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M
Let f = > axsin(kx) on the interval [0, 7]. If f has n zeroes on
k=m
(0,7), what can we say about the coefficients ax, m and M?

(partial) Solution: Sturm-Hurwitz theorem

Theorem (Sturm 1836, rediscovered by Hurwitz, 1903)
M
Let f = > aysin(kx). Then, f has between m — 1 and M — 1

k=m
zeroes in (0, 7).

This remains true for Sturm-Liouville eigenfunctions with Dirichlet
boundary conditions.
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For bounds on ai, see Quantitative projections in the Sturm
Oscillation Theorem by S. Steinerberger (2020).
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Higher dimensions
Courant’s theorem (1923): the n-th Dirichlet eigenfunction of the
Laplacian on a domain Q € R has at most n — 1 nodal domains.

Courant-Herrmann conjecture (stated in Courant-Hilbert!): also
true for linear combinations of the first n eigenfunctions.
VERY FALSE: various counterexamples since the 70's.
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Hybrid case: Quantum graphs
Let T =T(V, E) a graph with vertices V and edges E.
Assumptions on [

Connected

Finite number of edges

Each edge has finite length

Loops permitted

We consider eigenfunctions of Hyy = —A + W, where W is
C! and the vertex conditions are

Dirichlet at boundary

For other vertices, sum of inwards derivatives is zero
(Neumann-Kirchhoff)

All eigenfunctions of Hyy, do not vanish at any inner vertex
(callde W-generic).



Let N(f) be the number of inner zeroes of f.

Theorem (Band, C., 2023)

Let T be a W-generic graph with first Betti number (3. Let f; be
the eigenfunctions of Hyy = —59722 + W with Dirichlet boundary
conditions and Neumann-Kirchhoff continuity conditions on inner
vertices. Let k; be a strictly increasing sequence and

F(x) = Z,'\il aify,(x) where each a; is not zero. We have the
following bounds:
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Let N(f) be the number of inner zeroes of f.

Theorem (Band, C., 2023)

Let T be a W-generic graph with first Betti number (3. Let f; be
the eigenfunctions of Hyy = —59722 + W with Dirichlet boundary
conditions and Neumann-Kirchhoff continuity conditions on inner
vertices. Let k; be a strictly increasing sequence and

F(x) = Z,'\il aify,(x) where each a; is not zero. We have the
following bounds:

ki —1—(M—=1)(|Vb| + 25 —2) < N(F)
N(F)<km =148+ (M—=1)(|Vs| +28-2).

Upper bound is sharp in general
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M
Consider g(x,y) = 3. aje” ¥ fi(x).
i=1

g is a solution to g—ﬁ = % - W(x)g.
At yo — —o0, g(x, yo) looks like fy,,
At yo — +00, g(x, yo) looks like fy,

Start at y = —o0, look at nodal lines of g
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Can happen at most M — 1 times on each inner vertex.

Each time it happens, it can create at most deg(v) — 2 new nodal
lines (or reduce by that number).

Known bounds: k —1 < N(fx) < k — 1+ 3 (many people)

Leads us to ki — 1 — (M —1)( > deg(v) —2) < N(F) <
Ky — 14 B+ (M—=1)(Y deg(v) —2).

inner
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Non-trivial examples for any tree:

Xo is the only zero of f; v is the vertex of highest multiplicity
p is the path between xg and v. x’ is any point close to v that is
not in v

Choose a such that afi(x) + f(x’) = 0.

Choose t such that ae=*1tf(v) + e *2tfH(v) = 0.

Then f(x) := ae~ M+ f(x) + e *2(tT)f(x) has at least
deg(v) — 1 zeroes.
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Sharp upper bound:
Start with this graph (assume it has s — 1 small edges):

Take a linear combination of the first M eigenfunctions with
M — 1 zeroes on each small edge.

Upper bound: N(F) <M —-1+0+ (M —1)(s —2)
Take a very small perturbation of edge lengths to make it
generic.

Shrink the small edges.
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Possible research directions:
Different boundary conditions
Weaker assumptions on the potential
Weighted graphs.
Bounds on the coefficients ay (Steinerberger)

Better bounds for graphs with interesting topology.



