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Toy problem:

Let f =
M∑

k=m

ak sin(kx) on the interval [0, π]. If f has n zeroes on

(0, π), what can we say about the coefficients ak , m and M?

(partial) Solution: Sturm-Hurwitz theorem

Theorem (Sturm 1836, rediscovered by Hurwitz, 1903)

Let f =
M∑

k=m

ak sin(kx). Then, f has between m − 1 and M − 1

zeroes in (0, π).

This remains true for Sturm-Liouville eigenfunctions with Dirichlet
boundary conditions.
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f =
M∑

k=m

ak sin(kx) has n zeroes ⇒ m≤n+1
M≥n+1

For bounds on ak , see Quantitative projections in the Sturm
Oscillation Theorem by S. Steinerberger (2020).
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Higher dimensions
Courant’s theorem (1923): the n-th Dirichlet eigenfunction of the
Laplacian on a domain Ω ⊂ Rd has at most n − 1 nodal domains.

Courant-Herrmann conjecture (stated in Courant-Hilbert!): also
true for linear combinations of the first n eigenfunctions.
VERY FALSE: various counterexamples since the 70’s.
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Hybrid case: Quantum graphs
Let Γ = Γ(V ,E ) a graph with vertices V and edges E .

Assumptions on Γ:
Connected

Finite number of edges
Each edge has finite length
Loops permitted
We consider eigenfunctions of HW = −∆ + W , where W is
C 1 and the vertex conditions are
Dirichlet at boundary
For other vertices, sum of inwards derivatives is zero
(Neumann-Kirchhoff)
All eigenfunctions of HW do not vanish at any inner vertex
(callde W-generic).
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Let N(f ) be the number of inner zeroes of f .

Theorem (Band, C., 2023)
Let Γ be a W -generic graph with first Betti number β. Let fk be
the eigenfunctions of HW = − ∂2

∂x2 + W with Dirichlet boundary
conditions and Neumann-Kirchhoff continuity conditions on inner
vertices. Let ki be a strictly increasing sequence and
F (x) =

∑M
i=1 ai fki (x) where each ai is not zero. We have the

following bounds:

k1 − 1− (M − 1) (|Vb|+ 2β − 2) ≤ N(F )

N(F ) ≤ kM − 1 + β + (M − 1) (|Vb|+ 2β − 2) .

Upper bound is sharp in general
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Consider g(x , y) =
M∑
i=1

aie
−λki y fki (x).

g is a solution to ∂g
∂y = ∂2g

∂x2 −W (x)g .

At y0 → −∞, g(x , y0) looks like fkM

At y0 → +∞, g(x , y0) looks like fk1

Start at y = −∞, look at nodal lines of g
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Topological properties
Show that there are no isolated zeroes.

No isolated zeroes ⇒ nodal lines are continuous.
No flat part.
Behaviours of nodal lines:

vi vi vi

vb
vi vi

vi vi



Topological properties

Show that there are no isolated zeroes.

No isolated zeroes ⇒ nodal lines are continuous.

No flat part.
Behaviours of nodal lines:

vi vi vi

vb
vi vi

vi vi



Topological properties

Show that there are no isolated zeroes.

No isolated zeroes ⇒ nodal lines are continuous.
No flat part.

Behaviours of nodal lines:

vi vi vi

vb
vi vi

vi vi



Topological properties

Show that there are no isolated zeroes.

No isolated zeroes ⇒ nodal lines are continuous.
No flat part.
Behaviours of nodal lines:

vi vi vi

vb
vi vi

vi vi



Topological properties

Show that there are no isolated zeroes.

No isolated zeroes ⇒ nodal lines are continuous.
No flat part.
Behaviours of nodal lines:

vi vi vi

vb
vi vi

vi vi



Topological properties

Show that there are no isolated zeroes.

No isolated zeroes ⇒ nodal lines are continuous.
No flat part.
Behaviours of nodal lines:

vi vi vi

vb
vi vi

vi vi



vi vi

Can happen at most M − 1 times on each inner vertex.

Each time it happens, it can create at most deg(v)− 2 new nodal
lines (or reduce by that number).

Known bounds: k − 1 ≤ N(fk) ≤ k − 1 + β (many people)

Leads us to k1 − 1− (M − 1)(
∑
inner

deg(v)− 2) ≤ N(F ) ≤

kM − 1 + β + (M − 1)(
∑
inner

deg(v)− 2).
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Non-trivial examples for any tree:

x0 is the only zero of f2 v is the vertex of highest multiplicity
p is the path between x0 and v . x ′ is any point close to v that is
not in v

x0

vp
e ′x ′

Choose a such that af1(x ′) + f2(x ′) = 0.
Choose t such that ae−λ1t f1(v) + e−λ2t f2(v) = 0.
Then f (x) := ae−λ1(t+ε)f1(x) + e−λ2(t+ε)f2(x) has at least
deg(v)− 1 zeroes.
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Sharp upper bound:
Start with this graph (assume it has s − 1 small edges):

Shrink the small edges.
Take a linear combination of the first M eigenfunctions with
M − 1 zeroes on each small edge.
Upper bound: N(F ) ≤ M − 1 + 0 + (M − 1)(s − 2)

Take a very small perturbation of edge lengths to make it
generic.
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Possible research directions:
Different boundary conditions

Weaker assumptions on the potential
Weighted graphs.
Bounds on the coefficients ak (Steinerberger)
Better bounds for graphs with interesting topology.
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