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1 Notations, assumptions

We consider Schrödinger operators on L2(R) of the form

Hω = − d2

dx2 +U +Vper + Vω . (1)

We assume that the background potential U belongs to the space of real valued uniformly square
integrable functions

L2
loc, unif = {F : R→ R | sup

x∈R

ˆ x+1

x−1
|F(x)|2 dx < ∞} (2)

and

U(x) → a− as x→−∞, U(x) → a+ as x→+∞. (3)

Moreover, Vper is a 1-periodic real valued function in L2
loc, unif.

Vω is a random alloy-type potential of the form

Vω(x) =
∞

∑
k=−∞

qk(ω) f (x− k) (x ∈ R) , (4)

where qk are independent random random variables with a common distribution P0.
We suppose that f , called the single site potential, is a real valued function satisfying

| f (x)|6C (1+ |x|)−γ (x ∈ R) (5)

for some γ > 1.
We assume for simplicity that supp P0 is a compact subset of R. We remark that it would be sufficient
that enough moments of P0 exist. Moreover, f may have local singularities.
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Under the above assumptions the potentials U , Vper, Vω and there sums belong to L2
loc, unif, hence they

are H0-bounded by [8], Theorem XIII.96 and all operators are essentially self adjoint on C∞
0 (R).

We introduce the following notations:

H0 = − d2

dx2 (the free Hamiltonian), (6)

HU = H0 +U (7)

Hper = H0 +Vper, (8)

HU,per = H0 +U +Vper. (9)

2 The essential spectra of HU+V and HU,per

One of the main observations of this section is the following result.

Theorem 2.1. Let U1,U2,V : R→ R be H0-bounded measurable functions and

U j(x)−−−−→
x→−∞

a−, U j(x)−−−→
x→∞

a+ ( j = 1,2)

for some a± ∈ R. Then

σess (HU1+V ) = σess (HU2+V ) .

Proof. We need to prove that
σess (HU1+V )⊂ σess (HU2+V ) ,

σess (HU2+V )⊂ σess (HU1+V ) .

We’ll prove the first inclusion (the proof of the second one is similar). Let

λ ∈ σess (HU1+V ) .

By Weyl’s criterion and Theorem 3.11 in [3] we conclude that there is a Weyl sequence of functions
ϕn ∈C∞

0 (R) such that

‖ϕn‖2 = 1 (n ∈ N) ,

‖(HU1+V −λ I)ϕn‖2→ 0 (10)

such that either

supp ϕn ⊂ (−∞,n) for all n (11)

or

supp ϕn ⊂ (n,∞) for all n (12)
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holds. Assume (11) is true, then

‖(HU1+V −λ I)ϕn‖2−
∥∥(HV −

(
λ −a−

)
I
)

ϕn
∥∥

2→ 0,

‖(HU2+V −λ I)ϕn‖2−
∥∥(HV −

(
λ −a−

)
I
)

ϕn
∥∥

2→ 0

and hence
‖(HU1+V −λ I)ϕn‖2−‖(HU2+V −λ I)ϕn‖2→ 0.

From this and (10) we obtain
‖(HU2+V −λ I)ϕn‖2→ 0,

therefore
λ ∈ σess (HU2+V ) .

As a corollary to the proof of Theorem 2.1 we get

Corollary 2.2. Let U,V : R→ R be measurable, H0-bounded and

U(x)−−−−→
x→−∞

a−, U(x)−−−→
x→∞

a+

(in the usual sense), where a± ∈ R. Then

σess (HU+V )⊂
(
a−+σess (HV )

)
∪
(
a++σess (HV )

)
, (13)

Remark 2.3. The previous theorem shows that the knowledge of V,a± is sufficient for unique deter-
mination of σess (HU+V ). In fact,

σess (HU+V ) = σess (HUc+V ) ,

where
Uc = a−χ(−∞,0]+a+χ(0,∞).

In general equality in (13) does not hold. However, for the case of periodic potentials we have:

Theorem 2.4. Let U : R→ R be measurable, H0-bounded and satisfy the conditions

U(x)−−−−→
x→−∞

a−, U(x)−−−→
x→∞

a+

and let W be a H0-bounded periodic potential, then

σess (H0 +U +W ) =
(
a−+σess (H0 +W )

)
∪
(
a++σess (H0 +W )

)
.

Remark 2.5. It is well known that under the above assumptions on W we have σess (H0 +W ) =

σ (H0 +W ). See [8].
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Proof. In the view of Corollary 2.2, we need to prove that

a−+σess (H0 +W )⊂ σess (H0 +U +W ) , (14)

a++σess (H0 +W )⊂ σess (H0 +U +W ) . (15)

We’ll prove (14) (the proof of (15) is similar). Let

λ ∈ a−+σess (H0 +W ) ,

i.e. λ −a− ∈ σess (H0 +W ).
Then there is a Weyl sequence ϕn ∈C∞

0 (R) with

1. ‖ϕ−n ‖2 = 1 (n ∈ N),

2. ‖(H0 +W − (λ −a−)I)ϕ−n ‖2→ 0,

Since W is periodic any shift of ϕn by an integer times the period of W is also a Weyl sequence for
H0 +W + a−. Thus we may assume that supp ϕn ⊂ (−∞,−n). As in the previous proofs one easily
sees that this sequence is also a Weyl sequence for H0 +U +W .

3 The essential spectrum of Hω

We turn to the spectrum of Hω . To do so, we first describe the spectrum of H0 +Vω , i.e. the case
U = 0.
We follow the investigation in [4].

Definition 3.1. A potential W (x) = ∑
k∈Z

ρk f (x− k) is called admissible, if ρk ∈ supp P0 for all k. Let

us denote by P the set of all admissible potentials, generated by `-periodic ρk for some ` ∈ N.

Theorem 3.2. The spectrum σ (H0 +Vω) is independent of ω almost surely and is given (almost

surely) by

Σ := σ (H0 +Vω) =
⋃

W∈P
σ (H0 +W ) (16)

For a proof we refer to [4].
In particular, the following result was proved in [4].

Lemma 3.3. If W is a periodic admissible potential and λ ∈ σ(H0 +W ) then there are sequences

ϕ+
n ,ϕ−n ∈ L2(R) in the domain of H0 +W, such that

1. ‖ϕ+
n ‖ = ‖ϕ−n ‖ = 1

2. The supports of ϕ+
n and ϕ−n are compact and satisfy

supp ϕ+
n ⊂ [n,∞) and supp ϕ−n ⊂ (−∞,−n]
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3. For almost all ω

‖(H0 +Vω −λ )ϕ+
n ‖ → 0 and ‖(H0 +Vω −λ )ϕ−n ‖ → 0

From this we conclude

Theorem 3.4. Almost surely

σ (Hω) = σ
(
H0 +Vω +a−

)
∪ σ

(
H0 +Vω +a+

)
(17)

Proof. By Corollary 2.2 we know that

σ (Hω) ⊂ σ
(
H0 +Vω +a−

)
∪ σ

(
H0 +Vω +a+

)
. (18)

To prove the converse we observe that for any W ∈P

σ
(
H0 +W +a±

)
⊂ σess (H +U +W ) (19)

by Theorem 2.4. It is easy to see (e. g. as in [4]) that almost surely for W ∈P

σess (H +U +W ) ⊂ σess (H +U +Vω) . (20)

We conclude that

⋃
W∈P

σ
(
H0 +W +a+

)
∪
⋃

W∈P
σ
(
H0 +W +a−

)
⊂ σess (H +U +Vω) . (21)

Since the righthand side is a closed set we infer from Theorem 3.2 that almost surely

σ
(
H0 +Vω +a−

)
∪ σ

(
H0 +Vω +a+

)
⊂ σ (Hω) . (22)

4 The Integrated Density of States

In this section we investigate the integrated density of states of the operators Hω .

Definition 4.1. Let A be a self adjoint operator bounded below and with (possibly infinite) purely
discrete spectrum λ1(A) ≤ λ2(A) ≤ λ3(A) ≤ . . . where we count eigenvalues according to their mul-
tiplicities. Then we set

N(A,E) := #{ j | λ j(A)≤ E}. (23)

For H = H0 +W (with W ∈ L2
loc, unif) and a,b ∈ R, a < b we define HD

a,b to be the operator H re-
stricted to L2([a,b]) with Dirichlet boundary conditions both at a and b. Similarly, HN

a,b has Neumann
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boundary conditions at a and b, HD,N
a,b has Dirichlet boundary condition at a and Neumann boundary

condition at b, HN,D
a,b has Neumann boundary condition at a and Dirichlet one at b.

If for H = H0 +W the limit

N (E) = N (H,E) := lim
L→∞

1
2L

N
(
HD
−L,L,E

)
(24)

exists for all but countably many E, we call N (E) the integrated density of states for H.

It is well known that under our assumptions the integrated density of states for H = H0 +Vω exists,
more precisely:

Theorem 4.2. If Vω satisfies the assumptions of Section 1, then the integrated density of states for

N (H,E) exists and for all but countably many E the following equalities hold:

N (H,E) = lim
L→∞

N
(

HN
−L,L (E)

)
2L

= lim
L→∞

E
(

N
(

HD
−L,L (E)

))
2L

= lim
L→∞

E
(

N
(

HN
−L,L (E)

))
2L

. (25)

(E denotes expectation with respect to P.)

For a proof see [5]. The proof there uses the method of Dirichlet-Neumann bracketing (see [8]), in
particular it is used:

Theorem 4.3. If a < c < b and X ,Y ∈ {D,N}, then

N
(
HX ,D

a,c ,E
)
+ N

(
HD,Y

c,b ,E
)
≤ N

(
HX ,Y

a,c ,E
)
≤ N

(
HX ,N

a,c ,E
)
+ N

(
HN,Y

c,b ,E
)
. (26)

For the integrated density of states of the operator Hω = H0 +U +Vper +Vω we have the following
result.

Theorem 4.4. The integrated density of states N (Hω ,E) exists and can be expressed in terms of

N0(E), the integrated density of states of H0 +Vω by:

N (Hω ,E) =
1
2

N0(E−a−) +
1
2

N0(E−a+) (27)

To prove this result we need the following lemma:

Lemma 4.5. For the integrated density of states N0 of H0 +Vω we have for any fixed M with M < L

and any X ,Y ∈ {D,N}:

N0(E) = lim
L→∞

1
L
E
(

N
(
(H0 +Vω)

X ,Y
M,L

))
(28)

= lim
L→∞

1
L
E
(

N
(
(H0 +Vω)

X ,Y
−L,−M

))
(29)

Proof. By the stationarity of the potential we have

E
(

N
(
(H0 +Vω)

X ,Y
M,L

))
= E

(
N
(
(H0 +Vω)

X ,Y
−(L−M)/2,(L−M)/2

))
. (30)
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Thus, the lemma follows from Theorem 4.2

We know prove Theorem 4.4.

Proof.

E
(

N
(
(H0 +U +Vω)

X ,Y
−L,L

))
≤ E

(
N
(
(H0 +U +Vω)

X ,N
−L,−M

))
+

+E
(

N
(
(H0 +U +Vω)

N,N
−M,M

))
+E

(
N
(
(H0 +U +Vω)

N,Y
M,L

))
. (31)

We take M > 0 so large that |U(x)−a−|< ε/2 for x≤−M and |U(x)−a+|< ε/2 for x≥M.
Let us divide inequality (31) by 2L. Then the middle term goes to zero as L→ ∞. Moreover in the
limit the first term on the right hand side can be bounded by 1

2 N0(E−a−) + ε/2. Similarly the third
term can be bounded by 1

2 N0(E−a+) + ε/2. Since ε > 0 was arbitrary we proved

E
(

N
(
(H0 +U +Vω)

X ,Y
−L,L

))
≤ 1

2
N0(E−a−) +

1
2

N0(E−a+). (32)

The inverse inequality follows if we use Dirichlet, instead of Neumann boundary conditions for the
inequalities (31).
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