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Abstract. We present an efficient method for estimating the pose of
a three-dimensional object. Its implementation is embedded in a com-
puter vision system which is motivated by and based on cognitive princi-
ples concerning the visual perception of three-dimensional objects. View-
point-invariant object recognition has been subject to controversial dis-
cussions for a long time. An important point of discussion is the nature of
internal object representations. Behavioral studies with primates, which
are summarized in this article, support the model of view-based object
representations. We designed our computer vision system according to
these findings and demonstrate that very precise estimations of the poses
of real-world objects are possible even if only a few number of sample
views of an object is available. The system can be used for a variety of
applications.

1 Implications from Cognition

Each object in our environment can cause considerably different patterns of
excitation in our retinae depending on the observed viewpoint of the object.
Despite this we are able to perceive that the changing signals are produced by
the same object. It is a function of our brain to provide this constant recognition
from such inconstant input signals by establishing an internal representation of
the object.

There are uncountable behavioral studies with primates that support the
model of a view-based description of three-dimensional objects by our visual
system. If a set of unfamiliar object views is presented to humans their response
time and error rates during recognition increase with increasing angular distance
between the learned (i.e., stored) and the unfamiliar view [1]. This angle effect
declines if intermediate views are experienced and stored [2]. The performance
is not linearly dependent on the shortest angular distance in three dimensions
to the best-recognized view, but it correlates with an “image-plane feature-by-
feature deformation distance” between the test view and the best-recognized
view [3]. Thus, measurement of image-plane similarity to a few feature patterns
seems to be an appropriate model for human three-dimensional object recogni-
tion.

J.L. Crowley et al. (Eds.): ICVS 2003, LNCS 2626, pp. 12–21, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN ----------------------------------------Dateioptionen:     Kompatibilität: PDF 1.3     Für schnelle Web-Anzeige optimieren: Nein     Piktogramme einbetten: Nein     Seiten automatisch drehen: Nein     Seiten von: 1     Seiten bis: Alle Seiten     Bund: Links     Auflösung: [ 2400 2400 ] dpi     Papierformat: [ 595.276 841.889 ] PunktKOMPRIMIERUNG ----------------------------------------Farbbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 300 dpi     Downsampling für Bilder über: 450 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Maximal     Bitanzahl pro Pixel: Wie Original BitGraustufenbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 300 dpi     Downsampling für Bilder über: 450 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Maximal     Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 2400 dpi     Downsampling für Bilder über: 3600 dpi     Komprimieren: Ja     Komprimierungsart: CCITT     CCITT-Gruppe: 4     Graustufen glätten: Nein     Text und Vektorgrafiken komprimieren: JaSCHRIFTEN ----------------------------------------     Alle Schriften einbetten: Ja     Untergruppen aller eingebetteten Schriften: Nein     Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten:     Immer einbetten: [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     Nie einbetten: [ ]FARBE(N) ----------------------------------------Farbmanagement:     Farbumrechnungsmethode: Farbe nicht ändern     Methode: StandardGeräteabhängige Daten:     Einstellungen für Überdrucken beibehalten: Ja     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja     Transferfunktionen: Anwenden     Rastereinstellungen beibehalten: JaERWEITERT ----------------------------------------Optionen:     Prolog/Epilog verwenden: Ja     PostScript-Datei darf Einstellungen überschreiben: Ja     Level 2 copypage-Semantik beibehalten: Ja     Portable Job Ticket in PDF-Datei speichern: Nein     Illustrator-Überdruckmodus: Ja     Farbverläufe zu weichen Nuancen konvertieren: Ja     ASCII-Format: NeinDocument Structuring Conventions (DSC):     DSC-Kommentare verarbeiten: Ja     DSC-Warnungen protokollieren: Nein     Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja     EPS-Info von DSC beibehalten: Ja     OPI-Kommentare beibehalten: Nein     Dokumentinfo von DSC beibehalten: JaANDERE ----------------------------------------     Distiller-Kern Version: 5000     ZIP-Komprimierung verwenden: Ja     Optimierungen deaktivieren: Nein     Bildspeicher: 524288 Byte     Farbbilder glätten: Nein     Graustufenbilder glätten: Nein     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja     sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS ----------------------------------------IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<     /ColorSettingsFile ()     /AntiAliasMonoImages false     /CannotEmbedFontPolicy /Warning     /ParseDSCComments true     /DoThumbnails false     /CompressPages true     /CalRGBProfile (sRGB IEC61966-2.1)     /MaxSubsetPct 100     /EncodeColorImages true     /GrayImageFilter /DCTEncode     /Optimize false     /ParseDSCCommentsForDocInfo true     /EmitDSCWarnings false     /CalGrayProfile (Ø¯P)     /NeverEmbed [ ]     /GrayImageDownsampleThreshold 1.5     /UsePrologue true     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /AutoFilterColorImages true     /sRGBProfile (sRGB IEC61966-2.1)     /ColorImageDepth -1     /PreserveOverprintSettings true     /AutoRotatePages /None     /UCRandBGInfo /Preserve     /EmbedAllFonts true     /CompatibilityLevel 1.3     /StartPage 1     /AntiAliasColorImages false     /CreateJobTicket false     /ConvertImagesToIndexed true     /ColorImageDownsampleType /Bicubic     /ColorImageDownsampleThreshold 1.5     /MonoImageDownsampleType /Bicubic     /DetectBlends true     /GrayImageDownsampleType /Bicubic     /PreserveEPSInfo true     /GrayACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>     /ColorACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>     /PreserveCopyPage true     /EncodeMonoImages true     /ColorConversionStrategy /LeaveColorUnchanged     /PreserveOPIComments false     /AntiAliasGrayImages false     /GrayImageDepth -1     /ColorImageResolution 300     /EndPage -1     /AutoPositionEPSFiles true     /MonoImageDepth -1     /TransferFunctionInfo /Apply     /EncodeGrayImages true     /DownsampleGrayImages true     /DownsampleMonoImages true     /DownsampleColorImages true     /MonoImageDownsampleThreshold 1.5     /MonoImageDict << /K -1 >>     /Binding /Left     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)     /MonoImageResolution 2400     /AutoFilterGrayImages true     /AlwaysEmbed [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     /ImageMemory 524288     /SubsetFonts false     /DefaultRenderingIntent /Default     /OPM 1     /MonoImageFilter /CCITTFaxEncode     /GrayImageResolution 300     /ColorImageFilter /DCTEncode     /PreserveHalftoneInfo true     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /ASCII85EncodePages false     /LockDistillerParams false>> setdistillerparams<<     /PageSize [ 595.276 841.890 ]     /HWResolution [ 2400 2400 ]>> setpagedevice



Efficient Pose Estimation Using View-Based Object Representations 13

Experiments with monkeys show that familiarization with a “limited num-
ber” of views of a novel object can provide viewpoint-independent recognition [4].

In a psychophysical experiment subjects were instructed to perform mental
rotation, but they switched spontaneously to “landmark-based strategies”, which
turned out to be more efficient [5] .

Numerous physiological studies also give evidence for a view-based process-
ing of the brain during object recognition. Results of recordings of single neurons
in the inferior temporal cortex (IT) of monkeys, which is known to be concerned
with object recognition, resemble those obtained by the behavioral studies. Pop-
ulations of IT neurons have been found which respond selectively to only some
views of an object and their response declines as the object is rotated away from
the preferred view [6].

The capabilities of technical solutions for three-dimensional object recogni-
tion still stay far behind the efficiency of biological systems. Summarizing, one
can say that for biological systems object representations in form of single, but
connected views seem to be sufficient for a huge variety of situations and per-
ception tasks.

2 Description of the Vision System

In this section we introduce our approach of learning an object representation
which takes these results about primate brain functions into account.

We automatically generate sparse representations for real-world objects,
which satisfy the following conditions:

a1. They are constituted from two-dimensional views.

a2. They are sparse, i.e., they consist of as few views as possible.

a3. They are capable of performing perception tasks, especially pose estimation.

Our system consists of a view representation builder and an object represen-
tation builder. They are shown, together with their input and output data, in
the diagram in figure 1, which depicts a one-directional flow of information.

Of course, feedback from higher levels of processing to lower ones would
allow for, e.g., unsupervised system tuning or an improved segmentation, but
this is not subject of this contribution. We start with the recording of a densely
sampled set of views of the upper half of the viewing sphere of a test object. In
the following we aim at choosing only such views for a representation which are
representative for an area of viewpoints as large as possible.

2.1 View Representation Builder

Each of the recorded views is preprocessed by a Gabor wavelet transform, which
is biologically inspired because Gabor wavelets approximate response patterns
of neurons in the visual cortex of mammals [7,8]. A segmentation based on gray
level values [9] follows. It separates the object from the background. This results
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Fig. 1. The system for learning sparse object representations consists of a view and
an object representation builder. The resulting object representation consists of single
but connected views. The numbers next to the resulting partitionings of the viewing
hemisphere are the numbers of view bubbles which constitute the representation
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in a representation of each view in form of a grid graph labeled with Gabor wavelet
responses. The graph covers the object segment. Each vertex of such a graph is
labeled with the responses of a set of Gabor wavelets, which describe the local
surroundings of the vertex. Such a feature vector is called jet.

2.2 Object Representation Builder

To facilitate an advantageous selection of views for the object representation a
surrounding area of similar views is determined for each view. This area is called
view bubble. For a selected view it is defined as the largest possible surrounding
area on the viewing hemisphere for which two conditions hold:

b1. The views constituting the view bubble are similar to the view in question.

b2. Corresponding object points are known or can be inferred for each view of
the view bubble.

The similarity mentioned in b1 is specified below. Condition b2 is important for
a reconstruction of novel views as, e.g., needed by our pose estimation algorithm.
A view bubble may have an irregular shape. To simplify its determination we
approximate it by a rectangle with the selected view in its center, which is
determined in the following way.

The object representation builder starts by tracking local object features. Jets
can be tracked from a selected view to neighboring views [10]. A similarity func-
tion S(G, G′) is defined between a selected view and a neighboring view, where G
is the graph which represents the selected view and G′ is a tracked graph which
represents the neighboring view. Utilizing this similarity function we determine a
view bubble for a selected view by tracking its graph G from view to view in both
directions on the line of latitude until the similarity between the selected view
and either the tested view to the west or to the east drops below a threshold τ ,
i.e., until either S(G, Gw)<τ or S(G, Ge)<τ . The same procedure is performed
for the neighboring views on the line of longitude, resulting in a rectangular area
with the selected view in its center. The representation of a view bubble consists
of the graphs of the center and four border views

B := 〈G, Gw, Ge, Gs, Gn〉 , (1)

with w, e, s, and n standing for west, east, south, and north. As this procedure is
performed for each of the recorded views, it results in view bubbles overlapping
on a large scale on the viewing hemisphere (see figures 1 and 2).

To meet the first condition a1 of a sparse object representation we aim at
choosing single views (in the form of labeled graphs) to constitute it. To meet
the second condition a2 the idea is to reduce the large number of overlapping
view bubbles and to choose as few of them as possible which nevertheless cover
the whole hemisphere. For the selection of the view bubbles we use the greedy
set cover algorithm [11]. It provides a set of view bubbles which covers the whole
viewing hemisphere. We define the sparse, view-based object representation by

R := {〈Gi, Gw
i , Ge

i , Gs
i , Gn

i 〉}i∈R (2)
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Fig. 2. This figure shows a graph of the center view of a view bubble tracked to its
east and north border views

where R is a cover of the hemisphere. Neighboring views of the representation
are “connected” by known corresponding object points (the correspondences
between center and border views), which have been provided by the tracking
procedure. Figure 1 shows different covers of the hemisphere for two test objects.

3 Pose Estimation

Given the sparse representation of the object in question and given a test view
of the object, the aim is the determination of the object’s pose displayed in
the test view, i.e., the assignment of the test view to its correct position on
the viewing hemisphere. In this section a solution to this problem is proposed
(subsection 3.1) and the results of simulations with a series of test views are
reported (subsection 3.2) and discussed (subsection 3.3).

Many approaches to pose estimation have been proposed, starting from closed
form solutions for not more than four noncollinear points [12,13,14] up to iter-
ative non-linear optimization algorithms, which have to rely on a good initial
guess to converge to a reasonable solution [15,16]. We propose a model based
pose estimation algorithm. In a first step it determines the rough position of the
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given pose on the viewing hemisphere as initial guess. Then this estimate is re-
fined in a second step. It requires the generation of virtual views, i.e., artificially
generated images of unfamiliar views, which are not represented in the object
representation. For this purpose we

(1) calculate linear combinations of corresponding vertex positions in the center
and border graphs of view bubbles and

(2) interpolate the corresponding jets attached to these vertices.

The new positions and jets define a representing graph of the virtual view. From
this graph the virtual view can be generated by reconstructing the information
contained in Gabor wavelet responses [17]. To interpolate between jets we calcu-
late the weighted sum of corresponding jets in the sample views. The weights are
chosen according to the relative position of the unfamiliar view with respect to
the sample views. Our method of deriving vertex positions in unfamiliar views
follows Ullman and Basri’s [18] purely two-dimensional approach of generating
unfamiliar views by linear combination of sample views. Detailed formula are
given in [19].

3.1 Methods

Let T be the test view, the pose of which should be estimated, and GT be its
representing graph, which is extracted from the original image of view T after the
test view has been divided into object and background segments as described in
section 2.1. This means that no a priori knowledge about the object is provided.
A view is determined by its position on the viewing hemisphere.

Let Ii, i ∈ R, be the center images of the view bubbles the graphs Gi of the
object representation R are extracted from. The pose estimation algorithm for
estimating the pose of a single test view T proceeds in two steps:

1. Match GT to each image Ii, i ∈ R, using a graph maching algorithm [20]. As
a rough estimate of the object’s pose choose that view bubble B̂ the center
image Ii of which provides the largest similarity to GT .

2. Generate the representation Ĝ for each unfamiliar view which is included
inside the area defined by B̂ by (1) a linear combination of corresponding
vertex positions in the center and one border graph of B̂ and (2) an inter-
polation of the corresponding jets as described in section 3. (We choose the
graph of that border view which lies closest to the unfamiliar view.) From
each of the calculated graphs Ĝ reconstruct a corresponding virtual view V̂
using an algorithm which reconstructs the information contained in Gabor
wavelet responses [17]. Accordingly, reconstruct a virtual test view V̂T from
GT (figure 3). Compare each of the virtual views V̂ with the virtual view
V̂T using an error function ε(V̂ , V̂T ) which performs a pixelwise comparison
between V̂T and each V̂ . The estimated pose T̂ of the test view T is the
position on the viewing hemisphere of that virtual view V̂ which provides
the smallest error ε.
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Fig. 3. a) Virtual view V̂ reconstructed from interpolated graph Ĝ. b) Virtual test
view V̂T reconstructed from its original graph GT

The estimation error between T and T̂ can be determined by the Euclidean
distance: εesti(T, T̂ ) = d(T, T̂ ).

3.2 Results

For the evaluation of the algorithm 30 test views have been chosen. The po-
sitions of them on the viewing hemisphere are displayed in figure 4. For two
different toy objects and for three different partitionings of the viewing hemi-
sphere, which have been derived by applying different tracking thresholds τ , the
poses of these 30 test views have been estimated. The light gray squares indicate
the views which are represented in the object representation R, black dots mark
the positions of the test images and the estimated positions are tagged by dark
gray circles. The arrow points at the test images and their estimations which are
displayed in figure 5.

The illustrations in figure 4 indicate that pose estimation becomes more pre-
cise with an increasing number of sample views in the object representation. This
result has been expected and is confirmed by an inspection of the mean estima-
tion errors taken over the 30 test views for each object and each partitioning of
the hemisphere separately. They are summarized in table 1. With one exception
for the “object” Tom the mean errors are decreasing with an increasing value of
τ , i.e., with an increasing number of views in R.

3.3 Discussion

The results of the pose estimation experiments are amazingly good. This is par-
ticularly obvious for the example displayed in figure 5, taking into account that
the sparse representation of the object “Tom” contains only the representations
of 30 views. This have been the test images for which the best result for τ = 0.75
was obtained, but also for a reasonable partitioning of the viewing hemisphere
(τ = 0.85) the mean estimation errors are smaller than 5◦ for both objects,
which can be regarded as a remarkable result, taking into account that humans
are hardly able to recognize a difference of 5◦ between two object poses.
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Fig. 4. Results of pose estimations for three different partitionings of the viewing
hemisphere and two different objects are depicted. The tracking threshold τ influences
the resulting number of views in the final representations. As for each view bubble of
the final representation the graphs of the center and four border views are stored, the
border views of neighboring view bubbles lie close together. This is obvious especially
for τ = 0.75

As experiments reported in [21] have shown, the method proposed in sec-
tion 3.1 cannot be improved very much by a more elaborate determination of
the initial guess, e.g., by testing more neighboring candidates.

4 Conclusion

We proposed a computer vision system based on cognitive principles which is
able to estimate the pose of a three-dimensional object from an unobstructed
view in an efficient manner. The pose estimation results support a good quality
of our sparse object representation and allow the conclusion that a view-based
approach to object perception with object representations that consist of only
single views, which are connected, is suitable for performing perception tasks
as it is advocated by brain researchers. Besides the biological relevance of our
approach, there are a variety of possible applications, such as object recognition,
view morphing, or data compression.
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Fig. 5. This figure shows the test images and their estimations which are marked in
figure 4. For this example the representation of the object “Tom” for τ = 0.75 has been
chosen. It consists of only 30 views. In the first row the true poses of the object, which
should be estimated, are displayed. The second row shows the poses which have been
estimated by treating each view of the sequence independently. The estimation error
for this sequence averages 5.78◦

Table 1. Mean pose estimation errors. For example, for object “Tom” and the parti-
tioning of τ = 0.75 the average estimation deviation of the estimated pose T̂ to the
true pose T is 36.51◦

mean pose estimation errors

τ 0.75 0.8 0.85 0.9 0.95

object “Tom” 36.51◦ 3.63◦ 0.77◦ 3.35◦ 0.36◦

object “dwarf” 20.54◦ 19.47◦ 4.2◦ 2.65◦ 1.71◦
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