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Abstract. We present an efficient method for estimating the
pose of a three-dimensional object. Its implementation is em-
bedded in a computer vision system which is motivated by
and based on cognitive principles concerning the visual per-
ception of three-dimensional objects. Viewpoint-invariant ob-
ject recognition has been subject to controversial discussions
for a long time. An important point of discussion is the nature
of internal object representations. Behavioral studies with pri-
mates, which are summarized in this article, support the model
of view-based object representations. We designed our com-
puter vision system according to these findings and demon-
strate that very precise estimations of the poses of real-world
objects are possible even if only a small number of sample
views of an object is available. The system can be used for a
variety of applications.
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1 Implications from cognition

Each object in our environment can cause considerably dif-
ferent patterns of excitation in our retinae depending on the
observed viewpoint of the object. Despite this we are able to
perceive that the changing signals are produced by the same
object. It is a function of our brain to provide this constant
recognition from such inconstant input signals by establish-
ing an internal representation of the object.

There are uncountable behavioral studies with primates
that support the model of a view-based description of three-
dimensional objects by our visual system. If a set of unfamiliar
object views is presented to humans, their response time and
error rates during recognition increase with increasing angular
distance between the learned (i.e., stored) and the unfamiliar
view [5]. This angle effect declines if intermediate views are
experienced and stored [20]. The performance is not linearly
dependent on the shortest angular distance in three dimensions
to the best-recognized view, but it correlates with an “image-
plane feature-by-feature deformation distance” between the
test view and the best-recognized view [2]. Thus, measurement

of image-plane similarity to a few feature patterns seems to
be an appropriate model for human three-dimensional object
recognition.

Experiments with monkeys show that familiarization with
a “limited number” of views of a novel object can provide
viewpoint-independent recognition [13].

In a psychophysical experiment subjects were instructed
to perform mental rotation, but they switched spontaneously
to “landmark-based strategies”, which turned out to be more
efficient [22].

Numerous physiological studies also give evidence for a
view-based processing of the brain during object recognition.
Results of recordings of single neurons in the inferior tempo-
ral cortex (IT) of monkeys, which is known to be concerned
with object recognition, resemble those obtained by the be-
havioral studies. Populations of IT neurons have been found
that respond selectively to only some views of an object and
their response declines as the object is rotated away from the
preferred view [14].

The capabilities of technical solutions for three-dimensio-
nal object recognition continue to lag far behind the efficiency
of biological systems. Summarizing, one can say that, for bi-
ological systems, object representations in the form of single,
but connected, views seem to be sufficient for a huge variety
of situations and perception tasks.

2 Description of the vision system

In this section we introduce our approach to learning an object
representation, which takes these results about primate brain
functions into account.

We automatically generate sparse representations for real-
world objects, which satisfy the following conditions:

a1 They are constituted from two-dimensional views.

a2 They are sparse, i.e., they consist of as few views as pos-
sible.

a3 They are capable of performing perception tasks, espe-
cially pose estimation.

Our system consists of a view representation builder and an
object representation builder. They are shown, together with
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Fig. 1. The system for learning sparse object representations consists
of a view and an object representation builder. The resulting object
representation consists of single but connected views. The numbers
next to the resulting partitionings of the viewing hemisphere are the
numbers of view bubbles that constitute the representation

their input and output data, in the diagram in Fig. 1, which
depicts a one-directional flow of information.

Of course, feedback from higher levels of processing to
lower ones would allow for, e.g., unsupervised system tuning
or an improved segmentation, but this is not the subject of this
contribution. We start with the recording of a densely sampled
set of views of the upper half of the viewing sphere of a test
object. In the following disussion we aim at choosing only
such views for a representation that are representative for an
area of viewpoints as large as possible.

2.1 View representation builder

Each of the recorded views is preprocessed by a Gabor
wavelet transform, which is biologically inspired because Ga-
bor wavelets approximate response patterns of neurons in the
visual cortex of mammals [1,9]. A simple segmentation based
on [6] utilizing graylevel values follows. It separates the ob-
ject from the background (in some instances only coarsely,
but segmentation is not the main subject here). A regular grid
graph is placed on the object segment and the vertices of the

graph are labeled with the corresponding Gabor wavelet re-
sponses. This results in a representation of each view in the
form of a labeled grid graph. Each vertex label is a feature
vector that describes the local surroundings of the vertex. Such
a feature vector is called jet [12]. It consists of the amplitude
and phase components of the convolution of the image with
the Gabor filter bank at the vertex position. A filter bank with
wavelets of 8 orientations and 4 frequencies is used.

It has been shown in many studies, e.g., in [12,23], that
a representation in the form of a graph labeled with Gabor
wavelet responses can be used for a robust object recognition.

2.2 Object representation builder

To facilitate an advantageous selection of views for the object
representation, a surrounding area of similar views is deter-
mined for each view. This area is called a view bubble. For
a selected view it is defined as the largest possible surround-
ing area on the viewing hemisphere for which two conditions
hold:

b1 The views constituting the view bubble are similar to the
view in question.

b2 Corresponding object points are known or can be inferred
for each view of the view bubble.

The similarity mentioned in b1 is specified below. Condition
b2 is important for a reconstruction of novel views as, e.g.,
needed by our pose estimation algorithm. A view bubble may
have an irregular shape. To simplify its determination we ap-
proximate it by a rectangle with the selected view in its center,
which is determined in the following way.

The object representation builder starts by tracking local
object features. Jets can be tracked from a selected view to
neighboring views by utilizing the phase components of jets
in successive views [16]. A similarity function S(G, G′) is de-
fined between a selected view and a neighboring view, where
G is the graph that represents the selected view and G′ is a
tracked graph that represents the neighboring view. This simi-
larity function takes the amplitude components of correspond-
ing jets of G and G′ into account. Utilizing this similarity func-
tion we determine a view bubble for a selected view by tracking
its graph G from view to view in both directions on the line
of latitude until the similarity between the selected view and
the tested view either to the west or to the east drops below a
threshold τ , i.e., until either S(G, Gw) < τ or S(G, Ge) < τ .
The same procedure is performed for the neighboring views
on the line of longitude, resulting in a rectangular area with
the selected view in its center. The representation of a view
bubble consists of the graphs of the center and four border
views:

B := 〈G, Gw, Ge, Gs, Gn〉 , (1)

with w, e, s, and n standing for, respectively, west, east, south,
and north. This algorithm can be extended to obtain view bub-
bles of a more general shape, e.g., by tracking graphs not only
on the lines of latitude and longitude, but also in other direc-
tions until the view similarity drops below the threshold. This
has not been performed here, but rectangular shapes of view
bubbles have proved to be sufficient for the purpose of pose
estimation.
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Fig. 2. Graph of the center view of a view bubble tracked to its east
and north border views

As this procedure is performed for each of the recorded
views, it results in view bubbles overlapping on a large scale
on the viewing hemisphere (Figs. 1 and 2).

To meet the first condition a1 of a sparse object represen-
tation, we try to choose single views (in the form of labeled
graphs) to constitute it. To meet the second condition a2, the
large number of overlapping view bubbles must be reduced
and as few of them chosen as possible that nevertheless cover
the whole hemisphere. For the selection of the view bubbles
we use the greedy set cover algorithm [3], which successively
selects view bubbles that cover the largest number of views
that have not been covered previously by other view bubbles.
This process is repeated until all views of the hemisphere are
covered, and thus a set of view bubbles is provided that covers
the whole viewing hemisphere. We define the sparse, view-
based object representation by

R := {〈Gi, Gw
i , Ge

i , Gs
i , Gn

i 〉}i∈R , (2)

where R is a cover of the hemisphere. Neighboring views of
the representation are “connected” by known corresponding
object points (the correspondences between center and border
views), which have been provided by the tracking procedure.
Figure 1 shows different covers of the hemisphere for two test
objects.

The definition of the sparse object representation implies
that it consists of a larger number of view bubbles for more
complex objects, which is also suggested in Fig. 1.

The center views the graphs Gi are extracted from can be
regarded as canonical views [2]. This concept and the relation-
ship between view bubbles and aspect graphs [10] and other
view-based object representations are discussed in [17].

3 Pose estimation

Given the sparse representation of the object in question and
given a test view of the object, the aim is the determination of

the object’s pose displayed in the test view, i.e., the assignment
of the test view to its correct position on the viewing hemi-
sphere. In this section a solution to this problem is proposed
(Sect. 3.1), and the results of simulations with a series of test
views are reported (Sect. 3.2) and discussed (Sect. 3.3).

Many approaches to pose estimation have been proposed,
starting with closed-form solutions for no more than four non-
collinear points [7,4,8] up to iterative nonlinear optimization
algorithms, which have to rely on a good initial guess to con-
verge to a reasonable solution [15,24]. More recent approaches
to pose estimation also utilize Gabor wavelet representations,
e.g., in combination with artificial neutral networks [11].

Here we propose a model-based pose estimation algo-
rithm. In the first step it determines the rough position of the
given pose on the viewing hemisphere as an initial guess. Then
this estimate is refined in a second step. It requires the gen-
eration of virtual views, i.e., artificially generated images of
unfamiliar views, which are not represented in the object rep-
resentation. For this purpose we

(1) Calculate linear combinations of corresponding vertex po-
sitions in the center and border graphs of view bubbles and

(2) Interpolate the corresponding jets attached to these ver-
tices.

The new positions and jets define a representation graph of
the virtual view. From this graph the virtual view can be gen-
erated by reconstructing the information contained in Gabor
wavelet responses [19]. To interpolate between jets we cal-
culate the weighted sum of corresponding jets in the sample
views. The weights are chosen according to the relative posi-
tion of the unfamiliar view with respect to the sample views.
Our method for deriving vertex positions in unfamiliar views
follows Ullman and Basri’s [21] purely two-dimensional ap-
proach of generating unfamiliar views by linear combination
of sample views. Detailed formulas are given in [18].

3.1 Methods

Let T be the test view, the pose of which should be estimated,
and GT its representing graph, which is extracted from the
original image of view T after the test view has been divided
into object and background segments as described in Sect. 2.1.
This means that no a priori knowledge about the object is
provided. A view is determined by its position on the viewing
hemisphere.

Let Ii, i ∈ R, be the center images of the view bubbles
that the graphs Gi of the object representation R are extracted
from. The pose estimation algorithm for estimating the pose
of a single test view T proceeds in two steps:

1. Match GT to each image Ii, i ∈ R using a graph matching
algorithm [12]. As a rough estimate of the object’s pose,
choose that view bubble B̂ whose center image Ii provides
the largest similarity to GT .

2. Generate the representation Ĝ for discrete, unfamiliar
views that are included inside the area defined by B̂ but
not represented explicitly. Generate Ĝ by (1) a linear com-
bination of corresponding vertex positions in the center
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Fig. 3. a Virtual view V̂ reconstructed from interpolated graph Ĝ.
b Virtual test view V̂T reconstructed from its original graph GT
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Fig. 4. Results of pose estimations for three different partitionings of
the viewing hemisphere and two different objects are depicted. The
tracking threshold τ influences the resulting number of views in the
final representations. Because the graphs of the center and four border
views are stored for each view bubble of the final representation, the
border views of neighboring view bubbles lie close together. This is
obvious especially for τ = 0.75

and one border graph of B̂ and (2) an interpolation of
the corresponding jets as described in Sect. 3. (We choose
the graph of that border view that lies closest to the dis-
crete, unfamiliar view. The number of calculated graphs
Ĝ depends on the size of B̂.) From each of the calculated
graphs Ĝ reconstruct a corresponding virtual view V̂ using
an algorithm that reconstructs the information contained

in Gabor wavelet responses [19]. Accordingly, reconstruct
a virtual test view V̂T from GT (Fig. 3). Compare each of
the virtual views V̂ with the virtual view V̂T using an error
function ε(V̂ , V̂T ) that performs a pixelwise comparison
between V̂T and each V̂ . The estimated pose T̂ of the test
view T is the position on the viewing hemisphere of that
virtual view V̂ that provides the smallest error ε.

The estimation error between T and T̂ can be determined by
the Euclidean distance: εesti(T, T̂ ) = d(T, T̂ ).

3.2 Results

For the evaluation of the algorithm, 30 test views have been
chosen. Their positions on the viewing hemisphere are dis-
played in Fig. 4. For two different toy objects and for three
different partitionings of the viewing hemisphere, which have
been derived by applying different tracking thresholds τ , the
poses of these 30 test views have been estimated. The light gray
squares indicate the views represented in the object represen-
tation R, black dots mark the positions of the test images, and
the estimated positions are tagged by dark gray circles. The
arrow points at the test images and their estimations, which
are displayed in Fig. 5.

Table 1. Mean pose estimation errors. For example, for object “Tom”
and the partitioning of τ = 0.75 the average estimation deviation of
the estimated pose T̂ to the true pose T computed from 30 test views
is 36.51◦

τ 0.75 0.8 0.85 0.9 0.95

Object “Tom” 36.51◦ 3.63◦ 0.77◦ 3.35◦ 0.36◦

Object “dwarf” 20.54◦ 19.47◦ 4.2◦ 2.65◦ 1.71◦

The illustrations in Fig. 4 indicate that pose estimation
becomes more precise with an increasing number of sample
views in the object representation. This result was expected
and is confirmed by an inspection of the mean estimation er-
rors taken over the 30 test views for each object and each
partitioning of the hemisphere separately. They are summa-
rized in Table 1. With one exception for the “object” Tom, the

estimated sequence

original sequence

=0.75τsingle pose estimation, object "Tom",

estimated images

original images

Fig. 5. Test images and their estimations, which are marked in Fig. 4. For this example the representation of the object “Tom” for τ = 0.75 has
been chosen. It consists of only 30 views. In the first row the true poses of the object, which should be estimated, are displayed. The second
row shows the poses that have been estimated by treating each view of the sequence independently. The estimation error for this sequence
averages 5.78◦
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mean errors are decreasing with an increasing value of τ , i.e.,
with an increasing number of views in R.

3.3 Discussion

The results of the pose estimation experiments are quite satis-
factory. This is particularly obvious for the example displayed
in Fig. 5, taking into account that the sparse representation
of the object “Tom” contains only the representations of 30
views. These were the test images for which the best result for
τ = 0.75 was obtained, but also for a reasonable partitioning
of the viewing hemisphere (τ = 0.85) the mean estimation
errors were smaller than 5◦ for both objects, which can be
regarded as a good result, taking into account that humans are
hardly able to recognize a difference of 5◦ between two object
poses.

As experiments reported in [17] have shown, the method
proposed in Sect. 3.1 cannot be improved very much by a more
elaborate determination of the initial guess, e.g., by testing
more neighboring candidates. Better results can be expected
by applying a more efficient segmentation. In addition, the
proposed methods will be applied to more complex objects in
the future.

4 Conclusion

We proposed a computer vision system based on cogni-
tive principles that is able to estimate the pose of a three-
dimensional object from an unobstructed view in an efficient
manner. The pose estimation results support a good quality
of our sparse object representation and allow the conclusion
that a view-based approach to object perception with object
representations that consist of only single, connected views
is suitable for performing perception tasks, as is advocated
by brain researchers. Besides the biological relevance of our
approach, there are a variety of possible applications, such as
object recognition, view morphing, or data compression.
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von Bildern in der Nähe von Objektkanten. Technical Report
IRINI 94-04, Institut für Neuroinformatik, Ruhr-Universität
Bochum, Germany

20. Tarr MJ (1993) Orientation dependence in three-dimensional
object recognition. Ph.D. Thesis, MIT, Cambridge, MA

21. Ullman S, Basri R (1990) Recognition by linear combinations
of models. IEEE Trans Patt Anal Mach Intell 13(10):992–1006

22. Wexler M, Kosslyn SM, Berthoz A (1998) Motor processes in
mental rotation. Cognition 68:77–94
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