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ABSTRACT
Combining first order logic and reinforcement learning is
known as relational reinforcement learning. In this work
we examine the applicability of relational reinforcement
learning in a computer vision task. We propose a state
representation for reinforcement learning which is based
on the perceived appearance of an object only, which es-
pecially makes the explicit encoding of world coordinates
unnecessary. This enables computer vision researchers
to endow their object recognition systems with additional
flexibility and applicability, because they become indepen-
dent of any knowledge about the camera parameters. In
addition, we present results of an implementation of this
approach. Our implementation is supported by a simple
but effective image retrieval system. The image retrieval
system is used to generate the reward during the learning
episodes and it is described in this work as well.

KEY WORDS
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1 Introduction

Given a camera and a set of nearly, but not completely,
identical objects with a unique name attached to each.
What is the best (i.e., shortest in length or steps) sequence
of camera positions to discriminate these objects? That de-
pends, of course, on the information gained at each posi-
tion. If this information is based on the taken images alone,
then what is the best camera path? This is the toy problem
we will examine in this paper to test the applicability of re-
lational reinforcement learning to continuous domains and
computer vision.

A key issue of reinforcement learning [1] is the repre-
sentation of states and actions. In this work we will pro-
pose representations of states and actions that are based
on the idea of relational reinforcement learning [2]. That
means that states and actions are represented as propo-
sitional clauses. Instead of encoding the position of the
camera in these clauses, it is investigated how the informa-
tion gained from the images alone can be sufficient. That
means, it is not necessary to impose a rigid grid around

the object that defines possible camera positions as seen in
former works [3]. Just as we avoid an artificial discretisa-
tion of camera positions, the encoding of the actions also
avoids a discretisation of the possible directions. Instead,
all directions are represented as angles that are interpreted
as directions roughly orthogonal to the current viewing di-
rection.

Because these representations are continuous, the
need of a regression technique for assigningQ-values is
obvious. Besides, the relational representation of states and
actions demand such a technique anyway. In this work, we
adopt on the RIB-algorithm [4], a k-nearest-neighbor tech-
nique. Therefore, a distance measure between state-action-
pairs is needed. Such a distance measure is also described
in this work.

Following this section, we first review both traditional
and relational reinforcement learning, then discuss the kind
of reward given in our application, present our approach to
modelling the states and actions, and conclude by present-
ing our application and its results in more detail.

2 Reinforcement Learning

Reinforcement learning (RL) [1] is a computational tech-
nique that allows an autonomous entity named agent, to
learn a certain behavior using a trial and error technique. In
each trial, the agent performs a sequence of actions. Each
actiona belongs to the set of all possible actionsA. Af-
ter an action is performed, the environment switches to a
particular states out of the set of all statesS. If a termi-
nal state is reached, the sequence will end. These terminal
states are absorbing, meaning that all subsequent actions do
not change the state. Such sequences of actions are com-
monly called episodes.

The agent gets a feedback from the environment after
each state change. Such a feedback is a numerical value
representing how desireable the current state of the envi-
ronment is. It is usually called rewardr and registered by
the agent.

In any case, the reward function is unknown to the
agent. The rewards are the only information that is taken
into account when deciding on the next action to take. The
simplest way to gather this information is to attach a value
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V (s) to each state and update it according to the received
reward. The action that leads to the best state gets the high-
est probability to be examined further in the next episodes.
This way, the agent behaves more and more optimally in
the sense that it seeks to maximize the received reward
while additionally spending an amount of time exploring
unknown actions.

More formally, a reinforcement problem is modelled
by the following components:

- A set of statesS

- A set of actionsA

- A transition functionδ : S × A → S

- A reward functionr : S × A → R

Obviously, the action to be taken in a state has to be
chosen. This entity is usually called policyπ. Because
these policies use some means to decide on the actions, the
value of the states depend on those means and therefore on
the policy. Given the fixed policyπ, the goal consists in the
maximization of

V π(st) =

∞
∑

i=0

γirt+1,

which is the sum of all rewards of the future steps
(discounted by a factorγ, to stay finite). Within all possible
policies, the best policyπ∗ generates the highest values.

π∗ = argmaxπ(V π(st))

V ∗(st) = V π∗

(st)

Fortunately, there is a way to compute the optimal
policy without iterating through all possible policies. This
is achieved by defining a function that rates state-action-
pairs in contrast to the rating of states in theV π-functions.
This new function is calledQ(uality)-function. It’s defini-
tion is

Q(s, a) = r(s, a) + γV ∗(δ(s, a))

This function can be computed iteratively by using the up-
date equation

Q(s, a) = r + γ max
a′

Q(s′, a′) (1)

The last equation does not refer to a policy. Therefore,Q-
learning is called a policy-free learning scheme.

3 Relational Reinforcement Learning

A serious problem inQ-learning is the so called curse of
dimensionality and the poor generalization when using a
simple table to store theQ-values.

The first refers to the exponential increase in the num-
ber of states with the number of state attributes and conse-
quently the same increase in table size.

The last reflects the fact that a slight change in ei-
ther state or action space renders the whole Q-table use-
less. Than, re-learning from scatch is required, although
the problem probably has changed only slightly.

Relational reinforcement learning encodes the states
using propositional logic to overcome these limitations.
The exponential increase of state-action-pairs is handled by
sparsely representing theQ-function through learned ex-
amples, and then applying a regression technique. There
are different approaches to this, such as a decision tree [2],
a kernel based appraoch [5], or a k-nearest-neighbor ap-
proach [4].

Additionally, that allows the user to teach knowledge
in advance to speed up the process. This can also be used
to train the RL system with a small problem first until an
acceptable solution is found and then use the result as a
basis for a more complex problem.

In this paper we adopt the k-nearest-neighbor ap-
proach of [4], which is now briefly reviewed.

The basic idea is to approximate theQ-value qi of
state-action-pairi by comparing the logical description of
that pair to the descriptions of the examples found so far.
The closest of these examples are used to derive the desired
approximation̂qi. A suitable formula is given by

q̂i =

∑

j

1
disti,j

qj

∑

j

1
disti,j

(2)

which is simply the weighted arithmetical mean of the near-
estQ-values. The weight is given by a reciprocal distance
measuredisti,j, which depends on the logical modelling
of the state-action-pairs and is defined in the following sec-
tion.

4 The Markovian Property and Zero-
Rewards

In general, reinforcement learning wants the states to fulfill
the Markovian Property. That means, all the information
necessary to predict the potential future reward has to be
enclosed in the states’ representation.

This requirement poses difficulties for applications
aiming at learning object properties from moving a cam-
era around them, because the future camera movement has
to depend on the information gathered so far.

If we base our reward at each step on the informa-
tion that is gathered from the observed object, then the
degree of novelty of this information should substantially
contribute to the height of the reward. This kind of reason-
ing is tempting, but must be considered a trap. Because the
RL approach seeks to maximize the reward of a sequence
of actions, such a procedure will result in the agent scan-
ning the object completely until no new information can be
found, and then heading to the goal state.

Therefore, we do not reward a simple movement at
all. The only action that receives a reward is the goal state.
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Figure 1. A discount factor in an RL setting with0 reward
everywhere except for the goal state. This leads to a pref-

erence of short paths.

If we look at equation (1), we will now notice the impor-
tance ofγ ∈]0; 1[. If we setγ := 1, all Q-values will
approach1, sincer is always0. But with γ ∈]0; 1[ we
will find a greaterQ-value attached to states closer to the
goal than to those farther away. This is roughly depicted in
figure 1 and leads to the desired preference of short paths
towards the goal state.

It may be thrown in that negative rewards pose a third
option. And similar to the zero-reward approach the short-
est path to the goal state is expected to be taken. This time
however, the distance is modified by the negative rewards
and may be used to indicate a path somehow easier to fol-
low. This is left for future investigations.

5 Modelling

In an application where the entities which must be captured
inside the states can assume values from a continuous do-
main, the design of the state representation can be diffi-
cult. As stated above, it is important to keep the state space
small, because the number of possible paths from one state
to the final state increases exponentially. This is also known
as “the curse of dimensionality”. The usual solution in an
application with moving cameras is to limit the camera to
certain positions on a sphere [3].

In contrast, our approach will allow arbitrary posi-
tions, because those will be encoded only implicitly by the
appearance of the object in terms of visible features. The
information captured is depicted in figure 2, and an encod-
ing of the view looks like this:

inC(FP1) ∧ inC(FP6) ∧ inC(FP5) ∧

inB(FP5) ∧ inA(FP3) ∧ inA(FP17)

The action part of the state-action-pair is captured as
a direction. The clause describing this is

to(α)

where the parameter is simply an angleα ∈ [0; 2π].
To aspects have to be mentioned in this context.

Firstly, it is unclear from which directions to choose and

FP6

FP17

FP3

FP5

FP1
C

B
A

Figure 2. Relevant information captured in a state

Figure 3. The similarity of actions is measured by the dis-
tance of the camera centers after moving them in the direc-

tion of the angle in their correspondingto-clause.

whether the distribution of the visible features should have
an impact on this choice. Whether or not this would be
beneficial will be tested by adding clauses that describe the
feature density in certain parts of the image in some of the
experiments.

densityH1(β1) ∧ densityH2(β2) ∧

densityL1(β3) ∧ densityL2(β4)

These clauses encode the directions in which the two high-
est and lowest feature densities have been found, respec-
tively.

Secondly, we have to cope with the disadvantage that
the direction is 2D only, missing a component describing
the distance to the object. To overcome this limitation, the
observer in our experiments is capable of stereovision, try-
ing to maintain a fixed distance.

As stated above, equation (2) includes a reference to
a function calleddisti,j which measures the distance be-
tween two state-action-pairs. To make things easier, our

description.
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distance function is based on a similarity measuresimi,j :
(i, j) → [0; 1].

disti,j = 1 − simi,j

This similarity measure is defined as a product of the state
similarity and the action similarity.

simi,j = simS
i,j · sim

A
i,j

with

simS
i,j = f





∑

X∈{{a,b}|a,b∈C}

w{a,b}si,j,{a,b}





simA
i,j = f(si,j,to)

andC := {inA, inB, inC}.
The si,j,X functions measure the similarities. The

weightsw{a,b} control the influence of the different aspects
of the state representation on the distance measure.

The functionf is used to adjust the punishment linked
to si,j,X and to ensure the range is limited to[0; 1]. We
use a sigmoid function for this purpose and to additionally
impose a soft threshold to punish bad values quickly while
allowing small deviations from the optimum:

f(x) =
1

1 + e−s(x−i)

where s is the steepness of the slope (set to100 in our tests)
andi is the inflection point (set to0.9).

This leaves the similaritiessi,j,X to define. The sim-
pler of those is the similaritysi,j,to, the distance according
to the differentto-clauses. Two of these clauses point to
the same state if the camera captures the same features after
moving in that direction. To skip the actual computation of
this, we simply use the distance of the camera centers after
moving them along the directions the actions point to. The
approach is depicted in figure 3. Of course, this procedure
is only valid, if the viewing direction of the cameras are
similar. If this is not the case, the state similaritysimS

i,j

would be low in the first place resulting in a low overall
similarity value anyway.

The similarity component according to states is a sim-
ilarity measure of image content. This is slightly more
complex. The idea is to base its calculation on the amount
of overlap. The more one image overlaps with another, the
more similar the images will be considered. For example, if
theA-regions overlap, the states can be considered similar.

The implementation of this idea uses a simple scheme
for the valuesw{a,b} applying the following weights:

w{a,b} a
inA inB inC

inA 1.0 0.5 0.3
b inB 0.5 0.3 0.2

inC 0.3 0.2 0.1

Figure 4. Example Objects.

Since the area under the center region is relatively small,
these features get a significant higher weight.

Finally, the similaritiessi,j,{a,b} are calculated as

si,j,{a,b} =
|cla(i) ∩ clb(j)|

|cla(i) ∪ clb(j)|

whereclX(i) maps the index of state-action-pairi to the
set of all itsX-clauses. This function simply relates the
cardinality of the intersection with the cardinality of the
union.

6 Application

The previously described framework has been used to build
an application that learns to discriminate two similar ob-
jects. These objects look essentially the same except for
a minor difference, for example in texture as seen in fig-
ure 4. It is learned how to perform an effective scan of an
object to tell which one in the database it belongs to. The
database was created by scanning the objects from many
viewpoints and calculating visible features and their de-
scriptors for each viewpoint.

6.1 Feature and Descriptor Calculation

To recognize and match feature points througout images
taken from different camera positions, they are required to
be reasonable stable. To comply with this requirement, we
use a scale space Harris detector, combining the real time
scale space of Lindeberg [6] with the Harris detector [7],
while modifying the latter to make it work in a scale space
pyramid [8].

The descriptors attached to these feature points are
SIFT descriptors [9]. While they only use those feature
coordinates that pose maxima in scale space, we take all
coordinates into account (as long as they are maxima in
their scales). This overcomes some stability issues with the
original approach [10].

As a result we get up to 500 features in each image.
To reduce this amount, each camera takes a second image
from a slightly different view point. Then we apply a fea-
ture matching using a kd-tree [11]. The resulting corre-
spondences are filtered by applying the epipolar constraint
[12]. Only those feature points that survive this procedure
are stored in our database. We aim at about 100 features
for each view. Figure 5 shows an example matching of two
different views of the globe.

256



Figure 5. An example for matching is displayed. The cor-
respondences, the epipolar geometry, and the circles repre-
senting the different feature regions are depicted. Note the
wrong correspondences. Though they are the best found
along the epipolar lines, the score of this matching is easily

excelled by a more similar view.

6.2 Reward

As noted in section 4, the reward is zero for all actions ex-
cept those reaching the goal state. In that case, the reward is
one. In each state an imageImg is captured. After comput-
ing features and their descriptors of this image, the descrip-
tors are used to identify the goal state. This identification
is a two phase process.

Phase 1 iterates through the objects inside the
database and identifies for each object the most similar
view. This is basically an image retrieval task. Given
one objectObj, our approach begins with building a kd-
treeKDTObj with all descriptors belonging toObj. For
each descriptorDImg,i of Img, the most similar descriptor
DObj,j in KDTObj is identified, and its Euclidean distance
d(DImg,i, DObj,j) is computed. This distance is used to
vote for the viewDObj,j belongs to. A distance of zero
scores a full vote, a distance greater than zero decreases the
vote score subject to

score(d) =
1

1 + d
.

Figures 6 and 7 show resulting pairs of images. This sim-
ple approach works reasonably well, failing rarely in our
experiments.

Phase 2 sorts all objects according to the score of their
highest scoring view from high to low. The first objectO1

of these is returned as the result after attaching a value of
certainty. This values is computed using the following
distance measure to the second best objectO2:

s =
score(O1) − score(O2)

score(O1)

If this value exceeds a certain threshold (e.g.,0.25), the ob-
ject is considered identified, and the current episode ends.

Figure 8 shows the development of the sample set
constituting theQ-function. After the first episode only

Figure 6. Image retrieval examples. The difference be-
tween the objects is the tattoo around the belly button. The
left image is observed by the agent and the right is the most
similar according to our retrieval algorithm. The last exam-
ple is assigned wrongly, but has also a very low confidence.
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Figure 7. Image retrieval examples. The first two slightly
different views are assigned to the same database view. The
third example is an assignment to a rotated view. This is
possible because the SIFT descriptors are rotationally in-
variant. The last one is, again, clearly a mistake, but has a

low confidence value.

three samples are found inside the sample set. The begin-
ning of the development of theQ-function is easily ver-
ified. The first sample approximates theQ-function as a
constant0, until the first step encounters a reward of1.
Then, two additional samples are inserted: the state-action-
pair that led to the goal state and the goal state itself. Fur-
ther episodes insert samples according to the same rules as
in the original RIB-algorithm [4].

7 Conclusion and Future Work

We have presented first results of a vision system that is
able to discriminate similar objects. It uses the technique
of relational reinforcement learning. The results can be re-
garded as preliminary as we have carried out a small num-
ber of experiments only and also used a limited image data
base. We also described a simple image retrieval system
and object recognition scheme that are used to generate the
rewards and mark the end of an episode.

This work leads to a number of possible future exten-
sions. First of all the image retrieval using a simple kd-tree
is quite slow and needs an acceleration. This is because
we used 128 images containing about 100 feature points
for each object. Using the best-bin-first-technique of [11]
speeds up the process a little, but the matching reliability
suffers quickly and values below 10000 comparisons are
strongly discouraged.

Besides this performance issue, it is obvious that the
data we hold is vastly redundant. We plan to establish a
feedback loop to use the learned data to indicate views or
feature sets that should be shared across objects.

Integrating the generation of the object database into
the learning algorithm would result in an application letting
the agent explore its environment and constantly adding
features into the object database. Similar objects can share
subsets of features. In addition, we will develop a criterion
that groups feature sets as belonging to the same unique
object type. In future research we will also examine the
influence of the size of the image data base on the perfor-
mance of our algorithm.
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Figure 8. Samples used to approximate theQ-Function af-
ter 1, 2, 5, and 10 episodes (top to bottom).
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