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How to measure the pose robustness of object views
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Abstract

The viewing hemisphere of a three-dimensional object can be partitioned into areas of similar views, which provide pose robustness. We
compare two procedures for measuring the robustness of views to pose variation: tracking of object features, i.e. Gabor wavelet responses, by
utilizing the continuity of successive views and matching of features in different views, which are assumed to be independent. Both
procedures proved to be appropriate to detect canonical views. We found no difference concerning the size of the view bubbles, but tracking
provides more precise correspondences than matching. Tracking is more appropriate for recognizing changes of features, whereas matching
is more suitable if features of the same appearance are to be found. © 2002 Elsevier Science B.V. All rights reserved.
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1. Subject of investigation

Many models have been proposed for three-dimensional
object perception. Besides volume-based object representa-
tions, which seem to be very economical but often require
the interaction from a user to acquire them, as for example,
described in Ref. [1], many computational models combine
two-dimensional views into the equivalent of a three-dimen-
sional object representation. Examples are the manifold
approach applied [2—4] and the recognition of three-dimen-
sional objects utilizing support vector machines [5,6].

Among the different models for three-dimensional object
perception, the notion of a canonical view is a prominent
topic. It can be regarded as a view which is easier to recog-
nize than other views of the same object. A hard definition
does not exist, even its properties are controversial. Palmer
et al. [7] describe canonical views as the ones that “humans
find easiest to recognize and regard as most typical”. Open
questions concerning canonical views are the number of
views necessary for different visual tasks and their statistical
distribution on the viewing sphere. Malik and Whangbo [8],
for instance, have demonstrated that a uniform distribution
is inappropriate. Weinshall and Werman [9] have shown
that the likelihood to observe a certain view of an object
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correlates with the view’s robustness against pose variation,
i.e. how little the image changes when the viewpoint is
slightly changed. The most likely views are often the ‘flat-
test’ views of an object.

For pose-invariant object recognition and pose estimation
of objects, it is necessary to utilize an appropriate object
representation. An obvious but naive representation might
consist of densely spaced views of an object’s viewing
sphere. Our aim is to reduce such a ‘full’ representation to
only some representative views and the relations between
them. Such a sparse representation belongs to the aspect
graph approaches proposed in Refs. [10,11]. To choose
representative views (aspects) for a final representation,
our plan is first to determine for each view of a full repre-
sentation a surrounding area of similar views, termed view
bubble, which provides robustness to pose variation (see
Fig. 1). Later, the aspects for the final representation of the
object can be derived from the overlaps of the view bubbles.

In this paper we describe the generation of the view
bubbles. We restrict our investigation to the upper hemi-
sphere of an object’s viewing sphere. We compare two proce-
dures of determining the similarity of two views: matching a
representing graph of one view to another view, and tracking
object features, i.e. Gabor wavelet responses, from one view
to another. During the matching procedure, each view is
treated independently, whereas the tracking procedure
utilizes the continuity of neighboring views. Our investiga-
tions were guided by the question which procedure—match-
ing or tracking—is more appropriate to find for each view of
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Fig. 1. Viewing hemisphere with examples of view bubbles. The represen-
tation of a viewing hemisphere consists of 100 X 25 views. Each crossing of
the grid stands for one view. The angle between two neighboring views is
3.6° in either direction. The dot in front marks view (0,0). The depicted
view bubbles have been determined with the tracking procedure for object
Tom. View (79,14) provides a small view bubble. It includes views which
cover a range of 21.6° in x-direction and 14.4° in y-direction. View (6,6)
provides a larger view bubble, which covers a range of 43.2 and 28.8°,
respectively.

the hemisphere view bubbles of maximal size containing
views of maximal similarity?

2. Description of the system
2.1. Preprocessing

For each recorded view of an object, we first perform a
segmentation based on gray levels which separates the

A A A

a) b) (9]
d) e) f)

Fig. 2. Preprocessing: (a) original image, (b) gray level segmentation, (c)
centered segmentation after eliminating wrong segments, (d) original image
masked with the result of centered segmentation, (e) grid graph on object
segment, and (f) grid graph on original image.

object from the background. Then we put a grid graph
onto the segment of the image which has been assigned to
the object. At each vertex of the graph, we extract features
which describe the surroundings of the vertex, i.e. local
features of the special view of the object. Thus, we derive
a representation for each view in the form of a model graph
which provides the basis of both, the matching and the
tracking procedure (see Fig. 2).

Segmentation: The segmentation method is based on the
system in Ref. [12]. An image is divided into small patches.
Each patch receives a label that encodes its membership of
one of the several segments. We need two segments because
we want to separate one object from the background. The
aim is to find the label configuration which encodes the
‘correct’ segmentation of the given scene. Each label inter-
acts with neighboring labels via an interaction matrix. The
interaction between two labels is computed from the differ-
ence in mean intensity at the corresponding image regions.
The desired segmentation results from coarse-to-fine
dynamics which relax to a local energy minimum. The
segmentation as described may also provide regions,
which are regarded as belonging to the object due to their
gray levels, but in fact do not belong to it, like shadows or
reflections. We get rid of them by simply choosing this
segment as object, which is the closest to the center of the
image (see Fig. 2c), centered segmentation.

Gabor transform and similarity function: The original
image is convolved with a family of Gabor kernels, which
differ in wavelength and orientation. We chose four wave-
lengths and eight orientations. The kernels take the form of a
plane wave restricted by a Gaussian envelope function. At
each image coordinate, we obtain filter responses for each
Gabor wavelet. Filter responses at one image coordinate
form a jet J. We can express the ith component of a jet in
terms of amplitude a; and phase ¢; :

Ji = (a;, d)). (D

Thus, a similarity function S between two jets J and J' can
be defined as

| [ 2o cos(di = ¢
ST =] - +1]1. )

2 IZ a,-2 Zai»2
1 1

S is the similarity function we used for our simulations, for
the matching as well as for the tracking procedure. Its
properties are described in Ref. [13].

Grid graphs: Given the result from the centered segmen-
tation, we mask the original image of size 128 X 128 pixels
with it. We cover the whole masked image with a grid graph
of 13 X 13 vertices. All vertices are deleted, which lie on the
background or which lie on the object but are too close to
the background. The reason for this is to prevent vertices
from incorporating too much information of the back-
ground. Then each vertex is labeled with the jet, which
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corresponds to the position of the vertex. For display
purposes the remaining vertices are connected by a minimal
spanning tree (see Fig. 2e and f).

2.2. Matching object features

Elastic graph matching is described in detail in Ref. [14].
It has proved to be highly competitive in a number of recog-
nition experiments [15—17] including the contests in the
FERET program, a competitive benchmarking test organized
by ARPA/ARL [18]. Given a graph with vertices labeled
with jets, the aim of matching this graph to an image is to
find new vertex positions which optimize the similarity of
the vertex labels to the features extracted at the new posi-
tions. In the first stage (global move), the rigid graph is
shifted across the image. For each position, we calculate
the total similarity of the new positioned graph to the origi-
nal graph. The total similarity is just the average similarity
taken for each vertex by using the similarity function S. The
position, which provides the highest similarity, is the start-
ing position for the second stage which permits small graph
distortions. The vertices are shifted in small surroundings of
their starting positions. After this local move, the optimal
position of the graph is found at the position which provides
the highest total similarity.

2.3. Tracking object features

The tracking procedure we use is described in Ref. [19]
and based on an idea reported in Refs. [20,21]. Given a
sequence of a moving object and the pixel position of a
landmark of the object for frame n, the aim is to find the
corresponding position of the landmark in frame n + 1. A
similarity function S’ between two jets J and J’ is defined,
which differs slightly from S

D aa; cos(¢; — ¢ — dk;)
S'J, ', d) = - 3)

Zaiz Zai»Z

i

with d being the displacement vector of the two jets and l;i
being the wave vectors of the Gabor filters. If J and J' are
extracted at same pixel positions in the frames n and n + 1,
d (and thus the new position of the landmark) can be found
by maximizing S in its Taylor expansion. For each vertex of
the graph of frame n, the displacements are calculated for
frame n + 1. Then a graph is created with its vertices at the
new corresponding positions in frame n + 1, and the labels
of the new vertices are extracted from the new positions. To
compensate for a subpixel error Ad, the phases of the Gabor
filter responses are shifted according to

2.4. Generation of view bubbles

For each view (i,j) of the hemisphere, an affiliated view

bubble is created with the view as its center. To determine
the view bubble, we compare neighboring views of (i,j) in
all directions (east, west, north, and south). We match (or
track) the grid graph of view (i,j) onto the neighboring
views. If the similarities to the graph of view (i,j) are still
sufficiently high, we depart one step further from (i, 7). We
begin with the views (i — 1,j) and (i + 1,j) (taking the
continuity from the views (0,j) to (99,j) into account). If
both views provide a sufficiently high similarity to the start
graph, we go on with the views (i — 2,j) and (i + 2,j). We
stop this procedure if one of both the tested views becomes
too dissimilar. By doing the same for the vertical direction,
we obtain four views (i — n,j), (i +n,j), (i,j —m), and
(i,j + m), which define the view bubble for view (i,j). To
depict it we draw an ellipse through these four views with
view (i,j) as its center. Fig. 1 shows two ellipses projected
onto the viewing hemisphere. For both the procedures, we
used the same similarity threshold 0.77. A difference
between tracking and matching concerning the similarity
of views lies in the fact that during matching the similarity
is calculated always with reference to the starting view,
whereas during tracking the similarity refers to the
preceding view.

3. Methods of comparison

As our work applies to arbitrary, real-world objects in
contrast to artificially created CAD-objects and as the acqui-
sition of object views is a very difficult and time-consuming
process, the results of this work have been derived from the
only two test objects. Thus, the properties of the chosen
objects should provide challenging problems to the percep-
tion system and cover a wide range of possible object
properties. The objects used in our experiments have been
chosen with this in mind and they differ in the degree of
their complexity. We chose a simple object (the ‘Dwarf”)
and a more complex one (the cat ‘Tom’) (see Fig. 1).
‘Simple’ means that the views of the object do not change
rapidly, while the object rotates. Such objects are often
difficult to deal with in perception tasks such as pose
estimation. The Dwarf is a relatively convex object with a
rather similar shape for all viewing directions, whereas Tom
is a more irregular object with faster changing views. Both
objects vary in the degree of self-occlusions, which occur
earlier for the Dwarf because of its sphere-like shape.

We used two different methods to compare the view
bubbles generated by the matching (resp. tracking) proce-
dure. With descriptive statistics, we made a quantitative
comparison, and by judging the correspondences, which
were found by both procedures, we compared both proce-
dures qualitatively.

For the quantitative statistics, we determined the area of
each view bubble by calculating the area of the ellipse,
described in Section 2.4. (In Ref. [22], we also counted
for each view, in how many other view bubbles it is
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Fig. 3. Distribution of view similarities for object Tom.

contained. The results for this condition, however, resemble
the results published here.) For both objects, we carried out
a t-test to prove the hypothesis of different means of the
areas of view bubbles for the tracked versus the matched
view bubble samples.

For a qualitative comparison, we chose several sequences
on the hemisphere (from a starting view to a destination
view) for both objects, and the results for two of them are
shown in Section 4. For each sequence, we performed the
matching and the tracking procedure. To assess the corre-
spondences by visible inspection, we displayed for each
view of the sequences the resulting matched and tracked
graphs and plotted the calculated similarities in diagrams.
The sequences had an average size of about eight frames
which means a covered rotation angle of 25.2°.

4. Results

The diagrams in Figs. 3 and 4 show results from the
quantitative comparisons. Fig. 3 shows the distributions of
areas of view bubbles for the object Tom, Fig. 4 for object
Dwarf. For both figures, the first diagram depicts the results
from the tracking procedure, the second the ones from the
matching procedure. Lighter colors encode larger areas of
view bubbles. Comparing the results for tracking and

matching, the third diagram shows the difference between
the first and second diagram.

From the diagrams, we get the following results. For both
objects, Tom and Dwarf, the distribution of areas of view
bubbles is qualitatively similar for the tracking procedure
and for the matching procedure. The back view seen from
slightly above and the front view provide the largest
bubbles, and they can be regarded as canonical views.

These results hold for both objects, Tom and Dwarf. But
there is a difference between the objects. The tracking
procedure provides larger view bubbles than the matching
procedure for the majority of views for the more complex
object Tom, whereas for the more simple object Dwarf, it is
the other way around: here the matching procedure provides
larger view bubbles than the tracking procedure for the
majority of views. The one-tailed #-test, with which we
compared the mean values, was significant with a = 1%
for each case.

Figs. 5 (object Tom) and 6 (object Dwarf) show results
for the qualitative comparison, i.e. the assessment of the
correspondences. The first part of both figures displays
views with graphs resulting from tracking (first row) and
matching (second row). Both rows start with the starting
view of the sequence. The next two images show the
views where matching provided the last successfully
matched and first mismatched graph in the sequence.
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Object "Dwarf", tracked, area of view bubbles
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Fig. 4. Distribution of view similarities for object Dwarf.

Arrows point to mismatched vertices. The last images of the
rows show the last views of the sequence where tracked
graphs still keep the corresponding points, whereas the
matched graphs do not. In the headers of the images the
indices of the views are printed. (‘Tr’ means tracked, ‘Mt’
means matched.) For each view of both sequences, tracking
provides the same or better correspondences than matching.
The second part of both figures shows a diagram where the
similarities for each view of the sequence to the starting
view is plotted for tracking as well as matching. From the
similarity diagrams of these and other analyzed sequences
reported in Ref. [22], we get the following result. At the
beginning of a sequence, the tracking procedure always
provides higher similarities than the matching procedure.
This relationship is reversed at that point of the sequence
where the matching starts to provide poor correspondences,
whereas tracking provides good correspondences until the
end of the sequence (see Fig. 7).

5. Discussion and conclusion

Both procedures, matching and tracking of object
features, are suitable to assess the pose robustness of
views of a three-dimensional object by generating a distri-
bution of view similarities on the viewing hemisphere. On

the hemisphere areas of large and of small view bubbles
arise. Centers of areas of large view bubbles can be regarded
as canonical views (see Fig. 8) as they have been introduced
in Section 1. This distribution of view similarities can
guide the choice of views constituting a sparse, viewpoint-
invariant object representation.

From both test objects, no statement on the superiority of
one procedure in terms of size of view bubbles was possible
because for the more complex object Tom tracking provided
larger view bubbles, whereas matching outperformed track-
ing for the simpler object Dwarf. A possible explanation for
this result could be that the rapidly changing views of object
Tom cannot be matched over larger distances because the
matching procedure is looking for the same appearance of
the object features. We assume that the tracking procedure
leads to larger view bubbles for ‘complex’ objects, whereas
matching is superior for simple objects. Although we chose
our test objects with respect to generality, this hypothesis
has to be verified for more examples.

A reason for the more precise correspondences found by
tracking could be the fact that an object feature changes its
appearance, while the object rotates. The feature in the
tracking procedure adapts to this change, whereas the
matching procedure always searches for the same starting
feature. The more the rotation proceeds the more difficult it
is for the matching procedure to find the correct point,
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Fig. 5. Correspondences for object Tom: solid line represents tracked sequence, and dashed line represents matched sequence. (a) First poor match.
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Fig. 6. Correspondences for object Dwarf: solid line represents tracked sequence, and dashed line represents matched sequence. (a) First poor match.
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Fig. 7. Qualitative similarity diagram: ‘good’ and ‘poor’ is meant in the
sense of correct, respectively, incorrect, correspondences. See description
in the text for details.

whereas the tracking utilizes continuous information.
Matching is a more appropriate method if the task is to
find features with the same appearance, and tracking is
more appropriate if changes of the features should be
followed.

In other words, good correspondences are derived from
the continuity of successive views and not from discon-
nected static views. This result has a number of parallels
to primate object perception. The experiments of Kellman
[23] with infants suggest that they have the ability to
perceive the three-dimensional form of an object only if
information about continuous optical transformations
given by motion is available. They are not able to apprehend
the overall form of an object from static views, even if they
are multiple or sequential. Another result is furnished by
Harman and Humphrey [24]. They claim that different
object representations are generated, depending on the
presentation of either regular or random sequences of
views of the object. When a sequence of rotation is encoded,
the associated temporal context may lead to the construction
of a linked, higher-order system of representations for a
given object, whereas without temporal context, a single
representation of each object view may be constructed.
Also some physiological reasons emphasize the importance
of the successive appearance of views for the learning of an
object representation. Miyashita [25] trained monkeys to

Canonical Non-canonical

XA = ¢

View (47, 6) View (8, 5) View (10,20)  View (80, 21)
Fig. 8. Canonical and non-canonical views for object Tom. View (47,6) is
the view with the largest area of its view bubble (generated by tracking).

Compare with the first diagram of Fig. 3.

match complex fractal patterns, which were presented
successively in a fixed series of 100 items. After training,
some cells in the anterior temporal cortex were found to
show selectivity for a small number of patterns which had
been presented successively. This gives evidence for learn-
ing based on temporal associations rather than on pattern
overlap. Perrett et al. [26] already observed that an object
representation in the form of a collection of stored views is
structured in the sense that views belonging together
because of their successive appearance are more closely
associated with each other in the representation. This was
confirmed in a later study by Edelman and Weinshall [27].

Even if it would turn out that matching is superior to
tracking for simple objects in terms of size of the view
bubbles, we suggest that precise correspondences should
take priority over larger view bubbles, particularly for
further processing. For a view interpolation, e.g. precise
correspondences are necessary, and to establish these corre-
spondences, the continuity information of successive views
has to be utilized. Accordingly, our final conclusion is that
tracking of object features is superior to matching for
measuring the pose robustness of object views, especially
for complex objects.
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