
Relational Reinforcement Learning Applied to

Appearance-Based Object Recognition

Klaus Häming and Gabriele Peters

University of Applied Sciences and Arts,
Computer Science, Visual Computing,

Emil-Figge-Str. 42, D-44221 Dortmund, Germany
gabriele.peters@fh-dortmund.de

http://www.inf.fh-dortmund.de/personen/professoren/peters/

Abstract. In this paper we propose an adaptive, self-learning system,
which utilizes relational reinforcement learning (RRL), and apply it to
a computer vision problem. A common problem in computer vision con-
sists in the discrimination between similar objects which differ in salient
features visible from distinct views only. Usually existing object recogni-
tion systems have to scan an object from a large number of views for a
reliable discrimination. Optimization is achieved at most with heuristics
to reduce the amount of computing time or to save storage space. We
apply RRL in an appearance-based approach to the problem of discrim-
inating similar objects, which are presented from arbitray views. We are
able to rapidly learn scan paths for the objects and to reliably distinguish
them from only a few recorded views. The appearance-based approach
and the possibility to define states and actions of the RRL system with
logical descriptions allow for a large reduction of the dimensionality of
the state space and thus save storage and computing time.

Keywords: Relational reinforcement learning, computer vision,
appearance-based object recognition, object discrimination.

1 Introduction

Relational reinforcement learning (RRL) is an attempt to extend the applicabil-
ity of reinforcement learning (RL) by combining it with the relational description
of states and actions. Disadvantages of RL are firstly its inability of handling
large state spaces unless a regression technique is applied to approximate the
Q-function. Secondly, the learned Q-function is neither easily interpretable nor
easily extendable by a human, making it difficult to introduce a priori knowledge
to support the learning process. And last, a generalization from problems the
system was trained on to different but similar problems can hardly be done using
classical RL. In [1], the relational representation of the Q-function was proposed
and studied to overcome these issues. In this paper, we examine the applica-
bility of the relational approach to a computer vision problem. The problem
we consider is common in many computer vision applications (e.g., in manufac-
turing) and consists in the discrimination between similar objects which differ

D. Palmer-Brown et al. (Eds.): EANN 2009, CCIS 43, pp. 301–312, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.inf.fh-dortmund.de/personen/professoren/peters/

302 K. Häming and G. Peters

slightly, e.g., in salient features visible from distinct views only. In our system
a camera is rotated around an object (i.e., it is moved on an imaginary sphere
around the object) until the system is able to reliably distinguish two similar
objects. We want an agent to learn autonomously how to scan an object in the
most efficient way, i.e., to find the shortest scan path which is sufficient to decide
which object is presented. We want our approach to be general enough to extend
from our simulated problem to a real world problem. Therefore we avoid using
information that is uncertain or completely lacking in a real world application.
This includes the camera parameters. Thus, in the state representation neither
the camera’s position nor its viewing direction are encoded, rather the design
is purely appearance-based. The agent receives no information on the current
3D position of the camera. The only utilizable information is the appearance of
the current view of the object in form of features visible in the view at hand.
This will lead to learned rules such as: “seeing those features, an advantageous
next action is to move the camera in that direction”. This direction is encoded
relatively to the current view of the agent.

2 Reinforcement Learning

RL [2] is a computational technique that allows an autonomous agent to learn a
behavior via trial and error. A RL-problem is modeled by the following compo-
nents: a set of states S, a set of actions A, a transition function δ : S × A → S,
and a reward function r : S × A → R. The reward function is unknown to the
agent, whose goal is to maximze the cumulated reward. In Q-learning, the agent
attaches a Q(uality)-value to encountered state-action-pairs. After each transi-
tion, this Q-value of the state-action-pair is updated according to the update
equation:

Qt+1(s, a) = r(s, a) + γ max
a′

Qt(s′, a′).

In this equation, s′ = δ(s, a), while γ is a discount factor ensuring that the Q-
values always stay finite even if the number of states is unbounded. As explained
later, in our application it will also be helpful in search of a short scan path.
During exploration, in each state the next action has to be chosen. This is done
by a policy π. In Q-learning, its decision is based on the Q-values. We use the
ε-greedy policy, which chooses with equal probability one of those actions that
share the highest Q-value, except for a fraction of choices controlled by the
parameter ε, in which the next action is drawn randomly from all actions.

3 Relational Reinforcement Learning

RLL uses propositional logic to encode states. Since this leads to a sparse repre-
sentation of the Q-function, the number of state attributes for a given problem
is smaller in the RRL approach than in the RL approach. Another advantage
of RRL consists in the fact that slight changes in the state or action spaces do
not necessarily lead to the mandatory relearning-from-scratch give in RL. In our

RRL Applied to Appearance-Based Object Recognition 303

application of learning short, discriminative scan paths we build a sparse repre-
sentation of the Q-function by using a selection of encoutered sample views of the
objects and apply a regression technique. There are different approaches to this,
such as decision trees [1], kernel-based approaches [3], or k-nearest-neighbour
approaches [4]. In this paper we adopt the k-nearest-neighbour approach of [4],
which is now briefly reviewed. The basic idea is to approximate the Q-value qi of
state-action-pair i by comparing the logical description of that pair to the logical
descriptions of the examples of state-action-pairs found so far. The n closest of
these examples are used to derive the desired approximation q̂i. The formula is
given by

q̂i = (
∑n

j=1

1
disti,j

qj)/(
∑n

j=1

1
disti,j

)

which is simply the weighted arithmetical mean of the nearest Q-values. The
weight is given by a reciprocal distance measure disti,j , which depends on the
logical modeling of the state-action-pairs and is defined in Sec. 4. We use a value
of n = 30. The strategy to decide whether an example gets included into the
Q-function is basically to test if this example contributes a significant amount
of new information, the Q-function needs denser sampling, or none of these. The
measure of information novelty is based on the local standard deviation σl of
the Q-values in the vicinity of the current state-action-pair. If the difference of
the Q-value qi of the current example to its predicted value q̂i exceeds σl, it is
added to the database, which means that a function quite new takes the value
true:

quite new(qi, c1) =
{
true, |q̂i − qi| > c1 σl

false, else

for a constant c1. To decide whether a denser sampling is needed, we relate σl

to the global standard deviation σg of the Q-values of all examples constituting
the Q-function, which means that we consider a function quite sparse:

quite sparse(c2) =
{
true, σl > c2σg

false, else

for a constant c2. Both criteria are taken from [4].

4 Appearance-Based Modeling

In this section we first describe how we represent the states and actions in our
application. Afterwards we explain the measure of the distance disti,j between
two state-action-pairs i and j.

Definition of States. In a RL-environment the design of the state representation
can be difficult, if the states have to represent continuous information. As stated
above, it is important to keep the state space small, because the number of
possible paths from one state to the final state increases exponentially. The usual
solution in an application with moving cameras is to limit the camera to certain

304 K. Häming and G. Peters

positions on a sphere [5]. In contrast, our approach will allow arbitrary camera
positions, because the positions will be encoded only implicitly by the perceived
visual appearance and not by camera parameters. This appearance is captured
in a set of features (e.g. interest points, but not necessarily). Each feature fi

is attached to the view in which it is detected. For each view we describe the
visibility of a feature by the following expression: visibility(feature fi) A state
can now be defined by a list of visible features. The notation fi stands for a
feature and the index identifies this feature globally, i.e., across views. Since it
is only necessary to identify whether or not two image-features represent the
same global feature when computing the similarity between states, a pair-wise
feature matching can be used to implement this global assignment. An encoding
of a state can exemplarily look like this: visibility(f1) ∧ visibility(f7) ∧
visibility(f14) This means that in this state the globally numbered features
f1, f7, and f14 are visible. Thus, the current state of the RL system is defined
by the features which are visible in the current view.

Definition of Actions. Actions of the agent are possible camera movements
around an object. They are defined by their direction. As we want to proceed
purely appearance-based we cannot utilize 3D information, thus these directions
can be defined only in the 2D image plane of the current view. This is illus-
trated in the left diagram of Fig. 1. The expression which describes an action
has the form to(α) where the parameter is simply an angle α ∈ [0; 2π] taken
around the image center of the current view. Since the camera moves around
the sphere of the object in 3D space, we have to derive from α a direction in
3D space. For this purpose we project the in-plane direction onto the object’s
sphere and choose a fixed step length as shown in the left diagram of Fig. 1.
The choice of the next direction of movement is motivated by the idea that ad-
vantageous directions are those which promise a change in the density of the
features. The left and right images of Fig. 2 show directions the agent is allowed
to choose from for two example states. These directions are calculated by form-
ing a linearly interpolated histogram of the feature point density. Each of 36 bins
represents a range of 10 degrees, in which the number of features is counted. If
bini is the number of features in bin i, the value of each bin is then replaced
by bini := 2 · bini − bini−1 − bini+1, i = 0, . . . , 35. Finally, the maxima of the
resulting histogram define the valid directions for the next camera movement.
The left part of Fig. 2 explains the derivation of actual camera movements in
3-space from their directions in 2-space of image planes. The centers C1 and
C2 of two cameras are shown. After applying the movements determined by the
actions to(α1) and to(α2), respectively, the cameras take their new positions C′

1

and C′
2. These new positions are unambiguous, because the distance of the image

plane to the center of the object remains constant. The distance d between the
new camera positions determines the similarity of the actions to(α1) and to(α2).
The right part of Fig. 2 illustrates the behavior of the state similarity for two
examples. On the abscissa the angles in the range of [−π; π] of a camera are
logged, which is rotated around an object with a fixed axis through the center
of the object and a step size of 0.1 radians. The ordinate represents the values

RRL Applied to Appearance-Based Object Recognition 305

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

−3 −2 −1 0 1 2 3

dreezle
world

threshold

Fig. 1. Left: Derivation of actual camera movements in 3-space from their directions
in 2-space of image planes. Right: Behavior of the state similarity for two examples.

of the state similarity function si,j,visibility. For each of the recorded views
the state similarity to a reference view is calculated. The red curve represents
the similarity values for the object ”dreezle”, the reference view of which is de-
picted in the upper left, the green curve does the same for the reference view of
the object ”world”, shown in the upper right. Both reference views have been
recorded at the position of zero degrees. The similarity function provides reliable
values, even for the object ”world”, where the reference view contains very few
features only. In addition, the inflection point p we use for the threshold function
is drawn as dotted line at the similarity value of 0.4.

Distance Measure for State-Action-Pairs. We now examine the distance function
disti,j mentioned in Sec. 3. It is based on a similarity measure simi,j : (i, j) →
[0; 1]:

disti,j = 1 − simi,j .

This similarity measure is defined as a product of the state similarity and the
action similarity. simi,j = simS

i,j · simA
i,j . Both, simS and simA, are func-

tions with range [0; 1]. They are defined as simS
i,j = t(si,j,visibility) and

simA
i,j = t(si,j,to), where t is a sigmoidal function that maps its argument to

[0; 1]. It imposes a soft threshold to punish poor values quickly while at the same
time allowing small deviations from the optimum: t(x) = 1

1+e−µ(x−p) where μ is
the steepness of the slope (set to 20 in our tests) and p is the inflection point
(set to 0.4 for simS

i,j and to 0.8 for simA
i,j). The unthresholded state similar-

ity si,j,visibility is based on the amount of overlapping between two views.
A larger overlap leads to a larger similarity. The overlapping is measured by
counting the features that reference the same global feature. This is measured

306 K. Häming and G. Peters

Fig. 2. Left: Appearance-based choice of actions for two objects. Red lines indicate
possible directions for the next camera movement. Features are indicated by red dots
on the object (close to the direction lines). The directions are computed as local maxima
of the variation of the feature density. Right: Short scan paths are enforced by using a
discount factor γ ∈]0; 1[and giving zero rewards in all states except for the goal state.
A shorter path leads to a less discounted reward. The exponents of γ are derived from
the iterated application of the update equation.

by actually carrying out a feature matching between both views. The relation of
the amount of same features to the amount of all features is used as the similarity
measure. Let visible(x) be the set of all features visible in state x. Then

si,j,visibility =
visible(i) ∩ visible(j)
visible(i) ∪ visible(j)

. (1)

The right diagram of Fig. 1 illustrates the property of this similarity measure by
means of two examples. The term si,j,to expresses the unthresholded similarity
between two actions. It depends on the to-expressions introduced in Sec. 4. Two
of these expressions point to the same state if the cameras capture the same
features after moving in those directions. We use the distance of the camera
centers after moving them along the directions the actions point to. The approach
is also depicted in the left diagram of Fig. 1.

5 Application

The previously described framework has been used in an application that learns
scan paths which are short but nevertheless allow the discrimination of two
very similar objects. These objects look essentially the same except for a minor
difference, for example in texture as seen in the left column of Fig. 3. This figure
illustrates the following. Left: example objects and their differences. Upper row:
The two versions of object ”dreezle” can be distinguished by the starlike figure
on its belly. Lower row: The two versions of object ”world” can be distinguished
by the yellow scribbling. Right: Phase 1 of the identification of the goal state
(determining the most similar view for each object). Each row shows one example
of the image retrieval process. The left column shows the current view of the
agent. For each object in the database we determine the most similar view to the
one in the left column. The right column shows the determined most similar view
of only one special object, namely of that object which together with the object

RRL Applied to Appearance-Based Object Recognition 307

Fig. 3. Left: Example objects and their differences. Right: Phase 1 of the identification
of the goal state (determining the most similar view for each object).

of the left column makes up the pair of similar objects. To set up the learning
task for each pair of objects, both objects are scanned and their features are
stored in a database. This database is used to generate the reward for the agent.
One of these objects is then presented to the agent. The agent moves around the
object, records images, and stops when she receives a reward of 1. Then the next
episode starts. As a result, the agent learns to scan an object in such a way that
she is able to distinguish it from a very similar object stored in the database.

Feature Detection and Calculation of Descriptors. To recognize and match fea-
ture points between images of an object, which have been taken from different
camera positions, they are required to be reasonably stable. To comply with this
requirement, we use a scale space Harris detector, combining the real time scale
space of Lindeberg [6] with the Harris detector [7], while modifying the latter to
make it work in a scale space pyramid [8]. To attach descriptors to these feature
points we use Lowe’s SIFT descriptors [9]. While he only uses those feature coor-
dinates that pose maxima in scale space, we take all feature points into account
as long as they are a local maximum in their own scale. This overcomes some
stability deficiencies with the original approach that we experienced and that
have been reported in [10] as well. As a result we get up to 500 features in each
image. To reduce this amount, each camera takes a second image from a slightly
different view point. Then, we apply a feature matching using a kd-tree [11]. The
resulting correspondences are filtered by applying the epipolar constraint [12].
Only those feature points that survive this procedure are stored in our database.
We aim at about 150 features for each view.

Rewards. We aim at learning the shortest scan path around the sphere of an
object to a view that allows for the reliable discrimination from another similar
object. As the agent aims to maximize the sum of all rewards, positive rewards
in each step will keep the agent away from the goal state as long as possible. For
this reason we do not reward a simple movement at all. The only action that

308 K. Häming and G. Peters

receives a reward is a movement to the goal state. A shortest path can be made
attractive to the agent by (ab)using the discount factor γ. If we set γ := 1, all
Q-values will approach 1, since r is always 0. But with γ ∈]0; 1[we will find a
greater Q-value attached to states closer to the goal than to those farther away.
This is illustrated in the right of Fig. 2 and leads to the desired preference of
short paths towards the goal state.

Identification of the Goal State. As noted in the last subsection the reward is
zero for all actions except those reaching the goal state. In fact, in our setup the
goal state is defined as the state where the reward is one. In each step an image
I is captured. After computing features and their descriptors of this image, they
are used to identify the goal state. This identification proceeds in two phases.
Phase 1 iterates through all objects inside the database (which consists of several
pairs of pairwise similar objects) and identifies for each object the most similar
view. This is basically an image retrieval task. Given one object O, our approach
begins with building a kd-tree KO with all descriptors belonging to O. For each
descriptor DI,i of I, the most similar descriptor DO,j in KO is identified and
its Euclidean distance d(DI,i, DO,j) is computed. This distance d is used to vote
for all views of object O, DO,j belongs to: score(d) = 1

d (taking the prevention
of zero division into account). These scores are accumulated over all descriptors
of I for each view separately. The one which receives the largest sum is taken
as the most similar view of object O to I. This is done for all objects O in the
database. The right column of Fig. 3 shows resulting pairs of images. Phase 2
aims at the decision whether the most similar images, e.g., IO1 and IO2, of two
candidate objects O1 and O2 show a significant difference. If so, we have reached
our goal of finding the most discriminative views of two similar objects. Then
we can mark the current state as a goal state by giving a reward of one. Finally
we can find out which of the similar objects we have currently at hand. To do
this, we reuse the similarity measure si,j,visibility of Sec. 4. We compute the
similarity of image I (corresponding to state i in (1)) to both candidates and
take a normalized difference:

g =
|sI,IO1,visibility− sI,IO2,visibility|

max(sI,IO1,visibility, sI,IO2,visibility)
(2)

If this value g exceeds a certain threshold, the most discriminative view between
the two similar objects is considered identified and the current episode ends.
(Once this discriminative view is identified it is simple to determine which of
both objects has been scanned.) For our learning scheme a threshold of 0.15
suffices. Fig. 4 shows results of this approach. Phase 2 of the identification of the
goal state (finding the discriminative view) is illustrated here. On the abscissa the
angles in the range of [0; 2π] of a camera are logged, which is rotated around an
object with a fixed axis through the center of the object. The ordinate represents
the values of the normalized difference g (cf. (2)). Each value of the red curve
is computed from three images: the test image I and the two best candidate
images IO1 and IO2. For the red curve image I shows the ”dreezle” figure at a
zero rotation angle, depicted on the left in the upper row of Fig. 3. One example

RRL Applied to Appearance-Based Object Recognition 309

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 1 2 3 4 5 6

dreezle
world

threshold

Fig. 4. Phase 2 of the identification of the goal state (finding the discriminative view)

for IO1 is the left image in the bottom row, which shows one view of the ”dreezle”
with the star on it belly, IO2 (which is not shown) is the same view of the object
without the star. The resulting difference value g for this example is larger than
the threshold of 0.15 marked by the dotted line. Thus this view is discriminative
enough to tell both objects apart. In contrast, the view in the middle of the
bottom row is not discriminative enough, as it does not reveal if the object has a
star on its belly. This fact is represented well by the low value of the normalized
difference function g. The upper row and green curve show more examples for the
object ”world”. Here the reference view I has also been recorded at the position
of zero degrees. This diagram illustrates that the objects can be distinguished
more reliably with a larger visibility of their discriminative part.

Results. The left column of Fig. 5 illustrates the development of the set of sam-
ples of state-action-pairs constituting the Q-function. After the first episode only
two samples are found inside the sample set. We will briefly examine these two

310 K. Häming and G. Peters

-40-20 0 20 40

-40-20 0 20 40

-40

-20

 0

 20

 40

"points.dat"

 0

 0.2

 0.4

 0.6

 0.8

 1

-40-20 0 20 40

-40-20 0 20 40

-40

-20

 0

 20

 40

"points.dat"

 0

 0.2

 0.4

 0.6

 0.8

 1

-40-20 0 20 40

-40-20 0 20 40

-40

-20

 0

 20

 40

"points.dat"

 0

 0.2

 0.4

 0.6

 0.8

 1

-40-20 0 20 40

-40-20 0 20 40

-40

-20

 0

 20

 40

"points.dat"

 0

 0.2

 0.4

 0.6

 0.8

 1

Fig. 5. Left: Learned rules in the form of state-action-pairs used to approximate the
Q-function. Right: Application of the learned rules in a discrimination task.

samples to comprehend the constitution of the Q-function. The first reward the
agent gets after the first episode is zero. Because nothing is known about the Q-
function, this state-action-pair is immediately added to the set of samples. This
sample predicts the reward of all following state-action-pairs also as zero. This
holds true until the first step encounters a reward of 1. Then one additional sam-
ple is added to the Q-function: the state-action-pair that led to the goal state.
The state-action-pair with the goal state is not inserted because it does not meet
the conditions presented in Sec. 3. This is the end of the first episode. Further
episodes insert samples according to the rules presented in the end of Sec. 3.
Basically, it is tested if the Q-function needs denser sampling or not. The right
column of Fig. 5 shows the paths an agent takes when she uses the Q-functions
depicted in the left column of Fig. 5. It is obvious that the paths get shorter the
more episodes have been completed. The examples clearly indicate the applica-
bility of the RRL approach to computer vision learning tasks, especially because
of its capability of handling continuous domains. Additionally, the Q-function
consists of comprehensive state-action-pairs, where each pair encodes a rule that
indicates the agent the merit of moving the camera in a certain direction with a
given view at hand. This way, a human trainer can easily add information to the
Q-function, e.g., by simply presenting a view of the object and a corresponding
preferable direction. In addition, the relational encoding removes dependencies
on coordinate systems, which may arise when using traditional RL approaches
that use camera positions as their basis of a state’s encoding. Fig. 5 in detail:

RRL Applied to Appearance-Based Object Recognition 311

Left column: Learned rules in the form of state-action-pairs used to approximate
the Q-function. The axes encode the 3D space with the object in the center of
the coordinate system (not shown in these diagrams). A state is given as the
origin of a vector and encodes a current view of the object, an action is given by
the direction of a vector and encodes the next direction of the movement of the
camera. (Top diagram: after 1 episode, bottom diagram: after 3 episodes.) The
color encodes the assigned Q-value. Red stands for an expected accumulated
reward of zero, while green indicates a reward of one. Right column: Application
of the learned rules in a discrimination task. Here the paths are depicted an agent
chooses based on the learned Q-function until a successful discrimination took
place or a maximum number of steps has been exceeded. (Top diagram: using
the Q-function learned after 1 episode (the agent has not found a path within 40
steps), bottom diagram: using the Q-function learned after 10 episodes.) Again,
the color encodes the predicted Q-value of the path taken.

6 Conclusion

We proposed an adaptive, self-learning system which utilizes RRL and applied
it to the problem of the discrimination between similar objects which differ, e.g.,
in salient features visible from distinct views only. Usually existing object recog-
nition systems have to scan an object from a large number of views for a reliable
recognition. In our RRL approach we introduced a representation of states and
actions that are entirely based on the perceived appearance of an object. This
enables the system to rapidly learn scan paths for objects and to reliably dis-
tinguish similar objects from only a few recorded views. The appearance-based
approach and the possibility to define states and actions of the RRL-system with
logical descriptions allow for a large reduction of the state space and thus save
storage and computing time.

7 Future Research

This work leads to a number of possible future extensions. The image retrieval
using a simple kd-tree is quite slow and can be accelerated. Using the best-bin-
first-technique of [11] accelerates the process slightly, but the matching reliability
deteriorates quickly and values below 20.000 comparisons are strongly discour-
aged. An integration of the generation of the object database into the learning
algorithm would result in a system enabling the agent to explore her environ-
ment and constantly add features into the object database. Similar objects can
share some of the feature sets. However, to generate representations of distinct
objects, a criterion will have to be developed that groups feature sets according
to their belonging to the same unique object type.

Acknowledgments. This research was funded by the German Research Asso-
ciation (DFG) under Grant PE 887/3-3.

312 K. Häming and G. Peters

References

1. Dzeroski, S., De Raedt, L., Driessens, K.: Relational reinforcement learning. In:
Machine Learning, vol. 43, pp. 7–52 (2001)

2. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

3. Gartner, T., Driessens, K., Ramon, J.: Graph kernels and gaussian processes for
relational reinforcement learning. In: Inductive Logic Programming, 13th Interna-
tional Conference, ILP (2003)

4. Driessens, K., Ramon, J.: Relational instance based regression for relational rein-
forcement learning. In: Proceedings of the Twentieth International Conference on
Machine Learning, pp. 123–130 (2003)

5. Peters, G.: A Vision System for Interactive Object Learning. In: IEEE International
Conference on Computer Vision Systems (ICVS 2006), New York, USA, January
5-7 (2006)

6. Lindeberg, T., Bretzner, L.: Real-time scale selection in hybrid multi-scale repre-
sentations. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695,
pp. 148–163. Springer, Heidelberg (2003)

7. Harris, C., Stephens, M.: A Combined Corner and Edge Detector. In: 4th ALVEY
Vision Conference, pp. 147–151 (1988)

8. Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors.
International Journal of Computer Vision 60(1), 63–86 (2004)

9. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Com-
put. Vision 60(2), 91–110 (2004)

10. Baumberg, A.: Reliable feature matching across widely separated views. In:
CVPR 2001, p. 1774 (2000)

11. Beis, J., Lowe, D.: Shape indexing using approximate nearest-neighbor search in
highdimensional spaces (1997)

12. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd
edn. Cambridge University Press, Cambridge (2004)

	Relational Reinforcement Learning Applied to Appearance-Based Object Recognition
	Introduction
	Reinforcement Learning
	Relational Reinforcement Learning
	Appearance-Based Modeling
	Application
	Conclusion
	Future Research

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

