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Abstract

Accurate oil price expectations are of great importance for a variety of economic and
financial applications. We find that state-of-the-art market-based expectations only
weakly outperform a simple no-change benchmark. This gives rise to changing the
perspective from an unconditional to a conditional evaluation method. This consid-
eration is relevant when the forecasting methods potentially behave very differently
conditional on certain time-varying economic states. Strikingly, it seems that the
no-change benchmark outperforms market-based expectations systematically during
turbulent market phases. The entertained conditional predictive ability framework
allows us to study the role of important state variables for the time-varying per-
formance explicitly. Among these are established variables from the related oil
market literature, covering oil price change measures, volatility as well as supply
and demand. Additionally, we suggest a novel and complementing indicator for
oil price explosiveness. Our results robustly indicate the existence of conditional
time-variation. Furthermore, they underline the importance of the new indicator
reflecting temporary exuberance and subsequently collapsing oil prices. We find
similar results when evaluating expectations obtained from the Energy Informa-
tion Administration. Our findings may have consequences for a variety of economic
and financial applications e.g. construction of expectational shocks and testing for
speculative oil price bubbles.
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1 Introduction

Oil price expectations are of great importance in economics and finance not only to

producers and consumers, but also to investors, regulators and policy makers, see e.g.

Coibion, Gorodnichenko, Kumar, and Pedemonte (2020), Kilian and Zhou (2022) and

Baumeister (2023). Due to information frictions, market participans can hardly observe

whether current oil prices are entirely consistent with fundamentals and hence, the role

of expectations becomes crucial, see Sockin and Xiong (2015). Oil price forecasts are, for

instance, important predictors for macroeconomic indicators, see e.g. Degiannakis and

Filis (2023). Generally, oil futures prices are informative to measure market expectations.

Other sources, see Baumeister and Kilian (2016) for a general discussion, are survey expec-

tations (e.g. Consensus Economics, see Alquist, Kilian, and Vigfusson, 2013), analysts

forecasts (e.g. Bloomberg, see Figuerola-Ferretti, Rodŕıguez, and Schwartz, 2021) and

institutions as the Energy Information Administration (EIA), see Garratt et al. (2019).

Forecast efficiency regressions have shown that futures prices are not unbiased predic-

tors of future spot prices in the oil market (and elsewhere), see Baumeister (2023) for

a recent and excellent survey article. One source, and possibly the main driver, is a

time-varying risk premium. The arbitrage-free affine Gaussian term structure model pro-

posed by Hamilton and Wu (2012, 2014) allows to extract the market-based expectations

from oil futures contracts and to estimate the time-varying risk premium. It uses a small

number of dynamic stochastic and latent risk pricing factors to model payoffs on a long

position for a futures contract with a maturity of h months. The oil price market ex-

pectations extracted via the Hamilton and Wu (2014) model [HW] are state-of-the-art

as reviewed in Baumeister (2023). The extracted market-based expectations provide the

strongest reduction of the mean squared prediction error against no-change predictions in

an unconditional evaluation against a large number of competing approaches, qualifying

them for a wide field of application in economic analyses.1

Despite the improvement in mean squared error reduction, the results are not so clear

cut when comparing the predictive accuracy with the Diebold and Mariano (1995) test.

The test does not indicate significant outperformance of the no-change benchmark by the

market-based expectation. Furthermore, a visual exploration of the loss differential in

Figure 1 reveals potential ’pockets’ in which the loss differential turns positive such that

the no-change forecast [NC] clearly outperforms market expectations.2 This gives rise to

1Under quadratic loss, as shown in Granger (1969) and Granger and Newbold (1986), the conditional
expectation is the minimizer of the mean squared prediction error.

2The term ’pockets’ is borrowed from the stock return predictability literature, see Farmer et al.
(2023).
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Figure 1: Loss differential (HW-NC), h = 3
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Notes: The loss differential between the squared losses of the Hamilton and Wu (2014) approach and
the no-change forecasts for forecasting horizon h = 3. Values above zero indicate better forecasting
performance of the no-change at that time.

investigating the time-varying economic circumstances which are related to the relative

forecasting performance of the respective predictions. As Li et al. (2021) argue, this is of

particular interest when they appear similar on average as indicated by the Diebold and

Mariano (1995) test. The timing of these temporary phases are remarkably connected to

episodes in which the oil price was subject to large fluctuations in 2007/2008, 2014, 2020

and 2022. As it turns out, these phases can be characterized by explosivity in the oil

price.3 As reliance on accurate forecasts is especially important during turbulent times

and market-based expectations are systematically outperformed during this times, this

further motivates to study the time-varying conditions connected to the loss differential.

In this work, we switch from the unconditional evaluation as in Diebold and Mariano

(1995) to the conditional perspective presented in Giacomini and White (2006), con-

3Explosiveness in oil prices itself has been investigated in a large number of contributions in the
context of speculative bubbles, e.g. Fantazzini (2016), Gronwald (2016), Caspi, Katzke, and Gupta
(2018), Pavlidis et al. (2018), Kruse and Wegener (2020), Figuerola-Ferretti et al. (2020) and Kruse-
Becher (2024).
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tributing in three ways. We identify time-variation in the loss differential, we determine

which economic state variables are connected to this time-variation. As a by-product we

explore to what extent this time-variation might be further utilized. While the uncondi-

tional Diebold-Mariano test is informative about the relative performance of forecasting

methods on average, Giacomini and White (2006) propose testing the hypothesis of condi-

tional equal predictive ability to investigate state-dependent forecasting performance. In

contrast to other conditional frameworks, such as the fluctuation test by Giacomini and

Rossi (2010) which are agnostic about the cause of the variation, the method at hand has

the appeal of high interpretability and the identification of what drives the time-variation.

The test allows to investigate which economic and financial states, say boom or bust, are

connected to the relative predictive performance. The question is, if there is any informa-

tion (that is available at the time when the forecasts were made) which is able to explain

the relative predictive performances of the methods. Thus, the null hypothesis in the

framework of conditional equal predictive ability is that conditional expected squared loss

of different forecasting methods are identical across all conditioning economic and finan-

cial states. A rejection of the conditional predictive ability null hypothesis indicates that

the loss differential depends on additional available information which is not included in

the methods. Rejections can be interpreted as evidence of misspecification of the original

methods and of non-optimality of the resulting forecasts. One direct implication is that

forecasts might be improved by exploiting the additional available information in an ap-

propriate way. However, in practice, it could be very difficult to include such information

in existing specifications.

As in Granziera and Sekhposyan (2019), we thus investigate whether the relative predic-

tive performance can be explained. To this end, we study a number of established oil

price change measures, see Kilian and Vigfusson (2013). In order to precisely analyse

the role of explosivity in this context, we suggest a novel real-time indicator generated

from a monitoring statistic against explosiveness in oil prices, see Phillips and Shi (2018)

and Phillips and Shi (2020). In order to select the variables for the conditional predictive

ability regressions, we compare different strategies. Among these are best subset selec-

tion (see e.g. Bertsimas, King, and Mazumder, 2016 and James, Witten, Hastie, and

Tibshirani, 2021) based on different selection criteria, i.e. Mallows criterion and Schwarz

criterion, and general-to-specific modelling (see e.g. Hendry and Clements, 2003, Cam-

pos, Ericsson, and Hendry, 2005 and Pretis, Reade, and Sucarrat, 2018). Our results

show clear evidence against the null hypothesis of no conditional predictive ability. Most

important variables are net price increases, implied volatility of oil price changes and the

newly proposed explosivity indicator. Overall, our results robustly indicate conditional

time-variation and imply that market-based expectations neglect information in the ex-
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plosive episodes. For EIA forecasts, which are widely used by policymakers and the energy

industry in their decision making, we obtain similar findings. Our findings thus hold for

opinion- and market-based expectations. Both, risk premia and information rigidities,

may play a role.

Various economic actors rely on accurate oil forecasts in their decision making. Especially

in turbulent times, reliance on such forecasts is high. Nonetheless, we analyse circum-

stances in which the state-of-the-art HW forecast is systematically outperformed. Our

results may have implications for applications in which oil price expectations play a deci-

sive role, e.g. expectational oil price shocks commonly used in the VAR literate, regulation

of oil markets or climate policy, but also consumers decisions, especially facing declining

oil reserves (Baumeister, 2023). Oil price expectations are also useful in forecasting other

macroeconomic variables such as inflation and industrial production (Degiannakis and

Filis, 2023) underlining the importance in macroeconomic projections and therefore in

monetary and fiscal policy. The literature on testing against speculative bubbles (see e.g.

Pavlidis, Paya, and Peel, 2018) and analyses based on oil price shocks (see e.g. Baumeister,

2023) are potentially affected in particular. Their procedures directly rely on (explosive)

spot and expected oil prices. Obviously, the (ex-post) measurement of expectations is key

to the outcomes of and conclusions from such an analysis and these are affected by po-

tential misspecification and non-optimality of oil price expectations. Similarly, this holds

for VAR analyses based on expectational oil price shocks (see e.g. Anderl and Caporale,

2024, Valenti, Bastianin, and Manera, 2023 or Degasperi, 2023).

The remainder of the paper is organized as follows. The econometric framework is given

in Section 2. Our data is described in Section 3. Section 4 covers the empirical results

and discussions. Conclusions are drawn in Section 5. The Appendix contains additional

Tables and Figures.

2 Econometric Framework

Suppose there are sequences of forecasts ŷj,t+h formed in period t = 1, ..., P for the target

variable (oil price) yt+h that shall be evaluated. The forecast horizons are h = {3, 6, 9, 12}
months. The benchmark prediction is labeled as j = 1 and the competing forecast is

signified by j = 2. In the evaluation, we are not only interested in the mean squared

error, but in particular in testing the relative forecasting accuracy.

The popular unconditional test by Diebold and Mariano (1995) (DM) tests for equal ex-

pected loss over a whole evaluation period. Such a test has two possible extensions. First,
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a researcher or practitioner may be interested in time-varying unconditional predictive

ability as in Giacomini and Rossi (2010). However, such a test does not reveal insights

about the drivers of possible differences in the predictive ability. Second, given a set of

state (or conditioning) variables, one may be interested whether these carry explanatory

power for the relative forecasting accuracy of the predictions at hand, leading to a test of

conditional predictive ability, see Giacomini and White (2006). Latter test is of special

interest when the DM test is non-conclusive. Even if there is no significant difference

between the methods on average, there still might time-varying relative performance be-

tween the forecasts, see Li et al. (2021). Hence, one might investigate whether the relative

forecasting performance can be explained itself. Under the null hypothesis, there is no

such predictability of the zero-mean loss differential. Therefore, a rejection of the null

hypothesis of the conditional predictive ability test is informative in various ways. The re-

jection might hint towards potential misspecification and non-optimality of the forecasts.

Additionally, assuming there is conditional predictive ability, the framework is informative

about the economic conditions related to the time-varying performance. By regressing

the loss differential on the state variables, the framework allows to identify drivers of the

relative predictive performance. The coefficients of the state variables tell about economic

conditions under which changes in the relative performance occur. Therefore, it is possible

to analyse possible economic mechanisms leading to changes in the relative forecasting

performance.

2.1 Recovering market expectations

The Hamilton and Wu (2012, 2014) model allows to recover market expectations Et(St+h)

of the spot price St, as well as the risk premium RP h
t where t denotes the time the future

contract is bought and h denotes the maturity. These can be recovered from future prices

F h
t as well as a set of latent and observed variables/risk factors xt and is well described in

Baumeister (2023). In this framework the expectation of the spot price can be calculated

from the futures price and a factor accounting for the risk premium:

Et(St+h) = F h
t (1 + ah + b′hxt). (1)

The time-varying risk premium is then calculated as difference between the future price

and the expected spot price RP h
t = F h

t −Et(St+h). After solving for the future contracts

price at expiration and taking expectations, above Equation 1 and the parameters ah and
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bh are derived from the return regression

F 1
t+h−1 − F h

t

F h
t

= ah + b′tXt + εt+h. (2)

The fitted values of above equation would be interpreted as the risk premium, allowed to

vary over time. Hamilton and Wu (2015) present how this return regression approach is

represented in following equation:

fh−1
t+1 − fh

t = κh−1 + δ′h−1xt + εh−1
t+1 (3)

with fh
t being the logarithmic future price. This equation not only nests the return

regression idea, but also incorporates the Gaussian affine term structure approach and

thus relates the two concepts. Regarding the return regression model, the parameters in

the above equation can be interpreted as parameters in an unrestricted OLS-regression

model specifically estimated for a maturity h. Typical variables contained in xt which are

known to the market participants are measures explaining the market behaviour such as

stock indices or the slope of the future curve, i.e. proxies of the risk factors.4

The term structure model is connected to this as follows. It assumes that all asset prices

are determined by the set of observed and unobserved variables xt which can be modelled

in a small VAR(1) with intercept c and coefficient matrix ρ:

xt+1 = c+ ρxt + Σut+1, ut+1 ∼ N(0, I). (4)

Consequently futures prices can be modelled by these fundamental factors as fh
t = αh +

β′hxt where αh = αh−1+β′h−1(c−λ)+ 1
2
β′h−1ΣΣ′βh−1 and β′h = β′h−1(ρ−Λ), i.e. functions of

the parameters from the Gaussian VAR(1) (Hamilton and Wu, 2014). In this framework,

risk averseness is implied by the parameter λt = λ+ΛXt which is the market price of risk.

Hamilton and Wu (2015) show that the parameters in Equation 3 are a combination of the

term structure models factor loading β′h−1, the scale matrix Σ and the risk parameters λ

and Λ as κh−1 = β′h−1λ− 1
2
β′h−1ΣΣ′β′h−1, δ′h−1 = β′h−1Λ and εh−1

t+1 = β′h−1Σut+1 which again

can be interpreted as intercept, slope vector and error term from the return regression. In

contrast to the return regression, the term structure model relies on parameter restrictions

for the different maturities, ruling out arbitrage possibilities. Nonetheless the structural

parameters can be inferred from the return regression given the future prices and xt

(Hamilton and Wu, 2015). The risk premium again follows as difference between the

4An extensive overview of possible and common proxy variables and factors can be found in Baumeister
(2023).
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future price and the market expectation of the spot price implied by the estimated model,

assuming risk neutrality setting λ = Λ = 0.

2.2 Unconditional predictive ability

A starting point for our analysis is the well known test of unconditional predictive ability

proposed by Diebold and Mariano (1995). It is based on the loss differential ∆Lt which

is calculated via the errors of two competing forecasts. While principally allowing for

other loss functions, we follow most of the literature and use the quadratic loss, which is

the natural choice, as the conditional expectation minimizes the scared prediction error

(Granger, 1969). The h-step forecast error for method j = {1, 2} is

ej,t+h = yt+h − ŷj,t+h (5)

and the loss differential thus formulates as:

∆Lt+h = e2
1,t+h − e2

2,t+h. (6)

A positive value of the loss differential thus indicates superiority of the competing forecast

(j = 2), while a negative loss differential suggests that the benchmark produces smaller

loss.

The test statistic for the null hypothesis of equal forecast accuracy, i.e. H0 : E[∆Lt+h] = 0

formulates as:

DM =
√
P

∆L

σ̂∆L

∼ N(0, 1), (7)

where ∆L is the mean of the loss differential, σ̂∆L is a HAC-type estimator of the loss

differentials long-run standard deviation and P is the number of evaluated forecasts.5 By

rejecting the null hypothesis, it can be concluded that the forecasts do not exhibit equal

predictive ability. However, it does not inform us about time-variation, nor about phases

in or economic conditions under which one forecast produces smaller squared errors than

the other. This leads us to the test of conditional predictive ability.

5Clearly, P might depend on the forecast horizon h under investigation, but for notational convenience,
we suppress this dependence.
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2.3 Conditional predictive ability

Crucial for the following analysis is the test of conditional predictive ability which origi-

nates in the seminal work of Giacomini and White (2006). This setup assesses the relative

performance of two forecasts by conditioning the loss differential on a set of state variables

st. Within this framework, the relative predictive ability is not only compared over the

whole sample, but also time periods or states of the conditioning variables are taken into

consideration.6

Advantages of this test are the possibility to not only compare the forecasts, but the null

hypothesis evaluates the complete forecasting setup in form of the estimation method

or window size and allows for nested as well as non-nested setups. Furthermore, the

unconditional test (e.g. Diebold and Mariano, 1995) is a special case of the Giacomini

and White (2006) setup, when the set of conditioning state variables is empty (st = ∅).

The test of conditional predictive accuracy can be integrated into a linear regression

framework ensuring high interpretability of the resulting OLS coefficients, see Granziera

and Sekhposyan (2019). The regression equation is:

∆Lt+h = θ′st + εt, (8)

where θ is the parameter vector of dimension p to be estimated via least squares and

st is the vector of p conditioning variables including an intercept. The innovation term

is labeled as εt.
7 The Wald-type test statistic for the null hypothesis of E[∆Lt+h|st] =

E[st∆Lt+h] = 0 can be calculated as:

GW = P

(
P−1

P∑
t=1

st∆Lt+h

)′
Ω̂−1

(
P−1

P∑
t=1

st∆Lt+h

)
∼ χ2

p, (9)

with Ω̂ being a HAC-type estimator of the variance of P−1/2
∑P

t=1 st∆Lt+h. Therefore, the

test can be implemented as a regression based Wald-type test with H0 : θ = 0 resulting

from Equation 8, which we denote as GWW .

Following Granziera and Sekhposyan (2019), we do not only report the Wald-type statis-

tic GWW , but also the individual t-statistics for each included conditioning variable and

the adjusted R2 from the dynamic linear regression in Equation 8. This is of importance

6Conditional evaluation becomes increasingly more relevant as a recent publication by Odendahl et al.
(2023) shows. The authors investigate the relative forecasting performance under state-dependence and
discover pockets of predictability.

7We allow for autocorrelation and heteroskedasticity and use HAC covariance matrix estimates ac-
cordingly.
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in order to analyse the relevance of the respective variable. Moreover, significant vari-

ables can be interpreted with respect to their coefficients’ direction, allowing an economic

interpretation of the loss differentials predictability depending on the respective state

variable.

2.4 Oil price change measures

Due to the relevance of the oil price for the overall economy, the literature on oil price

change measures is large. Early literature, e.g. Hamilton (1983) focused especially on

positive increases in the oil price and finds a strong connection between oil prices and

GDP growth. Negative changes are considered as well, e.g. in Mork (1989) who finds

asymmetric effects on the GDP growth depending on the kind of oil price change. Before

introducing oil price change measures, we define an oil shock according to Hamilton (2003)

who considers oil price shocks primarily as reactions to exogenous political or military

shocks, rather than endogenous responses to the economy. Nonetheless, Hamilton (2003)

finds oil price change measures that are able to filter out movements in the oil price which

do not stem from exogenous shocks. This motivates the introduction of the following

established measures.

When choosing conditioning variables for oil price forecasts, conventional oil price change

measures are an obvious choice. For this we rely on the following oil price change measures

as they can be found in Kilian and Vigfusson (2013) and Nonejad (2021). In order to

take care of the asymmetries and non-linearities, several oil price change measures are

introduced, focusing on positive and negative changes, and also large or net changes.

The first measure is the three-year net oil price increase net+t , as proposed in Hamilton

(1996) and extensively studied in Kilian and Vigfusson (2013). In order to define net+t , we

first introduce oilmax
t as the three-year maximum oil price oilmax

t = max{oilt−1, . . . , oilt−36}.8

It follows

net+t = max{0, oilt − oilmax
t }.

Analogously, we define the counterpart net−t as the three-year net oil price decrease to

account for asymmetry: net−t = min{0, oilt−oilmin
t } with oilmin

t = min{oilt−1, . . . , oilt−36}.
Instead of taking the net change into account, the change from the highest price in recent

history can be calculated:

gapt = oilt − oilmax
t .

8Please note that we deviate from the original notation
.

oilt in order to increase readability.
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In order to also account for non-linearities, large changes are considered via the measures

larget and large+
t . First, we look at ovxt which is the CBOE Crude Oil ETF Volatility

Index measuring forward-looking oil price volatility. From this we compute larget as a case

in which the absolute oil price change exceeds the implied standard deviation resulting

from ovxt:

larget = ∆oilt · 1 (|∆oilt| >
√
ovxt) .

Analogously, we define large positive changes in which the oil price change exceeds the

implied standard deviation:

large+
t = ∆oilt · 1 (∆oilt >

√
ovxt) .

Due to the use of ovxt instead of the full sample standard deviation, the construction

of larget and large+
t are essentially measured in real-time. This collection of established

oil price change measures serve as explanatory variables in the conditional ability testing

framework.

Apart from conventional oil price change measures, we include variables covering supply

and demand fundamentals for robustness. These are relevant to forecasting the oil price

and its volatility itself and potentially covering non-linearities (see e.g Zhang, Chen, and

Bouri, 2024). Following Wang et al. (2017) and Salisu et al. (2022) we include the index

of global economic activity (gea) as proposed in Kilian (2009) and the monthly global

economic conditions indicator (gecon) as proposed in Baumeister et al. (2022) to cover

demand side. With respect to the supply side we include the changes in OECD oil

inventory (oic). In contrast to the above oil price change measures, these variables are

not reported in real-time. We therefore apply our methodology in two distinct settings (i)

a purely real-time setting excluding supply and demand factors and (ii) a setting including

these variables.9 The results based on the second setting are reported in subsection 4.4

and the Appendix, not changing the real-time results of the conditional predictive ability

test.

2.5 Monitoring explosive oil prices

We construct a new real-time variable indicating explosiveness in the oil market. To

this end, we make use of the established econometric methodology developed in Phillips,

9Alternatively the respective variables would have to be replaced with nowcasts as in Wang et al.
(2017).
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Shi, and Yu (2015a,b), Phillips and Shi (2018) and Phillips and Shi (2020).10 The main

idea is to investigate explosiveness in prices via recursions on a right-tailed unit root

statistic, i.e. the augmented Dickey-Fuller (ADF) statistic. This procedure allows for

multiple temporary explosive phases and has been further developed in a monitoring

context, see Phillips and Shi (2018). Let us denote the monitoring backward supremum

augmented Dickey-Fuller statistic as mBSADFt. The monitoring procedure is initialized

after s0 = bT (0.01+1.8/
√
T )cmonths, see Phillips and Shi (2018) and henceforth updated

in a recursive way until the sample is completed. Our newly proposed indicator extracts

information on the explosiveness of oil prices and its strength in real-time. It consists of

two parts and is constructed as

explt = mBSADFt · 1 (mBSADFt > 0) ∈ [0,∞)

with mBSADFt being the real-time monitoring statistic against explosiveness in the oil

price at time t (initialized at s0).11 Positive values of the mBSADFt statistic12 indicate

explosive behavior and are captured by the second part. Hence, a positive value is due

to an autoregressive coefficient exceeding unity which indicates an explosive root in the

underlying autoregressive process.

Now, we isolate the information on explosivity by censoring the monitoring statistic at zero

(from below) and keeping the positive values only. Hence, the newly proposed indicator

exploits not only information on explosivity in real-time, but also reflects its strength.

The larger the indicator deviates from zero, the stronger is the explosivity signal.

Importantly, our measure is not subject to a subjective nominal significance level as we are

not interested in testing against explosiveness, but rather aim at an indicator for explosive

behavior. This goal is achieved by the newly constructed variable explt. Furthermore,

this construction is in line with the other previously discussed variables and is also based

on recent and lagged oil prices.

Anundsen (2015) considers a bubble indicator constructed by the p-value of a cointegra-

tion statistic in the context of housing prices, see also Mikhed and Zemč́ık (2009b,a).

Their bubble indicator is thus constrained to take values in the [0, 1]-interval and is used

in a Granger causality analysis. The similarity to our measure is limited to the usage

of the recursive BSADF statistic and its p-value is related to the strength of explosiv-

10The general idea of monitoring explosive bubble processes was first suggested by Homm and Breitung
(2012) in this context.

11For a detailed exposition and asymptotic properties, the interested reader is referred to Phillips and
Shi (2018).

12The well-known Dickey-Fuller statistic is given as a t-ratio of the autoregressive coefficient centered
at unity, divided by its standard error.
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ity. Main differences are, however, that we focus in particular on positive values of the

BSADF statistic only, thereby excluding all other irrelevant information. Second, we do

not restrict the indicator to the unit interval by a nonlinear p-value transformation, but

take the information in the BSADF statistic directly into account in a linear fashion (af-

ter censoring). These features are advantageous to extract the most relevant information

regarding explosivity from the BSADF statistic. Moreover, our measure is constructed

in real-time and does not rely on information from subsequent periods. This is an im-

portant feature in the comparison to other real-time variables, as we want to study the

time-variation in relative forecast performance based on information that was available

at the time the forecast is generated.

3 Data

Our sample runs from July 2005 to August 2022 yielding T = 206 monthly observa-

tions.13 The sample start and end are restricted to the availability of EIA forecast which

are essential to the analysis. The data is obtained from Yunyi Zhang’s homepage (up-

dated and structured EIA forecasts; OECD oil inventory), the FRED data base (WTI

spot oil price and CBOE crude oil ETF volatility index), the Federal Reserve Bank of

Dallas (global economic activity index) and Christiane Baumeister’s homepage. Latter

directly provides the oil price market expectations for the horizons h = {3, 6, 9, 12} which

can be found in the file ”Monthly WTI Oil Price Expectations”. We therefore obtain

readily available estimates for the HW approach by Christiane Baumeister and data for

the Monthly Global Economic Conditions (GECON) indicator, resulting in a sample of

forecasts and explanatory variables for the same period. The established oil price change

measures are constructed as outlined in the previous section, see Figure 2. In Figure 3,

we display the newly proposed explosivity indicator, the underlying monitoring statistic

mBSADFt and the re-scaled oil price series.14 The loss differential series are studied

at the horizons h = {3, 6, 9, 12}. Figure 1 (located in the introduction) and Figures 5-7

in the Appendix show the different loss differentials for market-based expectations. In

our empirical analysis, we consider the loss differential between (i) market-based expec-

13Note that the CBOE crude oil ETF volatility index is available from June 2007 onwards and the
variables based on oilmax

t need an initialisation of 36 months. Consequently the unconditional predictive
ability analysis begins in June 2007, resulting in T = 183 observations. Therefore conditional predictive
ability regressions including these variables lose observations depending on the forecast horizon, i.e.
T = 183− h observations.

14We use two lags for the BSADF monitoring statistic to capture the dynamics in the oil price and to
generate the explosivity indicator. The monitoring procedure is initialized after s0 = 28 months according
to the rule in Section 2.5.
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Figure 2: State variables.
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Notes: Variables used in the conditional predictive ability regression setting. The top two rows show
the real-time oil price change measures and the bottom row the additional variables used in the further
analysis. Information on the construction of the real-time oil price change measures is reported in section
2.

tations and no-change forecasts and (ii) EIA forecasts and no-change forecasts. In total,

we analyse eight different loss differential series in the (un)conditional predictive ability

setting.
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Figure 3: Explosivity indicator, monitoring statistic and rescaled oil price.
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Notes: The newly proposed explosivity indicator (red) which derives from the monitoring statistic (black).
When the monitoring statistic exceeds zero, the explosivity indicator and the monitoring statistic are
identical. Otherwise, if the monitoring statistic is smaller than zero, the indicator is censored at zero. In
addition the rescaled oil price (blue) is plotted for comparison.

4 Empirical results

In this section, we report our empirical results. In Subsection 4.1, we start out with

an unconditional evaluation of predictive ability for market-based oil price expectations.

Subsection 4.2 continues with the conditional evaluation perspective. EIA forecasts are

treated in Subsection 4.3., while robustness checks are summarized in Subsection 4.4.

4.1 Unconditional predictive ability

The following Table 1 reports relative MSE values (rMSE) and Diebold-Mariano statis-

tics15 (DM-stat) for the evaluation period from June 2007 to August 2022 for the Hamil-

15Throughout the analysis, we employ robust HAC standard errors. Newey-West robust standard
errors provide consistent estimates also under strong forms of heteroskedasticity, see e.g. Demetrescu
et al. (2022).
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ton and Wu (2014) forecasts against the benchmark no-change forecast. We evaluate the

forecasts considering quadratic loss. This is the common metric in order to measure the

accuracy of market expectations due to the minimisation of the quadratic loss by the

conditional expectation (Granger 1969). In addition, we report the relative MSEs given

in Baumeister (2023) for the evaluation period from August 1997 until December 2018

for comparison, revealing a strong similarity between those results and ours.16 Overall,

the relative MSE values decrease with longer horizons, this relationship is also reported in

Wang et al. (2017) where forecasts from a time-varying parameter model are compared to

the no-change forecast. This suggests increasing accuracy of market-based expectations

(relative to the no-change benchmark) for longer horizons. At a one-year horizon, the

ratio takes the value of 0.676 indicating a reduction in the mean squared error, while

the reduction at the three-month horizon is not that pronounced. The accompanying

Diebold-Mariano statistics only suggest mild significance at longer horizons. At the nom-

inal significance level of five percent, a rejection is only obtained for h = 12.

Table 1: Relative MSE values and Diebold-Mariano statistics for market-based expecta-
tions.

Period Statistic h = 3 h = 6 h = 9 h = 12

2007M6-2022M8
rMSE 0.905 0.821 0.742 0.670
DM-stat −1.331 −1.677 −1.814 −2.097

1997M8-2018M12 rMSE 0.896 0.829 0.762 0.697

Notes: Relative MSE values and Diebold-Mariano statistics for market-based expectations (HW) com-
pared to the NC forecast for h = {3, 6, 9, 12}. Values below one for the rMSE indicate better performance
of the HW forecast. The upper evaluation period is the sample later evaluated by the conditional pre-
dictive ability framework. The lower period is the evaluation from Baumeister (2023).

4.2 Conditional predictive ability

We now turn from the unconditional perspective to the conditional one which allows

us to deepen the investigation and to study time-varying effects. Of course, it would be

possible to test for time-varying unconditional predictive ability as in Giacomini and Rossi

(2010) and Demetrescu, Hanck, and Kruse-Becher (2022). But, such an analysis would

not reveal any insights on the dynamic sources of time-varying predictive ability. As

our main interest lies in the evaluation of said sources, the conditional predictive ability

framework is a natural choice in our context. Besides, the framework is well suited also

because of the unconditional evaluation results which are being far from clear-cut.

16Due to data availability of an important state variable (ovx), we are restricted to the sample between
2007 and 2022.
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Regarding the selection of explanatory variables in the auxiliary dynamic regression Equa-

tion 8, we proceed with the best subset selection via Mallows (Cp) criterion, see Mallows

(1973).17 As robustness checks, we also consider the Schwarz criterion. In the best subset

selection approach, the algorithm searches for the specification with smallest Mallows cri-

terion or Schwarz criterion out of all combinations of regressors. As a further robustness

check, we compare our findings to those obtained from the general-to-specific approach

(GETS) in Pretis et al. (2018).

In more detail, the algorithm of the best subset selection approach first fixes the number of

regressors and then the following procedure is repeated for all remaining possible numbers

of regressors. For a fixed number of variables, the best subset of regressors is chosen via

the residual sum of squares (or equivalently the coefficient of determination). As the

number of regressors is fixed in this step, no penalty is needed for model complexity.

Thirdly, the optimal number of regressors is chosen by means of Mallows criterion or

an alternative measure balancing goodness-of-fit and model complexity. In this stage,

only the best performing models (one model for each possible number of regressors) with

different levels of model complexity are compared. The finally chosen set of regressors is

the one belonging to the selected model in the final stage. All compared models include

an intercept as required for the conditional predictive ability test.

Results are reported in Table 2. Here, we provide the results for all four different horizons

and the case of market-based expectations versus no-change forecasts. In the upper panel

of Table 2, we give individual t-statistics (based on HAC standard errors) for the selected

regressors via the best subset algorithm based on Mallows criterion. Moreover, we report

the Giacomini-White Wald statistic for conditional predictive ability which tests the joint

nullity of all parameters including the intercept and the adjusted R2.

The null hypothesis of no conditional predictive ability is clearly rejected by Giacomini-

White statistic in all cases. Most important variables of the loss differential are the

explosivity indicator, net price increases and implied volatility.18 The results are very

similar across different horizons. We find that net price increases positively affect future

realizations of the loss differential suggesting that times of strongly rising oil prices are

followed by periods in which the market-based expectations perform worse than the no-

change forecasts (ceteris paribus).19 Additionally, predictive power is relatively high with

17This criterion is directly related to the Shibata criterion which in turn can be approximated by the
well-known AIC. Asymptotically these criteria are identical, but different from the Schwarz criterion.

18The correlation coefficients between (i) net+ and expl equals 0.6, (ii) ovx and expl equals 0.07 and
(iii) net+ and ovx is 0.06.

19We also investigate the composition of net+ and net− as an aggregated indicator of both directions of
price movements (Net), but it turns out that the decomposition into positive and negative price changes
is much more informative.
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Table 2: Conditional predictive ability results, HW, best subset selection via Mallows
criterion.

Regressor (t-stats) h = 3 h = 6 h = 9 h = 12

Intercept 1.739 0.471 0.352 0.179

net+ 3.202 2.538 2.398 -
net− - - - -
gap - - - -0.777
large - - - -
large+ - - - -
ovx -3.164 -1.063 -0.929 -1.659
expl -2.498 -6.819 -11.316 -11.468

GWW 18.892 104.526 326.956 603.895

Adjusted R2 0.259 0.521 0.592 0.428

Notes: The results for the conditional predictive ability regression, comparing the HW forecast and the
NC forecast. The regressors are chosen via best subset selection using Mallows criterion. The table lists
the t-statistics for selected regressors, the Wald statistic GWW on which the test of conditional predictive
ability is based on, as well as the adjusted R2 of the regression

adjusted R2-values ranging from 25.9% (h = 3) to 59.2% (h = 9).

Moreover, we find that the newly constructed explosivity indicator complements, rather

than substitutes, the established net positive oil price change series during explosive

episodes. In particular, we find a strongly significant negative effect in predictability with

increasing importance of the horizon. The explosivity indicator is by far the most im-

portant one across the set of considered candidates. It mainly reflects the phase around

the peak of a locally explosive episode and the subsequent collapse during the market

downturn. Its negative effect on the future loss differential resembles the phenomenon

that market-based expectations strongly recover (in terms of relative performance against

the no-change forecasts) around the timing of the local peak and during the downward

market adjustment phase. In fact, the positive effect of net price increases reflect the

start of the explosive regime in which no-change forecasts significantly improve in their

relative performance and may even outperform the market-based expectations. However,

this picture is reversed after a few months of temporary explosiveness in the oil market

as market-based expectations start to improve significantly over the no-change forecasts

around the date of the peak.

In order to shed further light on the complementary nature of the two important explana-

tory variables covering strong price fluctuations in the oil price, we display both series
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Figure 4: Comparison of net price increases and explosivity indicator.

2005 2010 2015 2020

0.
0

0.
5

1.
0

1.
5

2.
0

Net+
Expl
−Net−

Notes: Comparison of net price increases, the negative of the net price decreases and explosivity indicator.
It becomes obvious how the explosivity indicator complements the other two oil price change measures,
spiking at similar times.

in Figure 4. It is clearly visible that the explosivity series is lead by the net positive

indicator. Moreover, by construction the net positive indicator drops back to zero during

downward oil market price corrections, while the explosivity indicator is still active. The

technical explanation is the typical and inherent delay in monitoring procedures per se,

see e.g. Chu, Stinchcombe, and White (1996). This is due to the fact that observations

from the pre-explosive phase are uninformative about the regime change towards explo-

sivity. Hence, it takes a few steps until the signal dominates the accumulated noise, see

also the discussion in Homm and Breitung (2012) and Breitung and Kruse (2013). No-

tably, observations from an explosive regime have a relatively fast divergence rate, see e.g.

Phillips and Magdalinos (2007), see also Kurozumi (2021) who provides a novel study on

the asymptotic behaviour of delays in monitoring explosive processes.

In summary, we see that the real-time explosivity indicator is somewhat shifted in time in

comparison to the net positive net+ oil price change measure. To this end, the latter one

captures the strong upswings in the oil price (relative to its recent historical evolution),
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while the former one also captures the phase of market correction, i.e. the downturn

of oil prices after the peak. Hence, both indicators can be seen as complements rather

than substitutes. Large positive price changes are also measured by the variable large+.

However, due to its construction it is less focused on explosive phases, but can be seen

as a more general measure of oil price increases. The net negative net− variable focuses

solely on strong downturns and is therefore also partly related to the explosivity indicator

as it can also be seen in Figure 4.

As a third selected measure, implied volatility turns out to be of relevance for the three-

month horizon, but not so much thereafter. The effect is negative and thus further

supporting the notion that market-based expectations tend to be more accurate then no-

change forecasts in more volatile states of the oil market. The gap measure is included

in the dynamic regression for the one-year horizon, but appears to play a minor role as

opposed to the explosivity indicator.

4.3 EIA forecasts

We continue the analysis for the oil price forecasts obtained by the Energy Information

Administration (EIA). Updated data from Garratt et al. (2019) is obtained from Yunyi

Zhang’s website. Figures 8-11 in the Appendix show the corresponding different loss

differential.

Table 3: Relative MSE and Diebold-Mariano statistics for EIA forecasts.

Period Statistic h = 3 h = 6 h = 9 h = 12

2007M6-2022M8
rMSE 0.896 1.038 0.959 0.877
DM-stat −2.078 0.484 −0.637 −1.772

Notes: Relative MSE values and Diebold-Mariano statistics for the EIA forecast compared to the NC
forecast for h = {3, 6, 9, 12}. Values below one for the rMSE indicate better performance of the EIA
forecast.

We first start with unconditional predictive ability results which are reported in Table

3. We find mostly similar results with a few noticeable differences. There is no clear

monotonic pattern in the relative MSE over the different horizons. However, the best

performance is observed for the shortest and longest horizons. The Diebold-Mariano

statistics again indicates mild significance at the three-month horizon. Remarkably, the

relative MSE exceeds unity for the six-month horizon, resulting in a reversed sign of the

DM statistic, excluding a rejection in favour of EIA forecast superiority. We continue our

analysis with the conditional predictive ability analysis based on the best subset selection

according to Mallows criterion. Results are reported in Table 4.
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Table 4: Conditional predictive ability results, EIA, best subset selection via Mallows
criterion.

Regressor (t-stats) h = 3 h = 6 h = 9 h = 12

Intercept 0.439 -1.505 -1.376 0.644

net+ 2.132 2.246 2.394 -
net− - 1.390 2.001 -
gap - - - -
large - -1.024 -1.642 -2.237
large+ - 1.196 1.614 1.976
ovx -1.682 - - -1.272
expl - 1.514 -2.739 -3.904

GWW 16.565 21.365 19.037 63.936

Adjusted R2 0.052 0.229 0.128 0.091

Notes: For more information see Table 2.

Overall, more diverse regressors are selected compared to the HW forecast. In all cases,

the Giacomini-White statistic is highly significant. The adjusted R2 in the dynamic

regressions are considerably lower than for market-based expectations. These results

indicate lower conditional predictability of the loss differential overall. Results obtained

for longer horizons, i.e. h = 9 and h = 12, are broadly consistent with (and comparable

to) the ones for market-based expectations. At these longer horizons, the explosivity

indicator enters the dynamic regressions with a negative significant effect, while the net+

and large+ indicator positively affect future values of the loss differential. At the shortest

horizon of h = 3, the net+ indicator is positively significant and the volatility index enters

in a negative way. Both effects are consistent with the findings for the market-based

expectations. At h = 6, the interpretation is not that clear-cut as a couple of variables

are included. We still find net+ to have a significant positive effect, while most other

regressors have weaker t-values. Overall, we find remarkably less predictability (ranging

from 5.2% to 22.9%) in the loss differential involving EIA forecasts than for market-based

expectations.

One possible economic explanation relates to the scapegoat approach by Bacchetta and

Van Wincoop (2013) originally put forward in the context of exchange rate fluctuations.

The scapegoat theory states that fundamentals become a scapegoat if the size of the

deviation from its equilibrium value is large and there is a sizeable shock to unobservable

fundamentals, see Engel and West (2005). It could possibly be argued that large variations
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in the relationship between the oil price and fundamentals naturally evolve when structural

parameters in the oil market are time-varying and unknown to the market participants.

During explosive periods and in particular after the market experiences a transition from

the local peak to the downward (or even collapse) phase, market participants are likely

to focus much more on fundamentals (so-called ’scapegoats’) rendering the market-based

expectations decisively more accurate.

4.4 Further analysis and robustness checks

In this subsection we present additional results and various robustness checks. First,

we include supply and demand variables in the conditional predictive ability regression.

These variables are not measured in real-time, nonetheless, it is of interest, whether these

hold explanatory power for the loss differential. We apply the same variable selection

procedures in these additional regressions. Next, we use the Schwarz criterion which

has a different penalty term in the best subset selection for the dynamic conditional

predictive ability regressions in order to control for the variable selection. Furthermore,

we study the general-to-specific approach (GETS) as employed in Pretis et al. (2018). As

in the other procedures, we keep the intercept in the regression to enable the conditional

predictive ability test which includes a testable zero restriction on the intercept. In

an exercise of dynamic conditional rotation (Zhu and Timmermann, 2022), we study

the possibility of switching between market-based expectations and no-change forecasts

based on a prediction of the loss differential itself. Our results from an ex-post dynamic

conditional rotation approach show that some, partially major (relative to the maximal

achievable improvement), significant gains are possible at short and medium horizons

to improve market expectation measures especially in times of large fluctuations in the

oil price as these are the phases in which the performance of market-based expectations

deteriorates relative to no-change forecasts.

4.4.1 Additional variables

Up to now the conditional predictive ability regression solely included real-time regressors.

This is our main focus, as it is of special interest to predict the loss differential with

information available when the forecast is made. This is in line with the definition of

forecast efficiency, minimizing the loss using all available information (Nordhaus, 1987).

Nonetheless, there might be other drivers of the oil price than previously used oil price
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change measures such as supply and demand variables.20 Including such regressors is of

threefold interest: (i) such variables have been useful in the context of forecasting oil

prices or volatility, often connected to non-linearities. This might transmit to the loss

differential; (ii) with respect to the forecast efficiency, it would be of interest whether

such fundamental factors are included in the information set, if so they should not hold

predictive power for the loss differential; (iii) even if not available as real-time variable, the

effect of including new variables on the significance of other regressors applies as further

robustness check.

Results including supply (oic) and demand variables (gea, gecon) are reported in Tables

9 to 14 in the Appendix. We apply the same robustness checks in form of variable

selection as before. Regarding the HW approach, the results do not change much. The

null hypothesis of no conditional predictive ability is rejected for all forecast horizons and

all variable selection algorithms. The demand variables gea and gecon are also selected,

especially at the h = 3 and h = 12 month horizon. Despite that, the other evaluation

metrics are subject to minor changes not changing the overall results.

With regard to the EIA forecasts, the effect of additional variables is stronger. While the

null hypothesis of no conditional predictive ability is still rejected with the exception of

h = 3 when using Mallows criterion, the effect of the newly proposed explosivity indicator

decreased. Meanwhile, the demand variables are selected in several settings, even though

having a minor effect on the Wald statistics which is in line to the main analysis.

4.4.2 Variable selection

In order to robustify the variable selection we apply different selection algorithms to all

previous setting. The results can be found in the Appendix in Tables 5 to 14. Starting

with market-based expectations and the best subset selection approach, we find quite

similar results for the Schwarz criterion (Table 5). Two differences are found. First, at

h = 6 the implied volatility series is not chosen as a regressor. Second, at h = 12, the

gap series is not included, but without any noteworthy consequences. Overall, the null

hypothesis of no conditional predictive ability is clearly rejected by the Giacomini-White

statistic. Turning to the general-to-specific approach, we find a lot more variables to be

included at all forecast horizons, see Table 6. Besides, the results are quite similar to the

previous findings and the interpretation of results is consistent with the main analysis

emphasizing the importance of the newly proposed indicator.

20Additionally, we included the nominal advanced foreign economies U.S. dollar index which was barely
selected and not significant. The results are available upon request.
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When considering the results for EIA forecasts based on the Schwarz criterion (Table 7),

we find that fewer variables are selected in comparison to Mallows criterion. Mainly, the

positive net price increases and the explosivity indicator are selected. In one case, i.e.

h = 12, the null hypothesis of the conditional predictive ability test can only be rejected

at the nominal significance level of ten percent. Turning to the general-to-specific analysis

in Table 8, we find quite similar results as in the main setting where Mallows criterion

is used. For h = 3, the conditional predictive ability test does not lead to a rejection at

conventional significance levels.

Overall the robustness checks lead to similar results compared to the main analysis. They

underline the importance of the newly proposed explosivity indicator when predicting

the loss differential, especially when including the market-based expectations. With only

small changes to the Wald statistics, the results hold, when changing the variable selection

algorithm.

4.4.3 Dynamic rotation

When rejecting the null hypothesis of equal conditional predictive ability, this has actual

consequences for selecting a forecast (Giacomini and White, 2006). Granziera and Sekh-

posyan (2019) state an interesting case for practical use. In case the test of unconditional

predictive ability does not reject the null, but the conditional test does, the forecast-

ing performance can be treated as equal on average, yet the relative performance of the

forecasts differs and can be chosen based on st. The fitted values from the conditional

predictive ability regression can be computed in order to decide which forecast is chosen

in period t. Depending on whether the fitted value E[∆Lt+h|st] = θ′st is larger or smaller

than one, either the competing forecast or the benchmark is chosen respectively.

We employ this dynamic rotation approach for all previous regressions, e.g. rotating

between either the HW and the NC forecast or the EIA and the NC forecast. The results

can be found in the Appendix in Table 15 based on real-time predictors and Table 16

including supply and demand variables.21

The relative performance measure (RP) indicates that the no-change forecasts is selected

more often at short horizons, but essentially never for the longest horizon of one year. Con-

sequently, the conditional dynamic rotation approach only offers some gains at the shortest

21The dynamic rotation results are evaluated by following metrics: The rMSE between the HW/EIA
forecast and the rotated forecast, the relative performance, indicating the percentage of times, the bench-
mark was chosen in the rotation and the success ratio, stating how often the fitted value predicted the
correct sign of the loss differential.
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horizon of three month.22 The infeasible, minimally possible, MSE(DR)/MSE(EIA) ratios

are 0.872 (h = 3), 0.874 (h = 3), 0.861 (h = 3) and 0.851 (h = 12). These calculations

are based on the full information of realized signs of the loss differential instead ot its

predictions and thus provide a lower empirical bound. The success ratio is close to fifty

percent for h = {6, 9}, but we observe significantly larger values at h = 3 and h = 12. The

Anatolyev and Gerko (2005) statistic rejects the null hypothesis of no sign predictability

at all horizons at the one percent level. The relatively high degree of predictability via

the adjusted R2 suggests that the level of the loss differential is indeed quite predictable

and the rMSE statistics show that some minor improvements can be achieved.

For the EIA forecasts the relative performance measure takes much larger values and also

the success ratio is increased. This results in considerably lower relative MSE values for

the dynamically rotated expectations with a minimal value of 0.915 ot h = 6 which is

consistent with the previous unconditional rMSE statistic. 23 However, at h = 12, the dy-

namic rotations do not pay off. The infeasible, minimally possible, MSE(DR)/MSE(EIA)

ratios are 0.854 (h = 3), 0.826 (h = 3), 0.855 (h = 3) and 0.876 (h = 12). In particu-

lar, the achieved improvement at h = 6 (0.915) is notable. The Clark and West (2007)

statistic is significant at the five percent level for h = 3 and h = 6 and at the ten percent

level for h = 9. For either HW and EIA forecasts, results including supply and demand

variables barely change.

Overall, improvements to the rMSE are achievable, with major reductions in some cases.

Note that this methodology can serve as a starting point for a deeper analysis. The

regression framework is essential to the GW test and offers high interpretability of the

parameters allowing economic interpretation. The variable selection from our analysis

may serve as build-up to a conditional forecast combination approach (see e.g. Gibbs and

Vasnev, 2024) or a more sophisticated dynamic conditional rotation based on non-linear

or machine learning models.24

22The Clark and West (2007) statistic equals -1.274 is very close to the critical value at the ten percent
level of significance.

23For this forecast horizon, the high improvement in the rMSE is especially driven by the no-change
forecast outperforming the EIA forecast. Furthermore, the R2 of the respective regression is considerably
higher compared to the other forecast horizons, despite lower t-statistics of the oil change regressors.
Nonetheless, the intercept explains lots of the variation of the loss differential for h = 6.

24As an alternative to dynamic rotation, changes to the respective method would be of interest as well.
A possible technical explanation why the HW market-based expectations relative forecasting performance
is worse during explosive phases may relate to the model persistence parameter matrix ρ. In case of local-
to-unity or even exact unit roots, the log-likelihood surface becomes flat, resulting in an identification
problem (Hamilton and Wu, 2012). It could be helpful to address this problem in future considerations.
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4.5 Economic implications

Accurate and reliable expectations are of utmost importance in decision-making during

uncertain times and highly relevant in forward-looking models such as the New-Keynesian

Phillips Curve, see e.g. Mavroeidis et al. (2014). An expectational shock can be defined

as the difference between the expected value and the actual value. Such shocks are

of major interest when assessing economic models or policy (see e.g. Baumeister and

Kilian, 2016 and Baumeister, 2023). As our robust results show, market-based and survey-

based expectations are not unconditionally well-suited expectation measures. Therefore,

analyses based on these (i) expectations and (ii) implied expectational shocks can be

prone to biased conclusions. Especially, as the relative performance of such expectations

is worst when the oil price undergoes explosive phases, the subsequent shocks are not

located in the centre of the distribution, but rather in the tails. In particular the left tail

imposes the highest risk for most economic agents (Baumeister et al., 2024).

In general, expectational shocks are commonly used in VAR analyses (see e.g. Barsky

and Sims, 2012 or Clements and Galvão, 2021). For example, Anderl and Caporale

(2024) investigate the effect of expectational oil shocks on inflation. Further, Känzig

(2021) studies the macroeconomic effects of expectational oil price shocks and Bruns and

Lütkepohl (2023) investigate the effect of revisions to price expectations. Similarly, Valenti

et al. (2023) include an expectational shock in a structural VAR model, acknowledging

the role of HW expectations. For a non-zero risk premium, the HW expectation is a more

suitable measure than the futures price alone, see Baumeister (2023). Shocks derived

from survey expectations are also common in the literature, see for example Prat and

Uctum (2024) who analyse such expectations as a risk premium measure in the context

of fundamental and speculative effects on risk pricing.

Strikingly, we have shown that the relative performance of the HW expectations, but

also survey expectations, strongly deteriorate in turbulent market phases. Next to the

construction of surprise shocks in the first step, disentangling the supply and demand

components in a second step as e.g. in Baumeister (2023), can be affected by an inap-

propriate expectation measure used in the first place. Therefore, our results may have

implications for the literature of identifying pure expectational oil shocks, orthogonalized

from supply and demand components, as in e.g. Degasperi (2023). Our results imply

that analyses based on expectational oil shocks should be conducted carefully, as different

underlying expectation measures are likely to be subject to time-varying performance.

Similarly, this holds for other applications relying on accurate oil price expectations. The

literature on testing against speculative bubbles, Pavlidis et al. (2018) might be directly
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affected. Their testing procedures immediately rely on (explosive) spot and expected oil

prices. Obviously, the (ex-post) measurement of expectations is key to the outcomes of

and conclusions from such an analysis and these are affected by potential misspecification

and non-optimality of oil price forecasts. Further, modelling of storage demands (see

e.g. Baumeister and Kilian, 2014) or individual market participants’ decisions (see e.g.

Allcott and Wozny, 2014 on how consumers base vehicle purchase decisions of expected

future gasoline prices) rely on accurate forecasts. The same holds for producers decisions

regarding investments in production capacities (see e.g. Anderson, Kellogg, and Salant,

2018) and therefore regulatory decisions. In all these cases, accurate and reliable oil price

expectations are key to decision-making under uncertainty.

5 Conclusions

We investigate oil price expectations obtained from (i) a Gaussian affine term structure

model based on futures prices and (ii) the Energy Information Administration in the US.

Strikingly, the loss differentials against no-change forecasts show time-variation mainly

related to explosive oil price episodes. While an unconditional analysis over the full

sample only weakly suggests the superiority of market-based expectations using futures

prices overall, changing the perspective towards a conditional one reveals a couple of new

insights. Our results indicate that there is clear evidence against the null hypothesis of

no conditional predictive ability. The applied best subset selection approach reveals that

besides a couple of established oil price change measures (e.g. net oil price increases and

implied volatility), our newly constructed real-time indicator for explosiveness has strong

explanatory power for the loss differential. Results turn out to be robust with respect to a

number of variations in the evaluation methodology. The main results are also established

for the EIA forecasts. Our results may have immediate implications for applications of

oil price expectations, e.g. testing for speculative bubbles or fiscal and monetary, but also

climate policy.

The result that both opinion- and market-based forecasts fail to beat simple benchmarks

in explosive price periods also deserves further attention from a theoretical perspective.

Opinion or survey-based forecasts often do adjust to new information with a significant

delay, for example due to the fact that the acquisition and incorporation of new informa-

tion can be costly. On the other hand, market-based expectations might not be able to

sufficiently capture risk premia in the spot market in times of explosive periods.
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Figuerola-Ferretti, I., A. Rodŕıguez, and E. Schwartz (2021). Oil price analysts’ forecasts.

Journal of Futures Markets 41 (9), 1351–1374.

Garratt, A., S. P. Vahey, and Y. Zhang (2019). Real-time forecast combinations for the

29



oil price. Journal of Applied Econometrics 34 (3), 456–462.

Giacomini, R. and B. Rossi (2010). Forecast comparisons in unstable environments.

Journal of Applied Econometrics 25 (4), 595–620.

Giacomini, R. and H. White (2006). Tests of conditional predictive ability. Economet-

rica 74 (6), 1545–1578.

Gibbs, C. G. and A. L. Vasnev (2024). Conditionally optimal weights and forward-looking

approaches to combining forecasts. International Journal of Forecasting 40 (4), 1734–

1751.

Granger, C. W. (1969). Prediction with a generalized cost of error function. Journal of

the Operational Research Society 20 (2), 199–207.

Granger, C. W. J. and P. Newbold (1986). Forecasting economic time series, 2nd edition.

Academic Press.

Granziera, E. and T. Sekhposyan (2019). Predicting relative forecasting performance: An

empirical investigation. International Journal of Forecasting 35 (4), 1636–1657.

Gronwald, M. (2016). Explosive oil prices. Energy Economics 60, 1–5.

Hamilton, J. D. (1983). Oil and the macroeconomy since World War II. Journal of

Political Economy 91 (2), 228–248.

Hamilton, J. D. (1996). This is what happened to the oil price-macroeconomy relationship.

Journal of Monetary Economics 38 (2), 215–220.

Hamilton, J. D. (2003). What is an oil shock? Journal of Econometrics 113 (2), 363–398.

Hamilton, J. D. and J. C. Wu (2012). Identification and estimation of Gaussian affine

term structure models. Journal of Econometrics 168 (2), 315–331.

Hamilton, J. D. and J. C. Wu (2014). Risk premia in crude oil futures prices. Journal of

International Money and Finance 42 (C), 9–37.

Hamilton, J. D. and J. C. Wu (2015). Effects of index-fund investing on commodity

futures prices. International Economic Review 56 (1), 187–205.

Hendry, D. and M. Clements (2003). Economic forecasting: Some lessons from recent

research. Economic Modelling 20 (2), 301–329.

Homm, U. and J. Breitung (2012). Testing for speculative bubbles in stock markets: A

comparison of alternative methods. Journal of Financial Econometrics 10 (1), 198–231.

James, G., D. Witten, T. Hastie, and R. Tibshirani (2021). An introduction to statistical

learning: With applications in R (2 ed.). Springer.

Kilian, L. (2009). Not all oil price shocks are alike: Disentangling demand and supply

shocks in the crude oil market. American Economic Review 99 (3), 1053–69.

Kilian, L. and R. J. Vigfusson (2013). Do oil prices help forecast U.S. real GDP? The role

of nonlinearities and asymmetries. Journal of Business & Economic Statistics 31 (1),

30



78–93.

Kilian, L. and X. Zhou (2022). Oil prices, gasoline prices, and inflation expectations.

Journal of Applied Econometrics 37 (5), 867–881.

Känzig, D. R. (2021). The macroeconomic effects of oil supply news: Evidence from opec

announcements. American Economic Review 111 (4), 1092–1125.

Kruse, R. and C. Wegener (2020). Time-varying persistence in real oil prices and its

determinant. Energy Economics 85, 104328.

Kruse-Becher, R. (2024). Let’s switch again! Testing for speculative oil price bubbles

based on dynamically rotated market expectations. mimeo.

Kurozumi, E. (2021). Asymptotic behavior of delay times of bubble monitoring tests.

Journal of Time Series Analysis 42 (3), 314–337.

Li, J., Z. Liao, and R. Quaedvlieg (2021, 06). Conditional superior predictive ability. The

Review of Economic Studies 89 (2), 843–875.

Mallows, C. L. (1973). Some comments on Cp. Technometrics 15 (4), 661–675.

Mavroeidis, S., M. Plagborg-Møller, and J. H. Stock (2014). Empirical evidence on infla-

tion expectations in the New Keynesian Phillips Curve. Journal of Economic Litera-

ture 52 (1), 124–88.
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Appendix

Table 5: Conditional predictive ability results, HW, best subset selection via Schwarz criterion.

Regressor (t-stats) h = 3 h = 6 h = 9 h = 12

Intercept 1.739 -1.352 0.352 0.224

net+ 3.202 3.506 2.398 -
net− - - - -
gap - - - -
large - - - -
large+ - - - -
ovx -3.164 - -0.929 -0.891
expl -2.498 -6.348 -11.316 -20.006

GWW 18.892 43.241 326.956 485.134

Adjusted R2 0.259 0.514 0.592 0.422

Notes: For more information see Table 2.

Table 6: Conditional predictive ability results, HW, General-to-Specific.

Regressor (t-stats) h = 3 h = 6 h = 9 h = 12

Intercept 1.295 -0.305 0.311 0.345

net+ 2.986 2.225 2.305 -
net− - - - -1.604
gap -0.645 0.347 -0.297 -0.777
large 0.610 - 0.105 -0.855
large+ -0.395 - -0.301 0.793
ovx -2.492 1.092 -1.304 -1.804
expl -2.478 -6.675 -10.721 -11.082

GWW 21.208 220.094 1441.283 5267.865

Adjusted R2 0.256 0.517 0.586 0.424

Notes: For more information see Table 2.
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Table 7: Conditional predictive ability results, EIA, best subset selection via Schwarz criterion.

Regressor (t-stats) h = 3 h = 6 h = 9 h = 12

Intercept 2.955 -0.751 -0.957 0.663

net+ 1.999 2.598 2.733 -
net− - - - -
gap - - - -
large - - - -2.292
large+ - - - -
ovx - - - -1.275
expl - 2.561 -3.198 -

GWW 10.283 36.168 18.552 6.312

Adjusted R2 0.041 0.213 0.095 0.074

Notes: For more information see Table 2.

Table 8: Conditional predictive ability results, EIA, General-to-Specific.

Regressor (t-stats) h = 3 h = 6 h = 9 h = 12

Intercept -2.014 0.275 0.276 0.596

net+ 2.006 3.025 0.648
net− - - - -
gap - 0.733 0.253
large 1.318 -0.954 -1.387 -1.749
large+ - 1.218 1.649 -
ovx - -0.751 -0.664 -1.091
expl - 1.051 -3.102 -3.141

GWW 4.351 26.494 30.079 85.041

Adjusted R2 0.034 0.219 0.108 0.074

Notes: For more information see Table 2.
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Table 9: Conditional predictive ability results including supply and demand variables, HW, best
subset selection via Mallows criterion.

Regressor (t-stats) h = 3 h = 6 h = 9 h = 12

Intercept -1.835 0.471 0.352 0.270

net+ 2.934 2.538 2.398 -
net− - - - -
gap - - - -
large - - - -
large+ - - - -
ovx - -1.063 -0.929 -1.017
expl - -6.819 -11.316 -15.890

oic - - - -
gea - - - -1.850
gecon 4.119 - - -

GWW 20.443 104.526 326.956 611.880

Adjusted R2 0.265 0.521 0.592 0.442

Notes: The results for the conditional predictive ability regression, com-
paring the HW forecast and the NC forecast. The regressors are chosen
via best subset selection using Mallows criterion. The table lists the
t-statistics for selected regressors, the Wald statistic GWW on which the
test of conditional predictive ability is based on, as well as the adjusted
R2 of the regression
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Table 10: Conditional predictive ability results including supply and demand variables, HW,
best subset selection via Schwarz criterion.

Regressor (t-stats) h = 3 h = 6 h = 9 h = 12

Intercept -1.835 -1.352 0.352 0.270

net+ 2.934 3.506 2.398 -
net− - - - -
gap - - - -
large - - - -
large+ - - - -
ovx - - -0.929 -1.017
expl - -6.348 -11.316 -15.890

oic - - - -
gea - - - -1.850
gecon 4.119 - - -

GWW 20.443 43.241 326.956 611.880

Adjusted R2 0.265 0.514 0.592 0.442

Notes: For more information see Table 9.

Table 11: Conditional predictive ability results including supply and demand variables, HW,
General-to-Specific.

Regressor (t-stats) h = 3 h = 6 h = 9 h = 12

Intercept -0.887 -0.342 -0.589 -1.889

net+ 2.435 2.084 2.766 -
net− -0.536 0.757 -0.299 -
gap 0.009 0.300 0.066 -
large 0.394 - -0.420 -
large+ -0.664 - - -
ovx - - -
expl -3.585 -7.192 -9.831 -13.710

oic - - - -
gea -0.236 -0.003 -0.302 -1.706
gecon 2.547 - 2.197 2.334

GWW 167.328 453.096 527.886 494.645

Adjusted R2 0.247 0.509 0.582 0.439

Notes: For more information see Table 9.
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Table 12: Conditional predictive ability results including supply and demand variables, EIA,
best subset selection via Mallows criterion.

Regressor (t-stats) h = 3 h = 6 h = 9 h = 12

Intercept -2.629 -0.353 -1.333 -2.325

net+ 1.580 1.775 2.343 -
net− - - - -
gap - - - -
large - -0.790 -1.856 -3.305
large+ - - 1.805 1.913
ovx - - - -
expl - 0.660 -2.472 -

oic - - - -
gea 1.711 1.732 1.328 -
gecon 1.679 - 1.951 -

GWW 16.438 22.954 44.511 26.662

Adjusted R2 0.069 0.249 0.143 0.147

Notes: For more information see Table 9.

Table 13: Conditional predictive ability results including supply and demand variables, EIA,
best subset selection via Schwarz criterion.

Regressor (t-stats) h = 3 h = 6 h = 9 h = 12

Intercept -2.955 -0.035 -0.957 -2.325

net+ 1.999 1.748 2.733 -
net− - - - -
gap - - - -
large - - - -3.305
large+ - - - 1.913
ovx - - - -
expl - - -3.198 -

oic - - - -
gea - 1.926 - -
gecon - - - -

GWW 10.283 13.56 18.522 26.662

Adjusted R2 0.041 0.233 0.095 0.147

Notes: For more information see Table 9.

37



Table 14: Conditional predictive ability results including supply and demand variables, EIA,
General-to-Specific.

Regressor (t-stats) h = 3 h = 6 h = 9 h = 12

Intercept -2.004 0.080 -0.63 -1.223

net+ - 1.911 2.576 0.169
net− - - 1.430 -
gap - 0.295 - -0.469
large - -0.865 -1.564 -2.828
large+ - - - 1.682
ovx - - - -
expl - - -2.415 -

oic - - -0.627 -
gea - 1.936 1.143 -
gecon - - 1.032 4.652

GWW 4.017 16.638 29.865 33.468

Adjusted R2 0.000 0.235 0.131 0.140

Notes: For more information see Table 9.

Table 15: Dynamic rotation results based on real-time predictors

h = 3 h = 6 h = 9 h = 12

HW EIA HW EIA HW EIA HW EIA

M
al

lo
w

s Relative performance 0.183 0.072 0.102 0.232 0.052 0.161 0.000 0.175
Success ratio 0.556 0.583 0.508 0.565 0.494 0.534 0.585 0.626
Rotated rMSE 0.982 0.967 1.032 0.915 1.033 0.959 1.000 1.034

S
ch

w
ar

z Relative performance 0.183 0.072 0.051 0.153 0.052 0.063 0.000 0.146
Success ratio 0.556 0.583 0.525 0.542 0.494 0.552 0.585 0.608
Rotated rMSE 0.982 0.967 0.978 0.943 1.033 0.974 1.000 1.039

G
E

T
S Relative performance 0.239 0.189 0.130 0.322 0.034 0.236 0.012 0.175

Success ratio 0.577 0.577 0.525 0.577 0.511 0.540 0.596 0.602
Rotated rMSE 0.973 0.981 0.987 0.914 0.984 0.958 0.993 1.042

This table contains the dynamic rotation results based on real-time predictors. The results are
based on the variables selected by the best subset selection (Mallows/Schwarz) and the general-
to-specific (GETS) approach. The table contains results for a dynamic rotation between the
HW approach and the NC forecast and the rotation between the EIA forecast and the NC
prediction. The relative performance indicates the percentage of how often the NC was selected
in the rotation. The success ratio indicates, how often the selected forecast actually produced
a smaller squared error. And the rotated rMSE depicts the ratio between the rotated forecast
and either the HW or the EIA forecast, thus values below unity indicate an improvement due
to the rotation.
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Table 16: Dynamic rotation results based on real-time predictors and supply and demand vari-
ables

h = 3 h = 6 h = 9 h = 12

HW EIA HW EIA HW EIA HW EIA

M
al

lo
w

s Relative performance 0.144 0.172 0.102 0.452 0.052 0.322 0.070 0.170
Success ratio 0.572 0.628 0.509 0.548 0.494 0.558 0.597 0.620
Rotated rMSE 0.963 0.958 1.032 0.910 1.033 0.944 1.057 0.983

S
ch

w
ar

z Relative performance 0.144 0.072 0.051 0.407 0.052 0.063 0.070 0.170
Success ratio 0.572 0.583 0.525 0.537 0.494 0.552 0.597 0.620
Rotated rMSE 0.963 0.967 0.978 0.912 1.033 0.974 1.057 0.983

G
E

T
S Relative performance 0.172 0.000 0.057 0.446 0.075 0.385 0.233 0.170

Success ratio 0.556 0.544 0.531 0.462 0.494 0.586 0.561 0.632
Rotated rMSE 0.973 1.000 0.978 0.908 0.989 0.944 1.025 0.976

See Table 15 for more details. These results are based on the real-time predictors and the supply
and demand variables.

Figure 5: Loss differential (HW-NC), h = 6
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Figure 6: Loss differential (HW-NC), h = 9
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Figure 7: Loss differential (HW-NC), h = 12
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Figure 8: Loss differential (EIA-NC), h = 3
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Figure 9: Loss differential (EIA-NC), h = 6
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Figure 10: Loss differential (EIA-NC), h = 9
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Figure 11: Loss differential (EIA-NC), h = 12
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