mination of G5 (Hy4v ). In fact,

Oecss (HUJrV) = Oecss (HUL-+V) 5

where
Ue =0 H(en0] + 0" A(010):

In general equality in (13) does not hold. However, for the case of periodic potentials we have:

Theorem 2.4. Let U : R — R be measurable, Hy-bounded and satisfy the conditions

Uix) ——a, Ulx)—at
X—r—00 X—>r0

and let W be a Hy-bounded periodic potential, then
Oess (Ho+U +W) = (a~ + Gy (Hy+W)) U (a + Oegs (Ho + W) .

Remark 2.5. Tt is well known that under the above assumptions on W we have G5 (Hy+W) =
o (Hy+W). See [8].



Proof. In the view of Corollary 2.2, we need to prove that
a —+ Opss (HO + W) C Opss (HO +U+ W) 5 (14)

at + Ouss (Hy+ W) C Opss (Hy+U +W). (15)

We’ll prove (14) (the proof of (15) is similar). Let
A €a +0u (Hy+W),

ie. A —a” € 0.5 (Hy+W).
Then there is a Weyl sequence ¢, € C5’(R) with

L losll,=1 (neN),
2. |[(Ho+W — (A —a )) g [l =0,

Since W is periodic any shift of ¢, by an integer times the period of W is also a Weyl sequence for
Hy+ W +a~. Thus we may assume that supp ¢, C (—eo, —n). As in the previous proofs one easily

sees that this sequence is also a Weyl sequence for Hy+U +W. U

3 The essential spectrum of H,

We turn to the spectrum of Hg. To do so, we first describe the spectrum of Hy + Vg, i.e. the case

U=0.

We follow the investigation in [4].

Definition 3.1. A potential W (x) = Y., pi f(x —k) is called admissible, if p; € supp Py for all k. Let
keZ

us denote by & the set of all admissible potentials, generated by ¢-periodic p; for some ¢ € N.

Theorem 3.2. The spectrum o (Hy+ V) is independent of @ almost surely and is given (almost
surely) by

Y= 0(Hy+Ve) = |J o(Ho+W) (16)
WweZ

For a proof we refer to [4].

In particular, the following result was proved in [4].

Lemma 3.3. If W is a periodic admissible potential and A € o (Hy+ W) then there are sequences
oF, 0, € L*(R) in the domain of Hy+W, such that

Lol = llell =1
2. The supports of @, and @, are compact and satisfy
supp @, C [n,o0) and supp ¢, C (—oo,—1]

4



3. For almost all ®

| (Ho+Vo—24) @, || — Oand || (Ho+Ve—A) @, || — 0
From this we conclude

Theorem 3.4. Almost surely

0 (Hy) = 6 (Hy+Vo+a ) Uo (Hy+Ve+a)
Proof. By Corollary 2.2 we know that

0(Hy) C 6 (Ho+Vo+a )Uoc (Hy+Ve+a').
To prove the converse we observe that for any W € &

6 (Hy+W +a®) C o (H+U+W)
by Theorem 2.4. It is easy to see (e. g. as in [4]) that almost surely for W € &
Oess (HHU+W) C Ops(H+U+Vy) .

‘We conclude that

U c(Ho+W+a*)u | o(Ho+W+a") C Cus(H+U+Vy).

WeZ? wey

Since the righthand side is a closed set we infer from Theorem 3.2 that almost surely

o (Hy+Vo+a ) Uo(Hy+Vo+a") C o(Hy) .

4 The Integrated Density of States

In this section we investigate the integrated density of states of the operators Hy,.

7)

(18)

(19)

(20)

21

(22)

Definition 4.1. Let A be a self adjoint operator bounded below and with (possibly infinite) purely

discrete spectrum A;(A) < A3(A) < A3(A) < ... where we count eigenvalues according to their mul-

tiplicities. Then we set

N(AE) = #{j| 4;(A) <E}.

(23)

For H=Hy+W (with W € L}, o) and a,b € R, a < b we define H, to be the operator H re-

stricted to L?([a, b]) with Dirichlet boundary conditions both at a and b. Similarly, H C]lv » has Neumann



boundary conditions at a and b, Hfl;N has Dirichlet boundary condition at @ and Neumann boundary

condition at b, H;VI;D has Neumann boundary condition at a and Dirichlet one at b.

If for H = Hy + W the limit

.1
N (E)= A (H,E) := lim iN( P L E) (24)

L—oo
exists for all but countably many E, we call .4 (E) the integrated density of states for H.

It is well known that under our assumptions the integrated density of states for H = Hy + V,, exists,

more precisely:

Theorem 4.2. If V,, satisfies the assumptions of Section 1, then the integrated density of states for
N (H,E) exists and for all but countably many E the following equalities hold:
HY, (E))

ey V) POLO)) B g

(EE denotes expectation with respect to P.)

For a proof see [5]. The proof there uses the method of Dirichlet-Neumann bracketing (see [8]), in

particular it is used:

Theorem 4.3. Ifa < ¢ <band X,Y € {D,N}, then

a.c a,c o

N(HEPE) + N (HDE) < N(HXYE) < N(HXYE) + N (HY)E). Q6
For the integrated density of states of the operator Hy = Hy+ U + Ve, + Vi we have the following
result.
Theorem 4.4. The integrated density of states N (Hy,E) exists and can be expressed in terms of
N0(E), the integrated density of states of Hy + Vi by:

N (HooE) = 3 Ao(E—a”) + 3 Ao(E—a?) @7

To prove this result we need the following lemma:

Lemma 4.5. For the integrated density of states Ny of Hy+ V, we have for any fixed M with M < L
and any X,Y € {D,N}:

AG(E) = Jim 1y (N <(H0 + v@ﬁ)) (28)
= fim (N (Vo)) @

Proof. By the stationarity of the potential we have

E (N ((Ho+Valir)) = E (N ((Ho+ Vo) sy wany2)) - (30)



Thus, the lemma follows from Theorem 4.2 O
We know prove Theorem 4.4.

Proof.

E (N ((Ho+U+Vw)’fﬁL)> <E (N <(H0+U+Vw))_(£’_M>> +

+E (N ((Ho+U+Vo) i) ) +E (N ((Ho+U+Vo))1)) - 6D

We take M > 0 so large that |U(x) —a~ | < €/2 forx < —M and |U (x) —a™| < /2 for x > M.

Let us divide inequality (31) by 2L. Then the middle term goes to zero as L — c. Moreover in the
limit the first term on the right hand side can be bounded by 5 AG(E —a_) + €/2. Similarly the third
term can be bounded by %J%(E —ay) + €/2. Since € > 0 was arbitrary we proved

1 1
E(N ((H0+U+Vw)’f’f,L>> < EJ%(E—a_) + 5t/Vo(E—cﬁ). (32)

The inverse inequality follows if we use Dirichlet, instead of Neumann boundary conditions for the

inequalities (31). [
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