
FernUniversität in Hagen
Faculty of Mathematics and Computer Science

In Cooperation with

Stanford University
Stanford Mussallem Center for Biodesign

Master thesis
in the degree program Practical Computer Science M.Sc.

Developing a Modular and Reusable mHealth Framework:
A Case Study on Heart Failure Management with

ENGAGE-HF Android App

by
Kilian Schneider

Matriculation number: 4159292

Date of submission: October 26, 2024

First reviewer and supervisor: Dr. Carina Heßeling
Second assessor: Dr. Paul Schmiedmayer

Acknowledgements

I would like to express my gratitude to those who supported me during
my Master’s thesis.
Special thanks to Dr. Carina Heßeling for her excellent supervision and
valuable advice, and to Dr. Paul Schmiedmayer for his professional ex-
pertise and continuous support, which greatly contributed to this thesis.
I also thank Dr. Vishnu Ravi for his assistance with Fast Healthcare
Interoperability Resources (FHIR) and relevant research, and Eldi Cano
for his code reviews, discussions, and optimization suggestions.
Thanks to Dr. Alex Sandhu for his help with ENGAGE-HF case study
questions, Nick Riedman for developing the iOS app, Paul Kraft for the
ENGAGE-HF Firestore backend, Arek Bachorski for the administration
web dashboard, and Dr. Oliver Aalami all of whom significantly enhanced
the system’s functionality.
Finally, I extend my heartfelt thanks to my parents and girlfriend for their
unwavering support.
Thank you to everyone who accompanied me on this journey.

Abstract

The Spezi framework is a modular, reusable platform designed to advance
Mobile Health (mHealth) technologies, particularly for managing chronic
conditions such as heart failure. While an iOS version of the framework
already exists, this work focuses on creating the Android version, making
these elements more accessible and enabling them to work for a larger
group of people, thereby enhancing cross-platform compatibility. Built
with Kotlin and integrated with a replaceable Google Cloud Firebase
default implementation, it offers an open-source solution that supports
both Android and iOS. Key features include Bluetooth connectivity to
medical devices, health monitoring, user-friendly interfaces, Fast Healthcare
Interoperability Resources (FHIR) integration, and account management,
all aimed at enhancing patient engagement and improving healthcare
provider efficiency.
The ENGAGE-HF app serves as a case study, validating the framework’s
scalability and adaptability in heart failure management. Incorporat-
ing feedback from both patients and healthcare providers, ENGAGE-HF
demonstrates the framework’s potential to deliver personalized care and
interactive health management tools. A multi-center clinical study will
evaluate the app’s effectiveness in real-world settings, highlighting the
modular design’s transformative impact on mHealth solutions.
This thesis delves into the design and development of the Spezi Android
framework, focusing on how its architectural decisions and modular and
reusable design facilitated the development of the ENGAGE-HF case study
app.

Zusammenfassung

Das Spezi-Framework ist eine modulare und wiederverwendbare Plattform,
die speziell zur Förderung von Mobile Health (mHealth)-Technologien
entwickelt wurde, mit dem Fokus im Bereich des Managements chronischer
Erkrankungen wie Herzinsuffizienz. Während eine Version des Frame-
works für iOS bereits verfügbar ist, um diese Elemente zugänglicher zu
machen und sie für einen größeren Personenkreis nutzbar zu machen,
wodurch die plattformübergreifende Kompatibilität verbessert wird. Das
Framework wurde in Kotlin implementiert, bietet eine austauschbare Fire-
base Default Integration und ist somit ein Open Source Framework, das
sowohl Android als auch iOS unterstützt. Zu den wichtigsten Funktionen
gehören Bluetooth-Konnektivität mit verschiedenen medizinischen Geräten,
Gesundheitsüberwachung, einfach zu bedienende Schnittstellen und eine
Fast Healthcare Interoperability Resources (FHIR)-Integration sowie Ac-
countverwaltung neben anderen Funktionen, die alle darauf ausgerichtet
sind, das Engagement der zu behandelnden Personen und die Effizienz der
Gesundheitsdienstleister zu erhöhen.
Die ENGAGE-HF-App dient als Fallstudie, die die Skalierbarkeit und
Anpassungsfähigkeit des Frameworks für das Management von Herzinsuf-
fizienz bestätigt. Unter Einbeziehung des Feedbacks von zu behandeln-
den Personen und Gesundheitsdienstleistern demonstriert ENGAGE-HF
das Potenzial des Rahmens für eine personalisierte Pflege und interak-
tive Gesundheitsmanagement-Tools. Im Rahmen einer multizentrischen
klinischen Studie wird die Wirksamkeit der App in realen Umgebungen
evaluiert, um die transformative Wirkung des modularen Designs auf
mHealth-Lösungen zu unterstreichen.
Diese Arbeit befasst sich mit dem Design und der Entwicklung des Spezi
Android-Frameworks und konzentriert sich darauf, wie die architekto-
nischen Entscheidungen und das modulare und wiederverwendbare Design
die Entwicklung der ENGAGE-HF-Fallstudienapp erleichtert haben.

Contents

List of Figures III

List of Tables V

1. Introduction 1

2. Theoretical Foundations and State of the Art 5

3. Design and development of the framework 15

4. Technical details on implementation 21

5. Case Study: ENGAGE-HF for Heart Failure Management 67

6. Evaluation 87

7. Discussion and Future Work 93

8. Summary 95

List of abbreviations 99

A. Appendix 101

Bibliography V

I

List of Figures

4.1. Dokka example documentation. 43
4.2. Login and Register Screen . 44
4.3. Contact Screen Example. 49
4.4. Consent Screen. 52
4.5. Invitation Code View. 53
4.6. Onboarding Screen. 55
4.7. Sequential Onboarding View. 56
4.8. Questionnaire. 61
4.9. FHIR Data Capture Functionallity. 62

5.1. Education Screen Overview. 70
5.2. Education Screen Single Video. 71
5.3. Heart Health Screen. 73
5.4. Add Data Bottom Sheets. 74
5.5. ENGAGE-HF app’s Messages screen and Health Summary

PDF for patient updates and health reports. 78
5.6. Notification Settings Screen. 80
5.7. Home Screen. 81
5.8. Medication Screen. 83

6.1. Usage of Spezi framework modules by the case study app. . 91

III

List of Tables

4.1. Health Connect Records and Corresponding FHIR Obser-
vation Categories . 50

V

1. Introduction

The digitalization of healthcare is progressing and bringing forth innova-
tive technologies that have the potential to profoundly change the care of
chronic diseases. mHealth-Technologies that actively involve patients in
the management of their health are at the center of this development. We
focus on the development of the Spezi Android framework, as demonstrated
by the creation of the ENGAGE-HF Android app for heart failure manage-
ment, which highlights the technological and therapeutic potential of these
innovations. This chapter introduces the topic, outlines the motivation
behind the project and defines objective of this thesis.

Background and Motivation

The growing prevalence of chronic diseases and the role of technology in
their management are key issues in the healthcare sector. Chronic diseases
such as diabetes and heart failure place a significant burden on healthcare
systems worldwide. As the demand for effective management of chronic
diseases continues to rise, leveraging technology, particularly mHealth ap-
plications, becomes increasingly important [1]. These applications offer the
potential to transform patient care by enabling continuous monitoring, self-
management, and better clinical decision-making through real-time data.
However, while many mHealth solutions have been developed to address
these needs, early frameworks such as CardinalKit revealed significant
limitations1.
The CardinalKit framework was initially developed as an template appli-
cation designed to simplify and accelerate the development of mHealth
solutions1. It helped developers by offering pre-integrated tools such as
healthcare surveys using FHIR, task scheduling, and health data collec-
tion via Health Connect. Despite these advancements, CardinalKit had

1https://cardinalkit.org/

1

https://cardinalkit.org/

1. Introduction

limitations, particularly around its inflexible architecture, which required
significant customization to meet specific project needs1. Moreover, the
lack of modern standards integration limited its ability to support the
growing demands of interoperable healthcare systems.

To address these challenges, the Spezi framework for iOS was introduced
as an open-source, modular alternative that could support the rapid devel-
opment of mHealth applications2. Spezi for iOS shifted away from a rigid
template and adopted a modular, Lego-like approach, allowing developers
to integrate and extend components based on their project’s unique needs2.
Spezi emphasized the use of standardized healthcare data and Bluetooth
connectivity to medical devices, significantly improving real-time data
transmission and patient monitoring capabilities2.

Recognizing the significant global market share of Android, development
efforts in this thesis focus on bringing the Spezi framework to the Android
platform. The Spezi framework for Android builds on the lessons learned
from the iOS implementation but is tailored to the unique requirements
and ecosystem of Android development. The framework is designed to
ensure modularity, scalability, and flexibility, allowing for the seamless
integration of Bluetooth medical devices and real-time health monitoring.
Given the market share of iOS being around 28.46% in March 2024 [2],
the Android development marks a crucial step in ensuring that the Spezi
framework can reach a broader audience and support a more diverse range
of mHealth applications [2].

Of particular note is the direct Bluetooth connection to medical devices,
which enables immediate data transmission and processing. This underlines
the potential of technology to fundamentally change and improve the
management of chronic diseases such as heart failure [1].

Mobile health apps have proven to be an effective solution for managing
the burden of chronic disease. These apps promote self-monitoring and
health management, provide digital educational resources and feedback,
and enable faster access to medical providers [3]. By reducing hospital stays
and promoting optimal health outcomes, mobile health apps play a critical
role in enhancing the quality of care and improving patient outcomes [3].

2https://spezi.stanford.edu/framework

2

https://spezi.stanford.edu/framework

Research Objective

The objective of this master thesis is the development and demonstration
of the Spezi Android framework, a modular, scalable and reusable platform
for Android for the creation of mHealth-applications. This framework is
demonstrated using the ENGAGE-HF Android app as an example and
is intended to improve the quality of medical care and optimize patient
outcomes.
A key goal is to increase patient engagement by integrating direct Bluetooth
connectivity with medical devices. This enables seamless and accurate
transmission of health data, benefiting both patients and medical staff.
The application aims to improve the interaction between patients and
caregivers and thus increase the efficiency of medical care.
Another key objective is to develop a flexible and modular system archi-
tecture that maintains a high level of user-friendliness. This includes the
implementation of robust authentication mechanisms and customizable
Bluetooth connectivity. But also, it includes the ability to adapt to other
chronic diseases. Additionally, it involves good documentation. The intu-
itive user interface is designed to support both medical staff and patients
by enabling easy and effective handling.
The demonstration of the framework in a multi-center study will not only
prove its direct effectiveness in the treatment of heart failure, but also
demonstrate its versatility and universal applicability to chronic diseases.
These studies aim to continuously incorporate user feedback and clinical
trial results into the improvement and expansion of the system.
Ultimately, this work lays the foundation for a new era of digital health
solutions by introducing a high degree of modularity, scalability and user-
centricity. This should lead to improved patient care and monitoring and
revolutionize the interaction between patients and medical staff.

3

2. Theoretical Foundations and
State of the Art

The rapid development of the mHealth-technologies have the potential to
fundamentally transform the healthcare system. This chapter focuses on
the basic concepts and the current state of the art in the field of mHealth.
Both the historical development and current trends are examined. In
particular, the importance of modular and reusable frameworks that can
be quickly adapted to new requirements and findings is emphasized.

Overview of mHealth and its Evolution

The field mHealth is becoming increasingly important in patient care and
health management, especially for chronic diseases such as heart failure [4]
[5]. Efficient, scalable and easy-to-use mHealth solutions can significantly
improve patient outcomes, patient education and self-management, and
provide healthcare providers with critical data for monitoring and decision-
making [4] [5].

Historical Development of mHealth

The development of mHealth-applications began with simple tracking
tools that recorded basic health parameters such as steps and calories
burned. However, with the proliferation of mobile devices and technological
advances in sensors, data processing and connectivity, mHealth-applications
have quickly evolved into integrated health management systems [4]. With
the introduction of smartphones and tablets, more comprehensive features
could be implemented. These devices enable continuous monitoring and
management of health data, providing real-time insights and enabling
an immediate response to health changes [4] [5]. Where early mHealth-
solutions focused mainly on monitoring basic vital signs.

5

2. Theoretical Foundations and State of the Art

Key Technologies and Platforms

The rise of mHealth was supported by several key technologies:

1. Internet of Things (IoT): By connecting medical devices to the
internet, data can be collected and analyzed in real time. This enables
precise and continuous monitoring of health parameters, which is
particularly beneficial for the management of chronic diseases [6].

2. Cloud Computing: The use of cloud services allows the storage and
processing of large amounts of data generated by mHealth-applications.
This facilitates access to health data and collaboration between pa-
tients and healthcare providers [7].

3. Artificial Intelligence (AI): AI-technologies are increasingly being
integrated into mHealth-applications to recognize patterns in health
data and provide personalized recommendations. AI can also help in
the diagnosis and prognosis of diseases by analyzing large amounts of
data and providing relevant insights [8].

Challenges and Potentials of mHealth

Although mHealth-technologies are promising, there are also challenges to
overcome. Existing mHealth-platforms often lack the flexibility to adapt
to different diseases or user feedback without extensive new development
[4]. Many currently available solutions are specifically tailored to a single
disease or specific use case and offer little scope for customization or
expansion [4] [5].
Studies such as the systematic review and meta-analysis of Free, Phillips,
Watson, et al. [9] have highlighted the potential of mHealth technolo-
gies to improve healthcare services. These studies show that mHealth-
interventions can improve health processes and patient outcomes, which
forms the basis for the assumption that frameworks such as can have a
significant impact [10].

Relevance of the Spezi Framework

The Spezi framework is uniquely suited to address the demands of the
ENGAGE-HF project, leveraging insights from a successful pilot at Stan-

6

ford University. While many existing healthcare platforms and frameworks,
such as CardinalKit1, offer interoperability and open-source solutions to
streamline digital health app development, there remain challenges in
scaling these solutions to chronic disease management, particularly heart
failure. Key issues in current systems include a lack of flexibility, scalability,
and insufficient integration with modern healthcare technologies, such as
direct Bluetooth connectivity for medical devices, crucial for real-time data
collection and patient monitoring [11]. As highlighted by recent studies,
including CardinalKit’s focus on modular and extensible components, many
mHealth platforms still fall short in these areas [4].
Spezi framework fills this gap by offering a modular, open-source platform,
specifically designed for Android, that integrates modern technologies like
Bluetooth-enabled medical devices and comprehensive patient feedback.
This level of integration is crucial for improving patient engagement, self-
management, and health outcomes, especially in the management of heart
failure. The framework’s open-source nature allows for rapid iteration and
customization, directly aligning with the patient-centered and scalable
approach that modern chronic disease management demands. Furthermore,
its flexibility mirrors CardinalKit’s objective of lowering barriers to digital
health innovation by offering a foundation for developing robust, compliant,
and interoperable healthcare applications at reduced cost and development
time [11].

Future Trends in mHealth

In the context of discussing future trends in mHealth, integrating AI
and interoperability is crucial for enhancing patient care. The Spezi
framework is well-positioned to leverage these trends due to its modular and
scalable architecture [12]. The framework’s adaptability can accommodate
advancements like AI-driven personalized care and seamless interoperability
between different healthcare systems, ensuring that patient data is securely
shared and utilized effectively across platforms.
AI can be integrated into mHealth applications to provide personalized
treatment recommendations by analyzing patient data in real-time, helping
to improve diagnostic accuracy and care efficiency. AI algorithms can also
assist in predicting potential health issues before they become critical,

1https://cardinalkit.org/

7

https://cardinalkit.org/

2. Theoretical Foundations and State of the Art

allowing for timely interventions.
Additionally, interoperability will be essential in future mHealth devel-
opments, ensuring that various healthcare systems and devices can com-
municate and exchange data smoothly [13]. The Spezi framework, which
supports integration with medical devices via Bluetooth and cloud-based
platforms like Google Firebase, is designed with these needs in mind.
This patient-centric approach can enable a more connected, intelligent
healthcare system that reacts dynamically to patients’ evolving health
conditions, improving overall patient outcomes while reducing the burden
on healthcare providers [13]. Thus, the Spezi framework’s design not only
supports the current demands of healthcare but is also primed to adapt to
these future technological advancements.

Analysis of Existing Solutions and Their Limitations

The increasing importance of mHealth-technologies in healthcare, especially
in the management of chronic diseases such as heart failure, has led to a
variety of existing frameworks and specific applications. These solutions
vary widely in their functionality, ease of use and integration into existing
healthcare systems. This chapter will introduce some of these existing
mHealth frameworks and applications and highlight their limitations, while
also looking at solutions for other chronic diseases.

Existing mHealth-solutions for heart failure

1. Heart Failure Health Storylines: This app offers patients the
opportunity to track symptoms, medication and vital signs. It en-
ables the creation of personalized health reports and the exchange
of information with healthcare providers. Despite its comprehensive
functions, the app is often criticized for its complexity and lack of
user-friendliness, which is a particular problem for older adults2 [14].

2. Medisafe: The Medisafe app is a popular tool designed to assist users
with medication management. It offers features such as medication
reminders, refill alerts, and the ability to share health data with
others. Users appreciate its user-friendly interface and the clear,

2https://hfsa.org/

8

https://hfsa.org/

visual schedule of medications, which makes the app straightforward
and effective for managing prescriptions. Despite its simplicity and
ease of use, some users find the app’s functionality somewhat limited
if they need to monitor a broader range of health metrics beyond
medication adherence [15].

3. MyTherapy: Another popular app adapted to the needs of patients
with chronic conditions. It offers medication reminders, symptom
tracking and reports. However, it lacks integration with medical
devices and the ability to process real-time data, which limits its
usefulness in the acute management of heart failure3.

Existing mHealth solutions for other chronic diseases

1. Glucose Buddy: This app is aimed at diabetics and offers functions
for tracking blood glucose levels, food intake and physical activity.
Despite the usefulness of these functions, there is often criticism of
the lack of integration with other health services and insufficient
adaptability to individual needs4.

2. AsthmaMD: This app helps asthma patients track their symptoms
and triggers. It makes it possible to share data with doctors and
create asthma action plans. However, it lacks advanced features such
as sensor data integration and customization to personal health data5

[16].

3. MyFitnessPal: This app is designed to support individuals with
obesity in managing their weight. It offers features such as food
logging, exercise tracking, and progress monitoring. Users benefit
from a comprehensive food database and community support, yet the
app is often criticized for its reliance on user input for accurate data
and limited integration with personalized health goals [17].

3https://www.mytherapyapp.com/de
4https://www.glucosebuddy.com/
5https://www.asthmamd.org/

9

https://www.mytherapyapp.com/de
https://www.glucosebuddy.com/
https://www.asthmamd.org/

2. Theoretical Foundations and State of the Art

Limits of existing solutions

Despite the large number of available mHealth applications, there are
several limitations that influence their effectiveness and user acceptance:

1. Lack of integration with healthcare systems: Many mHealth
apps are isolated solutions that are not seamlessly integrated into
existing Electronic Health Records (EHRs) or Hospital Information
Systems (HISs). This complicates data exchange between patients
and healthcare providers and can lead to fragmentation of patient
care [18].

2. Insufficient personalization: Existing solutions often offer stan-
dardized features that do not adequately address patient’s individual
needs and preferences. The lack of adaptability can reduce the effec-
tiveness of self-management strategies [19].

3. Limited user-friendliness and accessibility: Older adults in
particular, who represent an important target group for the man-
agement of chronic diseases, often have difficulties using complex
apps. Studies show that factors such as technological barriers and low
user-friendliness significantly influence the adoption rate of mHealth
apps in this population group [20].

4. Lack of modularity and scalability: Many mHealth applications
are not designed with modularity in mind, making it challenging to
adapt to new medical findings or technological advancements [21].
This rigidity can stifle innovation and slow the implementation of
necessary improvements [22]. Argue that successful mHealth apps
must be adaptable to provide value to both healthcare providers and
patients, which is often not the case with current offerings [23]. The
inability to quickly implement updates or enhancements can lead to
obsolescence in a rapidly evolving healthcare landscape [23].

Existing mHealth frameworks

1. Open mHealth: Open mHealth is an open source framework that
aims to standardize various health data formats and facilitate the inte-
gration of this data into mHealth applications. It provides a collection

10

of APIs and data models that help developers create interoperable
healthcare applications. Despite its comprehensive features, the frame-
work is often criticized for its complexity and high implementation
effort, which can limit the adoption rate [24].

2. ResearchKit and CareKit: Developed by Apple, these frame-
works play crucial roles in advancing mobile health applications6.
ResearchKit is a framework that aids researchers in conducting mo-
bile health studies by enabling the creation of study apps that can
recruit participants, collect data, and analyze it6. Despite its power,
ResearchKit is limited to iOS devices, which restricts the reach of
potential studies6. On the other hand, CareKit is another Apple
framework designed to help developers build apps that empower pa-
tients to manage their own health7. CareKit allows the creation of
apps that can track symptoms, medication, and care plans while
providing insights that can be shared with healthcare providers7. Like
ResearchKit, CareKit is also limited to iOS, which constrains its
accessibility to a broader audience7.

3. MyPHD: Developed as a pre-packaged application, MyPHD offers
a streamlined approach for studies that require minimal customiza-
tion [25]. It is particularly designed for quick deployment in research
environments where extensive development work is not feasible [25].
MyPHD provides basic mHealth functionalities like participant en-
gagement tools and standard health monitoring [25]. However, its
simplicity comes with limitations, including reduced flexibility and the
absence of advanced features such as deep integration with medical
devices [25]. This makes it suitable for studies with straightforward
needs but less ideal for projects requiring complex, customizable
solutions [25].

4. Sana Mobile: Sana Mobile is another open source framework de-
veloped specifically for healthcare in low-resource environments. It
provides a platform for creating mobile healthcare applications that
connect patients and healthcare providers. However, one drawback
is its limited support for modern technologies and standards, which
restricts its use in more advanced healthcare systems [26].

6https://researchkit.org/
7https://www.researchandcare.org/carekit/

11

https://researchkit.org/
https://www.researchandcare.org/carekit/

2. Theoretical Foundations and State of the Art

Limits of the existing frameworks

Despite the large number of available mHealth frameworks, there are
several limitations that influence their effectiveness and user acceptance:

1. Lack of user-friendliness and high cancellation rates: User ex-
perience is critical in the adoption of mHealth applications. Research
indicates that up to 30% of users abandon mHealth apps within the
first week, primarily due to poor usability and unclear interfaces [27].
Mustafa, Ali, Dhillon, et al. highlights that lack of interest or declining
motivation is a significant factor, with 31.6% of participants in their
study citing this as a reason for abandonment [27]. Furthermore, the
complexity of app interfaces contributes to user disengagement, with
reports indicating that 35% of users struggle with mHealth apps due
to non-intuitive designs [28]. This issue is exacerbated in underserved
regions where technical barriers are more pronounced [29].

2. High costs and time-consuming development processes: The
development of regulatory-compliant mHealth frameworks is resource-
intensive. Such financial burdens make it prohibitive for smaller
healthcare providers or projects in low-resource settings to develop ef-
fective mHealth solutions [30]. The complexity of ensuring compliance
with various regulations further complicates the development process,
as highlighted by Shiferaw, Workneh, Yirgu, et al., who discusses the
regulatory landscape surrounding mHealth applications.

3. Lack of modularity and scalability: Modularity is essential for
the adaptability of mHealth frameworks to evolving clinical needs [22].
Only few of mHealth frameworks provide sufficient modularity, which
limits their ability to incorporate the latest medical findings or tech-
nologies [23]. This lack of flexibility stifles innovation and hinders the
continuous improvement of mHealth applications, making it challeng-
ing to keep pace with advancements in healthcare [23].

4. Complexity of the applications: The complexity of many mHealth
applications further complicates user engagement. A mixed-methods
study by Liew, Zhang, See, et al. revealed that usability challenges
significantly impact user satisfaction and engagement with mHealth
apps [28]. Users often find themselves overwhelmed by complex

12

interfaces, which leads to frustration and disengagement [31]. This
complexity is particularly detrimental in low-resource settings, where
users may have limited technical skills [29].

5. Insufficient support related to healthcare staff : There is often a
lack of sufficient training provided to healthcare staff and insufficient
support from them to effectively implement and utilise mHealth
applications [30]. This can affect the integration into everyday clinical
practice and acceptance by healthcare providers [32].

6. Limited compatibility and interoperability: Many mHealth
solutions are not sufficiently compatible with existing healthcare sys-
tems, which hinders their widespread use [23]. Integration into EHRs
and other centralised healthcare systems is particularly affected [23].
One specific problem is the limited use of Bluetooth devices, which
often cannot be seamlessly integrated into mHealth apps, making it
difficult to collect and transfer health data.

Summary

The analysis of existing mHealth frameworks shows that, despite their
potential, there are still considerable gaps. These relate in particular
to integration into existing healthcare systems, the personalization of
functions, user-friendliness and the modularity of the frameworks. These
findings underline the need for a new generation of mHealth frameworks
that can address these challenges and thus increase effectiveness and user
acceptance.
The Spezi framework for Android developed in this thesis aims to close
these gaps by providing a modular, scalable and user-friendly platform that
can be customized to meet the specific needs of patients and healthcare
providers.

13

3. Design and development of the
framework

The development of a robust and flexible mHealth framework requires
careful planning and execution to meet the diverse requirements of the
healthcare sector. This chapter first describes the development approach for
the modular framework. The focus here is on the principles of modularity
and reusability in order to enable simple customization and expansion of
the system.
The section on the technical details of the implementation presents the
specific technologies, design patterns and architectural decisions that were
used to realize the framework. This includes the integration of Bluetooth
for the connection with medical devices, the use of a standardized module
for the design, and the implementation of protocols for data storage and
processing.
A central aim of this chapter is to emphasize the advantages of a modular
architecture, which not only facilitates development and maintenance, but
also enables rapid adaptation to new requirements and technologies. By
detailing the technical implementation, this chapter provides valuable in-
sights into the development of a modern mHealth framework that supports
both developers and end users.

System Requirements

The framework aims to provide a reusable, scalable and modular basis
for the rapid development of Android apps in the healthcare sector. This
will be demonstrated with the help of the ENGAGE-HF case study app,
which is used to support heart failure patients. The modules include an
authentication module, Bluetooth connectivity module, data processing
module and a UI/UX module with reusable Jetpack Compose components.

15

3. Design and development of the framework

The main users of this framework are software developers aiming to create
or extend mobile health applications. This includes developers within the
ENGAGE-HF project and potentially third parties who wish to use the
framework for similar applications.
The framework is based on Android and uses Kotlin for app develop-
ment and Google Cloud Firebase for backend services. It is designed for
integration with health monitoring devices via Bluetooth.

Functional Requirements

FR1 Modularity: Design of an architecture that supports interchange-
able components for disease-specific functionalities. As a result, the
system can be flexibly adapted to advances in medical research and
the development of new treatment methods without the need for a
major overhaul. This adaptability promotes rapid implementation of
new knowledge and technologies into clinical practice, improving the
effectiveness and efficiency of patient care.

FR2 Reusability: Enables easy customization of the framework for vari-
ous chronic diseases beyond heart failure.

FR3 Integration with health devices: Seamless connectivity with
external scale and blood pressure monitor via Bluetooth.

FR4 Customizable patient education and medication manage-
ment: Framework support for customizing content and features to the
patient’s specific needs and treatment plans.

FR5 Authentication: The framework is intended to enable user authen-
tication.

FR6 Notification: The app issues personalized notifications based on
specific criteria, such as medication changes, health data entries, and
study-related reminders.

FR7 Visualization of health data: The framework is designed to enable
visualization and monitoring of heart health data (weight, blood pressure,
heart rate) through graphical and list-based representations that promote
user engagement and understanding.

16

FR8 Symptom tracking: The framework is intended to enable the
tracking of symptoms.

FR9 Provision of educational content: The framework should offer
the expandability to provide educational material.

Non-Functional Requirements

Usability

NFR1 Accessibility and user-friendliness: A design that ensures ease
of use for a wide range of patients, including those with limited technical
knowledge.

Reliability

NFR2 Reliability: High operational stability and low downtime to ensure
continuous availability of health monitoring and services.

Performance

NFR3.1 Scalability: Ability to support a growing user base and new
functionalities without sacrificing performance. It must also be able to
handle data processing tasks for up to 10,000 simultaneous users without
significant delays to ensure a consistently satisfactory user experience.

NFR3.2 Performance: Fast response times and efficient data processing,
even with high loads and data volumes, to ensure a satisfactory user
experience. The application should have response times of less than
2 seconds under normal operating conditions and less than 3 seconds
under peak load conditions with high data volumes.

Supportability

NFR4.1 Maintainability: Easy updating and maintenance of the appli-
cation with clear documentation.

NFR4.2 Testability: The framework should be designed in such a way
that it is easy to test, with a particular focus on achieving a test coverage
of at least 70% across the entire code. This requirement includes both

17

3. Design and development of the framework

unit tests and integration tests to ensure that both individual components
and the interaction between the components are comprehensively tested.

NFR4.3 Automated workflows: The framework should be integrated
into a CI/CD system that supports automated tests, builds, and deploy-
ments.

NFR4.4 Documentation quality: Provision of comprehensive and com-
prehensible developer documentation.

Implementation Requirements

NFR5.1 Use of open source software components: Building the
system using open source components and standard development pro-
gramming languages.

NFR5.2 Automated deployments: Building the system using open
source components and standard development programming languages.

NFR5.3 Expandability: The framework must be designed in such a way
that it can easily be expanded with new functions or modules without
impairing existing functionalities.

NFR5.4 Use of modern frameworks: Use of current and widely used
frameworks to promote developer efficiency.

Interface Requirements

NFR6.1 Compatibility: The framework should be designed to be back-
ward compatible with older Android versions to reach a broad user
base.

NFR6.2 Industry standards: Ensure that the interfaces comply with
current industry standards.

Legal Requirements

NFR7 Security and data protection: Robust data protection mecha-
nisms to protect sensitive patient information.

18

Packaging Requirements

NFR8 Installation: Ensure quick and easy installation of the software.

Description of the development approach for the

modular framework

Modular design principles are crucial for the development of software that
is easy to maintain and extend. The basic idea of a modular design is to
break a system down into smaller, independent modules, each of which
fulfils a specific function or task. This has several advantages:

Advantages for maintainability

• Easier troubleshooting and updates: The division into modules
makes it easier for developers to localise and rectify errors. If a module
is faulty, it can be isolated and repaired without affecting the entire
application.

• Clear responsibilities: Each module has a clearly defined task,
which reduces complexity and makes maintenance easier. Develop-
ers can focus on specific parts of the framework without having to
understand the entire framework [33].

• Reusability: A well-designed module can be reused in different
projects [33]. This reduces the effort involved in developing new
systems and promotes consistent solutions [33].

• Improved testability: Modules can be tested independently of each
other, which makes it easier to create unit tests. This leads to higher
test coverage and improves the quality of the entire system [33].

Advantages for expandability

• Simple integration of new functions: New features can be devel-
oped as stand-alone modules and integrated into the existing appli-
cations without the need for extensive changes to the existing code
base [34].

19

3. Design and development of the framework

• Scalability: Modular systems are easier to scale. If additional
functionality is required, new modules can be added without having
to restructure the entire system [34].

• Flexibility in development: Development teams can work on
different modules in parallel, which increases the speed of development.
This also promotes specialisation within the teams, as developers can
concentrate on specific modules and their functions [34].

20

4. Technical details on
implementation

This chapter analyses the technical details of the implementation of the
mHealth framework in depth, with a particular focus on the software
architecture and the design patterns used. The choice of architecture and
design patterns plays a decisive role in the performance, scalability and
maintainability of the software.
A key component of this framework is the use of a modular architecture.
This architecture allows different components of the application to be
developed, tested and deployed independently of each other. Such a
modular system not only increases the flexibility and reusability of the
software. Particularly in the context of mHealth applications, which often
place high demands on reliability and customisation, modular architecture
offers significant advantages.
Alongside architecture, design patterns are an integral part of software
development. They offer proven solutions for frequently occurring prob-
lems and contribute to improving software quality. As part of this project,
various design patterns were used to optimize the functionality and main-
tainability of the framework. The patterns used include the adapter pattern,
the observer pattern, and the factory pattern.

• The Adapter Pattern: is used to adapt the interfaces of incompat-
ible classes and ensure smooth integration of external devices such as
blood pressure monitors and scales. This is particularly important
for Bluetooth connectivity, which plays a central role in the mHealth
framework [34].

• The Observer Pattern: enables the implementation of an event-
driven system in which changes to a patient’s health data are automat-
ically forwarded to the relevant components of the application. This

21

4. Technical details on implementation

contributes to the real-time monitoring and rapid response capability
of the application [34]. On Android, this is achieved with Flows1.

• The Factory Pattern: is used to encapsulate the creation of complex
objects and increase the modularity of the software. This makes it
easier to add new functionalities to the system and ensures a clear
separation between the creation and use of objects [34].

• The Model View ViewModel (MVVM) pattern: is used to
separate the user interface (View) from the business logic and data
handling (Model) by utilizing ViewModel as a mediator. This pattern
allows for easier testing and maintenance by clearly defining responsi-
bilities and reducing tight coupling between components. In Android
development, this is achieved using LiveData or Kotlin Flows for the
communication between the ViewModel and the View [35].

Overall, this chapter provides a comprehensive overview of the technical
details and shows how a powerful, scalable and maintainable mHealth
framework can be developed through the targeted use of modern architec-
tures and design patterns. All individual core modules are discussed.

Overview of the modules:

Convention Plugins

In the realm of software development, particularly within the framework,
convention plugins serve as essential tools for standardizing and streamlin-
ing the build process. These plugins reside in the build-logic folder and
are tailored specifically for common module configurations in the Spezi
ecosystem [36]. Their main objective is to ensure consistency, improve
reusability, and simplify the build process, ultimately enhancing developer
productivity and reducing cognitive load [36].

Features:

• Standardization: Convention plugins ensure that all library mod-
ules adhere to specific conventions. This standardization is crucial

1https://developer.android.com/kotlin/flow

22

https://developer.android.com/kotlin/flow

for maintaining consistency across various projects. By following
predefined rules, the development process becomes more predictable
and manageable.

• Improved Reusability: The separation and modularization of build
logic promote code reusability. Developers can leverage these reusable
components across different projects, enhancing the efficiency of the
development process. This is in line with idiomatic Gradle practices
that advocate for modular and reusable build scripts [37].

• Reduced Complexity and Cognitive Load: By encapsulating
commonly used configurations and conventions, convention plugins
simplify individual build scripts. This encapsulation reduces the
complexity of managing build scripts, thereby decreasing the cognitive
load on developers. Simplified build scripts are easier to understand,
maintain, and extend [38].

• Improved Build Performance: Convention plugins, unlike the
traditional buildSrc directory, can be precompiled and treated like any
other dependency [38]. This precompilation avoids the performance
penalty associated with recompiling build logic on every build, leading
to faster build times, particularly in large projects [38].

• Increased Modularity and Isolation: Using convention plugins
allows for the modularization and isolation of build logic from the rest
of the build script. This modular approach facilitates cleaner code
management and minimizes the risk of bugs propagating through the
build script. Additionally, it simplifies the testing of build logic [38].

To apply a convention plugin in the build.gradle.kts, one only has to
add the following lines from listing 4.1.

1 plugins {
2 alias(libs.plugins.spezi.application)
3 alias(libs.plugins.spezi.compose)
4 }

Source text 4.1: Convention Plugins.

Available Convention Plugins

• spezi.application: This convention plugin applies com.android.
application and org.jetbrains.kotlin.android by default. It

23

4. Technical details on implementation

also incorporates the default project configuration of the spezi.base
plugin. Moreover, it includes the :core:logging implementation
and :core:testing test implementation dependencies.

• spezi.compose: This plugin provides the necessary configuration
and dependencies for using Jetpack Compose. Note that it requires
either spezi.application or spezi.library to be applied as well.

• spezi.base: The spezi.base plugin ensures consistent configu-
ration of versions and compile options across all modules in the
project. It is recommended for modules that are dependencies in
either spezi.application or spezi.library plugins.

• spezi.hilt: This plugin includes all dependencies needed to use Hilt
for dependency injection2.

• spezi.library: Similar to spezi.application, this plugin applies
com.android.library and org.jetbrains.kotlin.android by de-
fault. It also applies the default project configuration of the spezi.
base plugin, along with the :core:logging implementation and
:core:testing test implementation dependencies2.

The adoption of convention plugins within the framework brings numerous
benefits:

• Consistency: Ensures uniformity across different modules and
projects.

• Reusability: Facilitates code reuse, reducing duplication and ef-
fort [37].

• Simplification: Makes build scripts easier to manage and compre-
hend [38].

• Performance: Enhances build performance by avoiding unnecessary
recompilation [38].

• Modularity: Promotes clean code practices and modular develop-
ment [38].

2https://github.com/StanfordSpezi/SpeziKt/tree/main/build-logic

24

https://github.com/StanfordSpezi/SpeziKt/tree/main/build-logic

Convention plugins are a strategic approach to managing build configu-
rations in projects, significantly contributing to the efficiency and main-
tainability of the codebase. By adhering to these conventions, developers
can focus more on the core functionalities of their projects rather than the
intricacies of the build process.

Module Designsystem

The Design System Module is part of the framework, designed to provide
a cohesive user interface and user experience components. It ensures con-
sistent aesthetics and functionality across different parts of the application,
enhancing both developer efficiency and user satisfaction.

Features

• Theming: Supports light and dark modes and customizable color
schemes.

• Components: Includes reusable UI components such as a button
optimized for accessibility and ease of use as well as a validated
outlined text field.

• Typography: Implements a scalable typography system that adapts
to different screen sizes and orientations.

• Icons and Graphics: Provides a set of commonly used icons and
graphics that maintain high resolution and scalability across devices.

• Spacings and Sizes: Ensures consistent and customizable spac-
ing and sizing for UI elements, promoting a uniform look and feel
throughout the application.

To integrate the Design System Module into a module, add the following
dependency to your build.gradle file 4.2.

1 dependencies {
2 implementation(project(":core:designsystem"))
3 }

Source text 4.2: Design System Module.

25

4. Technical details on implementation

To use a component from the design system, refer to the specific documen-
tation3 included in the module.

A central design module that is used across all modules offers numerous
advantages, especially in large projects like this framework.

• Consistency: A unified design system ensures that all user interfaces
are consistent, which increases usability and reduces the learning
curve for users. Once users have learned how a component works,
they can apply this knowledge to the entire application [39]. This
reduces the cognitive load and improves the user experience [39] [40].

• Productivity and speed: Using a centralized design system speeds
up the development process [39] [40]. Developers and designers can
use predefined components instead of starting from scratch each time.
This saves time and resources and allows teams to focus on solving
more complex problems [39] [40].

• Quality and maintainability: A well-maintained design system
improves the maintainability and quality of the code. Bug fixes
and updates in the design system are automatically applied to all
moduls and applications based on it, which increases consistency and
stability [40] [39].

• Scalability: A design system facilitates the scaling of the frame-
work. New features can be integrated more quickly as existing, tested
components can be used [40]. This is particularly important in large
projects with many parallel development threads [39] [40].

To summarize integrating the Design System Module into the framework
and applications enhances both the aesthetic and functional quality of
mHealth applications. By providing a standardized set of components and
theming options, developers can ensure a consistent user experience, which
is crucial for patient engagement and usability. For instance, the ENGAGE-
HF project utilizes this module to create a seamless and intuitive interface
for heart failure management, demonstrating the module’s effectiveness in
a real-world healthcare setting. But even within the framework itself, all
modules use the design system.

3https://spezi.health/SpeziKt/core/design/index.html

26

https://spezi.health/SpeziKt/core/design/index.html

Bluetooth

The Bluetooth module is crucial for the effective use of mHealth appli-
cations such as the ENGAGE-HF app, especially in the area of heart
failure monitoring. The direct connection to medical devices such as blood
pressure cuffs and scales enables continuous and accurate collection of
health data. This data is essential for real-time monitoring and chronic
disease management. Bluetooth integration allows patients to easily and
seamlessly transmit their vital signs to the app, resulting in improved data
accuracy and timely medical interventions [41].
The Bluetooth module provides comprehensive tools for managing Bluetooth
Low Energy (BLE) functionalities on Android devices. It includes com-
ponents for scanning, connecting and interacting with BLE devices. The
functionality and integration into the Android framework is described
below.

Components of the Bluetooth module:

• BLEService: The main API that encapsulates the capabilities for
managing BLE device connections. It provides methods for starting
and stopping the BLE service as well as flows for monitoring the
service status and receiving events [42].

• BLEDeviceScanner: Responsible for scanning for nearby BLE
devices. It enables scanning to be started and stopped and sends
events for detected devices or scan errors [42].

• BLEDeviceConnector: Manages the connection to individual BLE
devices. It manages the Bluetooth GATT connection and sends events
for connection status changes and received measurements [42].

• MeasurementMapper: Maps Bluetooth GATT characteristics to
specific measurement types, such as blood pressure or weight mea-
surements [42].

• PermissionChecker: Checks Bluetooth-related authorisations on
the device [42].

StateFlows enable efficient handling of state changes through reactive
programming4. As soon as a device provides new data, the state is up-

4https://developer.android.com/kotlin/flow/stateflow-and-sharedflow

27

https://developer.android.com/kotlin/flow/stateflow-and-sharedflow

4. Technical details on implementation

dated and the application can react immediately. Integration with Kotlin
coroutines simplifies the handling of asynchronous operations, which sig-
nificantly improves the readability and maintainability of the code5. In
addition, StateFlows are lifecycle-aware and thread-safe, which means that
UI updates only occur when the associated component is active5. This
helps to minimise memory leaks and race conditions.

After the module has been added via Gradle, an instance of the BLEService
can be used with the help of dependency injection. The start()-method
of this service can be used to initiate the scan for nearby devices. It is
possible to listen to both the states and the events of the BLE. The service
can also be stopped again by calling the stop()-method.
An example of collecting the states could look as in listing 4.3, whereby
the handling of the respective states is implemented.

1 @HiltViewModel
2 class BluetoothViewModel @Inject constructor(
3 private val bleService: BLEService ,
4) : ViewModel () {
5 private fun start() {
6 bleService.start ()
7 viewModelScope.launch {
8 bleService.state.collect { state ->
9 when (state) {

10 is BLEServiceState.Scanning -> {
11 // Handle Scanning state
12 }
13 // Handle other states
14 }
15 }
16 }
17 }
18 }

Source text 4.3: BluetoothViewModel: Collect States.

The Bluetooth module has implemented default mappers that can convert
received measurement data, such as blood pressure and weight measure-
ments, into specific objects. These events can also be collected and pro-
cessed, as shown in Listing 4.4. The measurements mapped in this way
can be used directly, for example to update the UI state and display a

5https://developer.android.com/kotlin/flow/stateflow-and-sharedflow

28

https://developer.android.com/kotlin/flow/stateflow-and-sharedflow

dialogue with the new measured values. Alternatively, this data can also
be processed in the background.
An example of the implementation is shown in Listing 4.4. This listing
shows how the measurements can be used to update the UI state or process
it in the background.

1 viewModelScope.launch {
2 bleService.events.collect { event ->
3 // Handle BLE service events
4 when (event) {
5 is BLEServiceEvent.MeasurementReceived -> {
6 _uiState.update {
7 it.copy(
8 measurementDialog = uiStateMapper.

mapToMeasurementDialogUiState(
9 event.measurement

10)
11)
12 }
13 }
14 // handle other events
15 }
16 }
17 }

Source text 4.4: BluetoothViewModel: MeasurementReceived.

This Listing 4.4 shows how events are intercepted and the corresponding
measurements are processed in order to update the UI status or perform
further background processing.
When developing the Bluetooth module, we deliberately decided against
the use of callbacks and LiveData and chose StateFlows instead. This
decision is based on several important factors:

Callbacks:

• Complexity and maintainability: Callbacks can quickly lead
to a confusing ‘callback hell’, especially with nested asynchronous
operations. This makes the readability and maintainability of the
code considerably more difficult [43].

• Error handling: The handling of errors and the chaining of opera-
tions are complex and error-prone [43].

29

4. Technical details on implementation

LiveData:

• UI connectivity: LiveData is mainly designed for UI-bound data
in the MVVM architecture. It offers less flexibility for general asyn-
chronous operations and state management [44].

• Complexity in non-UI components: In non-UI components such
as services or repositories, the use of LiveData is not always ideal and
can lead to unnecessary complexity [44].

The choice of StateFlows for the development of the Bluetooth module of
the mHealth framework enables accurate and efficient collection of medical
data, which is essential for real-time monitoring and management of chronic
diseases such as heart failure6. The integration of StateFlows to handle
the BLE-functionality supports the development of a robust, scalable and
user-friendly mHealth application that meets the modern requirements for
mobile health solutions.

Logging

The logging module is an essential component in any software development
framework, especially in mHealth applications, where accurate tracking
of events, errors, and user activities is crucial for maintaining system
reliability, ensuring data integrity, and aiding in debugging and performance
monitoring. This section provides a detailed examination of the logging
module implemented in the Spezi framework [45].
The logging module in the Spezi framework offers a versatile and efficient
logging utility named Logger. This utility is crafted to manage various
logging strategies that are essential for the complex and dynamic environ-
ment of mHealth applications. The Logger uses inline functions to log
messages, which helps in avoiding unnecessary memory allocation for large
string messages, thereby optimizing performance [46].
Key features of the Logger include:

• Flexible Configuration: It allows comprehensive configuration of
logger settings, enabling developers to tailor the logging behavior to
the specific needs of their application [46].

6https://developer.android.com/kotlin/flow/stateflow-and-sharedflow

30

https://developer.android.com/kotlin/flow/stateflow-and-sharedflow

• Tagging and Grouping: The logger supports tagging, which helps
in categorizing and filtering logs based on different components or
features within the application [46].

• Customizable Logging Strategies: Through the use of tags and
configurations, different logging strategies can be implemented, mak-
ing the system adaptable to various operational scenarios [46].

The logging API offers various options for logging messages and is therefore
flexible for different logging requirements. The following listing 4.5 shows
a few examples of the configuration options [46].

1 private val logger by SpeziLogger ()
2

3 private val groupLogger by groupLogger("specificFeature")
4

5 private val customLogger by Logger {
6 tag = "TAG"
7 messagePrefix = "prefix"
8 loggingStrategy = LoggingStrategy.LOG
9 forceEnabled = true

10 }

Source text 4.5: Log: Configuration.

In the listing 4.5 [46] you can see:

• Standard logger: Derives the tag name automatically from the
component in which it is defined [46].

• Group logger: Uses a predefined tag (specificFeature) and can
have optional configurations [46].

• Custom logger: Allows you to set a custom tag and message prefix
and can force logging independently of the global configuration [46].

Which can then be used as in listing 4.6 [46].
1 logger.i { "Example␣log␣using␣default␣config␣and␣‘MyClass ‘␣as␣tag" }
2

3 logger.tag("NEW_TAG").i { "Example␣log␣using␣default␣config␣and␣
NEW_TAG␣(only␣for␣this␣log)␣as␣tag" }

4

5 customLogger.i { "Example␣log␣using␣config␣passed␣in␣customLogger" }
6

31

4. Technical details on implementation

7 groupLogger.i { "Example␣log␣using␣default␣config ,␣tag␣‘myFeature ‘␣
and␣prefixes␣the␣message␣with␣‘MyClass␣-␣‘" }

8

9 Logger.e(Error("Something␣went␣wrong")) { "Alternative␣log␣using␣
default␣log␣config␣and␣‘edu.stanford .. logger␣as␣tag ‘" }

Source text 4.6: Log: Configuration.

The logging module in the Spezi framework exemplifies a robust and flexible
solution for handling logging. By providing configurable logging utilities, it
ensures that developers can efficiently monitor, debug, and maintain their
applications, thereby enhancing the overall reliability and effectiveness
of mHealth solutions. This modular and scalable approach aligns with
the framework’s goal of supporting dynamic and user-centric healthcare
applications.

Navigation

This module offers a systematic approach to managing navigation events
within the framework. It defines navigation events and a navigator interface
to oversee navigation within the application.
The NavigationEvent interface acts as a foundation for all navigation
events. Any class that represents a navigation event should implement this
interface. Framework users can define their custom navigation events to
specific routes by implementing this interface.
For example in listing 4.7 the OnboardingNavigationEvent is a sealed
class that extends NavigationEvent. Each Module provides an implemen-
tation of NavigationEvent so the user has access to all public available
navigation destinations.

1 sealed class OnboardingNavigationEvent : NavigationEvent {
2 data object InvitationCodeScreen : OnboardingNavigationEvent ()
3 data object OnboardingScreen : OnboardingNavigationEvent ()
4 data object SequentialOnboardingScreen :

OnboardingNavigationEvent ()
5 data object ConsentScreen : OnboardingNavigationEvent ()
6 }

Source text 4.7: OnboardingNavigationEvent.

The Navigator (Listing: 4.8) is an interface defining the contract for a
navigator responsible for handling navigation events.

32

1 interface Navigator {
2 val events: SharedFlow <NavigationEvent >
3

4 fun navigateTo(event: NavigationEvent)
5 }

Source text 4.8: Navigator.

The events in the navigator are a SharedFlow of NavigationEvent
objects. This flow emits navigation events to be observed and acted upon
from the app’s implementation of the Navigator.
The navigateTo(event:NavigationEvent) method takes a Navigation
Event and triggers the navigation to the corresponding screen.
For a framework developer, this means that in new modules, they only need
to implement the NavigationEvent interface and provide the navigation
destinations. For framework users, it means they only need to provide a
NavGraph in their app like in listing 4.9.

1 fun NavGraphBuilder.mainGraph () {
2 composable <Routes.RegisterScreen > {
3 val args = it.toRoute <Routes.RegisterScreen >()
4 RegisterScreen(args.isGoogleSignIn)
5 }
6 }

Source text 4.9: NavGraphBuilder.

Then provide a Navigator implementation in the app or simply use
dependency injection to provide the default implementation as shown in
listing 4.10 [47].

1 @Module
2 @InstallIn(SingletonComponent :: class)
3 object NavigationModule {
4 @Provides
5 @Singleton
6 fun provideNavigator (): Navigator = DefaultNavigator ()
7 }

Source text 4.10: NavigationModule.

In a Routes class 4.11, the necessary routes can be defined.
1 @Serializable
2 sealed class Routes {
3

4 @Serializable

33

4. Technical details on implementation

5 data class RegisterScreen(val isGoogleSignIn: Boolean) : Routes ()
6 }

Source text 4.11: Routes.

One has to provide an AppNavigation composable. In listing 4.12 is an
example of how to implement the AppNavigation in the App module. You
can use the Navigator interface to navigate to the desired screen based
on Routes.

1 @Composable
2 fun AppNavigation(navigator: Navigator) {
3 val navController = rememberNavController ()
4 val coroutineScope = rememberCoroutineScope ()
5 LaunchedEffect(navigator) {
6 coroutineScope.launch {
7 navigator.events.collect { event ->
8 when (event) {
9 is OnboardingNavigationEvent.ConsentScreen ->

navController.navigate(Routes.ConsentScreen)
10 }
11 }
12 }
13 }
14 NavHost(
15 navController = navController ,
16 startDestination = Routes.OnboardingScreen ,
17) {
18 mainGraph ()
19 }
20 }

Source text 4.12: AppNavigation.

After setting up, the user can utilize the Navigator interface within
their app module to navigate to the desired screen. To achieve this,
they can inject the Navigator into any class that requires navigation, as
demonstrated in listing 4.13.

1 class DefaultOnboardingRepository @Inject constructor(
2 private val navigator: Navigator
3) : OnboardingRepository

Source text 4.13: Inject navigator.

To navigate to the desired screen, the user can utilize the navigateTo
function with the appropriate NavigationEvent. Detailed implementation

34

can be found in listing 4.14.
1 navigator.navigateTo(OnboardingNavigationEvent.

SequentialOnboardingScreen)

Source text 4.14: navigateTo().

This framework’s design effectively addresses key functional requirements,
focusing on modularity (FR1) and reusability (FR2), which are essential
for such a framework. This navigation architecture supports interchange-
able components for example for disease-specific functionalities, promoting
adaptability to new medical research and treatment methods. This mod-
ularity also ensures quick integration of new knowledge and technologies
into clinical practice, enhancing the effectiveness and efficiency of patient
care. By implementing the NavigationEvent interface, new modules can
seamlessly integrate with the existing system, facilitating rapid deployment
of updates and new functionalities without requiring major overhauls. This
approach aligns with best practices in software architecture, emphasiz-
ing modular design for creating flexible and maintainable systems [48].
Reusability is ensured through shared interfaces and sealed classes, en-
abling developers to define specific navigation events and routes for different
conditions without rewriting core logic. This ensures the framework can
be reused and adapted across multiple applications, reducing development
time and effort while maintaining consistency and reliability.
By addressing these functional requirements in the navigation, the frame-
work not only promotes the efficient and effective delivery of patient care
but also ensures that it can be continuously adapted and improved, thereby
aligning with both current needs and future advancements in medical tech-
nology.

Testing

Automated testing is a vital aspect of ensuring code quality, particularly
within the development of mobile health applications such as ENGAGE-
HF and Open Source Frameworks like Spezi [49]. Our testing process is
embedded in GitHub Actions through the workflow titled Build, Test,
and Analyze, which supports automated builds, testing, and analysis of
the codebase. This approach aligns with the Non-Functional Requirement
Automated Workflows (NFR4.3), ensuring all tests are automatically trig-

35

4. Technical details on implementation

gered each time a pull request is submitted to the main branch, providing
continuous integration and immediate feedback on the code’s integrity [50].
Key elements of the GitHub Action workflow include:

1. Triggers:
• workflow_dispatch: Manually triggered.
• workflow_call: Can be triggered by another workflow.

2. Jobs:
• Detekt: Runs static code analysis for Kotlin using Detekt.
• Build, Test, and Analyze: Builds the project, runs tests,

performs CodeQL analysis, and uploads code coverage reports.
• Test: Runs instrumented tests on different Android API levels

and devices.
• Dokka: Generates and deploys project documentation to GitHub

Pages. More in section 4.

3. Steps: Actions like checking out code, setting up Java, running tests,
and deploying documentation.

4. Secrets: Uses GitHub secrets for authentication (e.g., Codecov,
GitHub tokens).

This automated process also supports Use of Open Source Software Com-
ponents (NFR5.1) by integrating widely adopted open-source libraries such
as Detekt for static code analysis and JaCoCo for code coverage. This
integration enhances the development workflow and promotes adherence
to Industry Standards (NFR6.2), as these libraries are standard tools in
modern Android and Kotlin development [49].
This project utilizes JUnit for executing tests, Truth for assertions, and
MockK for mocking dependencies. This combination aligns with Testability
(NFR4.2), ensuring that our framework is designed for comprehensive
testing at both the unit and integration levels [49].

1. JUnit: A widely-used test runner that controls the execution of tests.

2. Truth: Provides clear and readable assertions, making it easier to
interpret test results.

36

3. MockK: A Kotlin-specific mocking framework that simplifies creating
mock objects and verifying behavior.

These tools were selected to optimize the testability of the codebase,
ensuring that each component can be thoroughly tested in isolation (unit
tests) and as part of an integrated system (integration tests). The structure
of the tests follows a Given-When-Then format, a common best practice
that makes the tests clear and understandable [51].
The following test exemplifies this structure, ensuring a proper separation
of concerns and clarity in defining initial conditions, actions, and expected
outcomes.

1 @Test
2 fun ‘it should handle idle state correctly ‘() = runTestUnconfined {
3 // given
4 createViewModel ()
5

6 // when
7 bleServiceState.emit(BLEServiceState.Idle)
8

9 // then
10 assertBluetoothUiState(state = BluetoothUiState.Idle)
11 }

Source text 4.15: Unit Test Setup Example.

• Given: Setting up the test environment and initial conditions
(createViewModel()).

• When: Triggering the behavior under test
(bleServiceState.emit()).

• Then: Verifying the outcome with an assertion
(assertBluetoothUiState()).

This format, combined with the tools mentioned, contributes to increased
testability and alignment with NFR4.2.
In addition to unit tests, instrumented tests are executed using an Android
emulator within the GitHub Action workflow. The emulator simulates
real Android environments, allowing us to validate the app’s behavior
across different Android API levels and device configurations. This ensures

37

4. Technical details on implementation

compliance with Industry Standards (NFR6.2), as we ensure compatibility
with various Android environments.
The following code shows how we structure these instrumented tests:

1 class HealthPageTest {
2

3 @get:Rule
4 val composeTestRule = createComposeRule ()
5

6 @Test
7 fun ‘test health page root is displayed ‘() {
8 // given
9 setState(state = getSuccessState ())

10

11 // then
12 healthPage {
13 assertIsDisplayed ()
14 }
15 }
16

17 private fun healthPage(block: HealthPageSimulator .() -> Unit) {
18 HealthPageSimulator(composeTestRule).apply(block)
19 }
20 }

Source text 4.16: Android Test Example Setup.

The HealthPageSimulator (Listing: 4.17) encapsulates test logic for inter-
acting with the Android UI components. This abstraction improves the test
code’s maintainability and reusability, adhering to Testability (NFR4.2),
which mandates that the framework should allow easy and comprehensive
testing.

1 class HealthPageSimulator(
2 private val composeTestRule: ComposeTestRule ,
3) {
4 private val root = composeTestRule.onNodeWithIdentifier(

HealthPageTestIdentifier.ROOT)
5

6 fun assertIsDisplayed () {
7 root.assertIsDisplayed ()
8 }
9 }

Source text 4.17: Android Test Simulator Example.

38

A critical issue encountered during our testing process involves JaCoCo
and its inability to generate coverage reports due to the large size of the
org.hl7.fhir.r4.JsonParser class7. This failure results in the pipeline’s
inability to process code coverage properly, especially for Android-specific
tests, leading to incorrect coverage calculations for new pull requests.
Despite trying various solutions, such as excluding the class from coverage
and optimizing heap memory, the issue persists. We have reported this
to the respective maintainers (e.g., HAPI FHIR issue #16888 and related
issue #32689 and JaCoCo issue #165310). This unresolved issue forces
us to temporarily deactivate the code coverage threshold in the detekt
configuration, which affects the overall pipeline’s efficacy.
Automated testing in the project plays a crucial role in maintaining code
quality and ensuring adherence to Testability (NFR4.2) and Automated
Workflows(NFR4.3). By leveraging open-source software components such
as GitHub Actions, JUnit, MockK, and Truth, we maintain high standards
for code reliability, making sure that our app aligns with industry standards
(NFR6.2). Although challenges with JaCoCo and large dependencies exist,
ongoing efforts are being made to resolve these issues and ensure a fully
automated and reliable testing pipeline.

Dokka Documentation

Dokka was chosen over other tools due to its seamless integration with
Kotlin, offering native support for Kotlin-specific features and syntax,
which other documentation generators often lack11. This ensures that our
documentation remains accurate and fully aligned with the language’s ca-
pabilities, reducing the need for manual adjustments or workarounds11. It
allows the generation of structured documentation directly from source code
comments, ensuring consistency and clarity12. For open-source projects,
this is particularly valuable as it enables developers to maintain compre-
hensive and up-to-date documentation [52]. In this section, we explore how

7https://raw.githubusercontent.com/hapifhir/org.hl7.fhir.core/master/org.hl7.fhir
.r4/src/main/java/org/hl7/fhir/r4/formats/JsonParser.java

8https://github.com/hapifhir/org.hl7.fhir.core/issues/1688
9https://github.com/hapifhir/hapi-fhir/issues/3268

10https://github.com/jacoco/jacoco/issues/1653
11https://kotlinlang.org/docs/dokka-introduction.html
12https://github.com/Kotlin/dokka

39

https://raw.githubusercontent.com/hapifhir/org.hl7.fhir.core/master/org.hl7.fhir.r4/src/main/java/org/hl7/fhir/r4/formats/JsonParser.java
https://raw.githubusercontent.com/hapifhir/org.hl7.fhir.core/master/org.hl7.fhir.r4/src/main/java/org/hl7/fhir/r4/formats/JsonParser.java
https://github.com/hapifhir/org.hl7.fhir.core/issues/1688
https://github.com/hapifhir/hapi-fhir/issues/3268
https://github.com/jacoco/jacoco/issues/1653
https://kotlinlang.org/docs/dokka-introduction.html
https://github.com/Kotlin/dokka

4. Technical details on implementation

the integration of Dokka into our project helps fulfill several non-functional
requirements, specifically focusing on maintainability (NFR4.1), automated
workflows (NFR4.3) and documentation quality (NFR4.4).

1 fun Project.setupDokka () {
2 apply(plugin = rootProject.libs.plugins.dokka.get().pluginId)
3

4 if (this != rootProject) {
5 rootProject.tasks.named("dokkaHtmlMultiModule") {
6 dependsOn("${project.path}: dokkaHtml")
7 }
8 }
9

10 tasks.withType <DokkaTaskPartial >().configureEach {
11 dokkaSourceSets.configureEach {
12 noAndroidSdkLink.set(false)
13 skipDeprecated.set(true)
14 skipEmptyPackages.set(true)
15 includeNonPublic.set(false)
16 jdkVersion.set(JavaVersion.VERSION_17.majorVersion.toInt

())
17 if (file("README.md").exists ()) {
18 includes.from("README.md")
19 }
20 }
21 }
22

23 val dokkaHtmlMultiModule = tasks.findByName("dokkaHtmlMultiModule
") ?: tasks.create(

24 "dokkaHtmlMultiModule",
25 DokkaTaskPartial :: class.java
26)
27 rootProject.tasks.named("dokkaHtmlMultiModule") {
28 dependsOn(dokkaHtmlMultiModule)
29 }
30 }

Source text 4.18: Dokka Setup.

In the setup configuration (Listing 4.18), the Dokka plugin is automatically
applied to the entire project so that all modules benefit from standardised
documentation creation. This configuration also supports our multi-module
structure and ensures that the documentation is created across all modules,
which ensures consistency, especially in our large code base. To make the
documentation more relevant and clearer, obsolete methods and empty

40

packages are skipped. By integrating README.md, cross-project explana-
tions are included in the documentation, which increases its scope and
comprehensibility. This setup automates the documentation process, mak-
ing it easier to update and maintain, which directly aligns with NFR4.1.
To ensure continuous updates and deployment of the documentation, we
set up a GitHub Actions workflow (Listing 4.19):

1 name: Dokka Documentation Deployment
2 on:
3 push:
4 branches:
5 - main
6

7 jobs:
8 dokka:
9 name: Dokka Documentation Deployment

10 runs -on: ubuntu -latest
11 steps:
12 - name: Checkout code
13 uses: actions/checkout@v4
14

15 - name: Set up JDK 17
16 uses: actions/setup -java@v4
17 with:
18 distribution: ’temurin ’
19 java -version: ’17’
20 cache: gradle
21

22 - name: Setup Gradle
23 uses: gradle/actions/setup -gradle@v3
24

25 - name: Run Dokka with Gradle
26 run: ./ gradlew dokkaHtmlMultiModule
27

28 - name: Deploy to GitHub Pages
29 if: github.ref == ’refs/heads/main ’
30 uses: JamesIves/github -pages -deploy -action@v4
31 with:
32 branch: gh -pages
33 folder: build/dokka/htmlMultiModule

Source text 4.19: Dokka Github Action.

This workflow automates the following steps: Firstly, the code is checked
out from the GitHub repository. Java and Gradle are then set up by

41

4. Technical details on implementation

installing JDK 17 and preparing Gradle for the build. Dokka then creates
the documentation based on the project configuration. Finally, the gener-
ated documentation is automatically published on the gh-pages branch,
making it accessible as public project documentation. By automating these
steps, we address NFR4.3, ensuring that builds, tests, and deployments are
handled automatically without manual intervention. This streamlines the
development process, improving both efficiency and reliability. As outlined
in NFR4.1, clear and up-to-date documentation is crucial for maintaining a
project efficiently. By utilizing Dokka and Github Actions, we ensure that
the documentation is always in sync with the latest code changes, as it is
generated directly from code comments [52]. This eliminates the need for
developers to manually update separate documentation files, significantly
reducing the likelihood of inconsistencies. Additionally, by configuring
Dokka to include key files like the README.md, we ensure that project
overviews are always part of the documentation (Figure: 4.1), improving
overall clarity and reducing maintenance overhead. Automated documen-
tation tools are essential for maintainability, as they reduce technical debt
and support clear communication within the development team [52].

42

Figure 4.1.: Dokka example documentation.

Account Module

The Account Module within the framework is a central component designed
to handle user authentication and account management to provide security

43

4. Technical details on implementation

(NFR7). This module includes both the Login Screen and Register Screen,
as illustrated in listing 4.2. These screens enable users to log in to their
existing accounts or create new ones, while demonstrating how the module
integrates with various authentication services.

(a) Login Screen (b) Register Screen

Figure 4.2.: Login and Register Screen

This module is built to handle the core functionality required for manag-
ing user accounts, utilizing the AuthenticationManager interface (List-
ing 4.20).

1 interface AuthenticationManager {
2 suspend fun linkUserToGoogleAccount(
3 googleIdToken: String ,
4 user: User

44

5): Result <Unit >
6

7 suspend fun signUpWithEmailAndPassword(
8 user: User
9): Result <Unit >

10

11 suspend fun saveUserData(
12 user: User
13): Result <Unit >
14

15 suspend fun sendForgotPasswordEmail(email: String): Result <Unit >
16

17 suspend fun signIn(email: String , password: String): Result <Unit >
18

19 suspend fun signInWithGoogle (): Result <Unit >
20 }

Source text 4.20: AuthenticationManager Interface.

Key functions implemented include:

• signUpWithEmailAndPassword: Allows users to register with
their email and password.

• saveUserData: Handles saving user details such as name, gender,
and date of birth after registration.

• sendForgetPasswordEmail: Sends a password reset email to users
who request it.

• signInWithEmailAndPassword: Allows users to log in using email
and password credentials.

• signInWithGoogle: Implements a more modern authentication
method using Google’s sign-in service, enhancing user convenience.

The FirebaseAuthenticationManager provides a default implementation
of the AuthenticationManager interface using Firebase. However, one
of the significant advantages of the Spezi framework is its flexibility and
modularity (FR1). The interface can be easily implemented using other
services like AWS or Supabase, demonstrating the system’s reusability and
adaptability in different environments.
Additionally, another important interface in the module is the UserSession
Manager (Listing: 4.21).

45

4. Technical details on implementation

1 interface UserSessionManager {
2 suspend fun uploadConsentPdf(pdfBytes: ByteArray): Result <Unit >
3 suspend fun getUserState (): UserState
4 fun observeUserState (): Flow <UserState >
5 fun getUserUid (): String?
6 fun getUserInfo (): UserInfo
7 }

Source text 4.21: UserSessionManager Interface.

This interface offers functionality related to user session management,
including:

• uploadConsentPdf : Handles the uploading of consent documents.

• getUserState and observeUserState: Functions to retrieve and
monitor the user’s state, whether they are registered, anonymous, or
awaiting consent.

• getUserUid and getUserInfo: These provide access to user identi-
fiers and details within the app.

The UserState defines the user’s status in various ways. The initial state,
called NotInitialized, occurs when no information has been received
yet. For users who are not registered or logged in, the status is labeled
as Anonymous. When a user has completed the registration process, the
status changes to Registered, which also includes information on whether
the user has submitted their consent.
As observeUserState returns a flow, this can be collected elsewhere and
reacted to. For example, you can navigate directly to the start page when
the application is started if the user is logged in, or automatically redirect
them back to the login page if they get logged out.
This system’s modular approach allows developers to integrate additional
services and components without disrupting the overall architecture. The
Login (Figure: 4.2a) and Register screens (Figure: 4.2b) serve as key
interaction points for users, leveraging the UserInfo object to display and
manage user information.
In addition to the core functionality provided by the Account Module, the
Login and Register Screens themselves are fully customizable (NFR5.3).
While the module comes with predefined views for logging in and registering

46

users, developers have the flexibility to create their own custom screens if
needed.
Developers can choose to bypass the provided screens altogether and
instead integrate the AuthenticationManager directly into their own
custom views futuring modularity (FR1). This means that the logic
behind user registration, login, and other authentication-related tasks
can be reused, while maintaining the freedom to design entirely custom
user interfaces that fit specific branding, user experience requirements, or
additional workflows.
Moreover, developers can inject the ViewModels associated with the
AuthenticationManager (Listing: 4.20) into these custom views, ensur-
ing that all necessary logic for authentication remains in the background
(Listing: 4.22).

1 @Composable
2 fun LoginScreen () {
3 val viewModel = hiltViewModel <LoginViewModel >()
4 val customViewModel = hiltViewModel <CustomLoginViewModel >()
5 val uiState by viewModel.uiState.collectAsState ()
6 LoginScreen(
7 uiState = uiState ,
8 onAction = viewModel ::onAction ,
9 customOnAction = customViewModel ::onAction ,

10)
11 }

Source text 4.22: Inject Default LoginViewModel beside a CustomLoginViewModel.

Additionally, the ViewModels can be extended with custom logic, enabling
further customization based on the unique needs of the application. This
approach allows for modular (FR1), flexible development, where the au-
thentication system is reused (FR2) while offering complete control over
how the user interface is presented and interacts with the system.
By offering customizable authentication mechanisms and easy integration
of third-party services, the module can be adapted for various use cases
across different mHealth applications, such as managing chronic diseases
like heart failure.
The ability to switch between services (Firebase13, Ory14, Supabase15,
13https://firebase.google.com/docs/auth
14https://www.ory.sh/
15https://supabase.com/

47

https://firebase.google.com/docs/auth
https://www.ory.sh/
https://supabase.com/

4. Technical details on implementation

etc.) without rewriting the core application logic highlights its scalability
(NFR3.1). Moreover, developers can fully control the user interface by
customizing screens or integrating the underlying logic into their own
designs. This level of flexibility is especially useful for creating tailored
applications for diverse patient populations or studies (FR4).
This modular design aligns perfectly with the project’s goal of a resusability
(FR2), providing flexibility and expandability (NFR5.3) to adjust to new
requirements, technologies, or studies. It also promotes faster development
cycles since custom screens can reuse existing logic while maintaining
unique branding or user experience requirements.
The framework thus not only supports a variety of possible authentication
services (FR5) but also allows customization of the presentation layer,
ensuring it fits seamlessly into any clinical or research context, making it
ideal for large-scale (NFR3.1) mHealth studies.

48

Contact

Figure 4.3.: Contact Screen Exam-
ple.

The Contact module provides a view to
display contact information in an appli-
cation. This functionality is crucial for
ensuring that users can easily access con-
tact details, which is especially important
in mHealth applications where communi-
cation with healthcare providers, support
staff, and other stakeholders is critical [19].

Providing a dedicated view (Figure: 4.3) for
contact information enhances the user ex-
perience by making it easy for users to find
and use contact details. This also means
this structured and consistent way to dis-
play contact information helps maintain
a professional and user-friendly interface,
which is essential for building trust and
reliability in health-related applications.

There are various predefined contact op-
tions: Telephone number, e-mail, website
and geographical address. A contact person
can optionally also have a name, title, de-
scription and company. This makes the con-
tact page flexible and versatile. Each con-
tact option has a preset action: for phone
numbers a call is started and for addresses
the navigation is opened. To use this module, only the provided interface
needs to be implemented - everything else is set up automatically.

1 interface ContactRepository {
2 fun getContact (): Contact
3 }

Source text 4.23: ContactRepository Interface.

49

4. Technical details on implementation

Health Connect on FHIR

This module serves as a critical component in the integration of mobile
health data with standardized healthcare records.
The primary purpose of the HealthConnectOnFHIR module is to bridge
the gap between Android’s Health Connect data and HL7® FHIR®
R4 standards [11]. It achieves this by providing a sophisticated mapper
that converts various health records from Android’s Health Connect into
corresponding FHIR Observations and vice versa16 [53]. These conversions
use standardized codes such as Logical Observation Identifiers Names
and Codes (LOINC) to ensure consistency and interoperability with other
health data systems [54].
The mapping process involves translating different types of health records,
such as blood pressure, heart rate, and body weight, into FHIR Observa-
tions [55]. This ensures that health data collected on mobile devices can
be seamlessly integrated into EHR and other clinical systems that utilize
the FHIR standard [56].
The module uses a predefined mapping table that correlates specific health
records from Android Health Connect with their respective FHIR Obser-
vation categories, LOINC codes, and measurement units. For instance see
table 4.1:

Health Connect
Record

FHIR Obser-
vation Category

LOINC
Code

Unit Display

Active Calories
Burned

Activity 41981-2 kcal Calories burned

Blood Glucose Vital Signs 41653-7 mg/dL Glucose
Glucometer
(BldC)
[Mass/Vol]

Blood Pressure Vital Signs 85354-9 mmHg Blood pressure
panel with all
children optional

Heart Rate Vital Signs 8867-4 /min Heart rate
Weight Vital Signs 29463-7 kg Body weight

Table 4.1.: Health Connect Records and Corresponding FHIR Observation Categories

16https://developer.android.com/health-and-fitness/guides/health-connect

50

https://developer.android.com/health-and-fitness/guides/health-connect

For example ActiveCaloriesBurnedRecord is mapped to an Activity
FHIR Observation with LOINC code 41981-2, measured in kilocalories
(kcal) and BloodPressureRecord is categorized under Vital Signs with
LOINC code 85354-9, where the measurements are in millimeters of mer-
cury (mmHg) [57]. This mapping table is ensuring that the data is not
only standardized but also accurately reflects the clinical observations it
represents.

The HealthConnectOnFHIR module is implemented as a Hilt module, ensur-
ing that dependencies such as the interfaces RecordToObservationMapper
and ObservationsToRecordMapper are provided as singletons within the
application which uses the module. The core functionality is encapsulated
in the internal RecordToObservationMapperImpl and ObservationTo
RecordMapperImpl class, which defines methods for converting specific
health records into FHIR Observations and vice versa.

For example, the mapBloodPressureRecord-method converts a Blood
PressureRecord into a structured FHIR Observation, complete with sys-
tolic and diastolic components [57]. This method ensures that each health
metric is properly represented and can be used effectively within clinical
systems [57].

The HealthConnectOnFHIR module exemplifies the framework’s commit-
ment to creating interoperable (FR1) and reusable components (FR2).
By adhering to FHIR standards, this module allows health data collected
on Android devices to be integrated into a broader healthcare ecosystem,
enabling better patient monitoring, data analysis, and clinical decision-
making.

Onboarding

The Onboarding module provides user interface components to onboard
a user to an application, including the possibility of retrieving consent
for study participation. This module ensures that the onboarding process
is smooth and user-friendly, facilitating the collection of necessary user
information and consents efficiently.

51

4. Technical details on implementation

Consent

This view is essential for legally documenting the user’s consent to partici-
pate in the study, ensuring compliance with ethical and legal standards.
It provides a clear and straightforward way for users to understand what
they are consenting to and gives them the means to provide their signature
electronically.
The Consent View (Figure 4.4) is designed to gather user consent for study
participation. It includes fields for entering the user’s first and last names
and a section for capturing the user’s signature. This view ensures that
users can easily provide their consent in a legally binding format.

Figure 4.4.: Consent Screen.

The Consent Screen (Figure 4.4) offers a
range of useful functions that enable users
to enter their personal data in a simple and
efficient manner and to give legal consent.
In the ‘First Name & Surname’ section,
users can enter their personal information.
There is also a signature area where users
can draw their signature, which is required
for legal consent. If the signature does not
meet expectations, an ‘Undo’ button allows
users to delete the signature and start again.
Finally, there is an ‘I agree’ button which is
used to submit the form as soon as the user
is satisfied with their details and signature.
In addition, a Markdown parser is pro-
vided so that the user of the page requires
as little technical knowledge as possible
and can simply import a Markdown doc-
ument as a contract. A PDFservice is
also provided, which converts the Mark-
down document into a PDF document and
adds the signature at the bottom. The
user can then decide for themselves what
happens to the PDF or use the predefined
FirebasePdfUploadService, which takes
care of the upload to a Firebase storage. This is done in the same way as

52

in the EngageInvitationCodeRepository see Listing 4.24.

Invitation

Figure 4.5.: Invitation Code View.

The Invitation Code View (Figure: 4.5) is
crucial for maintaining the security and
integrity of the study. By requiring an
invitation code, we can ensure that only
eligible participants, who have been pre-
approved and invited, can join the study.
This helps in maintaining the quality and
control of the study population. The view
(Figure: 4.5) is intended for users to en-
ter their invitation codes to join e.g. the
ENGAGE-HF case study.
In the Invitation code field, users can en-
ter the invitation code they have received.
By clicking on the Redeem invitation
code button, the code is submitted for ver-
ification. For users who already have an
account, there is also a I already have
an account link that offers an alternative
login option.
The use of the view is designed to be
extremely user-friendly. As shown in
Listing 4.24, the user of the framework
only has to provide an implementation of
the InvitationCodeRepository interface.
The actions and data contained in this in-
terface are then used in the view. This can be easily called up using the
methods described in the navigation Listing 4.13.

1 class EngageInvitationCodeRepository @Inject constructor(
2 private val navigator: Navigator ,
3) : InvitationCodeRepository {
4

5 override fun getScreenData (): InvitationCodeScreenData {
6 return InvitationCodeScreenData(
7 title = "Invitation␣Code",

53

4. Technical details on implementation

8 description = "Please␣enter␣your␣invitation␣code␣to␣join␣
the␣ENGAGE -HF␣study.",

9 redeemAction = { navigator.navigateTo(
AccountNavigationEvent.LoginScreen(false)) },

10 gotAnAccountAction = { navigator.navigateTo(
AccountNavigationEvent.LoginScreen(true)) }

11)
12 }
13 }

Source text 4.24: EngageInvitationCodeRepository.

In addition to a title and a description, you can also specify which code
should be executed when the invitation code has been successfully redeemed
(redeemAction) or which action should take place if the user indicates
that they already have an account (gotAnAccountAction). This means
that the user’s needs can be customised and they can be directed to any
subsequent pages.
The InvitationAuthManager interface (Listing: 4.25) is responsible for
managing the validation of invitation codes.

1 interface InvitationAuthManager {
2 suspend fun checkInvitationCode(invitationCode: String): Result <

Unit >
3 }

Source text 4.25: InvitationAuthManager Interface.

Currently, the FirebaseInvitationAuthManager17 serves as the default
implementation, provided through dependency injection. However, it is
designed to be replaceable by alternative implementations if needed.
In the default implementation when the invitation code is redeemed, a
Firebase function is executed that links a anonymous Firebase account
assigned to the user in this view with the code entered. If the user is e.g.
on the registration page at a later point in time, a pre-register function
in Firebase ensures that before the registration is executed, it is checked
whether the user has correctly linked their anonymous account to an
invitation code before the anonymous account is converted into a fully-
fledged account with access data. This ensures that even if someone found
a possability to bypass the screen he still wouldn’t be able to bypass the
second verification of the invitation code.
17https://github.com/StanfordSpezi/SpeziKt/blob/main/modules/account/src/main/kotl

in/edu/stanford/spezi/module/account/manager/FirebaseInvitationAuthManager.kt

54

https://github.com/StanfordSpezi/SpeziKt/blob/main/modules/account/src/main/kotlin/edu/stanford/spezi/module/account/manager/FirebaseInvitationAuthManager.kt
https://github.com/StanfordSpezi/SpeziKt/blob/main/modules/account/src/main/kotlin/edu/stanford/spezi/module/account/manager/FirebaseInvitationAuthManager.kt

Welcome Onboarding

Figure 4.6.: Onboarding Screen.

This view (Figure: 4.6) is necessary for pro-
viding users with an initial orientation, help-
ing them to quickly grasp the main features
and sections of the application. It ensures
that users do not feel lost and can navigate
the application more confidently from the
beginning [58].
The Welcome Onboarding View introduces
new users to the application. It provides a
brief overview of the key areas they need to
be familiar with and helps them understand
what to expect as they proceed.
Features:

• Area Descriptions: Icons and brief
descriptions for different areas of the
application, helping users to get a
quick understanding.

• Learn more Button: Moves the user
to the next step in the onboarding
process.

The onboarding screen is also similar to the
InvitationCodeScreen architecture list-
ing 4.24: The user of the framework only
has to implement an interface via which the required information is pro-
vided. This includes defining which areas should be displayed and which
actions should be executed when the Continue-button is pressed.

Sequential Onboarding

This view is important for ensuring a comprehensive onboarding experience.
By breaking down the onboarding process into sequential steps, it ensures
that users can absorb information at their own pace and do not feel
overwhelmed. It also ensures that all necessary information is covered
systematically, enhancing user understanding and engagement [58].

55

4. Technical details on implementation

The Sequential Onboarding View (Figure: 4.7) guides users through a step-
by-step process to complete their onboarding. Each step provides detailed
information and instructions, ensuring users do not miss any critical parts
of the onboarding.

(a) Step 1. (b) Step 2.

Figure 4.7.: Sequential Onboarding View.

Features:

• Step Indicators: Shows which step the user is currently on and how
many steps remain.

• Skip and Forward Buttons: Allows users to move forward or skip
steps if they are already familiar with the information.

56

• Central Icon and Description: Provides a visual and textual
description of the current step.

Storage

The storage module is a crucial component in the Spezi framework, designed
to handle key-value and file storage securely and efficiently. This module
provides a wrapper around default storage implementations to enhance
ease of use and security, ensuring robust data management for mHealth
applications.
Default storage implementations in Android, such as SharedPreferences
for key-value storage and standard file I/O for file storage, are widely used
but have several limitations:

• Security: Default implementations often lack built-in encryption,
leaving sensitive health data vulnerable18.

• Usability: Interacting directly with these storage mechanisms can
be cumbersome, requiring repetitive boilerplate code for common
operations like reading, writing, and deleting data18.

• Consistency: Ensuring consistent access patterns and error handling
across different parts of the application can be challenging when using
the default storage solutions directly18.

To address these limitations, we implemented a custom wrapper around
the default storage mechanisms, offering the following advantages:

• Enhanced Security:

– EncryptedFileStorage: For file storage, this implementation
ensures that all files are encrypted using industry-standard en-
cryption algorithms before being written to disk. This prevents
unauthorized access to sensitive health data.

– EncryptedSharedPreferencesStorage: This implementation
provides encrypted key-value storage, ensuring that all stored
preferences are securely encrypted.

18https://developer.android.com/codelabs/android-preferences-datastore

57

https://developer.android.com/codelabs/android-preferences-datastore

4. Technical details on implementation

• Improved Usability: The wrapper provides a simplified and consis-
tent API for common storage operations, reducing the need for boil-
erplate code by offering straightforward function calls like saveData,
readData, and deleteData through the KeyValueStorage and File-
Storage interfaces, abstracting away the complexity of dealing with
underlying storage mechanisms.

• Consistency and Error Handling: By centralizing storage oper-
ations in a single module, we ensure consistent access patterns and
error handling throughout the application. This approach reduces
the likelihood of bugs and makes the codebase easier to maintain.
Additionally, the use of Flow in KeyValueStorage enables reactive
programming, allowing the application to respond to changes in stored
data in real-time. This capability is particularly useful for health
monitoring applications where timely updates are crucial.

• Flexibility in Implementation: The shared KeyValueStorage in-
terface allows seamless switching between encrypted and non-encrypted
implementations, providing developers the flexibility to choose the
appropriate storage solution based on the security requirements of
different data types. Each implementation is designed to handle the
same inputs, ensuring compatibility and ease of integration. For in-
stance, while EncryptedSharedPreferences does not natively sup-
port ByteArray, this functionality was added to support the full
feature set of DataStore, but with encryption on top.

After the module (:modules:storage) has been added to the build
gradle file, the desired storage implementation can be provided via
Dependency Injection (DI) and then only one of the desired interfaces
needs to be injected:

• EncryptedFileStorage for the FileStorage interface

• EncryptedSharedPreferencesStorage or LocalStorage for the Key
ValueStorage interface

Listing 4.26 shows the KeyValueStorage Interface.
1 interface KeyValueStorage {
2 suspend fun <T : Any > saveData(key: PreferenceKey <T>, data: T)
3 fun <T> readData(key: PreferenceKey <T>): Flow <T?>

58

4 suspend fun <T> readDataBlocking(key: PreferenceKey <T>): T?
5 suspend fun <T> deleteData(key: PreferenceKey <T>)
6 }

Source text 4.26: KeyValueStorage Interface.

How the KeyValueStorage interface can be used is shown in listing 4.27.
1 val stringKey = PreferenceKey.StringKey("user_name")
2 keyValueStorage.saveData(stringKey , "test_user_name")
3 keyValueStorage.readDataBlocking(stringKey)?.let {
4 println("Read␣string␣data␣blocking:␣$it")
5 }
6 keyValueStorage.deleteData(stringKey)

Source text 4.27: KeyValueStorage Usage.

It is also possible to use the Fow interface to observe changes as shown in
listing 4.28.

1 val job = launch {
2 keyValueStorage.readData(stringKey).collect { data: String? ->
3 println("Read␣string␣data:␣$data")
4 }
5 }

Source text 4.28: KeyValueStorage Flow Usage.

The FileStorage provides a simple interface for storing and retrieving
files as shown in listing 4.29.

1 interface FileStorage {
2 suspend fun readFile(fileName: String): ByteArray?
3 suspend fun deleteFile(fileName: String)
4 suspend fun saveFile(fileName: String , data: ByteArray)
5 }

Source text 4.29: FileStorage Interface.

It can be used as shown in listing 4.30.
1 val fileName = "testFile.data"
2 val data = "Hello ,␣Stanford!".toByteArray ()
3 fileStorage.saveFile(fileName , data)
4 val readData = fileStorage.readFile(fileName)
5 readData ?.let {
6 println("Read␣file␣data:␣${String(it)}")
7 }
8 fileStorage.deleteFile(fileName)

Source text 4.30: FileStorage Usage.

59

4. Technical details on implementation

The addition of the custom storage module in the Spezi framework signifi-
cantly enhances the security (NFR7), usability, and consistency (NFR6.2)
of data management. By providing encrypted storage solutions and a
simplified API, the framework ensures that sensitive health data is handled
securely and efficiently, aligning with the project’s goals of creating a
modular, scalable, and reusable platform for mHealth applications.
By implementing this storage module, the Spezi framework not only ad-
dresses the limitations of default storage solutions but also sets a new stan-
dard for secure and efficient data management in mobile health applications.
The flexibility to switch between encrypted and non-encrypted implementa-
tions via the shared KeyValueStorage interface and the enhanced compat-
ibility for handling ByteArray inputs in EncryptedSharedPreferences
further illustrate the robustness and adaptability of this solution.

60

Questionnaire

Figure 4.8.: Questionnaire.

In the realm of mHealth applications, ac-
curate and efficient symptom capture is
crucial for both patient management and
clinical decision-making. One such method
for capturing patient-reported outcomes is
through the use of digital questionnaires
that adhere to the FHIR standard. This
chapter discusses the implementation of a
symptom-capturing questionnaire, focusing
on the technical integration challenges and
solutions, particularly concerning the use
of the FHIR Data Capture library in a Jet-
pack Compose-based application. For a
detailed example of how this integration
looks in practice, please refer to figure 4.8.
The FHIR Data Capture library provides
a robust solution for integrating FHIR-
compliant questionnaires into Android ap-
plications [59]. It facilitates the loading,
presentation, and submission of question-
naires that adhere to FHIR standards, en-
abling seamless integration with health-
care systems that utilize FHIR for data
exchange [59] [60]. For a example of how
input errors and answering questions is han-
dled refer to figure 4.9.
However, the FHIR Data Capture library is designed with traditional
Android UI components in mind, specifically utilizing Fragments [60].
Jetpack Compose, the modern toolkit for building native UI in Android,
operates differently, relying on Composables rather than Fragments [60].
This divergence presents a significant challenge when attempting to embed
FHIR-based questionnaires within a Compose-centric application architec-
ture [59].
To address the incompatibility between the FHIR Data Capture library and
Jetpack Compose, a hybrid approach was adopted. The AndroidFragment

61

4. Technical details on implementation

(a) Choice Selection. (b) Input Error.

Figure 4.9.: FHIR Data Capture Functionallity.

Composable was utilized to embed a QuestionnaireFragment within the
Jetpack Compose UI [60]. This solution allows the app to leverage the
FHIR Data Capture library’s existing functionality while maintaining
consistency with the Compose architecture. The integration is achieved as
in listing 4.31.

1 AndroidFragment <QuestionnaireFragment >(
2 fragmentState = fragmentState ,
3 modifier = Modifier
4 .fillMaxSize (),
5 arguments = uiState.args
6) { fragment ->

62

7 fragment.setFragmentResultListener(
8 QuestionnaireFragment.SUBMIT_REQUEST_KEY
9) { _, _ ->

10 onAction(
11 QuestionnaireViewModel.Action.SaveQuestionnaireResponse(
12 fragment.getQuestionnaireResponse ()
13)
14)
15 }
16 fragment.setFragmentResultListener(
17 QuestionnaireFragment.CANCEL_REQUEST_KEY
18) { _, _ ->
19 onAction(
20 QuestionnaireViewModel.Action.Cancel
21)
22 }
23 }

Source text 4.31: QuestionnaireFragment implementation with AndroidFragment.

This code snippet in listing 4.31 demonstrates the embedding of a Question-
naireFragment within a Jetpack Compose Composable. The fragment
is responsible for managing the questionnaire’s lifecycle and interactions,
while the Compose-based UI ensures seamless integration with the rest of
the app’s user interface.
Navigating to the questionnaire screen within a app using the Spezi frame-
work is straightforward, leveraging the existing Navigation approach already
provided by the Spezi framework. The navigation to the questionnaire
is managed via the QuestionnaireScreen route, which is defined as in
listing 4.32.

1 @Serializable
2 data class QuestionnaireScreen(val questionnaireId: @Serializable

String) : Routes ()

Source text 4.32: FileStorage Interface.

This route allows for easy and consistent navigation within the app, using
the familiar Routes pattern [61]. This approach not only simplifies the
user experience but also maintains the modular and reusable nature of the
app’s architecture. See Navigation for more details.
The QuestionnaireViewModel relies on a QuestionnaireRepository
interface, which provides the necessary methods for loading and saving
questionnaire data. This repository interface can be easily swapped with

63

4. Technical details on implementation

any custom implementation, allowing for flexibility in how and where the
data is managed.
By default, the app provides an implementation that interacts with Fire-
store, loading questionnaires from the database and storing the responses
back in Firestore. This default implementation ensures that a app is ready
to work out-of-the-box with Firestore, when using the Spezi Framework
but developers can easily provide alternative implementations if they wish
to use a different backend or data source.
During implementation, a known issue with nested scrolling inside frag-
ments embedded within a draggable Compose component was encoun-
tered19. Specifically, this bug prevented the questionnaire component from
being placed within a bottom sheet, as intended, due to scrolling conflicts19.
As a workaround, the questionnaire was navigated to on a separate screen
rather than being embedded in a bottom sheet. This solution, while not
ideal, ensured that the framework and possible app’s Single Activity Archi-
tecture remained intact, thus preserving the modularity and consistency
of the user experience.
The chosen implementation approach offers several advantages:

• Maintains Architectural Consistency: By embedding the
QuestionnaireFragment within a Composable, the app adheres to
its Single Activity Architecture, which simplifies navigation and state
management across the application.

• Utilizes FHIR Standards: Leveraging the FHIR Data Capture
library ensures that the questionnaire is compliant with widely ac-
cepted healthcare standards, facilitating interoperability with other
healthcare systems.

• Modular Integration and Flexibility: The use of fragments within
Compose allows for modular integration of complex UI components
that may not yet be fully supported by Compose. Additionally, the
ability to swap out the QuestionnaireRepository interface with
custom implementations provides flexibility in data management,
making the app adaptable to different backend systems and workflows.

• Seamless Navigation: The QuestionnaireScreen route provides
an intuitive and consistent method for navigating to questionnaires

19https://issuetracker.google.com/issues/277651136?pli=1

64

https://issuetracker.google.com/issues/277651136?pli=1

within the app, enhancing the overall user experience while adhering
to established navigation patterns.

The integration of FHIR-compliant questionnaires into the Spezi Frame-
work exemplifies the challenges and solutions involved in adapting tradi-
tional Android libraries to modern UI paradigms like Jetpack Compose.
By embedding a fragment within a Composable, we successfully navi-
gated the limitations of the current libraries while maintaining a cohesive
and modular application architecture. This approach not only preserves
the integrity of the framework’s design but also ensures that it remains
compliant with healthcare interoperability standards, thereby enhancing
its utility in clinical settings. The flexible navigation and customizable
data handling further strengthen the framework’s adaptability, making
this modul a robust tool for managing patient symptoms in real-world
healthcare environments.

65

5. Case Study: ENGAGE-HF for
Heart Failure Management

The development of the ENGAGE-HF prototype represents a significant
milestone in the creation of the Spezi Framework. This is the first time the
Android framework has been used. This chapter details the comprehensive
process undertaken to design, architect, and implement the ENGAGE-HF
application, leveraging the modular and reusable Spezi framework.
In this chapter, we will explore the key design principles and architectural
considerations that guided the development of the ENGAGE-HF prototype.
We will discuss the utilization of the Spezi framework, highlighting its
modular components and the customizability that allows for adaptation to
various clinical and research scenarios. Additionally, the implementation
and deployment strategies will be examined, showcasing how the app
ensures security, scalability, and maintainability.
By detailing the development process, this chapter aims to provide a
clear understanding of the technical and design methodologies employed
in creating an effective mHealth solution for heart failure management.
This serves as an example of how modern frameworks and technologies
can be harnessed to develop impactful healthcare applications, ultimately
contributing to improved patient outcomes and more efficient healthcare
delivery.

Design and architecture of the app

The ENGAGE-HF prototype, utilizes the Spezi framework to support heart
failure management. The design and architecture of the ENGAGE-HF app
are driven by key principles of modularity, scalability, and user-centricity,
ensuring both flexibility and ease of use.

67

5. Case Study: ENGAGE-HF for Heart Failure Management

User Interface (UI) and User Experience (UX) Design Principles

The ENGAGE-HF app prioritizes a user-friendly interface, with a clean
and intuitive design aimed at enhancing patient engagement by the usage
of the Spezi Framework. Key UI/UX features include:

• Consistent Design Language: Utilizes the cohesive design system
from Spezi Framework with consistent theming, including light and
dark modes and customizable color schemes.

• Accessible Components: Incorporates accessible UI components
optimized for ease of use, including buttons, forms, and navigation
elements that adhere to accessibility standards.

• Educational Content Integration: Provides patients with educa-
tional materials via a dedicated section, integrating YouTube videos
and other multimedia resources.

• Health Data Visualization: Features graphical and list-based
representations of health data, such as weight, blood pressure, and
heart rate, to promote user understanding and engagement.

• Medication Management: The app provides a comprehensive
overview of current medications. Each medication category has its
own tabs that provide educational information about the medication,
including dosing guidelines, target doses and the patient’s current
doses. In addition, the app displays the patient’s current medication
status and indicates whether a higher dose is possible or the maximum
dose has already been reached

• Home Screen Overview: The Home Screen provides an overview
of notifications that display important events such as medication
changes, significant weight gains and authorisation for medication
changes. These notifications can be expanded for more information
and removed after reading. The to-do list tracks daily or weekly tasks,
such as watching a welcome video, setting personal notifications,
taking measurements (blood pressure, weight) and reviewing health
summaries before visits. The app displays the latest vital signs if they
have not been completed for the day.

68

Security Architecture and Data Privacy Measures

The ENGAGE-HF app is designed with robust security architecture to
ensure the protection of sensitive patient information:

• Authentication Mechanisms: Implements secure authentication
methods, including username/password, and social sign-ins (e.g.,
Google), ensuring only authorized users access the app.

• Data Encryption: Utilizes encryption protocols for data transmis-
sion and storage to safeguard patient data.

Utilization of the SPEZI Framework

The development of the ENGAGE-HF app showcases the versatility of
the Spezi framework, demonstrating its capability to integrate various
functionalities essential for managing heart failure.

Framework Modules and Integration

• Authentication Module: Provides a secure login system, utilizing
Firebase for authentication and user management, supporting both
anonymous and social sign-ins. More on this in chapter 5.

• Bluetooth Connectivity Module: Ensures seamless integration
with medical devices, allowing the app to connect directly to Bluetooth-
enabled weight scales and blood pressure monitors. This module
includes automatic device pairing and real-time data collection.

• FHIR Module: The module manages the processing, of health
data. It supports encoding health measurements in the FHIR (Fast
Healthcare Interoperability Resources) format and uploading them
to the Firebase database. Additionally, the FHIR module is used to
map health records to FHIR Observations and vice versa, ensuring
interoperability and standardization of health data.

• UI/UX Module: Offers reusable components built with Jetpack
Compose for Android, facilitating the creation of a consistent and
accessible user interface.

69

5. Case Study: ENGAGE-HF for Heart Failure Management

Implementation and Deployment

• Open-Source Development: The ENGAGE-HF app is developed
as an open-source project on GitHub, ensuring transparency and
community collaboration.

• CI/CD Integration: Utilizes GitHub Actions for continuous in-
tegration and continuous deployment (CI/CD), automating testing,
building, and deployment processes to ensure the app remains up-to-
date and functional.

Education

Figure 5.1.: Education Screen
Overview.

The Education tab (Figure: 5.1) of the
ENGAGE-HF application features a well-
structured layout that adheres to best practices
for video content delivery and UI/UX design.
Initially, users see a preview image for each
video category, created using Coil, an image
loading library for Android that supports ef-
ficient image handling1. This design choice
ensures faster load times, reducing the initial
load burden and optimizing the user experience
by loading only essential data at first1.
Each video category such as Medication
Videos or Vitals Videos can be expanded or
collapsed using a simple drop-down mecha-
nism. This minimizes visual clutter on the
main page, making it easier for users to fo-
cus on relevant content2. Once expanded,
users can browse through available videos,
previewing their titles and thumbnail im-
ages, but the video itself is only displayed
when clicked. This opens a new Video De-
tail Page (Figure: 5.2), where the selected
video is embedded via YouTube integration.

1https://coil-kt.github.io/coil/
2https://dribbble.com/resources/education/ui-design-principles

70

https://coil-kt.github.io/coil/
https://dribbble.com/resources/education/ui-design-principles

This page presents detailed information alongside the video, allow-
ing the user to consume educational content in a focused manner.
This modular design can be reused for other functions in the application,
such as the message action feature in message section 5. By using the
same navigation structure, specific actions like /videoSection/1/video/1
could directly link to a particular video, allowing seamless integration of
video content throughout different parts of the app. This could also be
applied to notifications, directing users straight to relevant video content
based on their health data.

Figure 5.2.: Education Screen
Single Video.

This approach aligns with modern mobile UI
best practices by ensuring that the system re-
mains both performant and user-friendly. By
only loading essential information like previews
at first, it reduces memory and CPU consump-
tion3. In addition, the use of lazy loading strate-
gies—where full media content like YouTube
videos are only loaded when needed—improves
the overall responsiveness of the application.
Research also supports that progressive disclo-
sure, where users are presented with only the
necessary amount of information upfront, im-
proves engagement and retention, particularly
in health-related apps [62].
Moreover, this modularity ensures that the
app’s components are reusable, making future
development more efficient and adaptable to
changes or additional features.
Although the implementation of this education
page is not a direct component of the Spezi
framework, it nevertheless represents a useful
extension. It adds the function: the provision
of educational content for patients.
In almost all mHealth applications, especially those that treat chronic
diseases such as heart failure, knowledge transfer plays a crucial role [63].
Studies show that access to relevant information improves patient self-

3https://appsgeyser.com/blog/optimizing-app-performance-best-practices-for-enhance
d-user-experience/

71

https://appsgeyser.com/blog/optimizing-app-performance-best-practices-for-enhanced-user-experience/
https://appsgeyser.com/blog/optimizing-app-performance-best-practices-for-enhanced-user-experience/

5. Case Study: ENGAGE-HF for Heart Failure Management

management, increases compliance and ultimately leads to better health
outcomes [63]. As many of these applications support patients to actively
participate in their health management, the integration of educational
resources is an almost indispensable function.
Extending the Spezi framework to include this module that provides edu-
cational content such as videos and interactive learning materials would
not only be a logical development, but would also promote reusability.
As most mHealth apps include some form of knowledge transfer, a stan-
dardised solution could help to minimise the effort required to implement
such features while improving the user experience. This could easily be
integrated into other areas of apps, as described earlier, such as push
notifications or direct links to specific content (e.g. via message actions
like /videoSection/1/video/1).

72

Heart Health

Figure 5.3.: Heart Health Screen.

The Heart Health Screen (Figure: 5.3) is
a central feature designed to empower pa-
tients by providing them with clear, acces-
sible visualizations of their health metrics.
This includes data on weight, heart rate,
blood pressure, and symptoms, all of which
are crucial for effective heart failure manage-
ment. The implementation of this feature
is grounded in a highly extensible and mod-
ular architecture, leveraging Kotlin’s sealed
interfaces to streamline data handling and
ensure scalability.
In addition to the ability to add mea-
surements via Bluetooth-connected devices,
the app also provides users with the op-
tion to enter their health data manu-
ally through a dedicated dialog shown
in figure 5.4. This ensures that pa-
tients can always keep their records up
to date, even if they do not have access
to the relevant medical devices at the
time.
The interface organizes health data into
several tabs, each focused on a specific met-
ric:

• Symptoms: Displays symptom data collected through questionnaires,
offering trend visualization to track changes over time.

• Weight: Graphically represents weight data, enabling patients to
monitor fluctuations, which are critical indicators in heart failure
management.

• Blood Pressure: Blood pressure readings are shown through both
charts and historical lists, allowing for easy monitoring of cardiovas-
cular health.

73

5. Case Study: ENGAGE-HF for Heart Failure Management

• Heart Rate: Heart rate data is also visualized in a graph, with
historical data listed below to help identify patterns and trends.

The UI is designed to enhance patient engagement by making health data
more understandable and actionable through clear visual elements.
In the development of the Heart Health feature, the Health Connect
on FHIR module from the framework was utilized to map saved FHIR
Observations back into Health Connect Records. This reverse mapping
allowed for the accurate display of previously saved health metrics, such
as heart rate, blood pressure, and weight, within the app. By leveraging
this functionality, the app ensures that data collected in the FHIR format
can be seamlessly transformed and presented in a format compatible
with Android’s Health Connect, enhancing the user experience and data
interoperability.

(a) Add Weight Data - Light
Mode.

(b) Add Blood Pressure
Data - Dark Mode.

(c) Add Heart Rate Data -
Dark Mode.

Figure 5.4.: Add Data Bottom Sheets.

At the heart of this extensibility is the sealed interface EngageRecord,
a pivotal element in the app’s architecture shown in listing 5.1. This

74

interface defines a standardized way to handle different types of health
records, ensuring that the app can be easily extended to support new data
types in the future.

1 private sealed interface EngageRecord {
2 val record: Record
3

4 data class Weight(override val record: WeightRecord) :
EngageRecord

5 data class BloodPressure(override val record: BloodPressureRecord
) : EngageRecord

6 data class HeartRate(override val record: HeartRateRecord) :
EngageRecord

7

8 val zonedDateTime: ZonedDateTime
9 get() = when (this) {

10 is Weight -> record.time.atZone(record.zoneOffset)
11 is BloodPressure -> record.time.atZone(record.zoneOffset)
12 is HeartRate -> record.startTime.atZone(record.

startZoneOffset)
13 }
14

15 val clientRecordId get() = record.metadata.clientRecordId
16

17 companion object {
18 fun from(record: Record) = when (record) {
19 is WeightRecord -> Weight(record = record)
20 is BloodPressureRecord -> BloodPressure(record = record)
21 is HeartRateRecord -> HeartRate(record = record)
22 else -> error("Unsupported␣record␣type␣${record ::

javaClass.name}")
23 }
24 }
25 }

Source text 5.1: Sealed Interface EngageRecord.

The EngageRecord interface serves as a unified abstraction for various
health records like WeightRecord, BloodPressureRecord, and Heart-
RateRecord. By using a sealed interface, all possible data types are known
at compile time, which enhances type safety and ensures that all record
types are accounted for in the app’s logic. This design allows the app to
handle different health metrics uniformly, enabling the seamless integration
of new data types with minimal changes to the codebase.

75

5. Case Study: ENGAGE-HF for Heart Failure Management

When the app processes health data, it uses the EngageRecord.from-
(record) method to convert raw health data into a corresponding Engage-
Record subtype. This abstraction allows the rest of the app to interact
with a consistent interface, regardless of the specific health metric being
processed.
Functions like mapUiStateTimeRange use this unified interface to group,
filter, and visualize health data. The sealed interface ensures that
the code can handle each type of health record appropriately, whether
displaying a graph of weight trends or a table of blood pressure readings.
Should a new health metric, such as GlucoseRecord, need to be integrated,
this can be done simply by adding a new data class that implements
EngageRecord. The companion object within EngageRecord can then be
updated to handle this new type, ensuring that it is seamlessly integrated
into the existing visualization and data processing logic.
The use of sealed interface EngageRecord directly supports the goal of
creating a scalable and flexible system. This design approach allows for:

• Efficient Scalability: New health metrics can be integrated without
overhauling the existing code, ensuring that the app can evolve with
the needs of patients and healthcare providers.

• Consistent User Experience: Regardless of the number or types of
health metrics added, the app maintains a consistent user experience,
with new data types being seamlessly incorporated into the existing
UI framework.

In conclusion, the sealed interface EngageRecord is a cornerstone of the
architecture of this module, enabling the effective visualization and man-
agement of diverse health metrics. By leveraging this approach, the app
not only meets current patient needs but is also well-positioned to adapt
to future advancements in health monitoring and mHealth technologies.
This flexibility and extensibility are key to the app’s potential for ongoing
relevance and impact in the field of heart health management.

Bluetooth Devices

The integration process of Bluetooth devices in the ENGAGE-HF app
was straightforward due to the Bluetooth module (Section: 4) of the

76

Spezi framework. Leveraging components like the BLEDeviceScanner and
BLEDeviceConnector, the app was able to quickly pair with both a weight
scale and a blood pressure monitor. This modularity made it easy to
handle the entire lifecycle of BLE-connections from scanning for nearby
devices to connecting, retrieving data, and then mapping it to the app’s
UI. The MeasurementMapper played a crucial role by converting raw BLE
data into specific health measurements, such as weight and blood pressure,
without requiring extensive reconfiguration.
The primary challenge was processing and handling the measurement data.
However, this was simplified by the use of StateFlows, which enabled
the real-time updating of the app’s state based on incoming data. The
integration with Kotlin coroutines further improved asynchronous handling,
allowing the app to perform data collection in the background without
blocking the user interface. For instance, after receiving a new measure-
ment from the weight scale or blood pressure monitor, the app displayed a
dialog to the user, confirming the new values. This dialog-driven approach
simplified user interaction: the user merely had to confirm the measure-
ment, and no further actions were required on their part.
The ViewModel converts these confirmed values into FHIR Observations
using the HealthConnectOnFHIR module. Those Obversations are saved
to the Firestore database, which was easily integrated with the framework
due to its existing compatibility with Google Cloud Firebase. The frame-
work’s architecture allowed the ViewModel to handle the logic of what
happens after the user confirms the values, minimizing the need for custom
implementation.
This modular approach significantly reduced the development complexity.
Instead of focusing on the intricacies of Bluetooth communication, data
conversion or backend integration, we could focus on more critical aspects,
such as improving the user experience.

Messages

The messaging system in the ENGAGE-HF app plays a crucial role in
improving patient engagement by delivering targeted notifications based
on each patient’s health status and treatment plan. These messages are
designed to keep patients informed and prompt them to take action when
necessary, such as filling out symptom questionnaires or reviewing updated

77

5. Case Study: ENGAGE-HF for Heart Failure Management

medication information. The messages are triggered by specific events
or data changes and are intended to ensure timely patient responses to
important health-related tasks.

(a) Messages screen with notifications
for welcome, weight, medication,
pre-visit, and symptom updates.

(b) Health Summary PDF showing
medications, vitals trends, and
symptom survey results.

Figure 5.5.: ENGAGE-HF app’s Messages screen and Health Summary PDF for patient
updates and health reports.

As shown in the screenshot (Figure: 5.5a), messages in the app fall into
different categories, each tied to an actionable item for the patient. Some
of the key Message Types include4:

4https://github.com/StanfordBDHG/ENGAGE-HF-Firebase

78

https://github.com/StanfordBDHG/ENGAGE-HF-Firebase

• MedicationChange: Triggered when a medication request is up-
dated. The patient is notified to review and take action regarding
their medication plan.

• WeightGain: Sent when a new body weight observation shows a
weight increase of more than 3 pounds compared to the previous
week’s median, but only once every seven days.

• MedicationUptitration: Triggered when the patient’s medication
recommendations are updated, typically every two weeks.

• Welcome: Displayed when a new user account is created. It serves as
an introductory message directing the patient to educational materials
or videos.

• Vitals: These are daily notifications reminding the patient to log
their vital signs (blood pressure, weight), especially when data for the
current day is missing.

• SymptomQuestionnaire: Sent every 14 days, this message prompts
the patient to complete a symptom questionnaire.

• PreAppointment: Sent 24 hours before an upcoming appointment
to remind the patient of the visit.

Each message contains a due date to encourage timely action, and the
system allows for marking messages as complete once the required action
is performed. There are also various actions associated with messages,
providing a seamless way for patients to interact with the content4. For in-
stance, in addition to HealthSummaryAction where a pdf gets downloaded
and shown (Figure: 5.5b), some messages guide the patient to educa-
tional resources4. For example, the Welcome message or any other mes-
sage with the path videoSections$videoSectionId$videos$videoId$
directs users to the Education Video Detail Page (Figure: 5.2), where
they can watch relevant videos about using the app or managing their
health4. This functionality helps patients access critical information di-
rectly through the app interface, reinforcing the system’s educational
component. It also highlights the adaptability of the ENGAGE-HF app
in addressing patient needs through clear, structured communication.

79

5. Case Study: ENGAGE-HF for Heart Failure Management

Figure 5.6.: Notification Settings
Screen.

In addition to the Message logic, Firebase
Cloud Messages (FCM) is also supported.
Notifications from FCM are handled by
reusing the same message logic described
earlier. This includes utilizing intents which
uses the actions mentioned above within the
notifications to directly open specific areas
of the app, such as medication screens or
other relevant sections. This integration
ensures that push notifications trigger user
interactions effectively, by allowing users
to tap and be directed to specific features
like medication tracking. For an enhanced
user experience, all notification interactions
reuse the established logic and intent han-
dling mechanisms, maintaining consistency
across both in-app messages and push no-
tifications.
Notification Settings Screen (Figure: 5.6),
showcases how users can customize their no-
tification preferences within the app. These
settings are grouped by sections, ensuring
that users have control over which notifica-
tions they wish to receive.

Home Screen

The Home Screen (Figure: 5.7) of the ENGAGE-HF app provides a central
overview on which the most important health data and functions are easily
accessible. A central component is the Messages area, which displays the
messages from the previous section Messages.
Another important area is Connected Devices, where the status of the
connected Bluetooth devices is displayed. If no devices are connected or
Bluetooth is deactivated, the user is prompted to activate Bluetooth to
receive measurement data from the connected medical devices, such as a
blood pressure monitor or a heart rate monitor. Further information on
setting up and using the Bluetooth connection can be found in the chapter

80

Bluetooth Devices.

Figure 5.7.: Home Screen.

The last measured values of the most im-
portant vital data are displayed in the lower
area of the home screen. The latest mea-
surements of weight, heart rate and blood
pressure can be seen here, each with the
corresponding measured value and the time
of recording. This data is automatically
transmitted by the connected devices and
gives the user an up-to-date overview of
their own health status.
The Home Screen thus efficiently com-
bines communication via messages, real-
time monitoring of vital data and the use
of Bluetooth functionality to optimise heart
health management.

Medication

During the development of the ENGAGE-
HF application, it became apparent that
the Spezi framework, despite its versatility
and modularity, lacked a dedicated med-
ication management interface. Given the
critical importance of medication adherence
in managing heart failure, this was a significant gap that needed to be
addressed specifically for ENGAGE-HF. This chapter discusses the develop-
ment of a custom medication management interface for ENGAGE-HF and
explores the potential benefits of transforming this feature into a reusable
module within the Spezi framework.
As we delved deeper into the requirements for ENGAGE-HF, it became
evident that a robust medication management tool was essential for the
app’s success [64]. Patients managing chronic conditions like heart failure
often need to keep track of multiple medications, adjust dosages, and stay
informed about their treatment plans [64]. However, the Spezi framework
did not include a pre-existing module to handle these tasks. This absence
prompted us to develop a custom solution tailored to the specific needs of

81

5. Case Study: ENGAGE-HF for Heart Failure Management

ENGAGE-HF.
The medication management feature seen in figure 5.8 developed for
ENGAGE-HF was designed with the user at its core, ensuring that patients
could easily manage their medications while receiving clear and actionable
information.

• Medication Overview: Each medication is displayed with a title and
a subtitle, providing a straightforward overview that allows patients
to quickly identify their medications. This design element is crucial
in ensuring that users can easily navigate through their medication
list without confusion.

• Detailed Descriptions and Educational Content: The interface
includes a section for a detailed description of each medication. This
section not only covers basic information such as usage and side effects
but also links to educational videos that help patients understand
the purpose and correct use of their medications. This aligns with
ENGAGE-HF’s broader goal of enhancing patient education through
multimedia resources.

• Current and Target Dosages: A visual display shows both the
current dose the patient is taking and the target dose prescribed by
their healthcare provider. The use of a progress bar helps patients
understand how close they are to achieving their target dose, making
the titration process more transparent and less daunting.

• Medication Prioritization: The medications are sorted dynami-
cally based on their current status. Medications that require immedi-
ate action, such as those needing dosage increases or those due for
intake, are prioritized at the top of the list. This helps patients focus
on what needs attention, enhancing adherence and reducing the risk
of missed doses.

While the medication management interface was developed specifically for
ENGAGE-HF, its utility extends far beyond this single application. The
absence of such a module in the Spezi framework points to an opportunity
for improvement. By modularizing this feature and incorporating it into
the Spezi ecosystem, other developers working on mHealth applications
could easily integrate medication management into their apps without
needing to develop it from scratch.

82

(a) Dark Mode. (b) Light Mode.

Figure 5.8.: Medication Screen.

The modular design would allow this feature to be adapted to various use
cases, not just for heart failure management but for any condition requiring
strict medication adherence. This would significantly enhance the Spezi
framework’s versatility and reusability, aligning with its core philosophy of
modular, scalable development.

Onboarding, Login, Register & Account

The Account Module (Section: 4) was directly reused to manage user
authentication, which included both login and registration screens. This
module provided a robust interface with support for email and Google-

83

5. Case Study: ENGAGE-HF for Heart Failure Management

based authentication methods, which were crucial for ensuring security and
convenience. The pre-built AuthenticationManager interface from the
framework allowed for easy integration of authentication services, saving
substantial development time by avoiding the need to build these systems
from scratch. The module’s compatibility with Firebase ensured a smooth
experience for users and a secure backend.
In addition to AuthenticationManager, the UserSessionManager was
crucial for managing user sessions across the app. This interface handled
tasks such as uploading consent documents and tracking user state (e.g.,
whether a user is registered, anonymous, or has provided consent). The
ability to observe user state through a reactive data stream allowed for
real-time updates in the app’s UI. For instance, if a user were logged out
or their consent status changed, the app would immediately reflect this by
navigating them back to the appropriate screen.
The UserSessionManager also provided access to important user infor-
mation through methods like getUserUid() and getUserInfo(), which
ensured that the user’s data was always up-to-date and accessible through-
out the app, enhancing both security and personalization.
The Onboarding Module (Section: 4) was another reusable component
that streamlined the user onboarding process. It allowed for the efficient
collection of information and user consent, which was critical for the study’s
ethical and legal compliance. The module’s customizable consent screens
made it easy to adapt the onboarding flow for the heart failure study
without needing to rebuild these components from scratch.
The Invitation Code logic also available in the Onboarding Module (Sec-
tion: 4) provided a secure way to ensure that only pre-approved participants
could join the ENGAGE-HF study. The InvitationAuthManager inter-
face managed the verification of these codes by providing the default
FirebaseInvitationAuthManager implementation. It was linking the in-
vitation codes to user accounts in Firebase. By implementing this system,
we ensured that only authorized users, identified by their unique invitation
codes, could complete the registration process, preserving the integrity of
the study.
The reuse of these modules not only reduced development time but also
maintained a high standard of security, consistency, and user experience
across different components. This modular approach illustrates the frame-
work’s potential for reusability in various mHealth applications, saving

84

time while maintaining flexibility for customization.

85

6. Evaluation

This chapter aims to evaluate the effectiveness of the developed mHealth
framework, especially in terms of its reusability and adaptability. This
evaluation is essential to ensure that the framework not only works ef-
fectively in the current ENGAGE-HF application, but can also be easily
transferred to other healthcare applications. This includes both technical
and functional aspects of the framework.

Validation of Reusability

The modular design of the Spezi framework has proven effective in sup-
porting the ENGAGE-HF app, which is designed to manage heart failure
patients. One of the major objectives of the project was to ensure that
the framework could be reused across various mHealth applications with-
out requiring significant re-engineering. During the testing phase, various
modules of the framework—such as the authentication system, consent man-
agement, and health monitoring—were seamlessly reused in ENGAGE-HF
without any need for modification. This aligns with findings from Wil-
hide, Peeples, and Kouyaté, who emphasize the importance of systematic
approaches in designing mHealth apps that can be adapted to multiple
healthcare settings [65].
Moreover, the framework’s compatibility with industry-standard tools
like Google Firebase further facilitated its reusability by offering a secure
backend that was already compatible with a wide range of applications.
The successful implementation in ENGAGE-HF highlights the framework’s
capability to provide developers with pre-built, modular solutions that save
development time and effort. Ndlovu, Mars, and Scott also support this
notion, indicating that interoperability frameworks are crucial for linking
mHealth applications to electronic record systems, thereby enhancing
reusability [23].

87

6. Evaluation

Reusable Modules in the ENGAGE-HF Case Study

In the ENGAGE-HF app, the following modules from the Spezi framework
were reused and customized to meet the needs of heart failure management:

• Authentication Module: Used for secure login and registration.
This module was integrated without modification and worked seam-
lessly to authenticate patients and healthcare providers.

• Bluetooth Module: Reused to connect medical devices such as blood
pressure monitors and scales via Bluetooth Low Energy (BLE). This
module was critical for real-time data collection in the heart failure
management process, supporting the findings of Carrillo, Kroeger,
Cárdenas, et al., who discuss the importance of mobile technologies
in health monitoring [66].

• Logging Module: Provided centralized logging functionality, making
it easier to track errors, monitor application health, and perform
debugging. The module also contributed to performance monitoring
in the ENGAGE-HF app.

• Design System Module: Offered reusable UI components, which
were instrumental in maintaining a consistent and accessible user inter-
face. Elements such as buttons, text fields, and other UI components
were directly integrated to maintain a high level of user experience.

• Navigation Module: Enabled smooth transitions between screens,
such as patient onboarding, health data monitoring, and medication
management.

• Consent and Data Capture Module: Ensured that the appli-
cation handled sensitive patient data in a legally compliant manner,
capturing patient consent before collecting and storing health data.

• Onboarding Module: This module facilitated the introduction of
patients to the ENGAGE-HF app by guiding them through initial
setup steps such as profile creation, device connection (e.g., Bluetooth
pairing with medical devices), and basic app functionality tutorials.

• Contact Module: Provided patients with access to contact informa-
tion for their healthcare providers.

88

• Storage Module: Utilized, to securely store data from medical
devices.

These reusable modules significantly reduced the development time for the
ENGAGE-HF app. Additionally, their modularity ensured that they could
be easily adapted for other healthcare applications beyond heart failure.

Modules Implemented on Top of the Spezi

Framework

While the Spezi framework provided a solid foundation, certain modules
specific to the ENGAGE-HF app had to be implemented to fulfill the
unique requirements of heart failure management. These include:

• Medication Management Module: This module was developed
to allow users to manage their medications, set reminders, and track
adherence. It required specific integration with health data and
patient profiles to ensure the correct medication plans were followed.

• Patient Engagement and Education Module: To improve pa-
tient engagement, a module was developed that provides educational
content, personalized health tips, and interactive features for better
heart failure management. This was crucial for ensuring that patients
were actively involved in managing their health.

• Custom Health Monitoring Module: Although the Bluetooth
module from the framework provided the necessary connectivity,
this module was created to handle specific heart-related metrics like
blood pressure and heart rate, along with personalized health data
visualizations tailored for heart failure patients.

• Message and Alerts Module: This module was designed to send
alerts and messages to both patients and healthcare providers based
on real-time health data or scheduled medication. It was critical for
timely intervention and ensuring adherence to treatment plans.

These additional modules were necessary to meet the clinical requirements
of heart failure management, which go beyond the generic capabilities of

89

6. Evaluation

the Spezi framework. By adding these on top of the existing framework,
the ENGAGE-HF app was able to provide a comprehensive and specialized
solution for heart failure patients.

Validation of Adaptability

Adaptability is another core feature evaluated in the Spezi framework. It
is designed to handle different healthcare needs, ranging from heart failure
management to potentially other chronic disease management such as
diabetes or hypertension. This adaptability was evident when integrating
various Bluetooth-connected medical devices for real-time data capture.
The framework’s architecture allowed for the quick integration of additional
devices without major code refactoring, demonstrating its flexibility to
adapt to new technological advancements. This is consistent with the
findings of Ranjan, Rashid, Stewart, et al., who describe the importance
of scalability in mHealth platforms [67].
The framework’s compliance with healthcare standards like FHIR also
enhances its adaptability, as it ensures the framework can be integrated into
various healthcare ecosystems across different regions. This flexibility will
be instrumental in expanding the framework’s reach beyond ENGAGE-HF,
supporting various health applications in the future [68].
The modular architecture further strengthens adaptability, allowing for
the integration of new features and supporting various medical needs. This
design approach not only ensures a robust solution for current applications
but also enables future enhancements, such as incorporating new health
metrics or emerging technologies, with minimal modification.

Testing and User Feedback

To ensure that the framework meets the high demands of clinical applica-
tions, testing was carried out using automated testing tools integrated with
GitHub Actions. The system passed key tests, including unit tests and
integration tests, confirming that it is ready for deployment in real clinical
environments. Additionally, initial user feedback from both patients and
healthcare providers in the ENGAGE-HF study has been positive, empha-
sizing the ease of use and clarity of health data presentation, which aligns
with the findings of Alnosayan, Chatterjee, Alluhaidan, et al. regarding

90

usability in mHealth systems [69].

High-Level Visualization of Framework and Application

To better understand the architecture, the following diagram (Figure: 6.1)
provides a high-level overview of the separation between the Spezi frame-
work and the ENGAGE-HF application.

Figure 6.1.: The sub-items of the case study modules are the Spezi framework modules
that were used in the case study modules. The figure illustrates the high
reusability of these Spezi modules in the case study app. In addition to
the modules mentioned, the utility modules, such as build-logic, logging,
design and testing, form the foundation of all case study modules.

The Spezi Framework incorporates essential core modules, including Au-
thentication, Bluetooth, Logging, and a Design System, which are designed
to be reusable across various applications. The ENGAGE-HF Application
utilizes these framework modules for specialized tasks such as patient
management, health monitoring, and medication management. This clear
separation of concerns allows the framework to supply the foundational

91

6. Evaluation

infrastructure, enabling the application to concentrate on user-specific
workflows and healthcare requirements.
Building on the strengths of the Spezi Framework, its design ensures a
clear separation of responsibilities by isolating general functionalities from
application-specific logic. For instance, modules such as Bluetooth and
authentication are broadly applicable across healthcare applications, while
ENGAGE-HF adds specific logic tailored to heart failure management.
In summary, the evaluation of the Spezi framework shows that it fulfills
its design goals of reusability, adaptability, and readiness for deployment
in diverse mHealth applications. The success of the ENGAGE-HF app as
a case study demonstrates the framework’s robust architecture, paving the
way for future implementations in other areas of healthcare. Additionally,
by providing a modular, reusable system, the framework is well-positioned
to adapt to new healthcare trends, further enhancing its value in the digital
health ecosystem.

92

7. Discussion and Future Work

This chapter explores the potential future applications of the Spezi frame-
work, identifies its limitations, and suggests directions for future research.
The aim is to discuss how the framework can be further developed and
improved to enhance its applicability in the mHealth domain.

Potential for Future Applications of the Framework

One of the most promising aspects of the Spezi framework is its adaptability
beyond heart failure management. Given its flexible architecture, the
framework could be adapted to manage other chronic conditions such
as diabetes or hypertension. Additionally, it could be used in remote
monitoring applications for mental health, enabling better access to care
for patients in underserved areas.
The modular design allows for seamless integration of new features and
ensures adaptability to different medical needs. This design principle not
only provides a robust solution for current applications but also ensures
that future applications can easily incorporate new health metrics or
technologies without major modifications.

Limitations and Suggestions for Future Research

Despite the success of the Spezi framework, several limitations need to be
addressed. One significant aspect is cross-platform support. At present,
separate implementations of Spezi are needed for Android and iOS. While
this approach maintains platform-native functionality, it results in API
discrepancies between the two versions and increases development and
maintenance efforts. This study emphasized best practices from Android
development, leading to inconsistencies between the platforms.

93

7. Discussion and Future Work

A promising approach for future research could involve the use of Kotlin
Multiplatform. This would enable the reuse of business logic and core
functionality across both Android and iOS, streamlining development and
minimizing the need for platform-specific code maintenance [70]. Addition-
ally, future research should explore ways to align the APIs across both
platforms to optimize the current separate development paths, ensuring a
more uniform interface for users of Spezi across different platforms.
Another area for improvement is device abstraction. While the Bluetooth
module currently supports standard BLE devices, incorporating additional
communication protocols such as Zigbee, NFC, RFID and Z-Wave could
broaden the range of connectable devices [71]. This expansion would
enhance the framework’s versatility and applicability in various healthcare
settings, enabling integration with more advanced medical devices [71].
Finally, while the framework supports secure data handling via Firebase, the
increasing complexity of healthcare regulations across different regions may
necessitate more robust compliance features. Future work should consider
integrating more comprehensive legal compliance modules, particularly
concerning data privacy and patient consent across multiple jurisdictions.

Conclusion

The Spezi framework has proven to be a flexible, reusable, and scalable
solution for the development of mHealth applications. While initial results
are promising, particularly in managing heart failure through the ENGAGE-
HF app, there are clear pathways for future research. These include the
expansion into other chronic disease management areas, the integration of
AI-driven technologies, and further refinement to ensure compliance with
global healthcare regulations.
Additionally, there are several major iOS modules that are not yet reflected
on Android, as they were not needed on Android so far. These include
SpeziDevices, SpeziLLM, Chat, Speech, and HealthKit (which would be
HealthConnect on Android).

94

8. Summary

This master’s thesis presents the development of the Spezi framework
for Android, which serves as a modular, reusable foundation for mHealth
applications and is demonstrated using the example of the ENGAGE-
HF app for heart failure management. The key findings of this thesis
emphasise the importance of a flexible, scalable and modular approach to
the development of mHealth solutions that not only improve patient care
but also significantly reduce development effort.

Key findings

The Spezi framework has proven to be extremely reusable and customisable.
In the ENGAGE-HF app, central modules such as the authentication, Blue-
tooth, logging, design and navigation modules as well as the module for
recording patient data could be easily reused. This modularity facilitated
development and provided the flexibility to fulfil specific heart failure man-
agement requirements through customised extensions such as medication
management and patient education. The framework has proven its ability
to integrate modern technologies such as Bluetooth Low Energy for medical
devices and demonstrated compatibility with industry standards such as
FHIR.
A key advantage of the framework is the clear separation of responsibilities
between the generic functionalities of the framework and the application-
specific requirements of the app. This not only enables the efficient de-
velopment of new mHealth applications, but also creates a basis that can
be easily adapted to other chronic diseases such as diabetes or high blood
pressure.

95

8. Summary

Significance of the project for the mHealth

community

The Spezi framework offers the mHealth community a significant step
towards a standardised approach to healthcare application development.
With the increasing prevalence of chronic diseases and the need to monitor
and process patient data in real time, the framework provides a valu-
able resource for developers looking to quickly create scalable and secure
healthcare solutions.
Due to its open-source nature, the Spezi framework offers the opportu-
nity for collaborative development, enabling continuous improvement of
functionalities and adaptation to new technologies and medical standards.
This platform has the potential to have a significant impact on the future
of digital healthcare by accelerating the development of new applications
and improving access to innovative healthcare solutions.

Next steps

Despite the successful implementation in the ENGAGE-HF case study
app, there are clear directions for future developments:

• Expansion to cross-platform support: currently, developing apps
for Android and iOS requires separate implementations with Spezi
iOS and Spezi Android. An obvious further development would be
the use of Kotlin Multiplatform in order to be able to reuse business
logic and core functionalities on both platforms. This would further
reduce the development effort and increase consistency between the
platforms.

• Integration of additional protocols and devices: Expanding
support for additional communication protocols, such as Zigbee, RIFD,
NFC or Z-Wave, would enable the framework to connect a wider range
of medical devices, which could be particularly useful in specialised
clinical environments.

• Greater integration of AI: Future developments could include the
integration of AI-based predictive models that enable personalised

96

recommendations and predictions based on health data collected from
patients. This could help to recognise health problems at an early
stage and take preventative measures.

In summary, this work has shown that the Spezi framework provides
a promising foundation for the next generation of mHealth solutions.
Through its modularity and flexibility, it enables faster and more cost-
efficient development of healthcare applications that both improve patient
care and reduce the burden on the healthcare system.

97

List of abbreviations

mHealth Mobile Health
BLE Bluetooth Low Energy
MVVM Model View ViewModel
FHIR Fast Healthcare Interoperability Resources
LOINC Logical Observation Identifiers Names and Codes
AI Artificial Intelligence
HIS Hospital Information System
DI Dependency Injection
FCM Firebase Cloud Messages
EHR Electronic Health Record

99

A. Appendix

Software and Tools Used

The following tools were used to assist with the development, management,
and writing of this thesis:

• GitHub: GitHub was used for version control and collaboration on
code projects. (Available at: https://github.com)

• GitHub Desktop: GitHub Desktop was used as a GUI client to
manage repositories and synchronize changes with GitHub. (Available
at: https://desktop.github.com)

• Android Studio: Android Studio was the primary IDE used for
Android app development. (Available at: https://developer.andr
oid.com/studio)

• Citavi: Citavi was used for reference management and organizing
literature sources. (Available at: https://www.citavi.com)

• DeepL Translator: DeepL was used to translate text passages
from English to German and vice versa. (Available at: https:
//www.deepl.com)

• Grammarly: Grammarly was employed to check grammar, spelling,
and writing style. (Available at: https://www.grammarly.com)

• Firebase: Firebase was utilized for backend services, including
authentication, real-time database, and analytics. (Available at:
https://firebase.google.com)

These tools contributed to both the technical implementation and the
linguistic quality of this thesis.

101

https://github.com
https://desktop.github.com
https://developer.android.com/studio
https://developer.android.com/studio
https://www.citavi.com
https://www.deepl.com
https://www.deepl.com
https://www.grammarly.com
https://firebase.google.com

A. Appendix

Code Developed

The code developed during the course of this thesis is hosted on GitHub
and can be accessed via the following repository:

• GitHub Repository: The full codebase, including all relevant
scripts and configurations, is available on GitHub. (Available at:
https://github.com/StanfordSpezi/SpeziKt)

This repository contains all source code, project files, and documentation
that were instrumental in the practical implementation described in the
previous chapters.

102

https://github.com/StanfordSpezi/SpeziKt

Bibliography

[1] The Role of Digital Technology in Combating Chronic Disease — institute.global,
https://www.institute.global/insights/public-services/role-digita
l-technology-combating-chronic-disease, [Accessed 12-05-2024].

[2] Mobile Betriebssysteme - Internetnutzung März 2024 | Statista — de.statista.com,
https://de.statista.com/statistik/daten/studie/184335/umfrage/ma
rktanteil-der-mobilen-betriebssysteme-weltweit-seit-2009, [Accessed
27-05-2024].

[3] DelveInsight, Mobile Apps for Chronic Diseases Management | Top Chronic
Illness Apps — delveinsight.com, https://www.delveinsight.com/blog/chro
nic-disease-management-apps, [Accessed 12-05-2024].

[4] N. A. Cruz-Ramos, G. Alor-Hernández, L. O. Colombo-Mendoza, J. L. Sánchez-
Cervantes, L. Rodríguez-Mazahua, and L. R. Guarneros-Nolasco, “Mhealth apps
for self-management of cardiovascular diseases: A scoping review,” Healthcare,
vol. 10, no. 2, p. 322, Feb. 2022, issn: 2227-9032. doi: 10.3390/healthcare100
20322.

[5] G. Zisis, M. J. Carrington, B. Oldenburg, et al., “An m-health intervention to
improve education, self-management, and outcomes in patients admitted for acute
decompensated heart failure: Barriers to effective implementation,” European
Heart Journal - Digital Health, vol. 2, no. 4, pp. 649–657, Nov. 2021, issn:
2634-3916. doi: 10.1093/ehjdh/ztab085.

[6] J. T. Kelly, K. L. Campbell, E. Gong, and P. A. Scuffham, “The internet of
things: Impact and implications for health care delivery,” Journal of Medical
Internet Research, vol. 22, e20135, 11 2020. doi: 10.2196/20135.

[7] X. Liu, Y. Luo, and X. Yang, “Traceable attribute-based secure data sharing
with hidden policies in mobile health networks,” Mobile Information Systems,
vol. 2020, pp. 1–12, 2020. doi: 10.1155/2020/3984048.

V

https://www.institute.global/insights/public-services/role-digital-technology-combating-chronic-disease
https://www.institute.global/insights/public-services/role-digital-technology-combating-chronic-disease
https://de.statista.com/statistik/daten/studie/184335/umfrage/marktanteil-der-mobilen-betriebssysteme-weltweit-seit-2009
https://de.statista.com/statistik/daten/studie/184335/umfrage/marktanteil-der-mobilen-betriebssysteme-weltweit-seit-2009
https://www.delveinsight.com/blog/chronic-disease-management-apps
https://www.delveinsight.com/blog/chronic-disease-management-apps
https://doi.org/10.3390/healthcare10020322
https://doi.org/10.3390/healthcare10020322
https://doi.org/10.1093/ehjdh/ztab085
https://doi.org/10.2196/20135
https://doi.org/10.1155/2020/3984048

[8] J. Ye, “The role of health technology and informatics in a global public health
emergency: Practices and implications from the covid-19 pandemic,” JMIR Medi-
cal Informatics, vol. 8, e19866, 7 2020. doi: 10.2196/19866.

[9] C. Free, G. Phillips, L. Watson, et al., “The effectiveness of mobile-health tech-
nologies to improve health care service delivery processes: A systematic review
and meta-analysis,” en, PLoS Med., vol. 10, no. 1, e1001363, Jan. 2013.

[10] C. S. Hall, E. Fottrell, S. Wilkinson, and P. Byass, “Assessing the impact of
mhealth interventions in low- and middle-income countries – what has been shown
to work?” Global Health Action, vol. 7, 1 2014. doi: 10.3402/gha.v7.25606.

[11] O. Aalami, M. Hittle, V. Ravi, et al., “Cardinalkit: Open-source standards-based,
interoperable mobile development platform to help translate the promise of
digital health,” JAMIA Open, vol. 6, no. 3, Jul. 2023, issn: 2574-2531. doi:
10.1093/jamiaopen/ooad044.

[12] P. Zagar, V. Ravi, L. Aalami, S. Krusche, O. Aalami, and P. Schmiedmayer,
Dynamic fog computing for enhanced llm execution in medical applications, 2024.
doi: 10.48550/ARXIV.2408.04680.

[13] C. O. Alenoghena, A. J. Onumanyi, H. O. Ohize, et al., “Ehealth: A survey
of architectures, developments in mhealth, security concerns and solutions,”
International Journal of Environmental Research and Public Health, vol. 19,
no. 20, p. 13 071, Oct. 2022, issn: 1660-4601. doi: 10.3390/ijerph192013071.

[14] R. M. Masterson Creber, M. S. Maurer, M. Reading, G. Hiraldo, K. T. Hickey,
and S. Iribarren, “Review and analysis of existing mobile phone apps to support
heart failure symptom monitoring and self-care management using the mobile
application rating scale (mars),” JMIR mHealth and uHealth, vol. 4, no. 2, e74,
Jun. 2016, issn: 2291-5222. doi: 10.2196/mhealth.5882.

[15] https://www.facebook.com/MinJourneys/, Medisafe App Review: An honest
assessment of a popular medication app — minimalistjourneys.com, https://ww
w.minimalistjourneys.com/medisafe-app-review/, [Accessed 29-05-2024].

[16] A. J. Burbank, S. D. Lewis, M. Hewes, et al., “Mobile-based asthma action plans
for adolescents,” en, J. Asthma, vol. 52, no. 6, pp. 583–586, Jul. 2015.

[17] The Complete Guide to Using MyFitnessPal for Successful Weight Loss - 33rd
Square — 33rdsquare.com, https://www.33rdsquare.com/myfitnesspal-rev
iew/, [Accessed 29-05-2024].

VI

https://doi.org/10.2196/19866
https://doi.org/10.3402/gha.v7.25606
https://doi.org/10.1093/jamiaopen/ooad044
https://doi.org/10.48550/ARXIV.2408.04680
https://doi.org/10.3390/ijerph192013071
https://doi.org/10.2196/mhealth.5882
https://www.minimalistjourneys.com/medisafe-app-review/
https://www.minimalistjourneys.com/medisafe-app-review/
https://www.33rdsquare.com/myfitnesspal-review/
https://www.33rdsquare.com/myfitnesspal-review/

[18] C.-K. Kao and D. M. Liebovitz, “Consumer mobile health apps: Current state,
barriers, and future directions,” PMR, vol. 9, no. 5S, May 2017, issn: 1934-1563.
doi: 10.1016/j.pmrj.2017.02.018.

[19] L. Woods, E. Cummings, J. Duff, and K. Walker, “Design thinking for mhealth
application co-design to support heart failure self-management,” en, Stud. Health
Technol. Inform., vol. 241, pp. 97–102, 2017. doi: 10.3233/978-1-61499-794-8
-97.

[20] M. I. Cajita, N. A. Hodgson, C. Budhathoki, and H.-R. Han, “Intention to use
mhealth in older adults with heart failure,” en, J. Cardiovasc. Nurs., vol. 32,
no. 6, E1–E7, Nov. 2017.

[21] K. D. Lopez, S. Chae, G. Michele, et al., “Improved readability and functions
needed for mhealth apps targeting patients with heart failure: An app store
review,” Research in Nursing and Health, vol. 44, pp. 71–80, 1 2020. doi: 10.100
2/nur.22078.

[22] E. E. Tripoliti, G. S. Karanasiou, F. G. Kalatzis, K. K. Naka, and D. I. Fotiadis,
“The evolution of mhealth solutions for heart failure management,” in Advances in
Experimental Medicine and Biology, ser. Advances in experimental medicine and
biology, vol. 1067, Cham: Springer International Publishing, 2018, pp. 353–371.
doi: 10.1007/5584_2017_99.

[23] K. Ndlovu, M. Mars, and R. E. Scott, “Interoperability frameworks linking
mhealth applications to electronic record systems,” BMC Health Services Research,
vol. 21, 1 2021. doi: 10.1186/s12913-021-06473-6.

[24] D. Estrin and I. Sim, “Health care delivery. open mhealth architecture: An engine
for health care innovation,” en, Science, vol. 330, no. 6005, pp. 759–760, Nov.
2010.

[25] MyPHD x2013; The solution for running successful large-scale biomedical research
with wearable and multiomics data. — myphd.stanford.edu, https://myphd.sta
nford.edu/, [Accessed 03-09-2024].

[26] A. Raghu, D. Praveen, D. Peiris, L. Tarassenko, and G. Clifford, “Engineering a
mobile health tool for resource-poor settings to assess and manage cardiovascular
disease risk: Smarthealth study,” BMC Medical Informatics and Decision Making,
vol. 15, no. 1, Apr. 2015, issn: 1472-6947. doi: 10.1186/s12911-015-0148-4.

[27] A. S. Mustafa, N. Ali, J. S. Dhillon, G. Alkawsi, and Y. Baashar, “User engagement
and abandonment of mhealth: A cross-sectional survey,” Healthcare, vol. 10, p. 221,
2 2022. doi: 10.3390/healthcare10020221.

VII

https://doi.org/10.1016/j.pmrj.2017.02.018
https://doi.org/10.3233/978-1-61499-794-8-97
https://doi.org/10.3233/978-1-61499-794-8-97
https://doi.org/10.1002/nur.22078
https://doi.org/10.1002/nur.22078
https://doi.org/10.1007/5584_2017_99
https://doi.org/10.1186/s12913-021-06473-6
https://myphd.stanford.edu/
https://myphd.stanford.edu/
https://doi.org/10.1186/s12911-015-0148-4
https://doi.org/10.3390/healthcare10020221

[28] M. S. Liew, J. Zhang, J. See, and Y. L. Ong, “Usability challenges for health
and wellness mobile apps: Mixed-methods study among mhealth experts and
consumers,” JMIR mHealth and uHealth, vol. 7, e12160, 1 2019. doi: 10.2196/1
2160.

[29] M. Greve, A. Brendel, N. v. Osten, and L. M. Kolbe, “Overcoming the barriers of
mobile health that hamper sustainability in low-resource environments,” Journal
of Public Health, vol. 30, pp. 49–62, 1 2021. doi: 10.1007/s10389-021-01536-8.

[30] S. Shiferaw, A. Workneh, R. Yirgu, G. Dinant, and M. Spigt, “Designing mhealth
for maternity services in primary health facilities in a low-income setting –
lessons from a partially successful implementation,” BMC Medical Informatics
and Decision Making, vol. 18, 1 2018. doi: 10.1186/s12911-018-0704-9.

[31] O. Haggag, J. Grundy, M. Abdelrazek, and S. Haggag, “A large scale analysis of
mhealth app user reviews,” Empirical Software Engineering, vol. 27, 7 2022. doi:
10.1007/s10664-022-10222-6.

[32] J. P. Ratanawong, J. A. Naslund, J. P. Mikal, and S. W. Grande, “Achieving the
potential of mhealth in medicine requires challenging the ethos of care delivery,”
Primary Health Care Research and Development, vol. 23, 2022, issn: 1477-1128.
doi: 10.1017/s1463423622000068.

[33] R. M. C., Clean architecture: A craftsman’s guide to software structure and design,
en. 2017.

[34] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: elements of
reusable object-oriented software. USA: Addison-Wesley Longman Publishing Co.,
Inc., 1995, isbn: 0201633612.

[35] H. A. Epiloksa, D. S. Kusumo, and M. Adrian, “Effect of mvvm architecture
pattern on android based application performance,” Jurnal Media Informatika
Budidarma, vol. 6, p. 1949, 4 2022. doi: 10.30865/mib.v6i4.4545.

[36] Understanding Plugins — docs.gradle.org, https://docs.gradle.org/release
-nightly/userguide/custom_plugins.html, [Accessed 26-06-2024].

[37] GitHub - jjohannes/idiomatic-gradle: How do I idiomatically structure a large
build with Gradle — github.com, https://github.com/jjohannes/idiomatic-
gradle, [Accessed 26-06-2024].

[38] Herding Elephants — developer.squareup.com, https://developer.squareup.c
om/blog/herding-elephants/, [Accessed 26-06-2024].

VIII

https://doi.org/10.2196/12160
https://doi.org/10.2196/12160
https://doi.org/10.1007/s10389-021-01536-8
https://doi.org/10.1186/s12911-018-0704-9
https://doi.org/10.1007/s10664-022-10222-6
https://doi.org/10.1017/s1463423622000068
https://doi.org/10.30865/mib.v6i4.4545
https://docs.gradle.org/release-nightly/userguide/custom_plugins.html
https://docs.gradle.org/release-nightly/userguide/custom_plugins.html
https://github.com/jjohannes/idiomatic-gradle
https://github.com/jjohannes/idiomatic-gradle
https://developer.squareup.com/blog/herding-elephants/
https://developer.squareup.com/blog/herding-elephants/

[39] The Benefits of a Design System: Making Better Products, Faster | Toptal® —
toptal.com, https://www.toptal.com/designers/design-systems/benefits-
of-design-system, [Accessed 27-06-2024].

[40] 11 Benefits of Design Systems for Designers, Developers, Product Owners, and
Teams | Built In — builtin.com, https://builtin.com/articles/11-benefit
s-design-systems, [Accessed 27-06-2024].

[41] M. Yoon, S. Lee, J. Y. Choi, et al., “Effectiveness of a smartphone app–based
intervention with bluetooth-connected monitoring devices and a feedback system
in heart failure (smart-hf trial): Randomized controlled trial,” Journal of Medical
Internet Research, vol. 26, e52075, Apr. 2024, issn: 1438-8871. doi: 10.2196/52
075.

[42] E. Cano, SpeziKt/core/bluetooth/README.md at main · StanfordSpezi/SpeziKt
— github.com, https://github.com/Stanford/Kt/blob/main/core/bluetooth
/README.md, [Accessed 24-07-2024].

[43] C. Stewart, Callback Hell in JavaScript: Taming Asynchronous Complexity —
redsurgetechnology.com, https://redsurgetechnology.com/callback-hell-i
n-javascript-taming-asynchronous-complexity/, [Accessed 24-07-2024].

[44] LiveData overview | Android Developers — developer.android.com, https://de
veloper.android.com/topic/libraries/architecture/livedata, [Accessed
24-07-2024].

[45] M. L. Dechert, Besser zentral: Professionelles Logging — heise.de, https://www
.heise.de/ratgeber/Besser-zentral-Professionelles-Logging-2532864
.html, [Accessed 14-07-2024].

[46] E. Cano, SpeziKt/core/logging at main · StanfordSpezi/SpeziKt — github.com,
https://github.com/Stanford/Kt/tree/main/core/logging, [Accessed
24-07-2024].

[47] Dependency injection with Hilt | Android Developers - developer android com,
https://developer.android.com/training/dependency-injection/hilt-
android, [Accessed 24-06-2024].

[48] P. Achimugu, B. Afolabi, O. Adeniran, I. Gambo, and O. Oluwagbemi, “Software
architecture and methodology as a tool for efficient software engineering process:
A critical appraisal,” Journal of Software Engineering and Applications, vol. 03,
pp. 933–938, 10 2010. doi: 10.4236/jsea.2010.310110.

IX

https://www.toptal.com/designers/design-systems/benefits-of-design-system
https://www.toptal.com/designers/design-systems/benefits-of-design-system
https://builtin.com/articles/11-benefits-design-systems
https://builtin.com/articles/11-benefits-design-systems
https://doi.org/10.2196/52075
https://doi.org/10.2196/52075
https://github.com/Stanford/Kt/blob/main/core/bluetooth/README.md
https://github.com/Stanford/Kt/blob/main/core/bluetooth/README.md
https://redsurgetechnology.com/callback-hell-in-javascript-taming-asynchronous-complexity/
https://redsurgetechnology.com/callback-hell-in-javascript-taming-asynchronous-complexity/
https://developer.android.com/topic/libraries/architecture/livedata
https://developer.android.com/topic/libraries/architecture/livedata
https://www.heise.de/ratgeber/Besser-zentral-Professionelles-Logging-2532864.html
https://www.heise.de/ratgeber/Besser-zentral-Professionelles-Logging-2532864.html
https://www.heise.de/ratgeber/Besser-zentral-Professionelles-Logging-2532864.html
https://github.com/Stanford/Kt/tree/main/core/logging
https://developer.android.com/training/dependency-injection/hilt-android
https://developer.android.com/training/dependency-injection/hilt-android
https://doi.org/10.4236/jsea.2010.310110

[49] P. Kong, L. Li, J. Gao, K. Liu, T. F. Bissyandé, and J. Klein, “Automated
testing of android apps: A systematic literature review,” IEEE Transactions on
Reliability, vol. 68, pp. 45–66, 1 2019. doi: 10.1109/tr.2018.2865733.

[50] J. Petrić, T. Hall, and D. Bowes, “How effectively is defective code actually
tested?” Proceedings of the 14th International Conference on Predictive Models
and Data Analytics in Software Engineering, 2018. doi: 10.1145/3273934.3273
939.

[51] C. T. Watson, M. Tufano, K. Moran, G. Bavota, and D. Poshyvanyk, “On
learning meaningful assert statements for unit test cases,” Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering, 2020. doi:
10.1145/3377811.3380429.

[52] J. Middleton and T. Atapattu, “Beyond accuracy: Assessing software documenta-
tion quality,” Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Softw, 2020. doi:
10.1145/3368089.3417045.

[53] http://hl7.org/fhir, Observation - FHIR v6.0.0-ballot1 - build fhir org, https:
//build.fhir.org/observation.html, [Accessed 15-08-2024].

[54] BfArM - LOINC — bfarm.de, https://www.bfarm.de/DE/Kodiersystem
e/Terminologien/LOINC-UCUM/LOINC-und-RELMA/_node.html, [Accessed
15-08-2024].

[55] InstantRecord | Android Developers — developer.android.com, https://develo
per.android.com/reference/android/health/connect/datatypes/Instant
Record, [Accessed 15-08-2024].

[56] “Ieee standard for open mobile health data—representation of metadata, sleep,
and physical activity measures,” IEEE Std 1752.1-2021, pp. 1–24, 2021. doi:
10.1109/IEEESTD.2021.9540821.

[57] M. Vishnu Ravi, Building for Digital Health with FHIR, https://docs.google
.com/presentation/d/1Rf1dlHr3QDNBgI0NH0kWtbVTxoFY4Y3qgEe4STGvqcY &
https://vishnu.io/, [Accessed 24-08-2024].

[58] Designing the User Onboarding Experience | UX Booth — uxbooth.com, https
://uxbooth.com/articles/designing-the-user-onboarding-experience/,
[Accessed 28-06-2024].

[59] http://hl7.org/fhir, Questionnaire - FHIR v5.0.0 — hl7.org, https://hl7.org
/fhir/questionnaire.html, [Accessed 24-08-2024].

X

https://doi.org/10.1109/tr.2018.2865733
https://doi.org/10.1145/3273934.3273939
https://doi.org/10.1145/3273934.3273939
https://doi.org/10.1145/3377811.3380429
https://doi.org/10.1145/3368089.3417045
https://build.fhir.org/observation.html
https://build.fhir.org/observation.html
https://www.bfarm.de/DE/Kodiersysteme/Terminologien/LOINC-UCUM/LOINC-und-RELMA/_node.html
https://www.bfarm.de/DE/Kodiersysteme/Terminologien/LOINC-UCUM/LOINC-und-RELMA/_node.html
https://developer.android.com/reference/android/health/connect/datatypes/InstantRecord
https://developer.android.com/reference/android/health/connect/datatypes/InstantRecord
https://developer.android.com/reference/android/health/connect/datatypes/InstantRecord
https://doi.org/10.1109/IEEESTD.2021.9540821
https://docs.google.com/presentation/d/1Rf1dlHr3QDNBgI0NH0kWtbVTxoFY4Y3qgEe4STGvqcY
https://docs.google.com/presentation/d/1Rf1dlHr3QDNBgI0NH0kWtbVTxoFY4Y3qgEe4STGvqcY
https://vishnu.io/
https://uxbooth.com/articles/designing-the-user-onboarding-experience/
https://uxbooth.com/articles/designing-the-user-onboarding-experience/
https://hl7.org/fhir/questionnaire.html
https://hl7.org/fhir/questionnaire.html

[60] http://hl7.org/fhir, SDC Home Page - Structured Data Capture v3.0.0 - build
fhir org, https://build.fhir.org/ig/HL7/sdc/, [Accessed 24-08-2024].

[61] Navigation with Compose | Jetpack Compose | Android Developers — devel-
oper.android.com, https://developer.android.com/develop/ui/compose/na
vigation, [Accessed 24-08-2024].

[62] S. Amagai, S. Pila, A. J. Kaat, C. J. Nowinski, and R. C. Gershon, “Challenges
in participant engagement and retention using mobile health apps: Literature
review,” Journal of Medical Internet Research, vol. 24, no. 4, e35120, Apr. 2022,
issn: 1438-8871. doi: 10.2196/35120.

[63] Y. Tsai, P. Hsiao, M. Kuo, et al., “Mobile health, disease knowledge, and self-care
behavior in chronic kidney disease: A prospective cohort study,” Journal of
Personalized Medicine, vol. 11, p. 845, 9 2021. doi: 10.3390/jpm11090845.

[64] J. Piette, K. Lun, L. Moura, et al., “Impacts of e-health on the outcomes of
care in low- and middle-income countries: Where do we go from here?” Bulletin
of the World Health Organization, vol. 90, no. 5, pp. 365–372, May 2012, issn:
0042-9686. doi: 10.2471/blt.11.099069.

[65] C. Wilhide, M. Peeples, and R. A. Kouyaté, “Evidence-based mhealth chronic
disease mobile app intervention design: Development of a framework,” JMIR
Research Protocols, vol. 5, e25, 1 2016. doi: 10.2196/resprot.4838.

[66] M. Carrillo, A. Kroeger, R. Cárdenas, S. D. Monsalve, and S. Runge-Ranzinger,
“The use of mobile phones for the prevention and control of arboviral diseases: A
scoping review,” BMC Public Health, vol. 21, 1 2021. doi: 10.1186/s12889-020
-10126-4.

[67] Y. Ranjan, Z. Rashid, C. Stewart, et al., “Radar-base: Open source mobile health
platform for collecting, monitoring, and analyzing data using sensors, wearables,
and mobile devices,” Jmir Mhealth and Uhealth, vol. 7, e11734, 8 2019. doi:
10.2196/11734.

[68] I. B. R. G. Tumeh, C. D. Bergerot, D. Lee, E. J. Philip, and R. Freitas-Júnior,
“Mhealth program for patients with advanced cancer receiving treatment in a
public health hospital in brazil,” Psycho-Oncology, vol. 32, pp. 125–132, 1 2022.
doi: 10.1002/pon.6059.

[69] N. Alnosayan, S. Chatterjee, A. S. Alluhaidan, E. Lee, and L. Feenstra, “Design
and usability of a heart failure mhealth system: A pilot study,” JMIR Human
Factors, vol. 4, e9, 1 2017. doi: 10.2196/humanfactors.6481.

XI

https://build.fhir.org/ig/HL7/sdc/
https://developer.android.com/develop/ui/compose/navigation
https://developer.android.com/develop/ui/compose/navigation
https://doi.org/10.2196/35120
https://doi.org/10.3390/jpm11090845
https://doi.org/10.2471/blt.11.099069
https://doi.org/10.2196/resprot.4838
https://doi.org/10.1186/s12889-020-10126-4
https://doi.org/10.1186/s12889-020-10126-4
https://doi.org/10.2196/11734
https://doi.org/10.1002/pon.6059
https://doi.org/10.2196/humanfactors.6481

[70] I. Olenych and R. Korostenskyi, “Analysis of the effectiveness of using kotlin mul-
tiplatform mobile technology for creating cross-platform applications,” Electronics
and Information Technologies, vol. 21, 2023. doi: 10.30970/eli.21.3.

[71] W. Zhao and S. Sampalli, “Sensing and signal processing in smart healthcare,”
Electronics, vol. 9, p. 1954, 11 2020. doi: 10.3390/electronics9111954.

XII

https://doi.org/10.30970/eli.21.3
https://doi.org/10.3390/electronics9111954

	List of Figures
	List of Tables
	Introduction
	Theoretical Foundations and State of the Art
	Design and development of the framework
	Technical details on implementation
	Case Study: ENGAGE-HF for Heart Failure Management
	Evaluation
	Discussion and Future Work
	Summary
	List of abbreviations
	Appendix
	Bibliography
	Index

