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Abstract

For object recognition systems it is essential to have an internal representation of the
object to be recognized. We introduce a system which learns such a representation from
training images of an object class. Every image is preprocessed with banana wavelets. The
result is a description of local areas of an image in terms of curved lines. These features are
the input to a clustering algorithm which learns to seperate features specific for an object
class from features generated accidentally by variations in background or illumination. This
leads to a representation of an object class which can be visualized in form of a line drawing.
The representation is sparse, for the most part free of redundancies and independent of
varying backgrounds and illuminations in the training images. It comprises representative
features only, and has already been utilized successfully for object recognition tasks.

1 Introduction

The human visual system posseses the remarkable property that it can recognize objects even if
they produce completely different patterns on the retina, due to varying illuminations or partial
occlusions, for example. To be invariant against such variations, the recognition process needs
an internal representation of the class the object belongs to. We suggest a mechanism which
describes how the formation of such an internal representation can take place. We introduce an
algorithm which learns local features of an object class from some training images of instances
of this class. The result is a 2D-representation for the presented view of the object class in the
form of a curved line drawing (see figures 5 and 7), which can be used for object recognition
[3]. We are following biological analogies in establishing our model, e.g., there are hints for
calculating curvature in the visual cortex [1]; other analogies to biological systems are discussed
in [4]. Our system is divided into the preprocessing with banana wavelets (section 2 and 3) and
the algorithm which learns the representation by a statistical analysis of the data gained by the
preprocessing (section 4). In section 5 we show the functioning of our model with two object
classes as examples. Finally, we list some properties of our system (section 6).

2 What is a Banana Wavelet?

Our preprocessing tool is a set of banana wavelets. A banana wavelet B(α,c) is a complex valued
function which depends on two parameters, direction (α) and curvature (c)1 . It is constructed

1In [5] and [3], where banana wavelets and their relationship to Gabor wavelets are described in more detail,
a banana wavelet is defined with four parameters. There the two parameters frequency and size are also kept
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Figure 1: A banana wavelet is the product of a curved Gaussian and a curved wave function.
Top: Real part of a banana wavelet. Bottom: Real and imaginary part of a banana wavelet
depicted as gray level images with white pixels encoding high values.
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Figure 2: Left: This banana plant consists of four different directions and five different curva-
tures. Only the real part of each wavelet is shown. Right: The space established by (α, c) forms
a Möbius topology, here shown for 16 orientations and 3 curvatures.

from a rotated and curved complex wave function and a Gaussian rotated and curved in the
same way (see figure 1). We define a banana wavelet as follows:
Definition A banana wavelet B(α,c) is a mapping B(α,c) : IR2

→ CI

B(α,c)(x, y) := γ · exp
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and α, c, γ, k ∈ IR.

This means that Mα carries out a rotation with the angle α, and Cc performs a curving with
the extent c. k determines the frequency of the wave. The set of Gabor wavelets is a subset of
the set of banana wavelets for Gabor wavelets are characterized by the parameters frequency and
orientation only, i.e., they are uncurved. For our preprocessing we use a set of banana wavelets,
a banana plant (see figure 2). A banana plant can be generated by rotating and curving the
mother wavelet B(0,0).

variable whereas here we work with one frequency and one size only.



3 Preprocessing with Banana Wavelets

In every training image we first manually define the salient points of an object, e.g., the left
edge of a can or the eyes of a face, so that a landmark in one training image has a corresponding
landmark in every other training image. The surroundings of these landmarks are examined for
curved lines or edges. This is done by a banana transform, i.e., a convolution of the training
image with a banana plant. The response of a banana wavelet B(α,c) at a position (x0, y0) in

a gray level image I (x, y) is defined by R(α,c) (x0, y0) :=
∣

∣

∣
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)

(x0, y0)
∣

∣

∣ . By performing

a banana transform we receive responses R at every position in a landmark’s surroundings for
every banana wavelet of the plant. These responses are arranged in a 4D metric space - the
banana space B - which is established by (x, y, α, c) with (x, y) describing pixels in the landmark’s
surroundings and (α, c) specifying wavelets of the plant. The metric of B, which is needed for
clustering, is denoted by d. It is defined by an Euclidean-like distance in B where the Möbius
topology is taken into account. An exact definition can be found in [5].

The banana transform has an important property which we use in our learning algorithm.
Suppose there is a line or an edge with a certain orientation and curvature at some pixel position
in a landmark’s surroundings. Then the response R at this position is maximal for that banana
wavelet of the plant whose orientation and curvature corresponds best to the local structure in
the training image. The convolution is a measure for the correspondence between a part of the
image and the wavelet. So in the way we use a banana wavelet one can interpret it as a detector
of lines and egdes in images which are oriented and curved in the same way as the wavelet.

4 Learning Important Features of an Object Class

While reading the single steps of the algorithm, please, refer to figure 3 where each step is illus-
trated.
1. Banana Transform: Let m be the number of training images, and suppose there are
n landmarks set in each image at salient points of the object. The surroundings of the i-th
landmark of the k-th training image is denoted by Ik

i . Now the first step of our algorithm is
to perform a banana transform with Ik

i for i = 1, . . . , n, k = 1, . . . ,m, i.e., to calculate the
values of the response function R for all images and all landmark’s surroundings. (This is the
preprocessing described in section 3.)
2. Significant Features Per Instance: From the assumption that a strong response
R(α,c) (x, y) means that there is a structure in the image at position (x, y) with orientation α and

curvature c we calculate the set SIk

i of significant features of the i-th landmark’s surroundings
of the k-th training image for i = 1, . . . , n, k = 1, . . . ,m. An element (x, y, α, c) ∈ B is defined

to be such a significant feature, i.e., (x, y, α, c) ∈ SIk

i , if it causes a response above a preset
threshold t1 ∈ IR+, i.e., R(α,c) (x, y) > t1, and if the response represents a local maximum in B.
A significant feature may be specific for the object class, and in this case should be “kept in
mind”, or it just may derive from the background or a reflection caused by the illumination. In
this case it should be“forgotten” (see figure 4) .

3. Union Over All Training Images: We define the union S i :=
⋃m

k=1 S
Ik

i and calculate it
for all landmarks i = 1, . . . , n.
4. Clustering: With each set S i, i = 1, . . . , n, we perform a simple clustering to seperate the
important significant features of the landmark’s surroundings (i.e., invariant features deriving
from structures typical for the object class) from unimportant significant features (i.e., noisy
features deriving from the background, reflections or other variations). We start from the as-
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Figure 3: The flowchart of the algorithm. The line drawings are illustrations, not results.
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Figure 4: Left: The training image Ik. Right: The generated significant features for this image.
The set SIk

5 for the fifth landmark’s surroundings contains a significant feature which is specific
for the object class (the left edge of the can) as well as a significant feature which is cleaned out
by the learning algorithm later on (the pen in the background).

sumption that the important features are similar in a lot of training images, i.e., they have small
distances d in B. The unimportant features are assumed to occur irregularly and be randomly
distributed in B with larger distances d. Thus, by grouping the elements of S i into clusters we
expect a few large clusters the centroid of which representing an important significant feature,
and many more rather small clusters representing all the features caused by chance. Clustering
the set S i works as follows (the counter l is initialized to 1):

1. Choose an arbitrary element s ∈ S i and form a new cluster Cl out of it.

2. Add to Cl successively all remaining elements s̃ ∈ S i with ∃ s ∈ Cl : d (s̃, s) < t2
where t2 ∈ IR+ is a preset threshold depending on the size of B.

3. Increment l := l + 1 and repeat the steps 1 and 2 with the elements still remaining in S i

until each element of S i is assigned to a cluster.
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Figure 5: Left: 4 of 60 different training images. 11 landmarks are chosen as shown here. Right:
The learned representation for the object class “can”. For each learned feature of SRep a line
with the corresponding orientation and curvature is drawn. Using a SPARC station 20 it takes
about 80 s to learn the representation.

Figure 6: Left: One of the training images. Right: Significant features of this individual face,
generated by the algorithm.

The partitioning gained by this clustering is unambiguous (for a proof see [5]). Now we define
that an important cluster is a cluster with the number of its elements exceeding a preset threshold
which depends on the number of elements in S i. The learned representation Si, i = 1, . . . , n, for
the i-th landmark’s surroundings of the object class is defined by the centroids of the important
clusters.
5. Learned Representation: The learned representation SRep for the object class is just the
union of the representation for all landmark’s surroundings SRep :=

⋃n
i=1 Si.

5 Simulations and Results

We would like to demonstrate the usefulness of our algorithm with two object classes, cans and
frontal faces. We use 128× 128 gray level images and a banana plant with 8 orientations and 7
curvatures. The landmark’s surroundings have a size of 17× 17 pixels each. For learning a rep-
resentation of a can we use a set of 60 training images with varying backgrounds, illuminations,
and can design and slightly varying elevation angles (see figure 5). To learn the representation
of a frontal face we use 30 training images and choose 31 landmarks per face. For an example
of significant features of an individual face see figure 6, for the resulting face representation see
figure 7.

6 Conclusion and Outlook

The results show that the representation learned is quite independent of varying backgrounds
and reflections or shadows caused by different illuminations. Even slight occlusions and rotations
of the objects have only a small influence on the result. The special predefinition of features
we are looking for (curved lines) reduces the dimensionality of the learning problem. Our
representation meets the conditions for a sparse coding which has many advantages such as



Figure 7: Left: 4 of 30 different training images. 31 landmarks are chosen for every face as
shown in the leftmost image. Right: This is the learned representation for the object class
“face”. There are some redundancies, e.g., in the area of the eyes and nose. The fact that there
is only the left edge of the nose represented whereas the right is not, may derive from the fact
that the illumination does not vary randomly in the training images. Note that irregularities
such as glasses or a beard are not represented in the result.

redundancy reduction (discussed in [2]). A sparsely coded object is its representation by a small
number of binary features (here the presence or absence of a curved line) chosen from a large
set of features (all curved lines of all localities, orientations, and curvatures). In comparison to
other object recognition systems, e.g., [6], the representation described here has several desirable
properties: it comprises only representative local features of the object class, it is nearly free
of redundancy, it needs less data storage, and it is learned from noisy data by a process which
seperates important from unimportant local features. A disadvantage of the system described
here lies in the manual positioning of the landmarks. Ways to tackle this problem are suggested
in [3].

A representation similar to the one described here is already used successfully in object recog-
nition tasks, e.g., the matching of an object in an unknown scene. The small amount of data
the representation consists of enables a fast matching which still can be speeded up by approx-
imating banana wavelet responses by Gabor wavelet responses. All this is described in detail in
[3].
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