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A B S T R A C T

The Ornstein-Uhlenbeck operator, a fundamental differential operator with appli-
cations in stochastic processes and partial differential equations, has been recently
studied on non-compact metric star graphs by Mugnolo and Rhandi, [MR22].
Their work establishes the existence and uniqueness of classical solutions to para-
bolic problems with unbounded coefficients, provides an explicit representation
formula for the associated semigroup, and characterizes the unique invariant mea-
sure and long-time behavior.

This thesis presents and extends the results of [MR22], focusing on the Ornstein-
Uhlenbeck operator as a prime example of an unbounded operator on non-com-
pact metric graphs. We uncover the key role of the even-odd extension method in
translating results from the real line to metric star graphs, providing a powerful
technique for analyzing parabolic problems in this setting.

The thesis makes several original contributions:

1. We generalize the spectral analysis to include δ-coupling vertex conditions,
characterizing the eigenvalues through a transcendental equation involving
the coupling strength.

2. We introduce a commutator-based approach for constructing new solutions
to the associated parabolic problem, demonstrating its application to Robin
boundary conditions on a semi-infinite interval.

3. We unveil the algebraic structure underlying the Ornstein-Uhlenbeck evolu-
tion operator by introducing the T-extended algebra ET, which extends the
Heisenberg algebra.

4. We establish an isomorphism between ET and the oscillator algebra O, re-
vealing the Ornstein-Uhlenbeck evolution operator as the Casimir element
of ET.

These results provide a comprehensive framework for analyzing the Ornstein-
Uhlenbeck operator on metric star graphs, encompassing analytical, spectral, and
algebraic aspects. This work contributes to the growing body of knowledge on
differential operators on metric graphs. The methods developed here may be ap-
plicable to the study of differential operators on more complex graph topologies.
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Z U S A M M E N FA S S U N G

Der Ornstein-Uhlenbeck-Operator, ein grundlegender Differentialoperator mit An-
wendungen in stochastischen Prozessen und partiellen Differentialgleichungen,
wurde kürzlich von Mugnolo und Rhandi [MR22] auf nicht-kompakten metri-
schen Sterngraphen untersucht. Ihre Arbeit etabliert die Existenz und Eindeutig-
keit klassischer Lösungen für parabolische Probleme mit unbeschränkten Koeffi-
zienten, liefert eine explizite Darstellungsformel für die zugehörige Halbgruppe
und charakterisiert das eindeutige invariante Maß sowie das Langzeitverhalten.

Diese Arbeit präsentiert und erweitert die Ergebnisse von [MR22], wobei der Fo-
kus auf dem Ornstein-Uhlenbeck-Operator als Paradebeispiel eines unbeschränk-
ten Operators auf nicht-kompakten metrischen Graphen liegt. Wir decken die
Schlüsselrolle der Methode der geraden und ungeraden Erweiterungen bei der
Übertragung von Ergebnissen von der reellen Achse auf metrische Sterngraphen
auf und stellen damit eine leistungsfähige Technik zur Analyse parabolischer Pro-
bleme in diesem Kontext bereit.

Die Arbeit liefert mehrere originäre Beiträge:

1. Wir verallgemeinern die Spektralanalyse auf δ-Kopplungs-Vertexbedingun-
gen und charakterisieren die Eigenwerte durch eine transzendente Gleichung,
die die Kopplungsstärke einbezieht.

2. Wir führen einen auf Kommutatoren basierenden Ansatz zur Konstruktion
neuer Lösungen des zugehörigen parabolischen Problems ein und demons-
trieren dessen Anwendung auf Robin-Randbedingungen auf einem halbu-
nendlichen Intervall.

3. Wir enthüllen die algebraische Struktur, die dem Ornstein-Uhlenbeck-Evolu-
tionsoperator zugrunde liegt, indem wir die T-erweiterte Algebra ET einfüh-
ren, die die Heisenberg-Algebra erweitert.

4. Wir etablieren einen Isomorphismus zwischen ET und der Oszillator-Alge-
bra Oc und zeigen, dass der Ornstein-Uhlenbeck-Evolutionsoperator das Ca-
simir-Element von ET ist.

Diese Ergebnisse bilden einen umfassenden Rahmen für die Analyse des Orn-
stein-Uhlenbeck-Operators auf metrischen Sterngraphen und decken analytische,
spektrale und algebraische Aspekte ab. Diese Arbeit erweitert das Wissen über
Differentialoperatoren auf metrischen Graphen. Die hier entwickelten Methoden
könnten sich auf die Untersuchung von Differentialoperatoren auf komplexeren
Graphentopologien übertragen lassen.
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N O TAT I O N A N D C O N V E N T I O N S

We adopt the following notational conventions throughout this thesis:

• Bold symbols (e.g., xxx, fff , AAA) denote objects associated with the metric star
graph SmSmSm, including points, functions, and operators. The corresponding un-
bold symbols (e.g., x, f , A) refer to analogous objects on R or RN .

• Symbols in a calligraphic font (e.g., A) represent differential expressions.
Once a differential expression is restricted to a specific domain to define an
operator, we denote this operator using the same letter in a non-calligraphic
font (e.g., A).

• The space Lp
γγγ(SmSmSm) denotes the Lp space on the metric star graph SmSmSm with

respect to the measure γγγ, while Lp
γ(R) denotes the corresponding space on

R.

• The realization of an operator A in the space Lp
µ(Sm) is denoted by Ap, with

domain Dom(Ap).

• Specific instances of operators and spaces are distinguished by subscripts or
superscripts as needed. For example, AD and AN denote the realizations of
A with Dirichlet and Neumann boundary conditions, respectively.

These conventions are chosen to clarify at each point whether we are working
on the star graph SmSmSm or on R, and to distinguish between differential expressions,
operators, and their realizations in various function spaces.

L I S T O F A C R O N Y M S

OU Ornstein-Uhlenbeck

SL Sturm-Liouville

SDE Stochastic Differential Equation

BC Boundary Condition

VC Vertex Condition
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1
I N T R O D U C T I O N

Desocupado lector: sin juramento me podrás creer
que quisiera que este libro, como hijo del entendimiento,

fuera el más hermoso, el más gallardo
y más discreto que pudiera imaginarse. 1

— Miguel de Cervantes Saavedra [CS05]

1.1 background and motivation

The present work investigates the behavior of the Ornstein-Uhlenbeck (OU) oper-
ator when acting on functions defined on metric star graphs consisting of a finite
number of half-lines. This scenario serves as one of the simplest non-trivial exam-
ples of an unbounded operator acting on non-compact graphs.

The OU differential operator, denoted by A, is a fundamental differential opera-
tor connected to the theory of stochastic processes, functional analysis, and partial
differential equations. Its study has developed a rich theory concerning domains,
spectra, and functional inequalities.

One-dimensional OU operators are defined on suitable functions f by

A f :=
1
2

d2 f
dx2 − x

d f
dx

, x ∈ R, (1.1)

and are named after L. Ornstein and G. Uhlenbeck [UO30]. Their work on stochas-
tic motion led to the OU process, which offers a framework where trajectories pos-
sess finite velocities and stationary distributions, notably the standard Gaussian
measure.

In recent years, the study of the OU operator has led to significant advances in
the theory of functional inequalities [BGL14], underpinning the analysis of diverse
mathematical models in statistical mechanics, quantum field theory, and informa-
tion theory [Mar+21].

1.2 operators on metric graphs

The study of operators on metric graphs, or quantum graphs, inherently connects
the realms of discreteness and continuity, finding applications in both physics
and pure mathematics. In physics, these operators have elucidated phenomena in
quantum systems [Man10], Anderson localization [And58], and the properties of
nanostructures [Bad+07]. Mathematically, they provide a rich setting for explor-
ing the interplay between graph topology and spectral properties of differential
operators [Ber16].

1 Idle reader: thou mayest believe me without any oath
that I would this book, as it is the child of my brain,
were the fairest, gayest, and cleverest that could be imagined. [CS04]
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introduction

In the context of our study, the OU operator on metric star graphs represents a
natural progression in this field. While much of the existing literature focuses on
the Laplacian and Schrödinger operators, investigating the OU operator on metric
graphs opens new research directions. It combines the rich structure of quantum
graphs with the stochastic interpretation and functional analytic properties of the
OU operator.

The work of Mugnolo and Rhandi [MR22], which forms a cornerstone of this
thesis, represents one of the first systematic studies of the OU operator on metric
star graphs.

1.3 structure of the thesis and original contributions

This thesis is structured as follows:

• Chapter 2 establishes fundamental definitions and properties related to the
OU operator, function spaces, and metric graphs.

• Chapter 3 presents key results by Mugnolo and Rhandi [MR22] on the OU

operator applied to non-compact metric star graphs.

• Chapter 4 explores the connection between the OU operator and a singular
Sturm-Liouville problem, extending spectral results to δ–Coupling Vertex
Conditions.

• Chapter 5 introduces a commutator-based approach for constructing solu-
tions to the associated parabolic problem under different boundary condi-
tions.

• Chapter 6 unveils the algebraic structure underlying the OU evolution oper-
ator, introducing the T-extended algebra ET and establishing its isomorphism
with the oscillator algebra.

This work aims to extend our understanding of the OU operator on metric star
graphs, offering insights into its analytical, spectral, and algebraic properties. By
building upon existing research, we hope to contribute to the ongoing study of
differential operators on metric graphs. The methods and results presented here
may prove useful in future investigations of related problems, potentially includ-
ing more complex graph topologies and other operator classes.

2



2
P R E L I M I N A R I E S

“Begin at the beginning,” the King said gravely,
“and go on till you come to the end: then stop.”

— Lewis Carroll [Car65]

This thesis deals with differential operators on metric graphs, often referred to
as quantum graphs in the literature. A quantum graph G is characterized by a triple(
GGG,D, C(v)

)
[Kur23] consisting of:

• a metric graph GGG,

• a differential operator D,

• a set of vertex conditions C(v), linear relations that couple the values and
derivatives of the functions at the graph’s vertices. The choice of the local
vertex conditions decides whether the operator is self-adjoint and the behav-
ior of its spectrum.

We will use the term "metric graph" to refer to GGG and reserve the term "quantum
graph" for the entire triple G when necessary—though the latter will be rarely
used.

Specifically, our focus is on the quantum graph GOU :=
(
SmSmSm,A, C(0)

)
, where:

• SmSmSm is a metric star graph with m ∈ N half-lines,

• A is the Ornstein-Uhlenbeck differential operator,

• C(0) is a set of conditions on the central vertex 0 of the metric star graph.

We proceed to provide detailed definitions for each element of the triple.

2.1 the ornstein-uhlenbeck differential operator A

The OU operator stands as a prominent example among elliptic operators with
unbounded coefficients.

It is defined ab initio on smooth functions1 φ by

(Aφ) (x) =
1
2

N

∑
i,j=1

qijDij φ(x) +
N

∑
i,j=1

bijxjDi φ(x) (2.1)

=
1
2

Tr(QD2ϕ)(x) + ⟨Bx, Dφ(x)⟩, x ∈ RN , (2.2)

where Q = (qij)i,j=1,...,N is a real symmetric and positive definite matrix and
B = (bij)i,j=1,...,N is non-trivial matrix with real-valued coefficents. We assume Q is

1 We will show in Section 2.1.3, that the domain of the OU operator is much larger.

3



preliminaries

strictly positive, as it is later inverted in the definition of the associated semigroup
and the invariant measure. The associated semigroup OU(t) admits an explicit
representation formula due to Kolmogorov [Kol31]

(
OU(t) f

)
(x) :=

1
(2π)N/2(det tB,Q)1/2

∫
RN

e−⟨t−1
B,Q y,y⟩/2 f (xtB − y)dy, (2.3)

where xtB is defined as

xtB := etBx,

tB,Q is defined as:

tB,Q :=
∫ t

0
esBQesB∗

ds,

and B∗ denotes the adjoint matrix of B.
The OU semigroup OU(t), defined in (2.3), admits a simple representation in

terms of Gaussian distributions N (l, Q). Recall that N (l, Q) denotes the probability
measure on RN with density γl,Q given by

γl,Q(x) :=
1

(2π)N/2(det Q)1/2 e
−⟨Q−1(x−l),(x−l)⟩

2 , (2.4)

where Q is an N × N positive definite matrix, l ∈ RN , and ⟨·, ·⟩ represents the
standard scalar product in RN .

The action of OU(t) on a function f in the appropriate space (see Section 2.1.3)
can then be written concisely as

(
OU(t) f

)
(x) =

∫
RN

f (y)γxtB,tB,Q(y)dy. (2.5)

A compelling perspective on the OU semigroup emerges when considering its
relation to the heat semigroup S(t) defined by

(
S(t) f

)
(x) :=

∫
RN

f (y)γx,tI (y)dy, (2.6)

where I is the identity matrix and γx,tI the heat kernel.
Comparing the integral kernels in equations (2.5) and (2.6), we observe that

OU(t) acts like a heat semigroup under two transformations:

1. A matrix-valued time transformation: tI 7→ tB,Q.

2. An exponential drift transformation: x 7→ xtB.

Remark 2.1 In the one-dimensional case, this relationship takes the form:(
OU(t) f

)
(x) =

(
S(tB,Q) f

)
(xtB). (2.7)

For reference, we provide the specific values of the parameters for N = 1, which
constitutes the primary focus of this thesis:

Q = (1), B = (−1), xtB = e−tx, tB,Q =
∫ t

0
e−s2

ds. (2.8)
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The following sections present well-known properties of this operator and its
associated semigroup in the RN setting.

2.1.1 Invariant Measure

Definition 2.2 (Invariant measure) An invariant measure γ for
(
OU(t)

)
t≥0 is a

probability measure on RN such that∫
RN

(
OU(t)ϕ

)
(x)γ(dx) =

∫
RN

ϕ(x)γ(dx),

holds for every t ≥ 0 and ϕ ∈ Cb(R
N), the space of all continuous and bounded functions

in RN .

In [DPZ92, Theorem 11.7] it is proved that the condition

σ(B) ⊂ {z ∈ C | Re z < 0} =: C−

if and only if there exists an invariant measure γ for
(
OU(t)

)
t≥0. Here, σ(B)

denotes the set of eigenvalues of B. In our setting (2.8), we have B = (−1), which
satisfies this condition, thus ensuring the existence of an invariant measure.

Moreover, this invariant measure γ is unique and is given by the non-degenerate
Gaussian distribution N (0, Q∞), [Lun97, Lemma 3.1], with density γ0,Q∞ given by:

γ0,Q∞(x) =
1

(2π)N/2(det Q∞)1/2 e−⟨Q−1
∞ x,x⟩/2

where

Q∞ := lim
t→∞

tB,Q =
∫ ∞

0
esBQesB∗

ds.

2.1.2 Connection to Probability

Operators with unbounded coefficients frequently emerge in the context of sto-
chastic perturbations of ordinary differential equations. Consider the ordinary dif-
ferential equation u′(t) = Bu(t) in Rn. When perturbed by noise

√
QdWt (Wt be-

ing a standard n-dimensional Brownian motion), yields the Stochastic Differential
Equation (SDE):

dX = BXdt + Q1/2dWt, (2.9)

The semigroup OU(t) defined in (2.3) is the associated Markov semigroup, satis-
fying: (

OU(t)ϕ
)
= E[ϕ(X(t, x))], (2.10)

for a broad class of initial conditions ϕ. Here, E denotes the expectation for the
Brownian motion’s probability measure [Lun97].

The stochastic perspective offers several advantages in studying the OU operator
and its associated semigroup. Firstly, it provides a probabilistic interpretation of
the semigroup action, enabling using tools from stochastic analysis to investigate
its properties [DPZ92]. Secondly, the stochastic formulation allows for the deriva-
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tion of explicit solutions to the OU equation in terms of stochastic integrals, which
can be valuable in understanding the behavior of the semigroup [KS91]. Moreover,
the connection to SDEs facilitates the study of the long-time behavior of the OU

process, including the existence and uniqueness of invariant measures and the
convergence of the semigroup to some equilibrium [Bog18; MPP02].

Note that (2.9) coincides in one dimension with the OU process (see Figure 2.1),

dxt = −θxt dt + σdWt,

where θ, σ > 0 and Wt denotes the Wiener process.
Historically, its primary application in physics was to model the velocity of a

massive Brownian particle subject to friction. While the original paper [UO30]
does not explicitly present the SDE form, it establishes the Langevin equation,
which can be transformed into the above SDE.

Figure 2.1: Simplified formula for the Ornstein–Uhlenbeck process, depicted in a mural in
Oosterkade, The Netherlands, near Ornstein’s laboratory. Source: [Orn].

2.1.3 Domain of the realizations of A and OU(t) in RN .

We employ the Gaussian measure to construct function spaces that will serve as
the domains of the realizations of the operator A and the semigroup OU(t) (see
[Lun97, Theorem 4.1]). The choice of the Gaussian measure is motivated by two
key properties. First, the OU operator admits a spectral decomposition in spaces
with the Gaussian measure, with the Hermite polynomials as eigenfunctions and
the non-negative integers as the corresponding eigenvalues. This explicit spectral
representation simplifies the analysis of the operator and its properties. Moreover,
as discussed in the previous subsection, the Gaussian measure is invariant under
the OU semigroup, simplifying the study of the operator’s long-time behavior.

Definition 2.3 For 1 ≤ p < ∞ and γ := γm,Q(x) the Gaussian Lebesgue space Lp
γ(R

N)

is defined by

Lp
γ(R

N) :=
{

f : RN → K measurable
∣∣∣ f γ1/p ∈ Lp(RN)

}
.

Definition 2.4 For s > 0, the Gaussian Sobolev space Wk,p
γ (RN), is defined as

Wk,p
γ (RN) :=

{
f ∈ Lp

γ(R
N)
∣∣∣ Dα f ∈ Lp

γ(R
N), |α| ≤ k

}
,

where k ∈ N0, 1 ≤ p < ∞, W0,p
γ (RN) := Lp

γ(R
N), α is a multi index, and Dα f is

understood as a weak derivative of f .

6
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The following theorem, due to Metafune et al. [Met+02], characterizes the gener-
ator Ap of the OU semigroup OU(t) on the Gaussian Lp space on RN . Specifically,
it establishes that Ap is the realization of the OU differential operator A on the
Gaussian Sobolev space W2,p

γ (RN).

Theorem 2.5 [Met+02, Theorem 3.4] Let Q be a real, symmetric, positive definite ma-
trix, and B a real matrix with all its eigenvalues in the left half-plane. Then, for 1 < p < ∞
the generator Ap of the Ornstein-Ulenbeck semigroup OU(t) (2.3) on Lp

γ(R
N) is the OU

Operator A (2.1) acting on W2,p
γ (RN). In particular

Dom(Ap) = W2,p
γ (RN). (2.11)

The proof of this theorem is omitted here as it requires a detailed analysis of the
semigroup properties and the use of interpolation theory, which is beyond the
scope of this work.

2.1.4 Properties of OU(t)

The semigroup OU(t) (see 2.3) is a strongly continuous contraction semigroup in
Lp

γ(R
N), p ∈ [1, ∞), i. e.,

Tt+s = Tt ◦ Ts, ∥Tt f ∥p ≤ ∥ f ∥p lim
t→0

∥Tt f − f ∥p = 0,

for all f ∈ Lp
γ(R

N), and all s, t > 0. Furthermore, it preserves positivity, meaning
it preserves the cone of non-negative functions in the Lp spaces. More precisely, for
any non-negative initial data f0 ∈ Lp

γ(R
N), the solution u(t, x) :=

(
OU(t) f0

)
(x)

remains non-negative for all t > 0 and x ∈ RN , [Bog18, Theorem 1.1].
It is differentiable and compact for p ∈ (1, ∞) and assuming Q is strictly positive,

OU(t) is analytic in Lp
γ(R

N) for p ∈ (1, ∞), [MPP02], [LB06].
Here, we say that the semigroup OU(t) is:

• Differentiable if for every f ∈ Lp
γ(R

N), the map t 7→ OU(t) f is differentiable
as a function from (0, ∞) to Lp

γ(R
N).

• Compact if for every t > 0, the operator OU(t) maps bounded sets in Lp
γ(R

N)

into relatively compact sets in Lp
γ(R

N).

• Analytic if for every f ∈ Lp
γ(R

N), the map t 7→ OU(t) f admits an analytic
extension to a sector z ∈ C \ 0 : | arg z| < δ for some δ ∈ (0, π

2 ].

The following table 2.1 summarises these properties with respect to the under-
lying space.

2.1.5 Spectrum of Ap for p ∈ [1, ∞).

The compactness of OU(t) in Lp
γ(R

N) for any p ∈ (1, ∞), yields a discrete spec-
trum for its generator Ap. We rely on [MPP02] to obtain a complete spectrum
characterisation.
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L1
γ(R

N) Lp
γ(R

N) L∞
γ (R

N)

strong continuity ✓ ✓ ✗

contraction ✓ ✓ ✓

compactness ✗ ✓ ✗

differentiability ✗ ✓ ✗

analyticity ✗ ✓✗(*) ✗

Table 2.1: Properties of the semigroup OU(t), 1 < p < ∞.
(*) ✓ for Q invertible, ✗ otherwise.

Theorem 2.6 [MPP02, Theorems 3.1 and 5.1] Let λ1, . . . , λr be the (distinct) eigenval-
ues of B, then for p ∈ (1, ∞),

σ(Ap) =

{
λ =

r

∑
j=1

njλj : nj ∈ N

}
.

Moreover, the linear span of the generalized eigenfunctions of Ap is dense in Lp
γ(R

N).
Every eigenfunction of Ap is a polynomial whose degree is bounded above by (Re λ)/s(B),

with s(B) being the spectral bound of the matrix B, defined as

s(B) := sup{Re λ : λ ∈ σ(B)}, (2.12)

where σ(B) denotes the spectrum of B.
In the particular case that Q = I, B = −I, the spectrum in Lp

γ(R
N), p ∈ (1, ∞),

is the set of negative integers with the (multidimensional) Hermite polynomials forming
a complete orthonormal basis of eigenfunctions. In other words, the span of the Hermite
polynomials is dense in the function space Lp

γ(R
N).

For p = 1, we have that the spectrum of A1 is the left half-plane. Thus, each complex
number λ with Re λ < 0 is an eigenvalue.

We omit the proof of this theorem as it follows from standard methods in spec-
tral theory.

Of particular note is the spectral characterization presented above, which re-
veals the fundamental role of Hermite polynomials in the theory of OU operators,
especially in the case where Q = I and B = −I. Beyond its intrinsic interest, this
case serves as a prototype for understanding the general structure of OU spectra.

2.1.6 Hermite polynomials

We now define Hermite polynomials and establish their fundamental properties
in relation to the one-dimensional OU operator. This connection, following [LB06],
characterizes the spectral structure of A through creation and annihilation opera-
tors.

We begin by defining the one-dimensional Hermite polynomial for x ∈ R:

Hn(x) := (−1)nex2
(

d
dx

)n

e−x2
, x ∈ R.

8
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Next, we introduce the annihilation ∂ and creation ∂∗ operators in W1,2
γ (RN):

(∂ϕ)(x) := ϕ′(x), (∂∗ϕ)(x) := −ϕ′(x) + 2xϕ(x), ϕ ∈ W1,2
γ (RN). (2.13)

Note that ∂∗ is the formal adjoint to ∂ since∫
RN

∂ϕ ψ γ(dx) =
∫

RN
ϕ ∂∗ψ γ(dx), for all ϕ, ψ ∈ W1,2

γ (RN),

which follows by integrations by parts, if ϕ, ψ ∈ C∞
c (RN), and can be extended to

the entire space W1,2
γ (RN) using a density argument based on the fact that C∞

c (RN)

is dense in W1,2
γ (RN), (see [LB06]).

With these operators, the one-dimensional OU operator A ((1.1)) can be ex-
pressed as:

A = −1
2

∂∗∂.

This formulation reveals A as the natural analogue of the Laplacian in Gaussian
space L2

γ(R
N), mirroring the structure of ∆ = −D · D∗ in Euclidean space, where

D is a differential operator and D∗ its adjoint.
The representation of A using the creation and annihilation operators also pro-

vides a quantum mechanical perspective on the operator and its eigenfunctions. It
also simplifies the analysis of the operator’s spectral properties and the action of
the associated semigroup on the Hermite polynomials.

We now summarize the key properties of Hermite polynomials, which are gen-
erally straightforward to verify:

Lemma 2.7 [LB06, Proposition 9.3.27] Consider the Hermite polynomias Hn(x), where
n ∈ N ∪ {0}. These polynomials satisfy the following properties:

(i) (Recurrence relation) For n ≥ 1, Hn = ∂∗Hn−1, with the base case H0 = 1.

(ii) (Degree and leading coefficient) Hn is a polynomial of degree n with leading
coefficient 2n.

(iii) (Derivative as ladder operator) ∂Hn+1 = 2(n + 1)Hn.

(iv) (Eigenvalues) AHn = −nHn.

(v) (Orthonormality)
{

1√
2nn!

Hn

}
n∈N

is an orthonormal basis of L2
γ(R).

The spectral properties of the OU operators are fundamental for analyzing var-
ious problems on metric spaces, particularly on metric star graphs. The next sec-
tion thoroughly defines metric star graphs and introduces the necessary function
spaces and measures.

2.2 metric star graphs

Having explored the OU differential operator A, we now turn our attention to the
first element of the quantum graph triple GOU =

(
SmSmSm,A, C(0)

)
: the metric star

graph SmSmSm. Recall that a metric star graph consists of a single central vertex 000 and
a set of m rays, m ∈ N emanating from it. In this work, we will consider each

9
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ray to be an infinite half-line that starts at the central vertex end 000 and extends
indefinitely in one direction.

To establish the definition of a metric star graph, we adhere to the formalism
outlined in [Mug21], permitting the extension of both a metric and a measure from
(semi-infinite) intervals to a star graph.

Let I := {1, . . . , m}2, for m ∈ N. First, we consider the collection [0, ∞)i∈I , of
positive half-lines endowed with the Euclidean distance di := | · | and Gaussian
measure γi with density γi(x) := 2

m
√

π
e−x2

, and we construct the disjoint union Sm

of the intervals:

Sm :=
⊔
i∈I

[0, ∞) =
⋃
i∈I

([0, ∞)× {i})

Definition 2.8 The half-line [0, ∞)× {i} is called a ray and will be denoted with ririri.

Next, we need to endow Sm with a metric. We follow [BS04, Def. 3.1.15] and
define the metric of disjoint union dSm on Sm as

dSm

(
(x, i), (y, j)

)
:=

di(x, y) = |x − y|, if i = j,

∞, otherwise.

where we also follow [BS04] by adopting the generalized notion of distance that
allows for the value ∞.

The topology induced by the dSm metric agrees with the disjoint union topology
of Sm [Mug21] where a subset U of Sm is open in Sm if and only if its preimage
under the canonical injection ϕi : [0, ∞) ↪→ [0, ∞)× {i} is open in [0, ∞) for each
i ∈ I.

We now glue together all the left ends {(0, i) : i ∈ I} of the rays ririri. This is
achieved by using the equivalence relation ∼∼∼ on Sm defined as

(x, i) ∼∼∼ (y, j) ⇐⇒ (x = y and i = j) or (x = y = 0)

Definition 2.9 (Star graph) A star graph of m rays, denoted by SmSmSm, is a space con-
structed from the disjoint union of m copies of the interval [0, ∞) glued together according
to the ∼∼∼ equivalence relation. Formally,

SmSmSm := Sm/∼∼∼=

(⊔
i∈I

[0, ∞)

)/
∼∼∼ (2.14)

Figure 2.2 illustrates this construction for m = 5, showing both the disjoint
union S5 and the resulting star graph S5S5S5.3

We denote points in SmSmSm as xxxi := (x, i)4, where x ∈ [0, ∞) and i ∈ I. The absolute
value | · | on SmSmSm is defined as the projection onto the first component, i. e., |xxxi| := x.
It follows directly that |xxxi| ≥ 0 for all xxxi ∈ SmSmSm.

We use the notation 000 := [000i ] = [(0, i)], i ∈ I, for the unique vertex of the star
graph.5

2 Throughout this thesis, we denote by I the set of indices {1, . . . , m}, where m ∈ N.
3 Schematic representation; rays are indistinguishable with no associated angles.
4 Throughout this thesis, bold symbols denote points, functions, and operators on SmSmSm.
5 Here, [·] denotes the equivalence class under the relation ∼∼∼.
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[0, ∞)1

[0, ∞)2

[0, ∞)3

[0, ∞)4

[0, ∞)5

S5S5S5

rrr1

rrr2
rrr3

rrr4

rrr5

∼

Figure 2.2: Construction of the metric star graph S5S5S5.3

Since all the rays in the star graph SmSmSm are indistinguishable, this star graph is
invariant by any permutation of the rays.

Finally, by following [Mug21], we endow SmSmSm with the path metric dSmSmSm defined
as

dSmSmSm(ξ, θ) := inf
k

∑
l=1

dSm(ξl , θl), ξ, θ ∈ SmSmSm, (2.15)

where the infimum is taken over all k ∈ N and all pairs of k-tuples (ξ1, . . . , ξk)

and (θ1, . . . , θk) where ξl , θl ∈ Sm for all l ∈ {1, . . . , k}, with ξ1 ∼∼∼ ξ, θk ∼∼∼ θ, and
θi ∼∼∼ ξi+1 for all i ∈ {1, . . . , k − 1}. For arbitrary quotient spaces, the definition
(2.15) yields a pseudo metric. However, in our scenario, characterized by a finite
number of edges, this pseudo-metric manifests itself as a metric. Moreover, it is a
metric in the strict sense since the value ∞ is unattainable as our underlying graph
is connected. A closer examination reveals that this path metric is also known as
the SNCF or Paris metric. In other words:

dSmSmSm

(
(x, i), (y, j)

)
=

|x|+ |y|, if i ̸= j,

|x − y|, otherwise.

A basis for the topology induced by dSmSmSm consists of open balls with respect to
dSmSmSm . These open balls are either open subintervals of the rays or, up to glueing
with ∼∼∼, disjoint unions of semi-open and equal-length subintervals.

The disjoint union Sm is also a measure space with the sigma-algebra Σ of the
disjoint union and the direct sum measure γ :=

⊕
i∈I γi, cf. [Fre11, 214K].

Via the canonical surjection q : Sm → SmSmSm, we construct (SmSmSm, ΣΣΣ, γγγ), the quotient
measure space induced by ∼∼∼ on Sm.. Following [Bog06, Section 3.6] we define the
pushforward σ-algebra ΣΣΣ on SmSmSm as the collection of all sets EEE ⊂ SmSmSm such that
q−1(EEE) ∈ Σ. This ensures that q is measurable and compatible with Σ, respect-
ing the equivalence relation. We define the measure γγγ on ΣΣΣ by the pushforward
formula:

γγγ(EEE) = γ(q−1(EEE)) for all EEE ∈ ΣΣΣ. (2.16)

Remark 2.10 The pushforward measure γγγ is introduced to ensure compatibility with the
equivalence relation ∼∼∼ on the disjoint union Sm. While the absolute continuity of γ with re-
spect to the Lebesgue measure implies that singleton sets are null sets, the pushforward con-
struction ensures that the measure γγγ is well-defined on the quotient space SmSmSm = Sm/ ∼∼∼.
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This construction may not be strictly necessary for the subsequent theory developed in
the work, but it provides a rigorous foundation for the measure-theoretic aspects of the
problem.

Remark 2.11 To ensure the well-definedness of the pushforward measure γγγ on the quo-
tient space SmSmSm, we note that for any E ∈ Σ,

γ(q−1(q(E)) \ E) = 0. (2.17)

This condition guarantees that the measure of the preimage of a set under the canonical
surjection q differs from the measure of the original set by at most a set of measure zero.

Remark 2.12 The construction of measures on metric star graphs presented in this thesis
can be extended to any finite metric graph, including those with infinite leads. For a more
detailed discussion on the construction of measures on general metric graphs, we refer the
reader to [Mug21].

Following the change of variables formula [Bog06, Theorem 3.6.1] and the inte-
gration on the disjoint union [Fre11, p. 214M] the integration on SmSmSm for a positive
and measurable function fff : SmSmSm → R is given as:∫

SmSmSm

fff (xxx)γγγ(dxxx) =
∫

Sm

fff
(
q(x)

)
γ(dx) = ∑

i∈I

∫ ∞

0
fi(x)γi(dx)

=
2

m
√

π
∑
i∈I

∫ ∞

0
fi(x)e−x2

dx.

where fi : [0, ∞) → R, fi : x 7→ fff
(
q(ϕi(x))

)
.

Note that fff is measurable if and only if fi is measurable for every i ∈ I, [Fre11,
p. 214M].

This result can be extended to real or complex functions fff : SmSmSm → K, where
K = R or C, as long as

∫ ∞
0 | fi(x)|γi(dx) < ∞ for all i ∈ I.

In this sense, every measurable function fff : SmSmSm → K can be equivalently re-
garded as a family ( fi)i∈I of measurable functions fi : [0, ∞) → K. Furthermore,
let C(SmSmSm) denote the space of continuous functions on SmSmSm, i.e., the space of all
functions f ∈ C(SmSmSm) corresponding to a family ( fi)i∈I of continuous functions
fi : [0, ∞) → K satisfying the compatibility condition fi(0) = f j(0) for all i, j ∈ I.
This common value at the origin is denoted by f (000), i.e., f (000) : = fi(0) for any
i ∈ I.

Therefore, SmSmSm is equipped with a path metric and a measure γγγ defined by the
pushforward of the direct sum measure constructed from the Gaussian measures
γi defined on each ray rrri. This framework allows us to introduce the function
spaces Cb(SmSmSm) of bounded and continuous functions on SmSmSm and the Gaussian
space Lp

γγγ(SmSmSm), p ∈ [1, ∞).
We now introduce several key concepts and function spaces that form the foun-

dation for our analysis on the metric star graph SmSmSm. We begin with the Gaussian
Lebesgue space and its associated scalar product and norm.
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Definition 2.13 (L2
γγγ(SmSmSm) Gaussian Lebesgue Space) The Gaussian Lebesgue space L2

γγγ(SmSmSm)

is defined as the space of γγγ-measurable functions fff : SmSmSm → K for which the following norm
is finite:

∥ fff ∥L2
γγγ(SmSmSm)

:=

(
∑
i∈I

∫ ∞

0
| fi(x)|2 γi(dx)

)1/2

< ∞, (2.18)

where fi denotes the restriction of fff to the ray ririri of the star graph.

Definition 2.14 (Scalar Product on L2
γγγ(SmSmSm)) For fff , ggg ∈ L2

γγγ(SmSmSm), the scalar product
⟨·, ·⟩L2

γγγ(SmSmSm)
is defined as

⟨ fff , ggg⟩L2
γγγ(SmSmSm)

:=
∫
SmSmSm

fff (xxx)ggg(xxx)γγγ(dxxx) = ∑
i∈I

∫ ∞

0
fi(x)gi(x) γi(dx), (2.19)

where gi denotes the restriction of ggg to the ray ririri.

Remark 2.15 The norm ∥ · ∥L2
γγγ(SmSmSm)

is induced by the scalar product:

∥ fff ∥2
L2

γγγ(SmSmSm)
= ⟨ fff , fff ⟩L2

γγγ(SmSmSm)
. (2.20)

We now generalize this concept to define Gaussian Lebesgue spaces for other p
values and introduce Gaussian Sobolev spaces.

Definition 2.16 (Lp
γγγ(SmSmSm) Gaussian Lebesgue Space) For 1 ≤ p < ∞, the Gaussian

Lebesgue space Lp
γγγ(SmSmSm) is defined as the space of γγγ-measurable functions fff : SmSmSm → K for

which

∥ fff ∥Lp
γγγ(SmSmSm)

:=
(∫

SmSmSm

| fff (xxx)|p γγγ(dxxx)
)1/p

< ∞.

Definition 2.17 (Wk,p
γγγ (SmSmSm) Gaussian Sobolev Space) For k ∈ N0 and 1 ≤ p < ∞,

the Gaussian Sobolev space Wk,p
γγγ (SmSmSm) is defined as

Wk,p
γγγ (SmSmSm) :=

{
fff ∈ Lp

γγγ(SmSmSm) : Dα fff ∈ Lp
γγγ(SmSmSm), |α| ≤ k

}
,

where W0,p
γγγ (SmSmSm) := Lp

γγγ(SmSmSm), α is a multi-index, and Dα fff is understood as a weak deriva-
tive of fff . We endow this space with the norm

∥ fff ∥
Wk,p

γγγ (SmSmSm)
:=

(
∑
|α|≤k

∥Dα fff ∥p
Lp

γγγ(SmSmSm)

)1/p

.

These function spaces and the scalar product provide the framework for study-
ing differential operators and their properties on SmSmSm. In particular, they allow us
to define the minimal and maximal operators associated with A and to investigate
the vertex conditions that characterize the self-adjoint extensions of the minimal
operator.

2.3 vertex conditions C (000)

To complete the characterization of the quantum graph triple GOU = (SmSmSm,AAA, C(0)),
we now focus on the conditions C(0) on the central vertex 0. These conditions are
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key in determining the self-adjoint extensions ofAAA onSmSmSm. We begin by introducing
the minimal and maximal operators associated with AAA.

Let AAA be the OU differential expression on the metric star graph SmSmSm, given by

(AAA fff )(xxxi) =
1
2

fff ′′(xxxi)− |xxxi| fff ′(xxxi), xxxi ∈ SmSmSm, i ∈ I. (2.21)

The minimal operator AAAmin is defined as the closure—with respect to the norm
(2.20)—of the operator AAA on the domain

Dom(AAAmin) := C∞
0 (SmSmSm \ {0}), (2.22)

which consists of smooth functions with compact support separated from the cen-
tral vertex 0. This operator is symmetric, but not self-adjoint, in the Hilbert space
L2

γ(SmSmSm).
On the other hand, the maximal operator AAAmax is defined on the domain

Dom(AAAmax) :=
{

fff ∈ L2
γγγ(SmSmSm) : AAA fff ∈ L2

γγγ(SmSmSm)
}

. (2.23)

The self-adjoint extensions of AAAmin are precisely the restrictions of AAAmax to domains
satisfying specific conditions at the central vertex 0. These VCs are characterized
by the maximal operator’s inherent boundary form, defined as follows:

Definition 2.18 (Boundary Form) The boundary form associated with the maximal op-
erator AAAmax is the sesquilinear form defined on D(AAAmax)× D(AAAmax) by

⟨AAAmaxuuu, vvv⟩L2
γ(SmSmSm) − ⟨uuu, AAAmaxvvv⟩L2

γ(SmSmSm) = ⟨∂uuu(0), vvv(0)⟩Km − ⟨uuu(0), ∂vvv(0)⟩Km , (2.24)

where uuu(0) :=
(
uuu(01), . . . , uuu(0m)

)6, ∂uuu(0) :=
(
uuu′(01), . . . , uuu′(0m)

)
, and ⟨·, ·⟩Km denotes

the standard scalar product in Km scaled by the factor 2
m
√

π
arising from the measure γ.

To characterize the self-adjoint extensions of AAAmin, we employ the concept of Her-
mitian VCs, as introduced by [Kur23].

Definition 2.19 (Hermitian VCs) [Kur23, Definition 3.1] Let V be the space of limit
values (uuu, ∂uuu) ∈ K2m at a vertex of degree m. A subspace VC ⊆ V defines Hermitian VCs

if and only if it satisfies the following:

• The boundary form (2.24) vanishes for all (uuu, ∂uuu), (vvv, ∂vvv) ∈ VC.

• The subspace VC has dimension m.

The following theorem characterizes Hermitian VCs in terms of matrices B and C
satisfying certain rank and Hermiticity conditions.

Theorem 2.20 [Kur23, Theorem 3.2] Let 0 be a vertex of degree m in a quantum graph.
Any Hermitian VC at 0 admits a representation of the form

BBBuuu(0) = CCC∂uuu(0), (2.25)

where

6 Recall that we denote points xxxi in SmSmSm as xxxi = (x, i), where x ∈ [0, ∞) and i ∈ I.
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• uuu(0) and ∂uuu(0) are the Km-vectors of function and derivative values at the vertex.

• BBB and CCC are m × m matrices satisfying

rank(BBB, CCC) = m and BCBCBC∗ is Hermitian7. (2.26)

Remark 2.21 Although theorem 2.20 is originally stated for Schrödinger operators in
[Kur23], the proof remains valid for the AAA since the boundary forms for both operators
coincide with (2.24) up to a real constant.

Theorem 2.20 establishes a one-to-one correspondence between the self-adjoint
extensions of AAAmin and the Hermitian conditions on the central vertex 000. More pre-
cisely, every self-adjoint extension of AAAmin can be uniquely determined by specify-
ing the matrices BBB and CCC satisfying the conditions (2.26). However, it is important
to note that the choice of matrices B and C for a given self-adjoint extension is
not unique, as any pair of matrices (MBMBMB, MCMCMC), where MMM is a non-singular m × m
matrix, leads to the same boundary condition as (BBB, CCC).

Example 2.22 The Standard VCs, mandating continuity and adherence to the Kirchhoff
condition, represent a notable instance of Hermitian VCs.

uuu(000k) = uuu(000l) and ∑
i∈I

uuu′(000i) = 0 for all k, l ∈ I. (2.27)

These conditions ensure the self-adjointness of the OU operator and reflect the natural
connectivity of the metric star graph SmSmSm.

For the Standard VCs, the matrices BBB and CCC can be chosen as follows:

BBB =



1 −1 0 · · · 0

0 1 −1 · · · 0
...

...
...

. . .
...

0 0 0 · · · −1

0 0 0 · · · 0


, CCC =



0 0 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

1 1 1 · · · 1


. (2.28)

It can be easily verified that the rank of (BBB, CCC) is m and that BBBCCC∗ = CCCBBB∗ = 0, satisfying
the conditions of Theorem 2.20.

In summary, Theorem 2.20 provides a characterization of the VCs C(0) for AAA on
SmSmSm. The Standard VCs, encompassing both continuity and the Kirchhoff condition,
serve as a canonical example of such Hermitian VCs. With this characterization, we
have completed the definition of the quantum graph triple GOU = (SmSmSm,AAA, C(0)),
thus providing the essential framework for the investigation of the existence and
properties of the associated operator and semigroups.

7 A matrix M is Hermitian if it is equal to its conjugate transpose, i.e., M = M∗. In our case, this
translates to the condition BCBCBC∗ = CBCBCB∗.
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3
E X I S T E N C E A N D P R O P E RT I E S O F O R N S T E I N - U H L E N B E C K
S E M I G R O U P S O N M E T R I C S TA R G R A P H S

Qual è ‘l geomètra che tutto s’affige per misurar lo cerchio,
e non ritrova, pensando, quel principio ond’ elli indige; 1

— Dante Alighieri [Ali08]

3.1 introduction

In recent years, there has been a growing interest in extending the theory of
Ornstein-Uhlenbeck (OU) operators to more general settings, such as metric graphs.
Mugnolo and Rhandi [MR22] make significant contributions to this area by inves-
tigating unbounded-drift diffusion processes on metric star graphs, with a partic-
ular focus on the OU operator. Their work extends the previously known theory
in several key aspects.

First and foremost, they investigate the well-posedness of parabolic equations
on metric star graphs, specifically in the classical sense and subject to Kirchhoff
Vertex Conditions (VCs). This approach had not been previously addressed in the
context of OU operators on metric graphs. The central vertex, being a single point
connecting all branches, presents a challenge in the analysis of such problems, as
the Standard VCs (see 2.22) imposed at this vertex resemble Boundary Conditions
(BCs) despite it being an interior point of the star graph.

To overcome this challenge, they employ a technique that combines the use of
truncated star graphs and the method of even-odd extensions (see Lemma 3.4). They
consider truncated star graphs Sn

mSn
mSn
m, obtained by restricting each half-line of the

original star graph SmSmSm to the interval [0, n). By applying the classical theory of
parabolic equations, which guarantees the existence and uniqueness of solutions
on bounded domains under appropriate BCs, to these truncated graphs and em-
ploying Schauder estimates, they construct solutions on the entire star graph SmSmSm.

Moreover, they introduce an associated operator L̃ on the real line, extending
not only the domain but also the operator beyond the star graph. This extension
presents an additional challenge: to apply the method of even-odd extensions effec-
tively, the extended operator must be invariant under the transformation x 7→ −x.
Mugnolo and Rhandi construct L̃ to preserve this symmetry, defining its coeffi-
cients as even or odd extensions of those of L. The symmetry of the extended
operator L̃ allows them to take advantage of a classical key result. If the initial
data is even/odd, then the solution will inherit the same parity with respect to
the central vertex. This parity preservation property is essential in verifying that
the patched solutions ûn on the truncated star graphs satisfy the Standard VCs at
the central vertex. This approach, combined with the use of truncated star graphs,

1 Like the geometer, who gives himself wholly to measuring the circle,
nor, by thinking, finds the principle he needs; [Ali21]
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allows them to demonstrate the well-posedness of parabolic problems on metric
star graphs, explicitly establishing the existence of a unique classical solution, as
stated in [MR22, Theorem 3.3].

In addition to the existence and uniqueness results, they provide a closed-form
expression for the OU semigroup on metric star graphs, generalizing the well-
known results for the OU semigroup on R. They also investigate the properties of
this semigroup, such as its invariant measure and long-time behavior, which are
relevant for understanding the dynamics of the OU process on metric star graphs.

The following sections will analyze the main results presented in [MR22]. Sec-
tion 3.2 focuses on [MR22, Theorem 3.3], which establishes the existence of clas-
sical solutions to parabolic equations on metric star graphs with unbounded co-
efficients. In Section 3.3, the close-form expression for the OU semigroup and its
properties are discussed in detail. Section 3.4 explores the spectral properties and
long-time behavior of the OU operator on metric star graphs, providing insights
into the dynamics of the associated process. The chapter concludes with an out-
look on future directions and potential extensions of the presented results.

3.2 existence of classical solutions

In this section, we focus on the central problem addressed in [MR22], namely the
existence of classical solutions to parabolic problems on metric star graphs. We
begin by setting up the necessary framework and introducing the key concepts
and definitions.

Considering the space Cb(SmSmSm) consisting of functions on the metric star graph
SmSmSm (Section 2.2) that are both continuous and bounded, [MR22] study the Kol-
mogorov differential operator LLL defined by2:

LLL fff (xxxi) = q(|xxxi|) fff ′′(xxxi) + b(|xxxi|) fff ′(xxxi) + c(|xxxi|) fff (xxxi), i ∈ I,

where q, b, and c are continuous functions satisfying the following conditions:

• q, b, c ∈ Cν
loc([0, ∞)) for ν ∈ (0, 1),

• b(0) = 0,

• q(x) > 0, ∀x ∈ [0, ∞),

• sup c ≤ c0, for c0 ∈ R.

where Cν
loc([0, ∞)) denotes the space of locally Hölder continuous functions with

exponent ν, i.e., functions g such that for every interval [a, b] ⊂ [0, ∞), there exists
a constant CK > 0 satisfying

|g(x)− g(y)| ≤ CK|x − y|ν for all x, y ∈ [a, b].

2 Throughout this thesis, bold symbols (e.g., xxx, fff , AAA) are used to denote points in the star graph,
functions on the star graph, and operators acting on functions on the star graph, respectively.
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The Kolmogorov differential expression LLL gives rise to an operator LLL when its
domain is specified. The domain of LLL incorporates the Kirchhoff VCs at the central
vertex by requiring functions to satisfy ∑i∈I f ′i (0) = 0:3

Dom(LLL) =

 fff ∈ Cb(SmSmSm) ∩

 ⋂
1≤p<∞

W̃k,p
loc (SmSmSm)

 : ∑
i∈I

f ′i (0) = 0 and LLL fff ∈ Cb(SmSmSm)

 ,

where W̃k,p
loc (SmSmSm) :=

m⊕
i=1

Wk,p
loc ([0, ∞)), and Wk,p

loc ([0, ∞)) denotes the space of func-

tions g such that for every closed interval [a, b] ⊂ [0, ∞), the restriction g|[a,b]

belongs to the Sobolev space Wk,p([a, b]
)
.

To study the time-dependent behavior associated with the operator LLL, ([MR22])
consider the corresponding parabolic problem, which describes the evolution of a
function uuu(t, ·) over time, subject to the operator LLL and an initial condition g.

To formalize this notion, the authors introduce the following definitions:

Definition 3.1 (Parabolic Problem) The parabolic problem for a generic operator Λ is
given by ∂tu(t, ·) = Λu(t, ·), t > 0,

u(0, ·) = f (·),
(PΛ)

where u ∈ Dom(Λ) and f is a given initial condition.

Definition 3.2 (Classical Solution) We define a classical solution of the parabolic prob-
lem (PLLL) to be a function uuu ∈ Cb

(
[0, ∞)×SmSmSm

)
such that:

• uuu(·, xxx) ∈ C1((0, ∞)
)

for every xxx ∈ SmSmSm,

• uuu(t, ·) ∈ Dom(LLL) for every t > 0,

• uuu satisfies (PLLL).

The central theorem in [MR22] establishes the existence of classical solutions for
(PLLL). While the classical theory of parabolic equations ensures the existence and
uniqueness of solutions under suitable BCs, it cannot be directly applied to the star
graph SmSmSm due to the Standard VCs imposed at the central vertex.

To circumvent this obstacle, one can employ the method of even-odd extensions.
Extending the problem to a larger domain and constructing an associated operator
L̃ on the real line that extends the original operator LLL beyond the star graph.

The associated operator L̃ acting on Cb(R) is defined as

L̃g(x) = q̃(x)g′′(x) + b̃(x)g′(x) + c̃(x)g(x), x ∈ R,

with domain

Dom(L̃) =

g ∈ Cb(R) ∩
⋂

1≤p<∞

W2,p
loc (R) : L̃g ∈ Cb(R)

 ,

3 [MR22] are effectively studying the quantum graph GK :=
(
SmSmSm,LLL, C(000)

)
, where C(000) represents the

Standard VCs imposed at the central vertex 000.
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where the coefficients q̃, b̃, and c̃ are defined as

q̃(y) =

q(y), y ≥ 0,

q(−y), y ≤ 0,
Even extension

b̃(y) =

b(y), y ≥ 0,

−b(−y), y ≤ 0,
Odd extension

c̃(y) =

c(y), y ≥ 0,

c(−y), y ≤ 0.
Even extension

The key property of L̃ is its invariance under the transformation x 7→ −x, mean-
ing that this equality (L̃ f )(x) = (L̃ f )(−x) is valid for all functions f in its domain.
This invariance, together with the classical theory of partial differential equations,
implies that if the initial condition f is odd (resp. even), then the solution u(x, t)
to the parabolic problem associated with L̃ is odd (resp. even) in x for all t > 0.
These parity properties ensure that the extended solution satisfies the desired BCs

when restricted to the original star graph.
With the associated operator L̃ and the parity properties of the solutions at hand,

the authors proved the following theorem:

Theorem 3.3 [MR22, Theorem 3.3] Let q, b and c be functions in Cν
loc

(
[0, ∞)

)
, where

ν ∈ (0, 1), satisfying the conditions q(x) > 0 for all x ∈ [0, ∞), sup c ≤ c0 for c0 ∈ R

and b(0) = 0. Under these assumptions, for every function fff ∈ Cb(SmSmSm), the parabolic
problem (PLLL) admits at least one classical solution.

Moreover, the uniqueness of the solution to (PL̃) guarantees the uniqueness of the so-
lution of (PLLL). In this scenario the semigroup

(
TmTmTm(t)

)
t≥0 generated by LLL on Cb(SmSmSm) is

represented by(
TmTmTm(t) fff

)
(xxxi) =

∫
ririri

(κ(t, |xxxi|, |yyyi|)− κ(t, |xxxi|,−|yyyi|)) f (yyyi)dyyyi (3.1)

+ ∑
j∈I

∫
rjrjrj

2
m

κ(t, |xxxi|,−|yyyj|) f (yyyj)dyyyj. (3.2)

where fff ∈ Cb(SmSmSm), ririri denotes the i-th ray4, xixixi ∈ SmSmSm for i ∈ I, and with integral kernel
κ.5 Additionally, under the conditions c ≡ 0 and T(t0)1 = 1 for some t0 > 0, we have
TmTmTm(t)1 = 1 for all t ≥ 0, implying the conservativeness of the semigroup TmTmTm(·).

The proof of Theorem 3.3 relies on the general existence result for parabolic
problems, [LB06, Theorem 2.2.5]. By extending the problem to the real line and
drawing upon the symmetry properties of the metric star graph, [MR22] construct
solutions on the truncated star graphs that satisfy the necessary Standard VCs at
the central vertex. The existence of a solution on the full star graph is then obtained
by passing to the limit. 6

Before proceeding with the proof of Theorem 3.3, we establish a key lemma that
formalizes the method of even-odd extensions employed by [MR22].

4 See Definition (2.8)
5 Here, κ represents the integral kernel associated with the strongly continuous semigroup

(
T(t)

)
t≥0

generated by the operator L̃.
6 This limiting procedure relies on Schauder estimates to establish uniform bounds on derivatives of

the solutions on truncated domains, and the Arzelà–Ascoli theorem to extract a convergent subse-
quence.
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Lemma 3.4 (Even-Odd Extension) Consider a metric star graph SmSmSm with m ∈ N rays.
For each non-zero fff ∈ Cb(SmSmSm), satisfying ∑

i∈I
f ′i (0) = 0,7, we define the extended functions

f̃i ∈ Cb(R), i ∈ I, as follows:

f̃i(x) :=


fi(x), if x ≥ 0,

− fi(−x) +
2
m ∑

j∈I
f j(−x), if x ≤ 0.

(3.3)

Then, the functions f̃i satisfy the following properties:

(i) f̃i agrees with fff on the i-th ray of SmSmSm,

(ii) the sum ∑
i∈I

f̃i is an even function, and

(iii) the sum ∑
i∈I

f̃ ′i is an odd function, thus satisfying the Kirchhoff VC ∑
i∈I

f̃ ′i (0) = 0.

(iv) the functions f̃ij(x) := f̃i(x)− f̃ j(−x) are odd for all i, j ∈ I.

The domain extension is illustrated in Figure 3.1. The figure on the left-hand
side shows the original star graph SmSmSm with rays rrri, while the image on the right
depicts the extended graph obtained by extending the domain, introducing the
negative half-lines as the domains for the extended functions f̃i and f̃i,j.

0

r1 r2

r3

SmSmSm

Domain Extension
0

r1

Ext.r1

r2

Ext.r2

r3

Ext.r3

9 × R

Figure 3.1: Domain extension of the metric star graph SmSmSm.

Proof Given fff ∈ Cb(SmSmSm) satisfying the Kirchhoff VC, we construct a family of
functions f̃i ∈ Cb(R), i ∈ I, as follows:

f̃i(x) :=

 fi(x), if x ≥ 0,

gi(x), if x ≤ 0,
(3.4)

where gi is to be determined properly.
By construction, f̃i coincides with fi on the i-th ray of SmSmSm thus establishing

property (i).
We assume now that the extension to the negative axis, gi, is constructed by lin-

early combining the information available from all the m-rays, i. e., by expressing
gi(x) as a linear combination of f j(−x):

7 Recall that fff ≡ ( fi)i∈I for fi ∈ Cb([0, ∞]) and fi(0) = fff (000) for all i ∈ I.

20



existence and properties of ou semigroups

gi(x) := ∑
j∈I

wij f j(−x), x ∈ (−∞, 0], (3.5)

where the weights wij ∈ K quantify the contribution of f j to the extension
gi|(−∞,0] of fi.

To ensure continuity at x = 0, we require gi(0) = fi(0) = fff (000) for all i ∈ I,
which leads to the condition

∑
j∈I

wij = 1. (3.6)

To achieve the sum-even extension, we impose the following symmetry-motivated
conditions on the matrix W := (wij)i,j∈I :

• W is symmetric, i.e., W = WT (The contributions between rays i and j are
reciprocal.

• All off-diagonal entries of W are equal to some constant p ∈ K (All rays
contribute equally to the extensions on other axes).

• All diagonal entries of W are equal. (The self-contribution of each ray to its
own extension is the same.

From (3.6), it follows that the diagonal elements are given by wii = 1− p(m − 1).
A direct calculation shows that for x ≤ 0:

∑
i∈I

gi(x) = ∑
i∈I

(
∑
j∈I

wij f j(−x)

)
= ∑

j∈I
f j(−x)∑

i∈I
wji = ∑

j∈I
f j(−x), (3.7)

implying that the sum function R ∋ x 7→ ∑
i∈I

f̃i(x) is an even function (see prop-

erty (ii)). Consequently, its derivative R ∋ x 7→ ∑
i∈I

f̃ ′i (x) is an odd function since

the hypothesis ∑i∈I f ′i (0) = 0 ensures the continuity of ∑
i∈I

f̃ ′i (x) at x = 0 and

guarantees that it fulfills the Kirchhoff VC ∑
i∈I

f̃ ′i (0) = 0 (see property (iii)).

Moreover, we have

f̃i(x)− f̃ j(−x) =


fi(x)− (1 − pm) f j(x)− ∑

k∈I
p fk(x), if x ≥ 0,

(1 − pm) fi(−x) + ∑
k∈I

p fk(−x)− f j(−x), if x ≤ 0.
(3.8)

The oddness of f̃i(x)− f̃ j(−x) is attained for p = 2/m (see property (iv)), lead-
ing to the extended function:

f̃i(x) :=


fi(x), if x ≥ 0,

− fi(−x) + ∑
j∈I

2
m

f j(−x), if x ≤ 0.
(3.9)

The constructed functions f̃i possess the desired properties, completing the proof.
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Building upon the even-odd extension Lemma 3.4, we outline Mugnolo and
Rhandi’s proof [MR22] of Theorem 3.3.

Proof [Proof sketch] Let fff ∈ Cb(SmSmSm) be given. We proceed in several steps to
construct a classical solution to (PLLL) with initial data fff .

Step 1: Initially, the problem (PLLL) is considered on Sn
mSn
mSn
m, defined as

Sn
mSn
mSn
m := BSmSmSm(000, n), n ∈ N, (3.10)

where BSmSmSm(000, n) denotes the ball centered at the central vertex 000 with radius n in
the metric space (SmSmSm, dSmSmSm). In other words, Sn

mSn
mSn
m is the subgraph of SmSmSm consisting of

the central vertex 000 and m open edges of length n emanating from it.
The authors formulate the problem (PLLL) on Sn

mSn
mSn
m with initial data fff |Sn

mSn
mSn
m

where the
endpoints (n, i), i ∈ I, are subject to Dirichlet BCs.

For each n ∈ N and i ∈ I, they study the Cauchy–Dirichlet problem
∂tun

i (t, ·) = L̃un
i (t, ·), t > 0,

un
i (t, 0) = un

i (t, n), t > 0,

un
i (0, x) = f̃i(x), x ∈ (−n, n),

(3.11)

where f̃i is the extended function defined in (3.4). By classical results for parabolic
Cauchy problems on bounded domains (see, e.g., [LB06, Theorem 9.4.1]), we de-
duce that the aforementioned problem admits a unique solution un

i such that

un
i ∈ C

(
[0, ∞)× (−n, n)

)
,

un
i ∈ C1+ ν

2 ,2+ν

loc

(
(0, ∞)× [−n, n]

)
,

i ∈ I, ν ∈ (0, 1). (3.12)

Step 2: We define a function ûuun on [0, ∞)×Sn
mSn
mSn
m by

ûuun(t, xixixi) := un
i (t, |xixixi|), i ∈ I. (3.13)

For establishing that ûuun is a classical solution of (PLLL) on Sn
mSn
mSn
m, it remains to show

that ûuun(t, ·) ∈ Dom(LLL) ∩ Cb(Sn
mSn
mSn
m) for all t > 0, i.e.,

ûuun(t, 000k) = ûuun(t, 000l) for all k, l ∈ I and (3.14)

∑
k∈I

∂xxxkûuu
n(t, 000k) = 0, t > 0. (3.15)

Using the properties of the extended functions f̃i defined in Lemma (3.4), one can
show that the solutions un

i of the truncated problems (3.11) satisfy the necessary
parity conditions, which in turn imply the continuity (3.14) and Kirchhoff VCs

(3.15) for ûuun.
First, recall we have defined the functions f̃ij(x) := f̃i(x) − f̃ j(−x) for i, j ∈ I,

which are odd by construction (see property (iv)). We have then that the function
wn

ij(t, x) := un
i (t, x) − un

j (t,−x) is the unique solution of the truncated problem

(3.11) with initial data f̃ij. Due to the invariance of the operator L̃ under the trans-
formation x 7→ −x and the oddness of f̃ij, we deduce that wn

ij(t, x) is odd in x for
all t ≥ 0. Hence, wn

ij(t, 0) = 0, ∀t ≥ 0.
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Translating this property back to the original functions un
i , we have

un
i (t, 0)− un

j (t, 0) = wn
ij(t, 0) = 0, ∀t ≥ 0, ∀i, j ∈ I, (3.16)

which implies ûuun(t, ·) satisfies (3.14).
Next, consider the sum σn(t, x) := ∑

k∈I
un

k (t, x). By Lemma (3.4), we know that

the sum ∑
i∈I

f̃i is an even function (see property (ii)). Therefore, σn(t, x), which is

the unique solution of the truncated problem (3.11) with initial data
m
∑

i=1
f̃i(x), is

even in x for all t ≥ 0. Consequently, its derivative ∂xσn(t, x) is odd in x for all
t ≥ 0 (see property (iii)), and in particular, satisfies

∂xσn(t, 0) = 0, ∀t ≥ 0. (3.17)

Expressing this condition in terms of the original functions un
i , we obtain

∑
i∈I

∂xun
i (t, 0) = ∂xσn(t, 0) = 0, ∀t ≥ 0, (3.18)

which is precisely the Kirchhoff VC (3.15).

Step 3: Using Schauder estimates and a compactness argument, as done in
[MR22] taking the limit for n → ∞ yields a classical solution uuu of the parabolic
problem (PLLL) on the star graph SmSmSm. The Schauder estimates (see [LB06, Theorem
2.2.1]) provide uniform bounds and regularity properties for the solutions un

i of
the truncated problems (3.11). These estimates ensure that the solutions un

i are
uniformly bounded and equicontinuous on compact subsets of (0, ∞)× (0, ∞). By
the Arzelà–Ascoli theorem and a diagonal argument, the authors extract a subse-
quence (unk

i )k∈N that converges locally uniformly, along with its derivatives up to
order 2, to a function ui ∈ C1+ν/2,2+ν

loc ((0, ∞)× [0, ∞)). The limit function ui satis-
fies the differential equation ∂tui = L̃ui on (0, ∞)× (0, ∞) and the initial condition
ui(0, ·) = f̃i on [0, ∞). Moreover, the Standard VCs for un

i , while passing to the
limit for n → ∞ , ensure that the limit function ui(t, |xxxi|) satisfies the Standard
VC required for a classical solution of (PLLL) on the star graph SmSmSm. Consequently,
the function uuu(t, xxxi) := ui(t, |xxxi|) constitutes a classical solution to (PLLL) on the star
graph SmSmSm.

Step 4: We now derive the representation formula for the semigroup (TmTmTm(t))t≥0

defined by (
TmTmTm(t) fff

)
(xxxi) := ui(t, |xxxi|) = uuu(t, xxxi), i ∈ I, t ≥ 0, (3.19)

where ui is the limit function and u is the classical solution to (PLLL) obtained in
step 3.

To derive the representation formula (3.1) for the semigroup
(
TmTmTm(t)

)
t≥0, [MR22]

make use of the general existence and representation theorem for parabolic prob-
lems on R [LB06, Theorem 2.2.5]. They consider the parabolic problem (PL̃) on
R with initial condition f̃i, where f̃i are the extended functions defined in (3.3).
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By [LB06, Theorem 2.2.5], there exists a semigroup of linear operators (T(t))t≥0

acting on Cb(R) with the property that the solution of (PL̃) is given by

ui(t, x) = (T(t) f̃i)(x), t ≥ 0, x ∈ R, (3.20)

with an integral representation:

(
T(t) f̃i

)
(x) =

∫
R

κ(t, x, y) f̃i(y)dy, (3.21)

for some kernel κ. The kernel κ satisfies the following properties:

• κ is strictly positive;

• κ(t, ·, ·) and κ(t, x, ·) are measurable for any t > 0 and x ∈ R;

• for almost every y ∈ R, the function κ(·, ·, y) belongs to the space C1+ν/2,2+ν
loc ((0, ∞)×

R) and is a solution of the equation ∂tu − L̃u = 0.

From definition 3.19 and equations (3.20) and (3.21), we have:

(
TmTmTm(t) fff

)
(xxxi) = (T(t) f̃i)(|xxxi|) =

∫
R

κ(t, |xxxi|, y) f̃i(y)dy.

Applying the definition of f̃i (3.3), we obtain:

(TmTmTm(t) fff )(xxxi) =
∫

R+
κ(t, |xxxi|, y) f̃i(y)dy +

∫
R−

κ(t, |xxxi|, y) f̃i(y)dy

=
∫

rrri

(
κ(t, |xxxi|, |yyyi|)− κ(t, |xxxi|,−|yyyi|)

)
fff (yyyi)dyyyi

+
2
m ∑

j∈I

∫
rrrj

κ(t, |xxxi|,−|yyyj|) fff (yyyj)dyyyj.

This representation formula characterizes the semigroup (TmTmTm(t))t≥0 generated
by LLL on Cb(SmSmSm). It encodes the interplay between the star graph structure and the
dynamics induced by LLL, fully describing the evolution of solutions to (PLLL).

The conservation property of the semigroup
(
TmTmTm(t)

)
t≥0 is established under the

assumptions that the coefficient function c in the operator LLL vanishes identically,
and that

(
T(t)

)
t≥0 satisfies T(t0)1 = 1 for some t0 > 0. The proof relies on the

representation formula (3.5) for TmTmTm(t) fff , which involves the integral kernel κ of(
T(t)

)
t≥0.

According to [LB06, Proposition 4.1.10], the hypothesis T(t0)1 = 1 for some
t0 > 0 implies that T(t)1 = 1 for all t ≥ 0. Consequently, the integral kernel κ

satisfies ∫
R

κ(t, x, y)dy = 1, ∀t > 0, ∀x ∈ R, (3.22)

which implies ∫
rrri

κ(t, |xxxi|, |yyyi|)dyyyi+
∫

rrrj

κ(t, |xxxi|,−|yyyj|)dyyyj = 1,

∀i, j ∈ I, ∀xxxi ∈ SmSmSm, ∀t > 0. (3.23)
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Substituting (3.23) into (3.1) reveals that TmTmTm(t)1 = 1 for all t ≥ 0, establishing the
conservation property of the semigroup

(
TmTmTm(t)

)
t≥0. A proof of this conservation

property is given in Lemma A.1 in the appendix.
In conclusion, the sketch of the proof of (3.3) in [MR22] is now complete. We

have established the existence of a classical solution to the parabolic problem
(PLLL) on the star graph SmSmSm, which is unique if the solution to (PL̃) is unique.
We have derived the explicit representation formula for the associated semigroup(

TmTmTm(t)
)

t≥0. Furthermore, we have proven the conservation property of the semi-
group

(
TmTmTm(t))t≥0.8

The strategy employed in the proof of Theorem 3.3 provides a general frame-
work for studying parabolic problems on metric graphs by reducing the analysis
to the study of an associated problem on the real line. The main components of
this approach are: first, the construction of even-odd extensions of the initial data,
as described in Lemma 3.4, which ensures that the extended problem inherits the
necessary symmetry properties; and second, the utilization of the invariance of
the extended operator L̃ under the transformation x 7→ −x, which implies that the
solutions to the extended problem possess the same parity properties as the initial
data.

The methodology presented in the proof of Theorem 3.3 is not restricted to the
specific case of Standard VCs at the vertices of the metric graph. Given the ex-
istence of an integral representation for the associated semigroup, the technique
might be generalized to encompass other types of vertex conditions and more gen-
eral graph topologies. This adaptability highlights the potential for applying this
approach to a broad spectrum of parabolic problems on metric graphs, offering
new opportunities for further investigation in this field.

3.3 explicit representation and properties of the ornstein-uhlen-
beck semigroup on SmSmSm

To better understand the application of Theorem 3.3 to the operator A (2.21) on
metric star graphs, we first introduce the kernel on R of the associated semigroup
and which is given by (see (2.5)):

κOU(t, x, y) := γ
τx, 1−τ2

2
(y) =

1√
π(1 − τ2)

exp
[
− (τx − y)2

1 − τ2

]
, (3.24)

where τ := e−t, for t > 0 and x, y ∈ R.
This kernel is strictly positive and satisfies the semigroup property. Moreover, it

is the fundamental solution of the equation

∂tκOU(t, x, y) =
1
2

∂xxκOU(t, x, y)− x∂xκOU(t, x, y), t > 0, x, y ∈ R.

8 The conservation property has important consequences, such as the conservation of total mass or
probability in diffusion processes on metric graphs, ensuring that the total amount of the diffusing
substance remains constant over time.
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We have then (2.5)(
OU(t) f

)
(x) =

∫
R

κOU(t, x, y)ϕ(y)dy, t ≥ 0, x ∈ R, f ∈ Cb(R). (3.25)

The OU operator A on SmSmSm, with q(x) = 1
2 , b(x) = −x, and c(x) = 0, satisfies

the hypotheses of Theorem 3.3. Consequently, we obtain the following corollary,
which establishes the existence and uniqueness of classical solutions to the asso-
ciated parabolic problem on SmSmSm and provides a representation formula for the
semigroup in terms of the OU kernel on R.

Corollary 3.5 [MR22, Corollary 2.4] For every fff ∈ Cb(SmSmSm), there exists a unique
bounded classical solution u of the parabolic problem∂tuuu(t, ·) = AAAuuu(t, ·), t > 0,

uuu(0, ·) = fff (·),
(3.26)

given by the action of the semigroup
(
OUmOUmOUm(t)

)
t≥0 on SmSmSm. The semigroup acts as

(
OUmOUmOUm(t) fff

)
(xxxi) :=

1√
π(1 − τ2)

∫ ∞

0

(
κOU(t, |xxxi|, |yyyi|)− κOU(t, |xxxi|,−|yyyi|)

)
fff (yyyi)dyyyi

+
2

m
√

π(1 − τ2)
∑
j∈I

∫ ∞

0
κOU(t, |xxxi|,−|yyyj|) fff (yyyj)dyyyj (3.27)

where τ := e−t, for i ∈ I. Furthermore,
(
OUmOUmOUm(t)

)
t≥0 possesses the following properties:

• Conservative: As defined in Theorem 3.3, OUmOUmOUm(t)1 = 1 for all t ≥ 0.

• Contractive: ∥OUmOUmOUm(t) fff ∥∞ ≤ ∥ fff ∥∞ for all fff ∈ Cb(SmSmSm) and t ≥ 0. This prop-
erty implies that the semigroup does not increase the supremum norm of the initial
condition.

• Irreducible: For any non-negative, non-zero function fff ∈ Cb(SmSmSm) and any xxx ∈ SmSmSm,
there exists t > 0 such that OUmOUmOUm(t) fff (x) > 0. This property ensures that the
semigroup spreads the mass or probability of the initial condition to all points of
the metric star graph.

• Strong Feller property: For any bounded Borel measurable function fff : SmSmSm → R,
the function OUmOUmOUm(t) fff is continuous on SmSmSm for all t > 0. This property implies that
the semigroup improves the regularity of the initial condition.

The representation formula (3.27) for the semigroup on SmSmSm and the properties
of the semigroup follow directly from the general formula in Theorem 3.3, with
the integral kernel κ replaced by the kernel κOU given in (3.24).

Remark 3.6 The kernel κOU satisfies the inequality

κOU(t, |xxxi|, |yyyi|) ≥ κOU(t, |xxxi|,−|yyyi|), t > 0, xxxi, yyyi ∈ SmSmSm. (3.28)

The inequality, together with the representation formula (3.27), implies that the semigroup(
OUmOUmOUm(t)

)
t≥0 on SmSmSm is positive, i.e., for any non-negative function fff ∈ Cb(SmSmSm), we have

OUmOUmOUm(t) fff ≥ 0 for all t ≥ 0.
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3.3.1 Properties of OUmOUmOUm(t) on SmSmSm

In this subsection, we present a comprehensive list of properties of the semigroup(
OUmOUmOUm(t)

)
t≥0 on the metric star graph SmSmSm. These properties, derived from the rep-

resentation formula (3.27) and the connection to the classical semigroup on R,
provide a characterization of the semigroup’s action on various function spaces
and its long-time behaviour.

Proposition 3.7 The semigroup
(
OUmOUmOUm(t)

)
t≥0 on SmSmSm satisfies the following properties:

1. Positivity, as noted in Remark 3.6.

2. Contractivity, conservativity and irreducibility on Cb(SmSmSm), and strong Feller prop-
erty, as established in Corollary 3.5 .

3. Extrapolation to a consistent family of C0-semigroups9 on Lp(SmSmSm) where p ∈ [1, ∞).
Consequently, the semigroup

(
OUmOUmOUm(t)

)
t≥0 admits a unique extension to a strongly

continuous semigroup on Lp(SmSmSm) for all p ∈ [1, ∞), and these extensions are con-
sistent in the sense that they coincide on the intersections of the Lp(SmSmSm) spaces.

4. Invariance of C0(SmSmSm), the space of continuous functions vanishing at infinity. In
other words, if f ∈ C0(SmSmSm), then OUmOUmOUm(t) f ∈ C0(SmSmSm) for all t ≥ 0.

5. Lack of strong continuity on Cb(SmSmSm). More specifically, lim
t→0

∥OUmOUmOUm(t) f − f ∥∞ = 0

if and only if f ∈ BUC(SmSmSm), and lim
t→0

| f (e−txi) − f (xi)| = 0 uniformly with

respect to xi ∈ SmSmSm, where BUC(SmSmSm) refers to the space of all functions on SmSmSm that
are both bounded and uniformly continuous.

The extrapolation, invariance of C0(SmSmSm) and lack of strong continuity on Cb(SmSmSm)

as stated in [MR22, Remark 4.3], can be established using the same arguments as in
the case of the classical Ornstein-Uhlenbeck semigroup on R, which are presented
in [LB06, Sections 9.2 and 9.4]. This is possible because the Ornstein–Uhlenbeck
semigroup on the metric star graph SmSmSm is constructed using the Ornstein–Uhlen-
beck kernel on R, as seen in the representation formula (3.27). The properties of
the kernel, such as its strict positivity and the semigroup property, are inherited
by the semigroup on SmSmSm.

Next, we discuss an interesting connection between the semigroup
(
OUmOUmOUm(t)

)
t≥0

and scattering theory, based on [MR22, Remark 4.2].

Remark 3.8 [MR22, Remark 4.2] The representation formula (3.27) for the semigroup(
OUmOUmOUm(t)

)
t≥0 on SmSmSm can be rewritten as follows:

(OUmOUmOUm(t) fff )(xxxi) =
1√

π(1 − τ2)

∫
rrri

e−
(τ|xxxi |−|yyyi |)

2

1−τ2 f (yyyi)dyyyi

+
1√

π(1 − τ2)
∑
j∈I

∫
rrrj

σije
−

(τ|xxxi |+|yyyj |)
2

1−τ2 f (yyyj)dyyyj, (3.29)

9 Strongly continuous semigroups.
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where τ := e−t and Σ = (σij) is the scattering matrix defined by

σij :=

 2−m
m , if i = j,

2
m , otherwise.

(3.30)

The representation (3.29) has a natural interpretation in terms of scattering theory. The
first term represents the probability amplitude for a particle to propagate freely between
two points on the same ray without undergoing scattering. The second term accounts for
scattering processes, encompassing both transitions between distinct rays (with a weight
of 2

m ) and reflections at the central vertex (with a weight of 2−m
m ). That is, the scattering

matrix Σ encodes the transmission and reflection coefficients at 000.

3.4 invariant measure and spectral properties of the generator

We now focus on the invariant measure of
(
OUmOUmOUm(t)

)
t≥0 and the spectral character-

istics of its generator on the metric star graph SmSmSm.

3.4.1 Existence and Uniqueness of the Invariant Measure

As defined in Section 2.1.1, an invariant measure is a probability measure invariant
under the action of the semigroup. The invariant measure is essential for under-
standing the long-time behavior of the semigroup and the associated parabolic
problem.

Theorem 3.9 [MR22, Theorem 4.4] The OU semigroup
(
OUmOUmOUm(t)

)
t≥0 admits a unique

invariant probability measure, denoted by γmγmγm. This measure has a density

γmγmγm(dxxxi) =
2

m
√

π
e−|xxxi |2 dxxxi, i ∈ I, (3.31)

under the Lebesgue measure on SmSmSm.

Proof Let fff ∈ Cb(SmSmSm), and let f̃i ∈ Cb(R), i ∈ I.10 Furtermore, let OU(·) denote
the OU semigroup on R, with γ representing the Gaussian measure on R, i. e.,
γ(dx) = 1√

π
e−|x|2dx. Finally, let OUmOUmOUm(·) be the OU semigroup on SmSmSm.

Given that γ is the invariant measure of OU(·) on R and that both ∑
i∈I

f̃i and

and, consequently
(

OU(t) ∑
i∈I

f̃i

)
are even functions; we have

∫
R+

(
OU(t)∑

i∈I
f̃i

)
(x) γ(dx) =

∫
R+

∑
i∈I

f̃i(x) γ(dx). (3.32)

10 We are following the notation of Lemma 3.4
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Using the definition of OUmOUmOUm(·) and the invariance property (3.32), we obtain∫
SmSmSm

OUmOUmOUm(t) fff (xxx)γγγ(dxxx) = ∑
i∈I

∫
rrri

OUmOUmOUm(t) fff (xxxi)γγγ(dxxxi)

= ∑
i∈I

∫
R+

(
OU(t) f̃i

)
(x) γ(dx) =

∫
R+

(
OU(t)∑

i∈I
f̃i

)
(x) γ(dx)

=
∫

R+
∑
i∈I

f̃i(x) γ(dx) = ∑
i∈I

∫
rrri

fff (xxxi) γ(dxxxi) =
∫
SmSmSm

fff (xxx)γγγ(dxxx).

This shows that γγγ is an invariant measure for OUmOUmOUm(·). After normalization, we
obtain that γmγmγm is both invariant and a probability measure for OUmOUmOUm(·).

The uniqueness of γmγmγm follows directly from the ergodicity of the invariant mea-
sure (see [LB06, Theorem 8.1.15]).

The unique invariant measure γmγmγm have important consequences for the long-
time behaviour of

(
OUmOUmOUm(t)

)
t≥0 and the solutions to the associated parabolic prob-

lem (3.26). In particular, it implies the ergodicity of the semigroup, meaning that
the solutions converge to the equilibrium state described by the invariant measure
as time tends to infinity.

3.4.2 Spectral Properties of the Realization AAA2 in L2
γmγmγm
(SmSmSm)

We now focus on the spectral properties of the realization AAA2 of A in the Gaussian
Lebesgue space L2

γmγmγm
(SmSmSm), where γγγm is the invariant measure defined in (3.31).

To characterize the spectrum of AAA2, we first require the following lemma, which
describes the spectrum of the one-dimensional OU operator on L2

γ1
(R+) under

Dirichlet and Neumann BCs at 0.

Lemma 3.10 [MR22, Lemma 4.7] The spectrum of the OU operator on L2
γ1
(R+) is

purely discret and comprises the following eigenvalues:

• {−2n : n ∈ N0}, subject to Neumann BCs at 0,

• {−2n − 1 : n ∈ N0}, subject to Dirichlet BCs at 0.

Proof As discussed in Lemma 2.7, the realization A of the OU operator A on
L2

γ(R) has a discrete spectrum consisting of simple eigenvalues n = 0,−1,−2, . . .,
with corresponding eigenfunctions Hn.11

Since A leaves invariant the subspaces of odd and even L2
γ(R)-functions, its

spectrum can be decomposed into the spectra of its restrictions to these subspaces.
Furthermore, these restrictions are related by unitary equivalence and are isospec-
tral to the Dirichlet and Neumann realizations AD and AN of A on L2

γ1
(R+).

We have H′
n(0) = 0 if and only if n is even, while Hn(0) = 0 if and only if

n is odd. Therefore, Hn serves as an eigenfunction of AN for even n, and as an
eigenfunction of AD for odd n, establishing the claim.

The following theorem, central to our analysis, establishes the spectral proper-
ties of AAA2.

11 Here, Hn denotes the n-th Hermite polynomial.
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Theorem 3.11 The spectrum of the operator AAA2 is purely discrete and consists of the
eigenvalues

σ(AAA2) = {−n : n ∈ N0}.

Moreover, each even eigenvalue has multiplicity 1, while each odd eigenvalue has multi-
plicity m − 1.

Proof Following [MR22], we adapt the method outlined in [Mal13, Section 3.5]
for the OU operator on the metric star graph SmSmSm.

First, observe that AAA2 leaves invariant the mutually orthogonal subspaces L2
odd

and L2
even of odd and even L2

γmγmγm
(SmSmSm)-functions, respectively. This can be proved

following the ideas in [Mal13, Section 3.5], with minor modifications to adapt the
proof to the OU operator.

Moreover, AAA2 commutes with the bounded, unitary operator RRR on L2
γmγmγm
(SmSmSm) de-

fined by
RRR : ( f1, . . . , fm−1, fm) 7→ ( f2, . . . , fm, f1).

To see this, let f = ( f1, . . . , fm) ∈ D(AAA2). Then, RRR f = ( f2, . . . , fm, f1) ∈ D(AAA2)

because the Kirchhoff condition ∑i∈I(RRR f )′i(0) = ∑i∈I f ′i (0) = 0 is satisfied, and
AAA2(RRR f ) = RRR(AAA2 f ).

By the Spectral Theorem for normal operators, the fact that AAA2 and RRR commute
implies that they can be simultaneously diagonalized. Equivalently, the eigenfunc-
tions of AAA2 and RRR coincide.

The eigenspaces associated with RRR are

Ej := (1, zj, z2j, . . . , zj(m−1))⊗ L2
γmγmγm
(R+), j = 0, . . . , m − 1,

where z := e2πi/m. Indeed, for any f ∈ L2
γmγmγm
(R+) and j = 0, . . . , m − 1, we have

RRR((1, zj, z2j, . . . , zj(m−1))⊗ f ) = zj((1, zj, z2j, . . . , zj(m−1))⊗ f ),

which shows that (1, zj, z2j, . . . , zj(m−1)) ⊗ f is an eigenfunction of RRR with eigen-
value zj.

Observe that E0 = L2
even and L2

odd =
⊕m−1

j=1 Ej. This follows from the fact that
the eigenfunctions in E0 are even, while those in Ej for j ∈ {1, . . . , m − 1} are odd.
Restricting AAA2 to L2

odd enforces Dirichlet BCs at 0. By Lemma 3.10, the spectrum of
this restriction is {−2n − 1 : n ∈ N0}, each eigenvalue having multiplicity m − 1.
Similarly, restricting AAA2 to E0 = L2

even corresponds to Neumann BC at 0. Again, by
Lemma 3.10, the spectrum of this restriction is {−2n : n ∈ N0}, each eigenvalue
having multiplicity 1.

Combining these results yields the claimed spectrum of AAA2.

3.5 potential extensions and generalizations

The results presented in this section, based primarily on the work of Mugnolo and
Rhandi [MR22], provide a comprehensive analysis of the OU semigroup

(
OUmOUmOUm(t)

)
t≥0

and its generator A2A2A2 on metric star graphs SmSmSm. The existence and uniqueness of the
invariant measure γmγmγm, along with the spectral characteristics of the generator A2A2A2
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and the semigroup
(
OUmOUmOUm(t)

)
t ≥ 0, shed light on the interplay between the graph

structure and the long-time behaviour of the associated parabolic problem (3.26).
The findings in [MR22] focus on metric star graphs with Standard VCs at the

central vertex—a particular case of the more general class characterized by Theo-
rem 2.20. A natural question arises: to what extent can the results of [MR22] be
extended to metric star graphs with, for example, arbitrary δ-Coupling VCs?

The next chapter extends our analysis to the OU operator A with δ-Coupling
VCs on SmSmSm. We establish a connection between the operator and a singular Sturm-
Liouville problem, yielding explicit characterizations of the spectrum and eigen-
functions for Standard and δ-Coupling cases.
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4
S P E C T R A L P R O P E RT I E S O F T H E O R N S T E I N - U H L E N B E C K
O P E R AT O R W I T H δ - C O U P L I N G V E RT E X C O N D I T I O N S

. . . das Wesen der Mathematik liegt gerade in ihrer Freiheit. 1

— Georg Cantor [Can32]

In this chapter, we explore extending the results of Mugnolo and Rhandi [MR22],
focusing on the spectral properties of the Ornstein-Uhlenbeck (OU) operator with
δ-Coupling Vertex Conditions (VCs).

We examine the connection between the OU operator and a singular Sturm-
Liouville (SL) problem. This perspective allows us to extend the results of [MR22]
on eigenfunctions and eigenvalues to include δ-Coupling VCs. Under these gener-
alized conditions, we analyze the spectrum and eigenfunctions for the OU operator
A on SmSmSm.

4.1 sturm-liouville formulation of the ornstein-uhlenbeck oper-
ator

In this section, we reformulate the OU operator as a singular SL problem. This
approach allows us to apply the well-established theory of SL operators to our
spectral analysis. We rely primarily on the treatments of singular SL problems
presented in [HK92] and [Wei03].

Recall the OU differential operator A defined in (2.21). We can transform A into
a SL operator τ via the following identity, valid for sufficiently smooth functions f
in the domain of τ (to be precisely defined below):

−A f = −1
2

d2 f
dx2 + x

d f
dx

=
−
(

1
2 e−x2

f ′
)′

e−x2 =: τ f . (4.1)

The operator τ takes the canonical form of a SL differential expression

−(p f ′)′ + q f
γ1

[Wei03, Chapter 13], where the coefficients are given by p(x) := 1
2 e−x2

, q(x) := 0,
and the weight function is γ1(x) := e−x2

.
We define the maximal operator T generated by τ on L2

γ1
(0, ∞) as follows:

Dom(T) = { f ∈ L2
γ1
(0, ∞) : f and p f ′ are absolutely continuous on (0, ∞),

τ f ∈ L2
γ1
(0, ∞)},

T f = τ f for f ∈ Dom(T).

(4.2)

1 . . . the essence of mathematics lies entirely in its freedom. [Ewa96]
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Unless otherwise stated, we assume f ∈ Dom(T) for all functions f under consid-
eration for the remainder of this chapter.

Having established the maximal domain for our SL operator, we now turn to
its classification. This classification is important for characterizing the self-adjoint
restrictions of T, which we will refer to as self-adjoint realizations of τ.

Definition 4.1 (Regular and Singular Endpoints) [Wei03, Chapter 13] An endpoint
x ∈ {a, b} is said to be regular if it is finite and the functions p−1, q, and w are integrable
on some neighbourhood of x within the interval [a, b]. Otherwise, x is called a singular
point.

In our case, considering the interval [0, ∞), we can deduce that:

• The endpoint x = 0 is regular, as it is finite and p−1(x) = 2ex2
, q(x) = 0, and

w(x) = e−x2
are all integrable in a neighborhood of 0.

• The endpoint x = ∞ is singular, as it is not finite.

This classification, with one regular endpoint at 0 and one singular endpoint
at ∞, establishes our problem within the framework of singular SL theory. Conse-
quently, we can apply results from this theory, particularly [Wei03, Corollary 13.3].
This corollary guarantees the existence and uniqueness of solutions to the initial
value problem:

(τ − λ) f = g, f (x0) = y0, p f ′(x0) = y1 (4.3)

for g ∈ L1
loc(0, ∞), λ ∈ C, x0 ∈ (0, ∞), and (y0, y1) ∈ C2. Moreover, the solution

fλ(x) is an entire function of λ for each x ∈ (0, ∞).
We observe that every point in (−∞, 0) is also a regular point for our differen-

tial equation. Consequently, the corollary’s validity naturally extends to include
x0 = 0. This extension allows us to consider initial conditions at x = 0 without
additional assumptions or limiting processes.

We now turn our attention to the specific solutions of the homogeneous equa-
tion τ f = λ f . These solutions are essential for characterizing the spectrum and
eigenfunctions of our OU operator on metric star graphs.

4.2 solutions to τ f = λ f for x ∈ [0, ∞)

To determine the eigenvalues and eigenfunctions of τ, we first investigate the
solutions to the eigenvalue equation τ f = λ f :

τ f = −1
2

d2 f
dx2 + x

d f
dx

= λ f , x ∈ [0, ∞). (4.4)

Lemma 4.2 For all λ ∈ C, a fundamental pair of solutions to the equation (4.4) is given
by

M
(
−λ

2
,

1
2

, x2
)

and xM
(

1 − λ

2
,

3
2

, x2
)

, (4.5)

where M is the Kummer function.

Proof The change of variable z : [0, ∞) → [0, ∞), z : x 7→ x2 transforms (4.4) into

z
d2 f
dz2 +

(
1
2
− z
)

d f
dz

= −λ

2
f (z). (4.6)
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This is a special case of Kummer’s equation

z
d2 f
dz2 + (b − z)

d f
dz

− a f (z) = 0, (4.7)

with a := −λ
2 and b := 1

2 .2 The stated fundamental solutions follow from the
theory of confluent hypergeometric functions [Mat+22, Table 1], noting that since
b = 1

2 ̸∈ Z, this unique pair covers all possible values of a = −λ
2 , and thus all

λ ∈ C.

See Figure (4.1) showing the fundamental pair (4.5) for λ = 4.

Figure 4.1: Fundamental pair (4.5) for λ = 4.

4.3 asymptotic behavior of kummer functions

Understanding the asymptotic behavior of Kummer functions is relevant for de-
termining the eigenvalues of various configurations. From [Mat+22] we have:

M(a, b, z) ∼ Γ(b)
Γ(a)

ezza−b[1 +O(|z|−1)
]
, (4.8)

as z → ∞, for | arg (z)| < π

2
, for a ̸∈ Z≤0,

M(−n, b, z) ∼ zn, as z → ∞, for n ∈ Z≥0. (4.9)

2 The Kummer function M(a, b, z) is defined as a solution to equation (4.7) for complex parameters a,
b (with b not a non-positive integer), and complex argument z.
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Note that

M
(
−n,

1
2

, z2
)
= (−1)n n!

(2n)!
H2n(z), (4.10)

zM
(
−n,

3
2

, z2
)
= (−1)n n!

(2n + 1)!2
H2n+1(z). (4.11)

where Hn are the Hermite polynomials.

4.4 characterization of self-adjoint realizations of τ on [0, ∞)

Our objective is to characterize all self-adjoint realization of τ, and by extension, of
the realization of the OU operator A on the metric star graph S1S1S1 ≡ [0, ∞). To this
end, we first classify the behavior of τ at the endpoints 0 and ∞ as either limit point
or limit circle, employing the Weyl alternative (cf. Theorem B.6 in the appendix).

Proposition 4.3 For the SL differential expression τ f =
−
(

1
2 e−x2

f ′
)′

e−x2 on [0, ∞), the end-
point 0 is in the limit circle case, and the endpoint ∞ is in the limit point case for all
λ ∈ C.

This means that for τ, all solutions of (τ − λ) f = 0 are L2
γ1

–integrable near 0
(limit circle case at 0), but there exists at least one solution that is not L2

γ1
–integrable

near ∞ for each λ ∈ C (limit point case at ∞).

Proof By Lemma 4.2, a fundamental pair of solutions to the equation τ f = λ f is
given by

M
(
−λ

2
,

1
2

, x2
)

and xM
(

1 − λ

2
,

3
2

, x2
)

,

where M is the Kummer function.
For the specific case of λ = 0, these solutions simplify to:

θ1(x) := M
(

0,
1
2

, x2
)
= 1,

θ2(x) := xM
(

1
2

,
3
2

, x2
)
=

√
π

2
erfi(x),

where erfi(x) is the imaginary error function.3

Now, let’s analyze the integrability of θ1 and θ2 near zero and infinity in L2
γ1
(0, ∞):

θ1θ1θ1:
∫ ∞

0 |θ1(x)|2γ1(x)dx = 2√
π

∫ ∞
0 e−x2

dx = 1 < ∞. So, θ1 is integrable near zero

and infinity, and thus lies left and right in L2
γ1
(0, ∞) (see Definition B.4).

θ2θ2θ2: As x → 0, erfi(x) ∼ x, so
∫ c

0 |θ2(x)|2γ1(x)dx < ∞ for some c > 0. Thus,
θ2 is integrable near zero and lies left in L2

γ1
(0, ∞). However, as x → ∞,

erfi(x) ∼ ex2
√

πx , so
∫ ∞

c |θ2(x)|2γ1(x)dx = ∞ for any c > 0. Hence, θ2 is not

integrable near infinity and does not lie right in L2
γ1
(0, ∞).

Since both θ1 and θ2 lie left in L2
γ1
(0, ∞) at 0, and only θ1 lies right in L2

γ1
(0, ∞) for

λ = 0, the endpoint 0 is in the limit circle case and the endpoint ∞ is in the limit

3 Note that d
dz erfi z = 2√

π
ez2

.
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point case for λ = 0. By Theorem B.5 in the appendix, this classification extends
to all λ ∈ C, completing the proof.

By Proposition 4.3, the SL expression τ on [0, ∞) has a limit circle case at 0 and
a limit point case at ∞ for all λ ∈ C.

Proposition 4.4 All self-adjoint restrictions of the maximal operator T, or equivalently,
all self-adjoint realizations of the SL differential expression τ on [0, ∞), are characterized
by the boundary condition

(sin δ) f ′(0) + (cos δ) f (0) = 0, for f ∈ Dom(T), (4.12)

where δ ∈ [0, π).

Proof According to [HK92, Case 7.1], all self-adjoint extensions are characterized
by the boundary condition

α lim
x→0

W[ f , θ1] + β lim
x→0

W[ f , θ2] = 0

where (α, β) ∈ C2 \ {(0, 0)} satisfy αβ ∈ R, and W[u1, u2] denotes the modified
Wronskian of two solutions u1 and u2, as defined in Definition B.3 in the appendix.

We have

α lim
x→0

W[ f , θ1] + β lim
x→0

W[ f , θ2] = −α

2
f ′(0) +

β

2
f (0) = 0. (4.13)

Multiplying equation (4.13) by a non-zero complex constant allows us to make
α real without loss of generality. The condition αβ = βα then ensures that β is also
real.

Normalizing equation (4.13) by 1
2

√
α2 + β2 and defining δ ∈ [0, π) such that

sin δ =
−α√

α2 + β2

we obtain the boundary condition (4.12).

4.5 eigenvalues and eigenfunctions for special cases of δ

Having characterised the self-adjoint realizations of τ, we now construct explicit
solutions to the eigenvalue equation that satisfy the corresponding Boundary Con-
ditions (BCs) (4.12). By (4.1), these solutions are eigenfunctions of the self-adjoint
realizations of the OU operator A in Dom(T), with eigenvalues of opposite sign.

Proposition 4.5 For δ ∈ [0, π), let fδ : [0, ∞) → R be defined by

fδ(x) := (cos δ)xM
(

1 − λ

2
,

3
2

, x2
)
− (sin δ)M

(
−λ

2
,

1
2

, x2
)

, (4.14)

where M denotes the Kummer function. Then fδ is a solution to the eigenvalue equation

τ f = λ f (4.15)
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on [0, ∞), satisfying the boundary condition

(sin δ) f ′(0) + (cos δ) f (0) = 0. (4.16)

Proof By Lemma 4.2, M(−λ
2 , 1

2 , x2) and xM( 1−λ
2 , 3

2 , x2) form a fundamental pair
of solutions to equation (4.15). Therefore, fδ, being a linear combination of these
solutions, satisfies (4.15). Direct calculation verifies that fδ also satisfies the bound-
ary condition (4.16).

Remark 4.6 It is important to note that fδ as defined in Proposition 4.5 does not generally
belong to Dom(T). The values of λ for which fδ ∈ Dom(T) constitute the eigenvalues of
the corresponding self-adjoint realisation of τ.

To determine these eigenvalues explicitly, we now examine fδ for specific values
of δ, corresponding to classical BCs. For each case, we analyse the asymptotic be-
haviour of fδ to ascertain when it belongs to Dom(T), thus identifying the eigen-
values and associated eigenfunctions.

Let’s consider the following combinations:

• δ = 0δ = 0δ = 0 (Dirichlet BCs) The solution is given by xM
( 1−λ

2 , 3
2 , x2). From the asymp-

totic analysis (4.10), we can see that the function belongs to L2
γ1
(0, ∞) for

λ = 2n + 1, n ∈ Z≥0. Further, we have,

xM
(
−n,

3
2

, x2
)
= (−1)n n!

(2n + 1)!
H2n+1(x), (4.17)

where H2n+1(x) are the Hermite polynomials of odd order.

We have thus as eigenfunctions H2n+1(x) and eigenvalues 2n+ 1 for n ∈ Z≥0.

• δ = π
2δ = π
2δ = π
2 (Neumann BCs) The solution is given by −M

(
−λ

2 , 1
2 , x2). From the

asymptotic analysis (4.11), we see that the function belongs to L2
γ1
(0, ∞) for

λ = 2n, n ∈ Z≥0. Further, we have,

M
(
−n,

1
2

, x2
)
= (−1)n m!

(2n)!
H2n(x), (4.18)

where H2n(x) are the Hermite polynomials of even order.

We have thus as eigenfunctions H2n(x) and eigenvalues 2n for n ∈ Z≥0.

• δ ∈ (0, π/2) ∪ (π/2, π)δ ∈ (0, π/2) ∪ (π/2, π)δ ∈ (0, π/2) ∪ (π/2, π) (Robin BCs) The solution is given by (4.14).

We have to find λ such that fδ is in L2
γ1
(0, ∞).

From the asymptotic analysis in (4.8), we have

fδ(x) ∼ ex2
(x2)−

λ
2 −

1
2

(
(cos δ)

Γ( 3
2 )

Γ( 1−λ
2 )

− (sin δ)
Γ( 1

2 )

Γ(−λ
2 )

)
+O(x−2), as x → ∞. (4.19)

Thus, the eigenvalues of the corresponding τ realization are given by the

intersection of the plot of tan δ with the plot of Γ( 3
2 )Γ(

−λ
2 )

Γ( 1−λ
2 )Γ( 1

2 )
=

Γ(−λ
2 )

2Γ( 1−λ
2 )

.
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See Figure 4.2 for the case tan δ = 2. Note that for δ ∈
(
0, π

2

)
, there exists a negative

eigenvalue.

Figure 4.2: τ-Eigenvalues for Robin BC with tan δ = 2.

Building upon our characterization of the self-adjoint realizations of τ, we now
present a corresponding result for the OU operator A. This proposition extends
[MR22, Lemma 4.7] to include Robin BCs, providing a comprehensive spectral
characterization. 4

Proposition 4.7 Let δ ∈ (0, π/2)∪ (π/2, π) and consider the operator Aδ, representing
the realization of A on Dom(T) with Robin BCs

(sin δ) f ′(0) + (cos δ) f (0) = 0. (4.20)

Then:

1. The spectrum of Aδ is purely discrete.

2. The eigenvalues λ ∈ R of Aδ satisfy

Γ(λ
2 )

2Γ( 1+λ
2 ))

= tan δ, (4.21)

where Γ(·) denotes the Gamma function.

3. The corresponding eigenfunctions are given by

fδ(x) = (cos δ)xM
(

1 + λ

2
,

3
2

, x2
)
− (sin δ)M

(
λ

2
,

1
2

, x2
)

. (4.22)

4. For δ ∈
(
0, π

2

)
, Aδ admits one positive eigenvalue.

4 Recall that by (4.1), the eigenvalues of A are the negatives of those for τ.
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Proof The proof follows directly from our analysis of τ and the relation A = −τ

established in (4.1). The spectral properties of Aδ are thus mirror images of those
for the corresponding realization of τ, with the sign of the eigenvalues reversed.

This extension of [MR22, Lemma 4.7] provides a characterisation of the spec-
trum of the OU operator on Dom(T) under Robin BCs, generalising the Dirichlet
and Neumann cases presented in the original lemma.

4.6 eigenvalues and eigenfunctions of A on SmSmSm

We now extend our analysis to the operator A on SmSmSm. Recall that rjrjrj, j ∈ I,5 denote
the rays of the metric graph, and 0 its central vertex. For a function fff : SmSmSm → K,
we denote by f j its restriction to the ray rjrjrj.6

On each ray rjrjrj, we consider the OU differential expression given by

A f j = −τ f j =
1
2

d2 f j

dx2 − y
d f j

dx
, x ∈ [0, ∞). (4.23)

To characterize specific self-adjoint realizations of the OU operator on SmSmSm, we
employ the Hermitian VCs established in Theorem 2.20.

We focus on replicating and extending the results of [MR22] by considering
three specific cases of VCs while ensuring continuity at the vertex 000:

• Dirichlet-Kirchhoff VCs: ∑
j∈I

f ′j (000j) = 0, fff (0) = 0

• Neumann-Kirchhoff VCs: ∑
j∈I

f ′j (000j) = 0, fff (0) ̸= 0

• δ-Coupling VCs: ∑
j∈I

f ′j (000j) = c fff (0), where c ∈ R \ {0} and fff (0) ̸= 0.

Additionally, we introduce the concept of strict Neumann-Kirchhoff VCs:

• Strict Neumann-Kirchhoff VCs: f ′j (000j) = 0 for all j ∈ I and fff (0) ̸= 0.

The relationship between Neumann-Kirchhoff and strict Neumann-Kirchhoff con-
ditions will be explored in subsequent analysis.

Synthesizing the SL analysis from Section 4.1 with the single-ray case results of
Section 4.4, we now characterize the spectrum and eigenfunctions for these cases
on the metric star graph SmSmSm.

4.6.1 Dirichlet- and strict Neumann-Kirchhoff VCs.

We will first characterize the spectrum and eigenfunctions for the Dirichlet-Kirch-
hoff and strict Neumann-Kirchhoff VCs. We will prove in Proposition 4.9 that strict
and standard Neumann-Kirchhoff VCs are equivalent.

5 In this thesis I := {1, . . . , m}.
6 In this section, we reserve the letter i for the imaginary unit, i.e., i2 = −1.
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Proposition 4.8 (Dirichlet- and strict Neumann-Kirchhoff cases) Let A2A2A2 denote the
operator obtained by restricting the OU operator A in L2

γm
(SmSmSm) with domain

Dom (A2A2A2) =
{

fff ∈ L2
γmγmγm
(SmSmSm) : f j, f ′j are absolutely continuous on rrrj

for each j ∈ I, Bfff (0) = Cfff ′(0), A fff ∈ L2
γmγmγm
(SmSmSm)

}
,

where B and C are m × m matrices given by

B =



1 −1 0 · · · 0 0

0 1 −1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 −1

0 0 0 · · · 0 0


, C =



0 0 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

1 1 1 · · · 1


.

These matrices encode continuity at the vertex 0 and the Kirchhoff condition
m
∑
j∈I

fff ′j(000) = 0.

Then:

(i) For Dirichlet-Kirchhoff VCs the spectrum of A2A2A2 is given by

σ(A2A2A2) = {−(2n + 1) : n ∈ N0},

where each eigenvalue has multiplicity m − 1. The corresponding eigenfunctions are
of the form

fff n,l(xxxj) = αj,l
(−1)nn!
(2n + 1)!

H2n+1(|xxxj|)

where H2n+1 are the odd Hermite polynomials, and the coefficients αj,l are defined
as:

αj,l :=

e(2π(j−1)/l)i, for 1 ≤ j ≤ l,

0, for l + 1 ≤ j ≤ m.

where j ∈ I and l ∈ {2, . . . , m}.

(ii) For strict Neumann-Kirchhoff VCs
(

f ′j (000j) = 0 for all j ∈ I and fff (000) ̸= 0
)
, the

spectrum of A2A2A2 is given by

σ(A2A2A2) = {−2n : n ∈ N0},

where each eigenvalue has multiplicity 1. The corresponding eigenfunctions are of
the form

fff n(xxxj) = (−1)n βn!
(2n)!

H2n(|xxxj|),

where H2n are the even Hermite polynomials and β := fff (000).

Proof First, note that the matrices B and C satisfy condition (2.26) BC∗ = CB∗ = 0,

ensuring that A2A2A2 is self-adjoint. We consider the SL problem 1
2

d2 f j

dx2 − x d f j
dx = λ f j on

each ray rjrjrj.
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(i) For Dirichlet conditions, the Dirichlet case in Proposition 4.7 yields the so-
lutions f j(x) = αjxM( 1+λ

2 , 3
2 , x2),7 where αj ∈ C and M is the Kummer function.

For f j to be in L2
γm
(0, ∞), we must have λ = −(2n + 1) for n ∈ N0 (see 4.11),

corresponding to odd Hermite polynomials H2n+1(x).
A notable feature of the multi-ray case is the possibility of having rays j with

the trivial solution f j(x) = 0, which satisfies the boundary condition, provided
at least one ray has a non-trivial solution. However, due to the Kirchhoff Vertex
Condition ∑

j∈I
f ′j (000j) = ∑

j∈I
αj = 0, a single non-zero ray cannot satisfy the VC. Thus,

at least two and at most m of the solutions at each ray must be non-trivial.
To construct eigenfunctions that also satisfy the Kirchhoff condition, we exploit

the rotational symmetry of the star graph. Following the eigenspaces of the rota-
tion operator RRR given in (3.4.2), we define the coefficients αj,l as

αj,l :=

e(2π(j−1)/l)i, for 1 ≤ j ≤ l,

0, for l + 1 ≤ j ≤ m,

where j ∈ I and l ∈ {2, . . . , m}. These coefficients satisfy the Kirchhoff condition,
as shown below. The m − 1 eigenfunctions corresponding to eigenvalue −(2n + 1)
are then given by

fn,l(xxxj) = (−1)n n!
(2n + 1)!

(
αj,l H2n+1(xxxj)

)
,

for each n ∈ N0, j ∈ I and l ∈ {2, . . . , m},
The coefficients αj,l satisfy the Kirchhoff condition for l ∈ {2, . . . , m}, since

∑
j∈I

αj,l =
l

∑
j=1

e(2π(j−1)/l)i =
1 − e(2πl/l)i

1 − e(2π/l)i
=

1 − 1
1 − e(2π/l)i

= 0.

Consequently, for each eigenvalue λ = −(2n+ 1), we have m− 1 linearly indepen-
dent eigenfunctions, yielding a multiplicity of m − 1.

(ii) For Neumann conditions, the Neumann case in Lemma 4.7 yields the solu-
tions fi(x) = βi M(λ

2 , 1
2 , x2). For f j ∈ L2

γm
(0, ∞), we must have λ = −2n for n ∈ N0,

corresponding to even Hermite polynomials H2n(x). The continuity at the central
vertex implies β j = βk =: β for all j, k. Hence, the eigenfunction must be the same
on all rays, yielding multiplicity 1 for each eigenvalue. Note that in this case, the
Kirchhoff condition ∑

j∈I
f ′j (000j) = 0 is automatically satisfied. Completing the proof.

This completes the characterization of the spectrum and eigenfunctions for both
Dirichlet-Kirchhoff and strict Neumann-Kirchhoff VCs.

The following proposition establishes the equivalence between the strict Neu-
mann-Kirchhoff and Neumann-Kirchhoff VCs for the Ornstein-Uhlenbeck operator
on the metric star graph SmSmSm with the given matrices B and C. This result justifies
the focus on the strict Neumann-Kirchhoff conditions in the previous proposition.

Proposition 4.9 For the OU operator AAA on the metric star graph SmSmSm with matrices B
and C as defined in Lemma 4.8, which encode the Standard VCs, the strict Neumann-

7 Recall that by equation (4.1), the eigenvalues of A are the negatives of those for τ.
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Kirchhoff VCs
(

f ′j (0) = 0 for all j ∈ I, fff (0) ̸= 0
)

and the Neumann-Kirchhoff VCs(
∑j∈I f ′j (0j) = 0 and fff (0) ̸= 0

)
are equivalent.

Proof Proposition 4.8 covers the Dirichlet-Kirchhoff case (case (i), where fff (0) = 0)
and the strict Neumann-Kirchhoff case (case (ii), where f ′j (0j) = 0 for all j ∈ I and
fff (0) ̸= 0). We now investigate whether there could be another case that satisfies
continuity and Kirchhoff conditions, for which there exists at least one ray rjrjrj such
that αj := f ′j (0j) and β := f j(0j) are both non-zero.

From the asymptotic analysis in Section 4.4, we know that for the ray rjrjrj, the
eigenvalues are determined by the intercept of a certain function with −β/αj. For
the operator to have well-defined, real eigenvalues common to all rays, these inter-
cepts must coincide and be real-valued. This requirement implies that −β/αj =

−β/αk for all k, or equivalently, αj = αk =: α for all j, k ∈ I.
Consequently, we obtain the condition

∑
j∈I

f ′j (0j) = mα ̸= 0.

This condition contradicts the Kirchhoff condition ∑j∈I f ′i (0j) = 0, which is en-
coded by the matrices B and C as defined in Lemma 4.8.

We conclude that the Neumann-Kirchhoff VCs are satisfied if and only if the
strict Neumann-Kirchhoff VCs hold.

4.6.2 δ-Coupling VCs.

Having characterised the spectrum and eigenfunctions for the Dirichlet-Kirchhoff
and Neumann-Kirchhoff VCs, which represent the extreme scenarios, we now in-
vestigate the more general case of δ-Coupling VCs.

Proposition 4.10 (δ-Coupling VCs) Let A2A2A2 be the realization of the OU operator A in
L2

γmγmγm
(SmSmSm) whose domain is given by

Dom(A2A2A2) =
{

fff ∈ L2
γmγmγm
(SmSmSm) : f j, f ′j are absolutely continuous on rrrj

for each j ∈ I, Bfff (0) = Cfff ′(0), A fff ∈ L2
γmγmγm
(SmSmSm)

}
,

where B and C are m × m matrices given by

B =



1 −1 0 · · · 0 0

0 1 −1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 −1

0 0 0 · · · 0 1


, C =



0 0 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

1/c 1/c 1/c · · · 1/c


,

where c ∈ R \ {0}.
These matrices encode continuity at 0 and the δ-Coupling VC ∑j∈I f ′j (000j) = c fff (0).
We have:
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(i) The spectrum of A2A2A2 on SmSmSm consists of eigenvalues λ that satisfy the equation

Γ(λ
2 )

2Γ( 1+λ
2 )

= −m
c

.

(ii) Each eigenvalue λ has multiplicity 1, and the corresponding eigenfunction fff λ are
given by

fff λ(xxxj) := fc(|xxxj|),

where
fc(x) =

cβ

m
xM

(
1 +

λ

2
,

3
2

, x2
)
+ βM

(
λ

2
,

1
2

, x2
)

,

β := fff (000) and M denotes the Kummer function of the first kind.

(iii) The spectrum consists of countably many simple eigenvalues, accumulating at −∞.
For c < 0, there exists one positive eigenvalue.

Proof First, we verify that B and C satisfy condition (2.26) BC∗ = CB∗, ensuring
that A2A2A2 is self-adjoint:

BC∗ = CB∗ =



0 0 · · · 0 0

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0

0 0 · · · 0 1/c


.

We consider the SL problem 1
2

d2 f j

dx2 − x d f j
dx = λ f j on each ray rrrj.

From Proposition 4.7 the solutions on ray rrrj is of the form

f j(x) = αjxM
(

1 +
λ

2
,

3
2

, x2
)
+ β j M

(
λ

2
,

1
2

, x2
)

.

for αj, β j ∈ C. The continuity at the central vertex implies β j = βk =: β for all j, k.
From the asymptotic analysis in Section 4.4, we know that f j ∈ Lγm(R

+) for the
ray rjrjrj if λ fulfils this equation:

Γ(λ
2 )

Γ( 1+λ
2 )

= − β

αj
.

For the operator to have well-defined, real eigenvalues common to all rays, these
intercepts must coincide and be real-valued. This implies that −β/αj = −β/αk for
all k, or equivalently, αj = αk =: α for all j, k ∈ I.

Consequently, we obtain the condition

∑
j∈I

f ′j (0j) = mα = c fff (000) = cβ.
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spectral properties of A

Thus α = cβ
m . The eigenvalue equation follows from Proposition 4.7 since

Γ(λ
2 )

2Γ( 1+λ
2 )

= − β

αj
= −β

α
= −m

c
.

And the rest of results follow from Proposition 4.7 for δ ∈ (0, π) \ {π/2}, such
that tan δ = −m

c .

4.7 conclusion

By establishing a connection between the Ornstein-Uhlenbeck operator A on SmSmSm

and a singular Sturm-Liouville problem, we have derived explicit expressions
for the eigenfunctions and eigenvalues of the self-adjoint realisations of A cor-
responding to Standard and δ-Coupling VCs. Specifically, we have characterised
the spectrum and eigenfunctions for the operators A2A2A2 on L2

γm
(SmSmSm) under Dirichlet-

Kirchhoff, Neumann-Kirchhoff, and δ-Coupling conditions at the central vertex.
In the next chapter, we will explore another approach to extend the results of

[MR22], focusing on the parabolic problem associated with the OU operator. By
employing commuting operators and introducing the Extended Algebra, we will
develop techniques for constructing solutions that satisfy various BCs, particularly
emphasising the case of S1S1S1 and Robin BCs.
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5
C O M M U T I N G O P E R AT O R S : S O LV I N G T H E PA R A B O L I C
P R O B L E M ( PA ) O N R W I T H R O B I N B O U N D A RY C O N D I T I O N S

"The most frightening phrase in the Russian language is ’That’s odd.’"

— Isaac Asimov [Asi87]

5.1 introduction and motivation

Our goal is to extend [MR22, Theorem 3.3] to δ-Coupling Vertex Conditions (VCs)
of the form ∑i∈I f ′i (000i) = hfff (0), where h is the coupling parameter. As a first step
towards this objective, we focus on the case m = 1, which corresponds to Robin
Boundary Conditions (BCs) on the half-line [0, ∞), leaving the generalization to
arbitrary m for future work.

Our approach is inspired by the classical treatment of the heat equation on a
semi-infinite interval with Robin BCs, as studied by Bryan [Bry91]. Bryan’s method,
which exploits symmetry properties and spatial derivative behavior, can be viewed
as another application of the even-odd extension technique, akin to the approach
employed in Lemma 3.4. By adapting this technique to the Ornstein-Uhlenbeck
(OU) operator, we construct solutions to the parabolic problem (PA) with Robin
BCs on [0, ∞). This setting represents the simplest non-trivial metric star graph S1S1S1.

The key insight is that if u(x, t) is a solution to the heat equation, then so is
∂xu(x, t). [Bry91] exploits this property by considering a linear combination of u
and ∂xu, specifically designed to satisfy the Robin BC at x = 0. By extending the
problem to the whole real line and imposing appropriate symmetry conditions
on the initial data, Bryan ensures that this linear combination naturally satisfies
the desired boundary condition when restricted back to the semi-infinite interval.
This method works elegantly for the heat equation because:

1. The spatial derivative operator ∂x commutes with both the time derivative
∂t and the spatial Laplacian ∂2

x.

2. The heat equation is invariant under spatial reflection x 7→ −x.

3. Linear combinations of solutions to the heat equation are also solutions.

These properties allow for the construction of solutions with specific symmetries
that satisfy the desired BCs when restricted to the original domain.

The OU operator A, however, presents a fundamentally different situation. Un-
like the heat equation, where ∂x commutes with the spatial part of the operator,
the OU operator exhibits non-trivial commutation relations with spatial derivatives.
Specifically, while [A, ∂t] = 0 still holds, we have [A, ∂] = ∂ and [A, ∂∗] = −∂∗,
where ∂ and ∂∗ are the annihilation and creation operators defined in (2.13). These
non-zero commutators mean that if u(x, t) is a solution to the OU equation, ∂u
and ∂∗u are generally not solutions. This non-commutativity prevents us from di-
rectly applying Bryan’s method or similar classical approaches based on spatial
derivatives of solutions.
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commuting operators : solving the parabolic problem

5.2 characterization of commuting operators

To overcome this challenge, we introduce the OU evolution operator □A, defined as:

□A := ∂t −A, (5.1)

where A is the OU operator. Our strategy is to find operators that commute with
□A, allowing us to generate new solutions that accommodate different BCs. Before
proceeding, let us recall the definition of the commutator:

Definition 5.1 Let P and Q be two linear operators with domains Dom(P) and Dom(Q),
respectively. The commutator of P and Q is defined as

[P, Q] := PQ − QP, (5.2)

with domain Dom([P, Q]) = Dom(PQ) ∩ Dom(QP), where

Dom(PQ) = { f ∈ Dom(Q) : Q f ∈ Dom(P)},

Dom(QP) = { f ∈ Dom(P) : P f ∈ Dom(Q)}.

If [P, Q] = 0 on Dom([P, Q]), then the operators P and Q are said to commute.

To characterize operators that commute with □A, we consider a suitable func-
tion space:

Definition 5.2 Let ν ∈ (0, 1), q ∈ N. We define the function space Dq
ν as

Dq
ν := C([0, ∞)× R) ∩ Cq+ ν

2 ,1+q+ν

loc ((0, ∞)× R).

The following proposition characterizes the most general first-order differential
operator on Dq

ν that commutes with □A:

Proposition 5.3 Let HΩ : D2
ν → D1

ν defined by

(HΩu)(x, t) := ω000u(x, t)− ω100e−t∂∗u(x, t) + ω010et∂u(x, t) + ω001 ∂tu(x, t)

=
(
ω000 − 2ω100xe−t)u(x, t) +

(
ω100e−t + ω010et)∂u(x, t)

∂x
)
+ ω001

∂u(x, t)
∂t

, (5.3)

where Ω := {ω000, ω100, ω010, ω001} ⊂ K and ∂∗,∂ are the creation and annihilation
operators defined in (2.13).

Then, for any u ∈ D2
ν, the operator HΩ commutes with the OU evolution operator □A,

i.e.,
[□A, HΩ]u = 0, ∀u ∈ D2

ν. (5.4)

Moreover, any first-order differential operator that commutes with □A on D2
ν is of the

form HΩ for some choice of the constants ω000, ω100, ω010, ω001 ∈ K.
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commuting operators : solving the parabolic problem

Proof The commutation property [□A, HΩ] = 0 follows from a direct computa-
tion:

(
□A(HΩu)

)
(x, t) = −1

2
(ω100e−t + ω010et)

∂3u(x, t)
∂x3 − ω001

2
∂3u(x, t)

∂t∂x2 + ω001
∂2u(x, t)

∂t2

+
1
2
(4ω100xe−t + 2xω010et − ω000)

∂2u(x, t)
∂x2 + (ω001x + ω100e−t + ω010et)

∂2u(x, t)
∂t∂x

+

(
−2
(

x2 − 1
2

)
ω100e−t + ω010et + ω000x

)
∂u(x, t)

∂x

+
(
ω000 − 2ω100xe−t) ∂u(x, t)

∂t
=
(

HΩ
(
□Au)

)
(x, t),

where we have taken advantage of the equality of mixed partial derivatives for
u ∈ D2

ν.
To show that any first-order differential operator commuting with □A is of the

form HΩ, let C be such an operator. We can write C in the general form

C(u)(x, t) := c0(x, t)u(x, t) + c1(x, t)
∂u(x, t)

∂x
+ c2(x, t)

∂u(x, t)
∂t

, (5.5)

where c0, c1 and c2 ∈ D2
ν. The commutator [□A, C] applied to u ∈ D2

ν gives

[□A, C]u = −∂c1

∂x
∂2u
∂x2 − ∂c2

∂x
∂2u
∂t∂x

+

(
−1

2
∂2c1

∂x2 + x
∂c1

∂x
− ∂c0

∂x
+

∂c1

∂t
− c1

)
∂u
∂x

+

(
−1

2
∂2c2

∂x2 + x
∂c2

∂x
+

∂c2

∂t

)
∂u
∂t

+

(
−1

2
∂2c0

∂x2 + x
∂c0

∂x
+

∂c0

∂t

)
u. (5.6)

For the commutator to vanish for arbitrary functions u ∈ D2
ν, the coefficients of

∂2u
∂x2 , ∂2u

∂t∂x , ∂u
∂x , ∂u

∂t , and u in (5.6) must vanish. From the coefficients of ∂2u
∂x2 and ∂2u

∂t∂x ,
we infer that c1 and c2 depend only on t. This leads to the following equation by
requiring the coefficient of ∂u

∂x to be zero:

−∂c0

∂x
+ c′1(t)− c1(t) = 0, (5.7)

with solution
c0(x, t) = (c′1(t)− c1(t))x + g(t), (5.8)

where g(t) is an arbitrary function. Substituting (5.8) into the coefficient of u in
leads to the equation

xc1(t)− xc′′1 (t)− g′(t) = 0. (5.9)

From (5.9), we deduce that g(t) =: ω̃000 ∈ K is a constant and c1(t) satisfies the
equation

c1(t)− c′′1 (t) = 0, (5.10)

with solution
c1(t) = ω̃100e−t + ω̃010et, (5.11)

for arbitrary constants ω̃100, ω̃010 ∈ K. Substituting (5.11) into (5.8) yields

c0(x, t) = ω̃000 − 2ω̃100xe−t. (5.12)

Finally, from the coefficient of ∂u
∂t , we infer that c2(t) =: ω̃001 is a constant function.
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commuting operators : solving the parabolic problem

Comparing (5.12) and (5.11) with (5.3), we conclude that the operator C equals
HP̃ , for P̃ = {ω̃000, ω̃100, ω̃010, ω̃001}, completing the proof.

Proposition 5.3 characterizes first-order linear differential operators commuting
with □A. While this characterization is limited to first-order operators, the follow-
ing corollary applies to commuting operators of any order. This result generates
new solutions to the parabolic problem and establishes a foundation for adapting
Bryan’s method [Bry91] to the OU evolution equation. In Chapter 6, we will fur-
ther generalize the characterization of commuting operators to linear operators of
arbitrary order.

Corollary 5.4 Let ν ∈ (0, 1) and v ∈ D2
ν be the unique solution to the parabolic problem□Av = 0, x ∈ R, t > 0,

v(x, 0) = f (x), x ∈ R,
(5.13)

where f ∈ C1
b(R). Define w := HΩ(v), where the operator HΩ is given by (5.3) and

the set Ω = {ωijk}i+j+k∈{0,1} ⊂ K. Then w is the unique solution to the transformed
parabolic problem □Aw = 0, x ∈ R, t > 0,

w(x, 0) = ψ(x), x ∈ R,
(5.14)

where the initial condition ψ is given by

ψ(x) := (ω000 − 2ω100x) f (x) + (ω100 + ω010) f ′(x) + ω001∂tv(x, 0). (5.15)

Proof Let v ∈ D2
ν be the solution to the parabolic problem 5.13. Define the func-

tion w := HΩ(v). Since HΩ commutes with □A in D2
ν (Proposition 5.3), we have:

□Aw = □A(HΩ(v)) = HΩ(□Av) = HΩ(0) = 0.

Then, w is a solution to the transformed parabolic problem. For the initial condi-
tion, we have:

w(x, 0) = (HΩv)(x, t)|t=0

= (ω000 − 2ω100x) f (x) + (ω100 + ω010) f ′(x) + ω001∂tv(x, 0).

The uniqueness of the solution w follows from [LB06, Theorem 9.1.1].

The operator HΩ takes different forms depending on the choice of constants
ω000, ω100, ω100, and ω100. Table 5.1 illustrates several examples of these operators,
including some particularly relevant for constructing solutions with time-dependent
Robin BCs.

Characterizing operators HΩ commuting with □A on D2
ν provides a framework

for generating new solutions from known ones. In the following section, we apply
the operator from the second row of Table 5.1 to study the OU equation on [0, ∞)

with time-dependent Robin conditions.
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commuting operators : solving the parabolic problem

ω000 ω100 ω100 ω001 HΩ(u)(x, t)
1 0 0 1 u(x, t) + ∂tu(x, t)
1 0 -1 0 u(x, t)− et∂u(x, t)
1 1 0 0 u(x, t)− e−t∂∗u(x, t)

Table 5.1: Examples of first-order differential operators HΩ
commuting with □A for various choices of param-
eters ωijk.

5.3 time dependent robin boundary conditions for □A on [0, ∞) .

Consider the parabolic problem for the OU evolution operator □A on the half-line
[0, ∞) with decaying Robin BCs1:

□Av(t, x) = 0, t > 0, x ∈ (0, ∞) (5.16)

v(0, x) = f (x), x ∈ [0, ∞), (5.17)

∂xv(t, 0) = he−tv(t, 0), t > 0, (5.18)

where 0 ̸= h ∈ R is the coupling parameter and f ∈ C1
b(R).

To solve this problem, we will employ the commuting operator HΩ derived in
Proposition 5.3. Specifically, we choose the constants ω000 := −h, ω100 := 0, ω010 := 1
and ω001 := 0, which yields the operator

(HΩu)(x, t) = −hu(x, t) + et ∂u(x, t)
∂x

. (5.19)

We follow the steps analogous to those used by Bryan [Bry91] for the heat equa-
tion. See also [Stend; Str07].

Step 1: Extension of the problem to the real line.
To construct solutions satisfying the Robin condition (5.18), we extend the initial

condition f (see 5.17) to a function f̃ on R. The invariance of □A under x 7→ −x, as
used in Theorem 3.3, ensures that solutions to the extended OU evolution equation

□Av(t, x) = 0, t > 0, x ∈ R, , (5.20)

v(0, x) = f̃ (x), x ∈ R, (5.21)

inherit the parity of f̃ . This property allows us to choose f̃ such that the restriction
of the solution to [0, ∞) satisfies (5.18).

Step 2: Introduction of an auxiliary function.
Define the auxiliary function w := HΩv = −hv + et∂xv. By Proposition 5.3, the

commutation property [□A, HΩ] = 0 implies that if v solves the extended OU

evolution equation (5.20), then w also satisfies

□Aw(t, x) = 0, t > 0, x ∈ R, (5.22)

with initial condition

1 The label decaying refers to the fact that the Robin BCs tends to Neumann for t → ∞.
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commuting operators : solving the parabolic problem

w(0, x) = (HΩ f̃ )(x) = −h f̃ (x) + f̃ ′(x). (5.23)

The goal is to choose f̃ such that w(0, x) is an odd function, which will imply that
w(t, x) is odd in x for all t > 0.

Step 3: Construction of the extended initial condition.
To ensure that w(0, x) is odd, we define the extended initial condition f̃ as

f̃ (x) :=

 f (x), x ≥ 0,

g(x), x ≤ 0,
(5.24)

where g is determined by solving the equation

g′(x)− hg(x) = − f ′(−x) + h f (−x) (5.25)

with the condition g(0) = f (0). The solution, adapted from [Str07, Exercise 5 in
Section 3.1] and [Stend], is given by

g(x) = f (−x)− ehx
[

2h
∫ −x

0
f (y)ehydy

]
, x ≤ 0. (5.26)

By construction, f̃ ensures that w(0, x) is odd. Consequently, the invariance of □A
under x 7→ −x implies that w(t, x) is odd in x for all t > 0. This oddness of
w(t, x) yields ∂xv(0, t) = e−thv(0, t), guaranteeing that the restriction of v to [0, ∞)

satisfies the Robin condition (5.18).

Step 4: Explicit Solution via Kernel Representation
Let f̃ denote the extended initial condition on R. The solution v(x, t) to the OU

equation on R admits the integral representation

v(t, x) =
∫

R
κOU(t, x, y) f̃ (y)dy, (5.27)

where κOU(t, x, y) is the OU kernel (3.24). Splitting the integral and applying the
change of variables y 7→ −y in the negative half-line yields

v(t, x) =
∫ ∞

0
κOU(t, x, y) f (y)dy

+
∫ ∞

0
κOU(t, x,−y)

[
f (y)− 2he−hy

∫ y

0
f (s)ehsds

]
dy.

(5.28)

Rearranging terms, we obtain the explicit solution

v(t, x) =
∫ ∞

0
[κOU(t, x, y) + κOU(t, x,−y)] f (y)dy

− 2h
∫ ∞

0
κOU(t, x,−y)e−hy

∫ y

0
f (s)ehsdsdy.

(5.29)

This leads us to the main result:
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commuting operators : solving the parabolic problem

Theorem 5.5 The unique solution v : (0, ∞) × (0, ∞) → K to the parabolic problem
(5.16), (5.17) and (5.18) with decaying Robin BCs is given by

v(t, x) =
∫ ∞

0

(
κOU(t, x, y) + κOU(t, x,−y)

)
f (y)dy

− 2h
∫ ∞

0
κOU(t, x,−y)e−hy

∫ y

0
f (s)ehsdsdy,

(5.30)

and κOU(t, x, y) is the OU kernel (3.24).

Proof Existence follows from our explicit construction, and uniqueness follows
from [LB06, Proposition 4.1.10].

The integral term
∫ y

0 f (s)ehsds in the solution reflects the non-local nature of the
Robin condition, demonstrating how boundary effects propagate throughout the
domain. It captures a memory effect, where the solution at any point depends on
the entire history of boundary behavior.

5.4 conclusion

The method developed in this chapter, exploiting operators HΩ that commute
with the OU evolution operator □A, provides an explicit solution to the parabolic
problem (PA) with time-dependent Robin BCs on [0, ∞). This approach extends
Bryan’s technique for the heat equation to the OU setting, circumventing the non-
commutativity of spatial derivatives with A. While effective for S1S1S1, the general-
ization to SmSmSm for m > 1 remains open. Chapter 6 will explore a broader algebraic
structure encompassing these commuting operators.
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6
A L I E A L G E B R A F R A M E W O R K F O R T H E
O R N S T E I N - U H L E N B E C K O P E R AT O R : T H E T - E X T E N D E D
A L G E B R A E T

In every direction, the extension is endless;
the sensation of depth is overwhelming.

And the darkness is immortal.

— Carl Sagan [Sagkn]

6.1 generalization to higher-order operators

We extend the analysis of operators commuting with the Ornstein-Uhlenbeck (OU)
evolution operator □A to encompass linear operators of arbitrary order. This gen-
eralization not only yields a method for constructing novel solutions to the asso-
ciated parabolic problem but also reveals a rich algebraic structure, denoted ET,
which we term the T–extended algebra.

First, let us recall some fundamental operators:

Definition 6.1 (Fundamental Operators) For f ∈ Dn
ν , ν ∈ (0, 1), n ∈ N, define:

I f := f

T f := ∂t f

Xt f := et∂ f = et∂x f

X∗
t f := −e−t∂∗ f = −e−t(2x f − ∂x f )

where ∂ and ∂∗ are the annihilation and creation operators.

Lemma 6.2 The operators I , T, Xt, and X∗
t commute with the OU evolution operator

□A.

Proof The commutation of I and T with □A is immediate. For Xt and X∗
t , the

proof follows directly from Proposition 5.3. The operators Xt, and X∗
t can be ex-

pressed as HΩ for specific choices of the parameter ωijk, where ωijk = 1 for a single
index combination and 0 otherwise:

Xt = HΩ for ω010 = 1,

X∗
t = HΩ for ω100 = 1.

Since Proposition 5.3 establishes that HΩ commutes with □A for any choice of ωijk,
the result follows.

We now extend our analysis to higher-order operators constructed from the
fundamental operators introduced earlier.
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a lie algebra framework

Definition 6.3 Let n ∈ N0 and Ω := {ωijk ∈ K : i, j, k ∈ N0, i + j+ k ≤ n}, we define
the higher-order operator Hn

Ω on Dn
ν , for ν ∈ (0, 1) as:

Hn
Ω :=

n

∑
i+j+k=0

ωijk · (X∗
t )

iX j
tT

k (6.1)

This definition allows us to construct operators of arbitrary order by taking linear
combinations of products of our fundamental operators.

Proposition 6.4 The operator Hn
Ω := ∑n

i+j+k=0 ωijk · (X∗
t )

iX j
tT

k commutes with □A for
all n ∈ N0.

Proof Recall that if an operator C commutes with □A, then all powers of C also
commute with □A. From Lemma 6.2, we know that □A commutes with I ,X∗

t , Xt,
and T, and therefore with all powers of these operators.

For any i, j, k ∈ N0, we have:

□A(X∗
t )

iX j
tT

k = (X∗
t )

i□AX j
tT

k = (X∗
t )

iX j
t□ATk = (X∗

t )
iX j

tT
k□A.

By linearity, this result extends to Hn
Ω. Therefore, [□A, Hn

Ω] = 0, completing the
proof.

Remark 6.5 This result extends Proposition 5.3 from first-order differential operators to
arbitrary finite-order operators constructed from powers of X∗

t , Xt, and T, all commuting
with □A.

6.2 the T–extended algebra ET

The commutation properties of our fundamental operators naturally lead us to
investigate the algebraic structure they generate.

Definition 6.6 (T–Extended Algebra ET) Let ET be the K-vector space spanned by the
operators I , T, Xt, and X∗

t , where for f ∈ Dn
ν , ν ∈ (0, 1), n ∈ N:

I f = f ,

T f = ∂t f ,

Xt f = et∂ f ,

X∗
t f = e−t(−∂∗) f .

We equip ET with the commutator bracket [A, B] := AB − BA and refer to this space as
the T-extended algebra.

Remark 6.7 The algebra ET is termed an "extended" algebra because it contains a subal-
gebra isomorphic to the well-known Heisenberg algebra. Specifically, the generators I , X∗

t ,
and Xt form a Lie algebra ((see Appendix C.1) with the commutation relations:

[X∗
t , Xt] = 2I ,

[I , X∗
t ] = [I , Xt] = 0.
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These are precisely the defining relations of the Heisenberg algebra, with X∗
t and Xt playing

the roles of the creation and annihilation operators, respectively. Note that [X∗
t , Xt] =

[−∂∗, ∂] = 2I . The T-extended algebra ET can be seen as an extension of the Heisenberg
algebra by including the time translation operator T.

Theorem 6.8 The T-extended algebra ET, equipped with the commutator bracket, forms
a Lie algebra (see Appendix C.1). The non-trivial commutation relations are:

[T, Xt] = Xt

[T, X∗
t ] = −X∗

t

[X∗
t , Xt] = 2I

Proof We first prove the commutation relations. Assume f ∈ D2
ν, for ν ∈ (0, 1).

[T, Xt] = Xt:

[T, Xt] f = (TXt − XtT) f

= ∂t(et∂x f )− et∂x(∂t f )

= et∂x f + et∂t∂x f − et∂x∂t f

= et∂x f = Xt f

[T, X∗
t ] = −X∗

t :

[T, X∗
t ] f = (TX∗

t − X∗
t T) f

= ∂t(−e−t(2x f − ∂x f ))− (−e−t(2x∂t f − ∂x∂t f ))

= e−t(2x f − ∂x f ) + (−e−t(2x∂t f − ∂t∂x f ))

− (−e−t(2x∂t f − ∂x∂t f ))

= e−t(2x f − ∂x f ) = −X∗
t f

[X∗
t , Xt] = 2I :

[X∗
t , Xt] f = (X∗

t Xt − XtX∗
t ) f

= (−e−tet(2x∂x f − ∂x∂x f )) + ete−t∂x(2x f − ∂x f )

= −2x∂x f + ∂2
x f + 2 f + 2x∂x f − ∂2

x f

= 2 f = 2I f

To show that ET is a Lie algebra, we must verify that the commutator bracket
satisfies bilinearity, antisymmetry, and the Jacobi identity. The bilinearity and an-
tisymmetry of the commutator bracket are immediate. For the Jacobi identity, we
need only verify:

[T, [Xt, X∗
t ]] + [Xt, [X∗

t , T]] + [X∗
t , [T, Xt]] = 0,

as all cases with repeated operators vanish identically. Indeed:

[T, [Xt, X∗
t ]] + [Xt, [X∗

t , T]] + [X∗
t , [T, Xt]] = [T,−2I ] + [Xt, X∗

t ] + [X∗
t , Xt]

= 0 + (−2I) + 2I = 0.

Thus, ET satisfies all Lie algebra axioms.
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a lie algebra framework

Remark 6.9 This algebraic structure allows us to view Proposition 5.3 as a statement
about the commutation of □A with elements of the enveloping algebra of ET [Kir10, Defi-
nition 5.1].

In our context, the universal enveloping algebra U(ET) of ET is the associative algebra
generated by the operators I , T, Xt, and X∗

t , subject to the commutation relations given
in Theorem6.8. Elements of U(ET) are linear combinations of products of these operators,
i.e., they are of the form:

n

∑
i+j+k=0

cijk(X∗
t )

iX j
tT

k

where cijk ∈ K and n ∈ N.

The commutation relations of the T-extended algebra ET reveal a special ele-
ment that commutes with all other elements of the algebra, known as a Casimir
operator (see Definition C.2).

Corollary 6.10 The OU evolution operator □A is a Casimir operator of the T-extended
algebra ET.

Proof The result follows directly from Lemma 6.2 and the definition of a Casimir
operator (see Definition C.2).

6.3 isomorphism to the oscillator algebra

We introduce the oscillator algebra Oc, a well-known algebraic structure in math-
ematical physics [KS97].

Definition 6.11 (Oscillator Algebra) The oscillator algebra Oc is generated by opera-
tors a, a†, N and I with the commutation relations:

[N, a†] = a†

[N, a] = −a

[a, a†] = I
[I , ·] = 0

The oscillator algebra plays a fundamental role in various areas of physics, in-
cluding quantum mechanics, quantum optics, and the theory of special functions
[KS97]. Remarkably, the T-extended algebra ET resembles Oc, as formalized by
the following theorem.

Theorem 6.12 (Isomorphism to Oscillator Algebra) The Lie algebra ET, generated
by the operators {Xt, X∗

t , I , T} with the commutation relations

[T, Xt] = Xt

[T, X∗
t ] = −X∗

t

[Xt, X∗
t ] = 2I

[I , ·] = 0

is isomorphic to the oscillator algebra Oc.

55



a lie algebra framework

Proof Define the normalized operators:

a† :=
Xt√

2

a =
X∗

t√
2

N := T

Under this normalization, the commutation relations become:

[N, a†] = a†

[N, a] = −a

[a, a†] = I
[I , ·] = 0

These are precisely the defining relations of the oscillator algebra Oc as given in
Definition 6.11.

The isomorphism between ET and Oc provides a new perspective on the al-
gebraic structure underlying the OU process. This connection suggests that tech-
niques and results from the representation theory of Oc could be utilized to gain
new insights into the OU process and related parabolic problems.

6.4 synthesis of algebraic results

This chapter has elucidated the algebraic structure underlying the Ornstein-Uhlen-
beck evolution operator □A. The main results can be summarized as follows:

1. The commutation property [□A, Hn
Ω] = 0 holds for higher-order operators

Hn
Ω.

2. The T-extended algebra ET = span{I , T, Xt, X∗
t } forms a Lie algebra with

□A as its Casimir operator.

3. There exists an isomorphism ET ∼= Oc, where Oc is the oscillator algebra.

These findings establish an algebraic framework for analysing the OU operator
and related parabolic problems.
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7
C O N C L U S I O N A N D F U T U R E D I R E C T I O N S

We shall not cease from exploration
The end of all our exploring

Will be to arrive where we started
And know the place for the first time.

— T.S. Eliot [Eli01]

7.1 summary of results

This thesis has examined the Ornstein-Uhlenbeck (OU) operator on metric star
graphs, extending previous results and unveiling new algebraic structures. The
main contributions can be summarised as follows:

• We uncovered the key role of the even-odd extension method in translating
results from the real line to metric star graphs. This approach, implicit in
the work of Mugnolo and Rhandi [MR22], provides a systematic way to use
known results for parabolic problems on R to establish the existence and
uniqueness of solutions on metric star graphs.

• We extended the spectral analysis of the OU operator to include δ–Coupling
Vertex Conditions (VCs) on metric star graphs. This generalization revealed
a characterization of the eigenvalues in terms of a transcendental equation
involving the δ–coupling strength.

• We developed a commutator-based approach for constructing new solutions
to the parabolic problem. This method allows for generating solutions sat-
isfying different boundary conditions by applying operators that commute
with the OU evolution operator. We demonstrated its application to Robin
boundary conditions on a semi-infinite interval, providing an explicit solu-
tion in terms of the OU kernel.

• We introduced the T-extended algebra ET, unveiling the underlying alge-
braic structure of operators commuting with the OU evolution operator □A.
This algebra extends the well-known Heisenberg algebra, providing a richer
framework for analyzing the OU process. Notably, we discovered that the OU

evolution operator emerges as the Casimir operator of ET.

• Finally, we established an isomorphism between ET and the oscillator alge-
bra Oc, connecting our results to well-established structures in mathematical
physics. This isomorphism facilitates applying techniques from the represen-
tation theory of Oc to the study of the OU process.
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conclusion and future directions

7.2 future directions

Several potential avenues for future research emerge from this thesis:

1. Extension to General Metric Graphs: Investigate the applicability of our
methods, particularly the even-odd extension technique and the commutator
approach, to OU operators on more complex graph topologies.

2. Further Exploration of δ-Coupling VCs: Analyze solutions’ spectral proper-
ties and long-time behavior under various δ-coupling strengths. This could
involve a detailed study of how the coupling strength affects the eigenvalue
distribution and the asymptotic behavior of solutions.

3. Applications of the T-Extended Algebra: Exploit the isomorphism with the
oscillator algebra to derive new results about the OU process using tech-
niques from representation theory. This could lead to novel insights into the
structure of solutions and the behavior of the process.

4. Stochastic Interpretation: Develop a probabilistic interpretation of our re-
sults, particularly in the context of diffusion processes on metric graphs.
This could involve studying the relationship between the algebraic structures
we’ve uncovered and the sample path properties of the associated stochastic
processes.

These directions offer the potential for deepening our understanding of the OU

operator on metric graphs and its connections to broader areas of mathematics
and physics.
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Part I

A P P E N D I X



A
C O N S E RVAT I V I T Y

Lemma A.1 Let
(
TmTmTm(t)

)
t≥0 be the semigroup on the metric star graph SmSmSm with the rep-

resentation formula (3.1) and the integral kernel κ satisfying the identity (3.23). Then, the
semigroup

(
TmTmTm(t)

)
t≥0 is conservative, i.e., TmTmTm(t)1 = 1 for all t ≥ 0.

Proof
For xxxi ∈ SmSmSm, i ∈ I, and t > 0, we have(

TmTmTm(t)1
)
(xxxi) =

∫
rrri

(κ(t, |xxxi|, |ηηηi|)− κ(t, |xxxi|,−|ηηηi|))dηηηi

+
2
m ∑

j∈I

∫
rrrj

κ(t, |xxxi|,−|ηηη j|)dηηη j

(3.23)
=

∫
rrri

κ(t, |xxxi|, |ηηηi|)dηηηi +
∫

rrri

κ(t, |xxxi|, |ηηηi|)dηηηi − 1

+
2
m ∑

j∈I

(
1 −

∫
rrri

κ(t, |xxxi|, |ηηηi|)dηηηi

)
= 2

∫
rrri

κ(t, |xxxi|, |ηηηi|), dηηηi + 1 − 2
∫

rrri

κ(t, |xxxi|, |ηηηi|)dηηηi = 1.

Thus, since TmTmTm(0) = 1, TmTmTm(t)1 = 1 for all t ≥ 0.
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B
S I N G U L A R S T U R M - L I O U V I L L E P R O B L E M S : K E Y
D E F I N I T I O N S A N D T H E O R E M S

This appendix compiles the key definitions and theorems from singular Sturm-
Liouville (SL) theory invoked throughout this thesis, drawing primarily from the
contributions of [HK92] and [Wei03].

We introduce the differential operator τ, defined by the following expression:

τy :=
−(py′)′ + qy

γ
(B.1)

over an interval (a, b),−∞ ≤ a < b ≤ ∞, where p−1, q, and γ > 0 are locally
integrable within (a, b). This guarantees that there is only one solution to the
equation τy = f , given suitable values of y and py′ at every point e ∈ (a, b).

Definition B.1 (Regular and Singular Endpoints) An endpoint x ∈ {a, b} is said to
be regular if it is finite and the functions p−1, q, and w are integrable on some neighbour-
hood of x within the interval [a, b]. Otherwise, x is called a singular point.

Assume, following ([Wei03])

(i) q and ρ are piece-wise continuous real functions on (a, b), p is continuous
and piece-wise continuous differentiable.

(ii) It is ρ(x) > 0 and p(x) ̸= 0 for all x ∈ (a, b).

Definition B.2 For g : (a, b) → C measurable and z ∈ C, the function f : (a, b) → C is
called a solution of (τ − z) f = g, if f and p f ′ are absolutely continuous (more precisely,
they coincide almost everywhere with an absolutely continuous function) and

−(p f ′)′(x) + (q(x)− z)ρ(x) f (x) = ρ(x)g(x)

holds almost everywhere for x ∈ (a, b). Note that because of the (a′) and (b′) requirements,
p f ′ is absolutely continuous if and only if f ′ is absolutely continuous.

Definition B.3 For a SL equation (τ − z)u = 0, the modified Wronskian of two solutions
u1 and u2 is defined as

W[u1, u2] := det

(
u1(x) u2(x)

pu′
1(x) pu′

2(x)

)
= u1(x)pu′

2(x)− pu′
1(x)u2(x), (B.2)

where p is the coefficient function in the SL expression τ.

Definition B.4 Let f : (a, b) → C be measurable. we say that f lies to the left in
L2

γ(a, b) if a c ∈ (a, b) exists, such that f |(a,b) ∈ L2
γ(a, c). Correspondingly, f lies to the

right in L2
γ(a, b) if a c ∈ (a, b) exists, such that f |(a,b) ∈ L2

γ(c, b). Since we will use those
definitions for solutions of (τ − z)u = 0, that always applies to all or none c ∈ (a, b).
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appendix

Theorem B.5 Let τ be a SL expression in (a, b). If all solutions for a z0 of (τ − z0) = 0
lie to the right in L2(a, b; r), then for all z ∈ C all solutions lie to the right in L2(a, b; r).
The same applies to lying to the left.

Theorem B.6 (The Weyl Alternative) Consider a SL differential expression τ in (a, b).
For each such τ, either holds

(i) for each z ∈ C lie each solution u of (τ − z) = 0 right in L2(a, b; r), or

(ii) for each z ∈ C exists at least a solution of (τ − z)u = 0, that do not lye right in
L2(a, b; r). In this case, exists for each z ∈ C \R exactly one solution of (τ − z) = 0,
that lies right in L2(a, b; r).

Following the original Weyl proof, the first case is called the limit circle, and the second is
the limit point case. Those definitions are due to the methods used in Weyl proof.
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C
A L G E B R A I C S T R U C T U R E S

This appendix provides definitions and brief explanations of some algebraic struc-
tures used in the main text, namely Lie algebras and Casimir operators.

Definition C.1 (Lie Algebra) A Lie algebra over K is a K-vector space g together with
a bilinear operation [·, ·] : g× g → g, the Lie bracket, such that:
1. Antisymmetry: [u, v] = −[v, u] for all u, v ∈ g.
2. Jacobi identity: [u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0 for all u, v, w ∈ g.

Lie algebras play a pivotal role in diverse areas of mathematics and physics,
often arising as the infinitesimal generators of Lie groups, which are smooth man-
ifolds equipped with a group structure. Many important geometric and algebraic
properties of Lie groups can be studied more easily by examining their associated
Lie algebras.

Definition C.2 (Casimir Operator) Let g be a Lie algebra over a field K. An element
C ∈ g is called a Casimir operator (or Casimir element) if [C, x] = 0 for all x ∈ g.

Casimir operators are important in the study of representation theory of Lie
algebras, as they provide a way to classify and construct representations. In phys-
ical applications, Casimir operators often correspond to conserved quantities or
invariants of the system under consideration.
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